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A B S T R A C T

The transition to Electric Vehicles (EVs) for reducing urban greenhouse gas emissions is hindered by the lack of
public charging infrastructure, particularly fast-charging stations. Given that electric vehicle fast charging sta-
tions (EVFCS) can burden the electricity grid, it is crucial for EVFCS to adopt sustainable energy supply methods
while accommodating the growing demands of EVs. Despite recent research efforts to optimize the placement of
renewable-powered EV charging stations, current planning methods face challenges when applied to a complex
city scale and integrating with renewable energy resources. This study thus introduces a robust decision-making
model for optimal EVFCS placement planning integrated with solar power supply in a large and complex urban
environment (e.g., Chicago), utilizing an advantage actor-critic (A2C) deep reinforcement learning (DRL)
approach. The model balances traffic demand with energy supply, strategically placing charging stations in areas
with high traffic density and solar potential. As a result, the model is used to optimally place 1,000 charging
stations with a random starting search approach, achieving total reward values of 74.30 %, and estimated the
capacities of potential EVFCS. This study can inform the identification of suitable locations to advance the
microgrid-based charging infrastructure systems in large urban environments.

1. Introduction

With the growing environmental concerns related to internal com-
bustion engine (ICE) vehicles, the transition to electric vehicles (EV) has
emerged as a means for reducing greenhouse gas (GHG) emissions in the
transportation sector (Sanguesa et al., 2021). According to the United
States Department of Energy (DOE) (McLaren et al., 2016), nationwide
carbon dioxide (CO2) emissions per vehicle are reported to be 4.5 times
higher in conventional ICE vehicles (12,594 pounds of CO2 in 2021) in
all EVs (2817 pounds of CO2 in 2021) annually. EVs running only on
electricity have zero emissions of GHGs (e.g., CO2, methane (CH4),
nitrous oxide (N2O), etc.) during driving.

The dissemination of EVs has been challenged due to the lack of
public charging stations (Singh et al., 2022). EV users have expressed
concern about potential roadside standing, a consequence of limited
access to charging infrastructure. The development of a widespread
charging infrastructure is pivotal to ensuring driving feasibility for EVs
and promoting adoption (Nie et al., 2016). The current charging

infrastructure is mostly the low-speed public charging stations (i.e.,
level-2) (87.75 % in the United States) (U.S. Department of Renewable
Energy, 2023), which require 4 - 10 h to 80 % charge from empty.
However, these slow charging stations cannot accommodate the growth
of high charging demand efficiently. Thus, the installation of
direct-current (DC) fast charging stations (i.e., level-3) in an appropriate
place has been studied to support time-efficient long-distance travels.
DC fast charging stations incur high installation fees, exceeding $20,
000. A misplacement of expensive fast charging station, lacking the
investigation of potentially high charging demand area, may result in
significant economic losses. In this respect, it is crucial to make optimal
planning for EV fast charging stations (EVFCS) that can consider
growing charging demand.

Increasing demand of the EV charging infrastructure imposes sub-
stantial pressure on the national power electricity grid (Pareek et al.,
2020). The burdens may introduce uncertainties in the reliable supply of
electricity to other consumers. The current capacity of transmission lines
cannot be affordable for the upcoming surge in demand from EV users
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(Rodriguez-Calvo et al., 2017). In addition, the reliance on fossil fuels
for electricity generation is still challenged to justify the promotion for
EV adoption. With the growing EV adoption and increasing need of
EVFCS, it is needed to transition the electricity resources to renewable
energy. As a sustainable and least-invasive way of supplying the
increasing needs of electricity, decentralized energy resources (e.g.,
solar) can be used. Solar photovoltaic (PV) power systems can be a
viable and promising solution to complement the demand capacity of
the grids as well as address environmental issues by reducing green-
house gases (GHG) emissions during electricity generation.

Recent research on renewable-powered EVCS placement problems
has focused on optimal locations, where balancing high charging de-
mand with the distribution of renewable energy generation (Mozafar
et al., 2017). Considering the limited electricity produced by solar PV
systems, optimal EVFCS sites need to be identified based on reliable
estimations of capacity and the number of charging stations powered by
solar PV (Huang et al., 2019). Notably, as the generation of renewable
energy can be spread across vast areas, the problem of placing
renewable-powered EVCS needs to be extended to examine coverage
throughout the entire city. Despite the demand for exploring potential
EVFCS locations at a large scale, considering the increase in the number
of charging stations and alternative sites, current planning approaches
(e.g., heuristic-based path planning, multiple-criteria decision-making
approach (MCDM)) may face challenges when applying them to solve
renewable-powered EVFCS placement problems due to a lack of scal-
ability and applicability. The existing planning approach may not
effectively solve the optimization problem for a large number of EVCS
placements, as it requires substantial computational resources that in-
crease with the size of the problem (i.e., the number of charging sta-
tions) (Nandy et al., 2023; Wang et al., 2021). The previous approach
has also been examined to a limited extent in a small-scale case study
area, without covering the entire city (Lam et al., 2014). For example,
the MCDM approach evaluates optimal sites from several candidate sites
(Rani &Mishra, 2021) and the path planning approach cannot consider
outside road networks to investigate high charging demand (Deb et al.,
2018).

To address the knowledge gaps, this study aims to propose a robust
decision-making model for the optimal planning of EVFCS powered by
solar power using an advantage actor-critic (A2C) deep reinforcement
learning (DRL) approach. A reinforcement learning-based decision-
making model is devised to learn the complex urban environment using
geospatial data (e.g., land use, potential electricity produced by PVs,
traffic flow, existing EVCS vector maps). Without a pre-determined de-
cision process, such as initial weights for criteria (i.e., parameters) or a
deterministic model, the DRL model learns and optimizes decision-
making parameters (i.e., policy and value) over episodes. In addition,
by refining the model in testing various strategies, this research proposes
the optimal planning for EVFCS in a city level. It also estimates potential
charging stations’ capacities from a large charging infrastructure
network model. This research broadens the body of knowledge in
optimal energy infrastructure planning on a city scale considering sus-
tainable development, with a specific focus on fast-charging stations
connected with renewable power systems. It also provides insight into
how capacities of charging stations are balanced with charging demand
and electricity supply. The results of this research can contribute to
exploring EVFCS planning options in a complex urban environment
using a comprehensively learned model and promoting electric transit
for urban sustainability.

The remainder of this paper is organized as follows. The literature
review section reviews previous studies on EVCS placement problems
explaining the knowledge gaps of (1) a constrained search area (e.g.,
district level), (2) a lack of robustness in geospatial analysis-based de-
cision-making approaches, (3) consideration of installing a small num-
ber of charging stations, and (4) a deficiency in integrating the
distribution of solar energy with site selection of EVFCS. The method-
ology section describes the research objective, introducing the

investigation of optimal placements of public electric vehicle fast
charging stations while considering complex spatial patterns in map-
type data at an urban scale. The results section presents a case study
and the optimal sites for EVFCS by examining two strategies and six
scenarios. The discussion section analyzes the results and discusses any
limitations identified, Lastly, the conclusion section summarizes the
major findings in our work, outlines contributions, and suggests future
works.

2. Literature review

Previous studies for EVFCS site selection approaches were reviewed
in this section. Key decision-making models from these studies were
summarized in Table 1, presenting decision models, the number of
charging stations, range of target area, utilization of renewable re-
sources, and criteria or data used.

2.1. Multi-criteria decision-making approach for EVCS planning

MCDM approach has often been used to identify optimal places for
EVCS. For example, Rani et al. (2021) (Rani &Mishra, 2021) stated that
EVCS location selection problems can be solved by prioritizing candi-
date sites. The priority was evaluated by analyzing the interrelation
among various parameters (e.g., environment, economy, social, and
technology criteria). Interrelation analysis is calculated depending on
the evaluation of weight of criteria (i.e., parameters), using various
MCDM approaches, such as analytic hierarchy process (AHP) (Guler &
Yomralioglu, 2020), fuzzy AHP (Tripathi et al., 2021), linguistic entropy
weight (LEW) method and fuzzy axiomatic design (FAD) (Feng et al.,
2021).

For example, Rane et al. (2023) implemented EVCS placement suit-
ability problem using the integration of GIS and MCDM techniques (e.g.,
multi influencing factor (MIF) weights and technique for order prefer-
ence by similarity to ideal solution (TOPSIS)). They estimated the pri-
ority between factors that distance to roads, proximity to commercial
offices, and distance from bus depot are the most significant features in
mapping the site suitability classes (not suitable to very high suitability).
Yu et al. (2022) proposed the optimal EVCS placement in urban road
networks using the TOPSIS decision-making model with traffic, charging
demand, and land price. They suggested specific areas for an optimal
solution through the road segment technique, differing from previous
MCDM approaches, which is mapping the suitability. Panah et al. (2022)
investigated the best MCDM techniques among normal pairwise com-
parison (equal weighting (EW)), hesitant fuzzy independent (HFIJ),
AHP, and hesitant fuzzy AHP, using crow search algorithm (CSA). They
selected three candidates on the IEEE 69-bus test system, consequently
four different MCDM techniques showed disparate results depending on
the experts’ opinions and the weighting coefficients. These approaches
can be used to assess both quantitative and qualitative parameters.
However, there are three critical challenges of previous MCDM ap-
proaches for a robust site selection of EVCS: (1) limited search area: only
a small number of charging stations in candidate sites (i.e., alternative)
were explored as a case study, neglecting a myriad of potential locations
on a large city scale, (2) lack of robustness: the solutions highly depend
on initial criteria and weights, often collected from subjective judgments
of experts, and (3) lack of model transferability: MCDM-based site se-
lection approach is difficult to apply to different cities due to complex-
ities of requiring a wide variety of data.

2.2. Path planning for placement

A path planning approach has frequently been utilized to investigate
optimal electric vehicle charging facilities. The goal of path planning for
solving charging station placement problems (CSPP) is to investigate the
optimal sites where the charging demand is maximized (Kuby & Lim,
2007). The charging demand depends on various factors such as EV
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users’ charging behavior, location of the charging station, and charging
speed (e.g., fast, slow) (Chaudhari et al., 2018). To investigate the
charging locations based on the estimation of charging demand, re-
searchers have used the path planning-based charging station location
model (e.g., flow-capturing location model (FCLM) (Kuby& Lim, 2005),
flow-refueling location model (FRLM) (Lim & Kuby, 2010; Riemann
et al., 2015), agent-based model (García-Magariño et al., 2018)). Path

planning model assumes that the refueling demands occur within
vehicle flows on the way from origin to destination. Kuby & Lim (2005)
applied the FCLM proposed by Hodgson (1990) to investigate optimal
location of refueling spots for alternative vehicles (e.g., fuel cells, nat-
ural gas). Also, they extended FCLM, which assumes the driver will stop
only once along their path, to FRLM, which can consider multiple
refueling behaviors on longer trips with a combination of facilities along

Table 1
Summary of previous studies on EVFCS placement.

Author Model The number of
charging station

Range of target area Utilization of
renewable
resources

Criteria or Data used

(Erbaş et al.,
2018)

GIS-based MCDM
Fuzzy AHP and
TOPSIS

12 EVCSs 8 districts in Ankara (Turkey) No • Environment: distance to vegetation, water resources
and landslide risk, slope, possibility of expansion, and
earthquake risk;

• Urbanity: service area population, and proximity to
junctions, main roads, the substation, petrol station
and other EVCS; and

• Economic: land cost, EV ownership in the service area,
and distance to power cut

(Liu et al.,
2018)

MCDM
DEMATEL and UL-
MULTIMOORA

9 EVCSs 4 districts in Shanghai (China) No • Environment: destruction degree on vegetation and
water, waste discharge, and air pollutants reduction;

• Economy: construction cost, annual operation and
maintenance cost;

• Society: harmonization of EVCS with the development
planning of urban road network and power grid, traffic
convenience, service capability, and adverse impact on
people’s lives

(Kaya et al.,
2020)

GIS-based MCDM
AHP,
PROMETHEE, and
VIKOR

100 EVCSs 38 districts in Istanbul (Turkey) No • Economic: EV numbers, Number of vehicle, land cost,
and household income;

• Geographical: forest, water resources, landslide,
earthquake, and slope;

• Energy; current EVCS, petrol station, solar energy
potential, and substation;

• Social/Environmental: air quality, service area
population, and social areas; and

• Transportation: road, junction, and parking lot
(Zhao & Li,

2016)
MCDM
FDM, fuzzy GRA-
VIKOR

5 EVCSs 5 districts in Tianjin (China) No • Economy: total construction cost, internal rate of
return, and annual operation and maintenance cost;

• Society: impact on living quality in service area, service
capacity, traffic convenience, and coordinate level of
EVCS with urban development planning;

• Environment: deterioration on soil and vegetation,
atmospheric particulates emission reduction, and GHG
emission reduction; and

• Technology: substation capacity permits, power
quality influence, and power grid security implications

(Liu et al.,
2020)

MCDM
FDM, GRA-BWM,
and EWM

5 EVCSs – No • Economic: consumption level, public facilities, return
on investment, construction investment cost, and
operating and management costs;

• Environmental: emissions of GHG, Destruction of soil
and vegetation, garbage handling convenience,
population intensity, and substation capacity; and

• Traffic: distance to the substation, power quality,
terrain advantage, road patency, service capacity,
number of roads, main road number, and service radius

(Kuby &
Lim,
2005)

Path-planning
FRLM, MIL,
heuristic

25 EVCSs Main roads in Florida (USA) No Traffic flow volume

(Riemann
et al.,
2015)

Path-planning
AC-PC FRLM, MNL

Less than 12
EVCSs

– No Traffic flow, drivers’ routing choice behavior

(Pan et al.,
2020)

Path-planning 5 EVCSs Main roads in Beijing (China) No EV drivers’ existing activities, home and public charging
availability, range anxiety, and the energy consumption
of remaining trips, drivers’ trips, and travel demand

(Petratos
et al.,
2021)

Agent learning
DQN

Maximum 26
EVCSs in one
county

3 counties in New York (USA) No Existing charging station location, traffic volume, and POI
information

(Jordán
et al.,
2022)

Agent learning
GA

50, 100, 200
EVCSs

Valencia (Spain) No Population, traffic, social network, cost station, cost
charger, cost distance energy, energy radius, influence
radius, and station role in SimFleet software

(Liu et al.,
2023)

Path-planning &
Agent learning
PPO (DRL)

3, 13, 29, 30,
113 EVCSs

5 main roads in Stanford and Culver
city (USA), Queenstown city
(Singapore), Cambridge city (UK), and
Rouen (France

No Road network coordinates, road types, and number of
lanes; existing charging station information: location,
number of chargers, charging capacity, charging cost and
charger prices
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the shortest path in origin-destination pairs. Wu et al. (2017) proposed a
stochastic flow-capturing location model to estimate the number of EVs
in a trip chain, which represents a sequence of trips per day. They
determined the placement of charging station where EV charging de-
mands are maximized. Moreover, researchers have enhanced these path
planning models by aggregating the users’ charging behavior and inte-
grating them with other optimization algorithms (e.g., clustering
approach, agent-based algorithm). Pan et al. (2020) proposed the
coverage location model for public EVCS where missed trips, the driver
fails to accomplish a trip, are minimized using a genetic algorithm (GA)
based optimization model. To compute the optimization problem of
minimization of missed trips, they constrained charging behavior and
energy consumption. Specifically, as a case study, their model has been
focused on 395 traffic analysis zone TAZs (i.e., average size of 0.76 km2)
in Beijing Municipality and suggested three spots among 50 to 200 po-
tential spots as the best places for the public EVCS. Li et al. (2021)
implemented the public EVCS location problem using improved GA
considering the investment of CS operators and the travel cost in the city
of Shanghai. They simplified searching the area to the road network,
which assumes that candidate CSs are distributed to each node of the
road network, considering 26 to 44 EVs with estimating the size of CSs.

Although extensive studies of path planning-based CSPP have been
conducted to estimate charging demand and determine optimal loca-
tions where greater demand is expected, previous path planning based
CSPP models limit the search range by depending on a network/node-
based heuristic architecture. While their model can easily identify
areas with high charging demands, it encounters difficulty when
exploring areas beyond the network/nodes during investigations. In
addition, previous studies, focused on the estimation of charging de-
mand based on charging behavior, have not fully considered other
crucial factors (e.g., geospatial factors).

2.3. Agent-based optimal placement of EVCS

Agent-based approaches (e.g., reinforcement learning, game theory)
have recently been used to investigate the optimal placement of EVCS by
optimizing the distribution of charging stations with finding the best
number of charging stations, and coverage service of charging stations in
the district scale (Petratos et al., 2021; Jordán et al., 2022). For example,
Petratos et al. (2021) proposed supervised learning with Deep
Q-Network (DQN) reinforcement learning (RL) to predict EV charging
demand using existing charging stations data, traffic data, and points of
interest (POIs) in the state of New York. Their algorithm examined
placing a charger (maximum installation of 10 in one episode) in one
grid cell (26 × 26, one grid cell is 250 by 250 m) estimating the charging
demand of a potential CS and potential CS’s service coverage. However,
their agent could not find the areas including the highest charging de-
mand, which constrained them to extend their model to larger regions.
Also, they suggested an extension of their model by considering a DC
Fast charging station. Jordán et al. (2022) explored the most suitable
locations for EVCS using a genetic’ algorithm. They simulated the
impact of the placement of EVCS on the city at the district level while
changing the number of charger points (e.g., 50, 100, 200) involved in
the charging station (the maximum number of chargers per station is
10). Their model distributed the chargers by learning the balance of
weights between the population (0.2), traffic (0.4), and network activity
(0.4). Yang et al. (2020) optimized a charging plan by placing charging
stations in the road network, which satisfies the condition that the
benefit function (e.g., charging station capacity, influential radius, and
coverage) is maximized and the cost function is minimized. Liu et al.
(2023) applied proximal policy optimization (PPO)attention model to
solve CSPP, which is similar to the path-planning approach, with esti-
mating profit, cost, and fairness values. These values are computed
relying on the influential radius of the CSs to EVs. Specifically, they
constructed the environment of the road network data as
graph-structured data format, expressed as nodes and edges to calculate

three values, as well as to predict charging behaviors (e.g., waiting time,
travel time, and charging time).

Most the agent-based approaches have focused on charging planning
(charging scheduling) (Zhang et al., 2020; Li et al., 2022), not on CSPP,
and have extended the path-planning method to consider more complex
environments and to optimize the problem with more charging stations
than previous path-planning method (Yang et al., 2020; Liu et al., 2023).
Specifically, their common data format (i.e., graph-structured data) has
been limited to investigating the optimal sites for public EVCS within the
road network, but optimal sites are also outside the road network while
satisfying other significant factors (e.g., solar power, land use). Also,
although agent-based approaches can estimate the suitable areas in the
high charging demand and sufficient potential CS’s service coverages,
which means that potential CS does not overlay with other potential or
existing CSs, no one does estimate the potential charging stations’ ca-
pacities and investigate the optimal sites, integrating the distribution of
renewable resources (e.g., solar energy), produced by PV plants located
near the target area, with it.

3. Methodology

This study designs and deploys a site selection decision model using
deep reinforcement learning (DRL) to investigate optimal placements of
public electric vehicle fast charging stations. The proposed optimal
planning model considers complex spatial patterns for charging station
placement in map-type data without predefined models or instructions.
To estimate the capacities of charging stations and the number of
charging stations, and to explore their placement across all areas at a
city scale, we employ Advantage Actor Critic (A2C) Deep Reinforcement
Learning (DRL) algorithms. The A2C-based optimal planning does not
require a high computational load to solve the CSPP compared to other
algorithms (e.g., general decision-making approach, path planning
approach, deep Q-learning). A2C algorithm can be constructed by
learning optimal decisions by themselves without heuristic or intuitive
decisions, and it parameterizes the policy directly (on-policy) without
requiring extensive experiences, such as a replay buffer. In this respect,
this research proposes optimal decisions for the placement of public
EVFCS with estimates of capacities and the number of charging stations
in a complex environment.

Fig. 1 illustrates the overall procedure for optimal site selection of
public EVFCS using A2C DRL algorithms, built using PyTorch package in
Python. In the data generation and conversion step, four datasets are
collected on Geographic Information System (GIS), ArcGIS Pro 10.3
presented by Esri: (1) land use, (2) existing charging infrastructure, (3)
traffic flow, and (4) potential electricity produced by solar power. The
spatial dataset is used to construct the environment for DRL. With the
constructed environment, the proposed A2C DRL model learns geo-
spatial patterns, enabling the agent (i.e., all public EVFCS in a city) to
take the best actions (i.e., change in locations and capacities) in a di-
rection of increasing reward values. It estimates the locations of public
EVFCS sites, which can cover potential charging demands in all areas at
the city scale. Finally, the site selection results are visualized using GIS
to visually inspect the proposed model effectively learned spatial pat-
terns through trial-and-error processes.

3.1. Model environment in a case study

3.1.1. Data generation
The city of Chicago, located in Cook County, Illinois, United States,

was selected as the case study area and represented its environment in
RL. Chicago is situated in the Midwest region of the United States, near
the southwestern shores of Lake Michigan making it a central point for
transportation between other cities and states, as shown in Fig. 2.

Chicago is the third-most populous in the United States and second
most congested city, experiencing high levels of transportation-related
CO2 emissions due to heavy traffic congestion and car dependency
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(Chris Gilligan, U.S. News&World Report, 2023). As an alternative way
to alleviate air pollution and environmental emissions by vehicles,
Chicago dwellers have transitioned to EVs. Despite a consistent increase
in the number of alternative vehicles registered in Chicago and Illinois
over the past six years, the city has been faced with limited charging
infrastructure. Specifically, there are fewer DC fast chargers and public
Level-2 chargers per million population (less than 30) compared to the
size of the city (Bui et al., 2020). In addition, 70 % of Chicago dwellers
live in multi-unit buildings without sufficient spaces for installing
chargers, leading to persistent challenges in finding convenient and
regular charging spots. Accordingly, this study explores the city of
Chicago to determine the optimal locations for installing EVFCS using
proposed approach without relying on training labels in datasets.

To construct the environment in the reinforcement learning, this
study utilizes four types of geospatial data: land use map, existing
charging infrastructure, daily traffic count information, and daily po-
tential electricity map. All data were digitized into a spatial map type
using a uniform coordinate system (North American Datum (NAD) 1983
Universal Transverse Mercator (UTM) 16 N) and the same resolution (10
× 10 m2).

Previous studies have presented various socio-technical factors such
as distance to vegetation, deterioration on soil, and vegetation in

environment criteria, construction, operation, and maintenance cost in
economic and proximity to the main road network, and service capacity
in society, urbanity, transportation, and traffic criteria, as shown in
Table 1. Among these factors, this study selected four data types by
calculating the frequency of use in EVCS site selection papers. In pre-
vious studies, land use considerations included vegetation, water re-
sources, green areas, and available spaces (such as parking lots) for
installing charging stations within the environmental criteria. Also,
existing Electric Vehicle Charging Stations (EVCS) and charging demand
were factors considered, taking into account service levels, traffic con-
venience, population density, and intensity as referenced in studies
(Erbaş et al., 2018; Liu et al., 2018, 2020; Zhao & Li, 2016; Rane et al.,
2023), and (Feng et al., 2021). Charging demand was calculated based
on historical Electric Vehicle (EV) numbers from studies (Erbaş et al.,
2018; Kaya et al., 2020), and (Hisoglu et al., 2023), along with traffic
conditions and traffic count data from references (Kahraman & Gün-
dogdu, 2021) and (Kaya et al., 2020). Although potential solar energy
was not considered in the previously reviewed studies, it presents a
promising source to meet the increasing demand for EV charging while
reducing CO2 emissions from electricity generation without over-
burdening the national electricity grid. In addition, other important
factors, not explicitly collected during data generation, were

Fig. 1. Three-step framework for optimal site selection of EVFCS: data generation and conversion for input, A2C RL modeling, and result visualization on GIS.

Fig. 2. Illustration of map data generation in case study area: Chicago, IL.
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incorporated into decision-making within our reinforcement
learning-based model, such as proximity to main road junctions and
service areas.

First, land use is utilized to identify suitable regions for charging
station installation based on land use codes, excluding areas deemed
unsuitable, such as miscellaneous (water resources), agricultural
(vegetation), institutional, and limited government (military) zones (Liu
et al., 2020). For example, Erbaş et al. (2018) and Liu et al. (2020)
indicate that distance to vegetation and water resources may have been
adversely affected by the installation of EVCS, and thus its installation
should be far away from natural resources. The location of EVCS should
be closer to commercial centers due to mobility and sociality (Kaya
et al., 2020). In this study, the land use map data were obtained from
(Chicago Metropolitan Agency for Planning (CMAP) 2018) in
polygon-based GIS format. The polygon-based land use data was con-
verted into point map to align it with all other data as grid format. With
the goal of investigating optimal locations for public fast-charging sta-
tions, residential areas were excluded as potential sites in this study.

Existing charging infrastructure may have an adversary effect to
determine the installation of new EVCS (Erbaş et al., 2018). Considering
the existence of existing charging stations can prevent the division of
charging demands which might result in a deterioration of profitability
(Zhao et al., 2020). The existing location data were obtained from U.S.
Department of Renewable Energy (2023) in point data format.

High-charging demands have a direct impact on the investigation of
the optimal placement of EVCS because EV users may visit potential
EVCS sites to charge their vehicles (Kaya et al., 2020). This research
assumes that numerical value of charging demand is represented using
daily traffic count data. Current traffic count can serve as an indication
of future EV usages. These data were obtained from City of Chicago
(2006) in point map format. To represent the traffic flow data aligned
with the road, point format data is expanded to polyline format using the
buffer function in GIS.

Lastly, high capability of energy supply directly influences the
placement of EVCS because EVCS, especially EVFCS, requires a large
amount of electricity to charge EVs rapidly (Kaya et al., 2020). Specif-
ically, it is highly important to install EVFCS at which high renewable
resources are available to afford the increased electricity load by new
charging demand (Ali et al., 2022). This potential electricity data
generated from rooftops of buildings were obtained from Google, Google
Project Sunroof (2019) in point map format, organized by a census
tracts. These point map-based data are interpolated into raster images,
which are then extracted to building shape. Overall, the four datasets:
land use, existing charging infrastructure, traffic flow, and potential
electricity by solar were overlaid onto a grid format, uniformly con-
strained to the size of Chicago city.

Overall, geospatial data encompasses time-based characteristics of
information or features along with location. This data is used to
construct an environment and interact with the reinforcement learning
model. The environment is constituted by combining all four geospatial
data types into a high-dimensional space. The deep reinforcement
learning model analyzes this environment by extracting spatial features,
which capture correlations among the data or discover hidden infor-
mation within the dataset.

3.1.2. Data conversion
During computation within a reinforcement learning environment,

the latitude and longitude coordinates of data points are transformed
into a rows-and-columns matrix coordinate format through two steps:
(1) converting latitude and longitude coordinates to x, y extent (from
vector format to tabular format), and (2) converting x, y extent to row
and column matrix coordinates, as depicted in Fig. 3.

Initially, raw datasets in vector format are represented using NAD
1983 UTM 16 N, which contains latitude and longitude coordinates.
Latitude-longitude coordinate systems are defined as angular units
calculated by the intersection of a line orthogonal to the Earth’s surface
at a specific point and the plane of the Equator. However, using angular
units makes it challenging to display the data on a two-dimension (2D)
or three-dimensional (3D) map. In this research, the latitude-longitude
coordinate system is converted into x, y extent coordinates. The (x, y)
coordinates describe the data as points with meter/mile units on a
geographical boundary, allowing the map to be bounded like a square
frame. For example, the data (444,161, 4,636,747) with a value of 6676
(kWh) represents electricity usage of 6676 kWh located at (444,161,
4,636,747) meter (m) on the map. These (x, y) coordinates are useful for
overlaying multiple layers with the same coordinates and sizes. The
converted data is stored in tabular format, including (x, y) coordinate
values and variable values (e.g., potential electricity, traffic count).
Then, to create the environment as a grid-based Markov game in rein-
forcement learning, the (x, y) coordinates in tabular format are con-
verted into matrix format using Eq. (1), in the GeoPandas package,
Python.

(x, y) =

{
Row : ((max x − max y) − point(y))

Column : (point(x) − min x)
(1)

where point (x, y) denotes the data coordinate, and (min x, max x, min y,
max y) denotes the boundary of the map.

In more detail, the distance between the maximum and minimum
values of x corresponds to the length of a column and the distance be-
tween the maximum and minimum values of y corresponds to the length
of a row. For example, the upper left corner of the boundary map is

Fig. 3. Map data conversion process for the reinforcement learning environment.
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represented as (0,0), and the lower right corner is represented as (4207,
3420) using Eq. (1). Moreover, the results from the DRL with converted
(row, column) coordinates are transformed back to their original co-
ordinates (x, y) to visualize the results in a GIS environment.

3.2. Reinforcement learning architecture

As a subfield of machine learning, reinforcement learning refers to
learning to optimal decision-making to control an environment (Sze-
pesvári, 2022). In classic reinforcement learning, an agent interacts with
an environment over a series of discrete steps t (Sutton & Barto, 2018).
At any time step t, the agent (charging station) receives a state st (the
current position of charging station (x, y), the current capacity of
charging station, land use, existing charging infrastructure locations,
traffic density information, and potential electricity information as
matrix format) and selects an action at (next position of potential
charging station (x, y), and the capacity of potential charging station)
from a set of possible actions A (action space), based on policy πa, a
probability distribution over actions given states. In return, the agent
receives the next state st+1, following the transition dynamics (Ps), refers
to the probability of an agent transitioning from one state to another
state, and receives a scalar reward rt, it is detailed in sub-Section 3.2.4
Reward function, until the agent reaches a terminal state or goal. The
return Gt is the total accumulated reward sequences Rt+k+1 at time step
k, with a discount factor γ, a real value ∈ (0,1], defined as

∑∞
k=0γkrt+k+1

in each episode. The agent’s goal is to maximize the expected return
from each st , computed using Markov decision process (MDP) E[Rt+1|{S,

A,Ps,Rt , γ}, π].
Reinforcement learning algorithms are assessed for their perfor-

mance and precision, in terms of future rewards and expected return
using a value function. The value function is to measure potential future

rewards from being in state, defined by the state-value function vπ(st) =

E

[
∑∞

k=0γkrt+k+1

⃒
⃒
⃒
⃒st

]

as the expected cumulative reward in a specific

policy achieved by agent in state st and the action-value function

Qπ(st , at) = E

[
∑∞

k=0γkrt+k+1

⃒
⃒
⃒
⃒st , at

]

where Eπ [⋅] denotes the expected re-

turn given that the agent follows a policy π and at any time step t.
However, many of the tasks are combinatorial and highly compositive.
In such cases, traditional learning algorithms, summarized in Table 2,
cannot estimate to find an optimal policy or the optimal value function
in the limit of time and data (Arulkumaran et al., 2017). Specifically, it
cannot appropriately handle the state accurately that is not included in
the dataset.

As the environment has grown in complexity with the increasing
sophistication of models, recent reinforcement learning approaches
have incorporated the policy gradient method in conjunction with
neural networks. Deep reinforcement learning (DRL) approximates large
state and action spaces to generalize it by effectively extracting features
in a complex environment. In the mathematical description, DRL is to
estimate action-value function by using the Bellman equation Q∗(s, a)

= Es∼ϵ

[

r+γmax
aʹ

Q∗(ś , á )

⃒
⃒
⃒
⃒s, a

]

that takes the best action (aʹ) maximizing

the expected cumulative return value (r+γQ∗(ś , á )) (Mnih et al., 2013).
Specifically, DRL can be trained by updating the probability distribution
of actions (i.e., minimizing a sequence of loss function at each episode)
that can estimate higher expected rewards, expressed as Eq. (2)

J(θ) = E

[
∑T−1

t=0
∇θlogπθ(at |st)

∑T

tʹ=t+1

γtʹ−t−1Rtʹ

]

(2)

The DQN model updates the loss function of stochastic gradient
descent, which computes by comparing inputs and targets, expressed as
Eq. (3).

∇θi Li(θi) = Es,a∼ρ(⋅),ś ∼ϵ{[r+ γmaxQ∗(ś , aʹ|θi−1)) −Q(s, a|θi)]∇θiQ(s, a|θi)}

(3)

Specifically, Mnih et al. (2015) developed a novel agent (deep
Q-network, DQN) that can address the fundamental instability problem
in traditional DRL, combining Q-function and deep neural network. To
solve the instability problem due to updating the full trajectory of state
and action pairs at a time, the DQN utilizes experience replay (i.e.,
replay buffer), which samples the agent’s training experience at any
time step et = (st ,at , rt , st+1), to perform model updates. After sampling
from the replay buffer, the agent takes an action according to an
ϵ-greedy policy. Although DQN has successfully done simple tasks using
the policy gradient method with neural network, there are some limi-
tations (1) The DRL can lead to overestimation of action-value function,
resulting in the inaccuracy in the policy (Mnih et al., 2016), (2) DRL
cannot handle continuous action spaces due to limitation in architecture
framework (Yang et al., 2017), and (3) experience replay-based learning
requires heavy computation load to optimize the learning model (Liu &
Yu, 2018).

3.2.1. Advantage actor critic (A2C) algorithm
To overcome these challenges in traditional DRL and DQN, recent

studies have employed the actor-critic method with a baseline bt, which
compares the cumulative reward in the policy gradient as expressed by
Eq. (4)

J(θ) = E

[
∑T−1

t=0
∇θlogπθ(at |st)(Gt − b(st))

]

, Gt =
∑T−1

tʹ=0

γtʹRtʹ (4)

The actor-critic is a hybrid architecture combining a policy-based
method in the actor, which controls how the agent behaves, and a
value-based method in the critic, which estimates what the best action
taken by the Actor is. In the actor-critic method, the policy gradient
(J(θ), actor loss) is represented by the subtraction of cumulative reward
with a baseline (Gt − b(st)) in Eq. (4). From the Bellman optimal equa-
tion, Eq. (4) can be rewritten as the advantage function (At), which
compares taking specific action to the average action at the given state
using the Q value and V value, as shown in Eq. (5).

∇θJ(θ) =
∑T−1

t=0
∇θlogπθ(at |st)At , At = rt+1 + γVϕ(st+1) − Vϕ(st) (5)

Table 2
Comparison of reinforcement learning methods: (1) traditional RL (MDP, Q-learning), (2) deep RL (REINFORCE), (3) off-policy (DQN), and (4) on-policy (A2C).

Methods Feature Advantages Shortcomings

Traditional RL (MDP,
Q-learning)

Model-
based

Simplicity and interpretability Limited scalability to large state/action spaces and requires explicit model

Deep RL
(REINFORCE)

Policy
gradients

Scalability for high-dimensional action/state spaces
and handle continuous actions

High variance in training and less stable training compared to Q-learning

Off-policy (DQN) Q-learning Efficient of learning process from historical data
using experience replay

Requires more computation load due to experience replay, can be sensitive to
hyperparameters, and difficulty to find balance between exploration and
exploitation

On-policy (A2C) Actor-Critic Balance between exploration and exploitation and
more sample-efficient than other learning method

Slower convergence compared to off-policy method

J. Heo and S. Chang
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Moreover, the A2C is approximated toward minimizing the loss L(θ),
which is a combination of Actor and Critic losses for optimizing the
model. Actor loss is calculated by policy gradient and the critic loss
estimates the expected returns (Gt) for q-values using the mean squared
error (i.e., squared L2 norm) expressed by Eq. (6)

Lcritic =

(
∑T−1

tʹ=0

γtʹrtʹ − Vϕ(st)

)2

(6)

In contrast to typical deep learning approaches where the loss
function compares predictions with ground truth values using error
metrics (e.g., L1 loss, L2 loss) in deep learning, the loss function in the
DRL optimizes not the reward function directly but the product of the
estimated value function and the probability of the action.

The critic loss represents the estimation of the value of the state to
minimize the temporal difference (TD) error, which is the difference
between st and st+1, using gradient descent Eq. (7)

ϕ = ϕ + αδ∇ϕ(s) (7)

where w denotes the set of parameters of the value function (critic
network), α denotes the learning rate, δ denotes the TD error, and
∇wV(s,w) denotes the gradient of the critic network.

Also, the actor loss determines the probability of the action selected
by πθ(a|s), as expressed by Eq. (8)

θ = θ + αδ∇θ(a|s) (8)

where θ denotes the set of parameters of the actor network, and
∇θlogπθ(a|s) denotes the probability of selecting action a by policy πθ.

Advantage Actor Critic (A2C) Algorithm is presented in pseudo-code
Algorithm 1.

The core advantage of the A2C method is that it is affordable to train
deep reinforcement learning for continuous state and action space with
model-free and on-policy. It can also resolve a massive and complex
range of problems with lower variance and stability in performance
because it is less affected by hyperparameters than traditional DRL.

3.2.2. Agent and action
The A2C DRL approach was adopted to address the challenge of

placing EVFCS in complex spatial patterns within a large grid environ-
ment. The core elements in the A2C DRL are agent, action, state, and
reward. The agent represents the locations and capacities of all public

EVFCS in the city of Chicago. The agent interacts with the environment
by taking optimal actions and responding to new situations (i.e., state) in
the environment. The A2C DRL model explores the environment to
decide on optimal sites for installing EVFCS and determining their sizes.
The model is trained from the agent’s experiences to maximize the cu-
mulative rewards. The agent selects three types of continuous action on
rows, columns, and capacities of charging stations. The row and column
values are represented to the range from −50 to +50 where the agent
moves to the next state (st+1) after investigating the site in the current
state (st). For example, when the agent selects an action row of −30 and
the action column of +30 at the current position of (2000, 3000), the
agent moves into a new position of (1970, 3030) and investigates the
sites at the position. The agent predicts the capacities of potential
charging stations at any time step t, which ranges from 0 to 30,000 (kW).
This research assumes that fast charging stations are equipped with V3,
Telsa SuperCharger, which have maximum power of 250 kW and EVs
are Tesla Model 3, which have a battery capacity of 65.6 kWh (80 % of
full capacity). For example, when the agent predicts the capacity of
EVFCS to be 30,000 kW, potential charging stations can accommodate a
maximum of 457 electric fleets per day and are equipped with at least
five chargers.

Although classic DRL algorithms can handle discrete action spaces
that yield one output node for each action in the neural network, which
simply takes the highest Q-value or a distribution probability of taking
action, they face challenges when dealing with continuous action
spaces. Naive discretization of the action space, attempted to mitigate
the curse of dimensionality, may discard potentially crucial information
needed to solve the problem, and result in inaccurate estimates (Lillicrap
et al., 2015). On the other hand, the A2C algorithm implements a
parameterized stochastic policy by sampling random actions from a
parameterized Gaussian probability distribution, achieved through
finding the definite integral within a range of actions. Therefore, the
action space should be symmetrically normalized to [−1,1] to increase
training speed and prevent divergence. This research adopts a normal-
ized range of −1 to 1 for its three defined actions, as shown in Table 3.

3.2.3. State
A state in this model represents the current environment that the

agent is in. Our environment encompasses vast areas in Chicago. To
reduce the computational load and prevent out-of-memory errors during
model training, we defined the state by extracting the environment
space that retains important geospatial information around the agent,
affecting the decision-making for the site selection of new charging
stations. Specifically, the state space is cropped to include a region with
50 grids (e.g., 1 grid 100 × 100 m) in rows-column coordinates around
the target EVFCS at each time step as shown in Fig. 4.

For example, the position of the agent (e.g., (1328, 1773) in the
environment) is mapped to (49, 49) in the state, which we refer to as the
window (i.e., state). The new window state is utilized to compute the
weight parameters in the actor and critic neural network and to calcu-
late the reward values, as explained in the next Section 3.2.4.

3.2.4. Reward function
The reward function is a core component in reinforcement learning

for creating a robust decision-making model. The reward factors are
defined as shown in Table 4.

The term R1 evaluates potential sites based on land use classifications

Algorithm 1
A2C Algorithm.

//Assume parameter vectors: θ and ϕ
Input: A policy πθ(a|s), a value function Vϕ(s)

1 Initialize: step counter: t ←1
2 Initialize: episode counter: E ←1
3 Initialize: random parameters θ, ϕ
4 Initialize: network gradients ←0
5 For E = 1, M do ⊳ Emax = 1000
6 Get state st ⊳ tmax = 500, 1000, 1500
7 While not done do
8 Take action at , according to policy πθ(at |st)
9 Receive reward rt , and new state st+1 ⊳ rt computed from Table 1
10 t←t+ 1
11 End while terminal st or t− t0 = = tmax

12 R =

{
0, for terminal st

Vϕ(st , ϕ), for non − terminal st
13 R←ri + γR
14 Set TD target: Qn(st ,at) =

∑T−1
k=0 γkrt+k + γnVϕ(st) ⊳ n-step target

15 Advantage: An = Qn(st ,at) − Vϕ(st)
16 Descent Advantage loss ϕ = ϕ − α⋅∇ϕ

∑

t
(An(st , at))

2

17 Ascent policy gradient: θ = θ + α⋅
∑

t
[An(st ,at)⋅∇θlogπθ(at |st)]

18 Move to at←at+1 , and st←st+1

19 E←E+ 1
20 End for E > Emax

Table 3
Description of action characteristics of action name, raw values and normalized
values.

Action name Raw values Normalized values

Rows −50 to 50 −1 to +1
Columns −50 to 50 −1 to +1
Capacities 0 to 30,000 −1 to +1
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extracted from the land use map to determine if charging stations can be
installed (Heo & Chang, 2024). For instance, when the agent is located
in unavailable areas for charging station installation such as miscella-
neous, agricultural, residential, institutional, and government-owned
zones, R1 incurs a penalty of −4. Selecting available areas such as
commercial, industrial, and vacant areas, results in R1 of +2. The term
R2 involves assessing the proximity of existing charging stations to po-
tential sites by calculating the distance between the agent’s position and
the positions of existing charging stations. If existing charging stations
are within a 5 km radius of the agent’s position, R2 receives +2,
otherwise, it incurs a penalty of −1 as the solutions can substitute
existing charging stations. R2 does not receive any rewards (0) when no
existing charging station is nearby potential areas. The term R3 com-
putes relative traffic flow using Eq. (9) to compare it with the average of
traffic volume in Chicago.

Relative traffic flow =
Traffic flow near to potential CS

Average of traffic flow at Chicago
(9)

The agent receives R3 of +2 for potential areas close to high traffic
flow (0.66 ~ 1), +1 for medium traffic flow (0.33 ~ 0.66), and −1 for
low traffic flow (0 ~ 0.33). R4 addresses the balance of energy between
the predicted capacity of charging stations taken by action and the

potential supply, which is the sum of electricity generated from rooftop
PVs within a 250 m radius of the agent’s location. Tapping electricity
from farther locations results in a voltage drop of up to 3.7 % over 275 m
without considering the inverter [61, 62]. R4 receives positive rewards
(+2) when the charging capacity provided by potential charging stations
is less than the potential supply produced by adjacent rooftop PV sys-
tems. If electricity production is sufficient compared to the predicted
capacities of charging stations, the investigation area expands to 2 km ×

2 km to calculate the summation of electricity production. R4 then re-
ceives +1 if the charging capacity is still lower than the potential supply;
otherwise, it receives −2. Finally, the term R5 penalizes duplicate in-
stallations of charging stations. As the agent investigates new potential
areas over st, the challenge arises when new charging stations are
installed in the same areas that satisfy all other factors (e.g., R1 to R4). R5

receives a penalty of −2 when the distance between new charging sta-
tions is less than 250 m.

4. Results

Before training the model, we explored various combinations reward
functions to determine the best reward functions. We initially calculated
the sum of all rewards without weighting. However, this calculation
resulted in underestimation in the training model, because all rewards
do not contribute equally in the constitution of the reward function. To
resolve this issue, the reward function is designed to be like a regression
model. The best regression-shaped reward function was found manually
by trial and error, as a result, Eq. (10) outperformed other combinations.

Reward function = R1 − 0.1 ∗ R2 + 2 ∗ R3 − R4 + R5 (10)

It implies that distance to existing charging stations (R2) does not
have a significant impact on EVFCS placement problems, while traffic
density (R3) greatly influences site selection investigation. Specifically,
R2 negatively impacts the total reward, which performs better during the
training process. This indicates that the proposed model prevents the
charging stations from overlapping their service areas with each other.
In addition, the energy balance between potential electricity production
and the capacities of potential charging stations (R4) negatively impacts
the training model, suggesting that the demand of charging station ca-
pacities should exceed electricity production to make the placement of
charging stations attractive.

The trained model is employed to explore EVFCS locations under two
strategies. The first strategy involves the selection of “starting points”.
The position of the starting point influences how the agent explores

Fig. 4. Concept of state segmentation from the observation spaces (i.e., environment).

Table 4
The definition and equation of rewards.

Rewards Definition Reward function

R1 Available land use
type for EVFCS
installation

R1 =

{
available site : +2

unavailable site : −4

R2 Existence of existing
charging
infrastructures

R2 =

⎧
⎨

⎩

null : −1
0 < distance < 50 : +2

distance ≥ 50 : 0
R3 Traffic density R3 =

⎧
⎨

⎩

high traffic flow (0.66 ∼ 1) : +2
medium traffic flow (0.33 ∼ 0.66) : +1

low traffic flow (0 ∼ 0.33) : −1
R4 The balance of

energy between
charging capacity
and potential solar
power supply

R4 =
⎧
⎨

⎩

capacity ≥ energy supply (∼ 250m) : +2
capacity ≥ energy supply (∼ 2km) : +1

otherwise : −2

R5 Prevention of
duplicating the
coverage areas of
each EVFCS

R5 =

{
distance between CS ≥ 250m : + 2

otherwise : −2
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suitable regions for the installation of EVFCS in a vast and unknown
environment. For instance, if the starting point is in high-parameter
areas (e.g., near heavy traffic density), resulting in high reward
values, the model can be trained more easily compared to starting in
low-parameter areas. This study employed two types of starting point
methods: (1) fixed starting point and (2) random starting point. The
fixed starting point is positioned at specific positions (i.e., the center of
the environment space), where the installation of charging stations can
be available. This study defined the coordinate of the fixed starting point
as (1982, 1196) in matrix coordinate format. On the other hand, the
starting point is randomly changed at the beginning of each training
episode. In the random starting point method, the starting point is
selected from available areas extracted from the land use layer in the
environment. This method offers the advantage of self-validating the
training model without additionally testing the model.

The second strategy involves the “number of charging stations”. The
charging stations obtain electricity from nearby solar PV systems which
can potentially be installed on the rooftops of buildings. As the number
of charging stations increases, the demand for electricity also rises. In
particular, when charging stations are too close together, it can overload
the district distributional system. This study investigated an optimiza-
tion model by testing different numbers of stations (e.g., 500, 1000,
1500), which in turn alters the time steps of each episode in the training
model.

Overall, six scenarios were tested by simulating 1000 episodes,
varying the combination of starting points and the number of charging
stations, as shown in Table 5. The performance of the scenarios,
measured by training rewards (total cumulative rewards), is presented
in Fig. 5.

In addition, the proportion of satisfied rewards from all charging
stations (e.g., 500, 1000, 1500) was computed, as presented in Table 6.
The proportion was calculated as the ratio of each episode that satisfies
the criteria of each reward explained in the reward function section at all
EVFCS (i.e., 500, 1000, 1500 as time steps). For example, 100 % of R1 in
the fourth scenario represents that all of the investigated charging sta-
tions (i.e., 500) were installed in available areas.

The results demonstrate that our algorithm effectively solves EVFCS
placement problems, regardless of the starting point. For example, the
training rewards of Scenarios 4, 5, and 6, based on random starting
points were slightly lower than those of Scenarios 1, 2, and 3, based on
fixed starting points. It implies that our model may be stable even when
trained randomly over episodes. Although more charging stations might
provide the model with more opportunities to learn and explore,
potentially improving learning, this study observed that the stability of
learning decreases when there are too many charging stations (1500). In
Fig. 5, it is shown that the algorithm lost previous experience in Sce-
narios 3 and 6. This is because this study designed the agent to represent
“all public EVFCS in a city”. In this respect, introducing more charging
stations could increase the complexity of the environment, leading to
more variability of the agent’s experience. This increased variability
could potentially make learning less stable if the agent struggles to
generalize effectively from its experience.

The composite reward function is used to compute the expected
discounted return for exploring the optimal policy. However, this
approach may pose challenges for RL users in understanding which

reward factors influence the decision-making process. To analyze how
the model balances reward factors, our research decomposes the com-
posite reward function into individual components represented by R1 to
R5 factors, as shown in Table 6.

The satisfaction percentage of reward factor R1 is consistently the
highest (e.g., 100 % in all Scenarios) among the reward factors. This
indicates that the agent successfully selects viable sites for EVFCS such
as commercial areas or parking lots, while avoiding unsuitable locations
like vegetation or military zones. In contrast, the satisfaction percentage
of reward factor R2 is the lowest (e.g., 14 % in Scenario 5) among all
scenarios. This suggests that existing charging infrastructures may not
significantly influence site selection, possibly conflicting with other
reward factors or negatively correlating with potential fast charging
station locations. Regarding reward factor R3, the agent prioritizes
available sites that satisfy high traffic density (i.e., charging demand).
For R4, the proximity to potential electricity generation within a 2 km
radius of the target charging station should exceed the predicted
charging station capacities evaluated in the third action. Lastly, dupli-
cation of coverage areas for each potential EVFCS is prevented through
reward factor R5, except in the sixth scenario. This implies that our
model exhibits a bias where the total rewards acquired by densely
installing 1500 charging stations surpass those obtained by preventing
duplication between potential EVFCS. This bias issue did not arise in a
fixed starting point-based learning model, which can repeatedly train in
the same regions over 1000 episodes without generating such biases.

Overall, the use of random starting points and 1000 charging stations
(Scenario 5) generally yields higher rewards for all reward factors except
for R2 compared to Scenarios 4 and 6. Although Scenario 3 (fixed
starting point with 1500 charging stations) outperformed Scenario 5 in
terms of the highest point of cumulative rewards, we selected the model
from Scenario 5 as the best scenario. This decision was based on the
higher stability of the model, characterized by less variability in the
agent’s experience, compared to Scenario 3. Scenario 5 consistently
offered stable as well as superior performance when applied to any re-
gion without model validation, as shown in Fig. 5 and Table 6.

Scenario 5, identified as the best scenario based on the above results,
is utilized to evaluate the learning performance by visualizing the
training actor and critic losses over episodes, as shown in Fig. 6(a) and
(b).

As shown in Fig. 6, the loss graphs depict an observation wherein the
action loss consistently surpasses the critic’s estimated loss, implying a
positive error in the actor loss. Such disparity suggests that the actions
chosen by the actor are significantly deviating from what the critic
thinks would lead to higher rewards. This situation indicates that the
actor’s policy does not well align with the critic’s evaluation of the state-
action values. To improve the learning process and encourage the actor
to select better actions, it is necessary to reduce the actor loss throughout
the episodes. In our learning process, we observed a singular loss point
where the loss function experiences a significant change or anomaly
around episodes 750 ~ 800. This anomaly suggests the possibility of
encountering a local minimum during optimization. Given that our
learning problem is an unconstrained optimization problem, with mul-
tiple potential solutions, such singular points are expected. Therefore, to
mitigate the risk associated with getting stuck in a local minimum, we
opted to select the model from Scenario 5 at episode 720 as the best
option. We anticipate that this selected model will effectively address
potential convergence issues and uphold the robustness of the model’s
performance

To visually investigate the results of potential charging stations from
the proposed model, we examine the solutions along with important
factors such as traffic flow in Fig. 7(a), potential electricity in Fig. 7(b),
and estimated capacity in Fig. 7(c).

Fig. 7(a) shows the potential EVFCS placement with traffic flow
categorized into five travel density classes. The color scheme denotes
varying traffic densities, with light yellow representing lower flow (700
~ 1500) and dark brown indicating higher flow (74,000 ~ 165,000) on

Table 5
Six training scenarios by the combination of two strategies: (1) starting point and
(2) the number of charging stations.

Scenario Starting point The number of CS (t)

1 Fixed point 500
2 Fixed point 1000
3 Fixed point 1500
4 Random point 500
5 Random point 1000
6 Random point 1500
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a GIS environment. In Fig. 7(b), the spatial distribution of EVFCS is
depicted alongside potential solar power availability, delineated by a
color gradient ranging from high values (i.e., dark red (142 MW) to low
values (i.e., light red (0.7 MW)). Fig. 7(c) represents the estimated ca-
pacities of potential EVFCS sites, one of the actions taken by the agent in
the A2C DRL model. These capacities are classified into five classes, with
light blue representing low capacity (14 ~ 20 MW) and dark blue
indicating higher capacity (29 ~ 30 MW). The results highlight a spatial
tendency of potential charging locations, particularly in the southeast
region, characterized by high traffic flow and solar power output. This
concentration in the southeast contrasts with the dispersed distribution
observed in regions where either parameter is high, such as the south-
west or northwest. These observations underscore the significant influ-
ence of traffic flow density and solar power availability on the
determination of optimal EVFCS placement and capacity estimation.

Furthermore, the EVFCS placement map was analyzed to understand
the spatial patterns of potential charging stations across six scenarios
(Fig. 7 and Appendix A), which helps support the interpretation of
learning performance (Table 6). The results revealed that the northern
region of Chicago (scenarios 1, 2, and 4) could be another optimal site
for EVFCS placement, characterized by high traffic flow but relatively
lower energy supply. This suggests that alternative sites with high
charging demand should also be considered. However, as depicted in
Fig. A.3 and Fig. A.5, when considering a higher number of EVFCS in-
stallations compared to the charging demand and energy supply, in-
stallations tend to concentrate in specific areas rather than being
distributed across suitable locations throughout the city. This finding
underscores the importance of balancing installation numbers with de-
mand and supply considerations to achieve more effective and equitable
coverage of charging infrastructure.

The visualization map was further analyzed to understand the
training progress over episodes, which can show the difference in results
between an underfitted model Fig. 8(a), optimized model Fig. 8(b), and
overfitted model (i.e., local minima problem) Fig. 8(c).

Over the episodes, the decision-making pattern regarding potential
EVFCS placement evolves from clustering in specific areas (Fig. 8(a)) to
spreading across general areas with a distinct pattern, demonstrating an
inclination towards accommodating high parameters such as traffic flow
density and potential electricity from solar (Fig. 8(a)). However, a sin-
gularity, observed between 750 and 800 (Fig. 6) leads to erratic
behavior in the decision pattern, potentially resulting from overfitting
induced by local minima.

Table 7 presents a statistical summary including minimum, mean,
median, maximum, and standard deviation computed for further anal-
ysis of potential capacities in the fifth scenario. The distribution of

Fig. 5. Training results of six scenarios.

Table 6
Learning performance of each reward factor for six training scenarios.

Scenario R1 R2 R3 R4 R5 Rall except for R2

1 100.00
%

19.40
%

82.80 % 76.40
%

83.20
%

61.80 %

2 100.00
%

6.00 % 83.80 % 67.60
%

68.20
%

48.90 %

3 100.00
%

7.33 % 99.00 % 96.00
%

84.33
%

81.33 %

4 100.00
%

9.20 % 98.00 % 70.00
%

89.90
%

68.10 %

5 100.00
%

14.00
%

87.00 % 76.30
%

90.40
%

74.30 %

6 100.00
%

6.87 % 100.00
%

29.47
%

0.33 % 0.33 %

Fig. 6. Two loss graphs over the course of training for EVFCS placement problems: (a) actor loss graph and (b) critic loss graph.

J. Heo and S. Chang



Sustainable Cities and Society 113 (2024) 105567

12

evaluated capacities may closely follow a Gaussian distribution under
untrained conditions (Episode 20). This occurs because the agent’s ac-
tions were normalized to a Gaussian distribution prior to learning.
Therefore, during early training, the evaluation of capacities, one of the
actions, followed this normalization while the policy was not yet prop-
erly trained. By the trained condition (Episode 700), the distribution of
evaluated capacities shows no significant difference in statistical values
compared to the original output, which includes all potential charging
stations, versus the modified output that only considers satisfaction of
all reward factors except for R2. However, towards the end of training,

an overfitting issue becomes apparent as the distribution of evaluated
capacities becomes left-skewed towards the maximum value (30,000
kW). This suggests that the model struggles to take optimal actions and
exhibits a biased decision-making process.

5. Discussion

The optimal planning of EVFCS is greatly influenced by geospatial
information covering the city. This research proposes an A2C DRL model
capable of making optimal decisions regarding the installation of EVFCS
by evaluating the capacities of charging stations. Specifically, A2C DRL
model can reflect elements from the previous methods discussed in the
literature review: (1) geospatial analysis-based optimal decision-making
in Multi-criteria Decision-Making (MCDM) techniques; (2) Evaluation of
charging station capacities by estimating charging demand, which often
addressed through path planning methods; and (3) Optimal planning of
EVCS installation in complex environments addressed using agent-based
optimal placement of EVCS. In contrast to path-planning placement
approaches limited to road network investigations (node-based data
structures), the geospatial analysis-based optimal decision-making
approach allows for exploration of vast areas within complex city en-
vironments for EVFCS installation. This approach enabled our model to
identify optimal sites for EVFCS across the entire city, outperforming
similar research models (Petratos et al., 2021; Jordán et al., 2022) that

Fig. 7. Potential EVFCS locations and capacities plotted alongside (a) traffic flow, (b) potential solar power, and (c) estimated capacity.

Fig. 8. Evolution of potential EVFCS placement over episode in Scenario 5.

Table 7
The statistics summary of evaluated capacities over episodes in the fifth
scenario.

Episodes Minimum Mean Median Maximum Standard
deviation

20 11,179
(kW)

16,516
(kW)

16,500
(kW)

21,385
(kW)

1564 (kW)

700 (all
result)

14,054
(kW)

27,242
(kW)

28,369
(kW)

30,000
(kW)

3127 (kW)

700
(except
R2)

14,054
(kW)

27,805
(kW)

28,993
(kW)

30,000
(kW)

3014 (kW)

1000 18,369
(kW)

27,678
(kW)

28,626
(kW)

30,000
(kW)

2681 (kW)
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achieve faster convergence to optimization (in 700 episodes compared
to 3500 episodes in Petratos et al. (2021)).

Furthermore, our model integrates the optimal EVFCS placement
with distributed energy resources powered by solar PV plants, a novel
aspect not studied in previous research. Unlike previous studies focused
on correlating stationary spatial factors for optimal site selection, our
model addresses the non-stationary EVFCS placement challenge in
complex environments where fast charging stations utilize potential
electricity generated by solar PV plants near target areas. This electricity
utilization varies across episodes, significantly increasing the
complexity of the learning process. To address this, our model controls
EVFCS capacities as one of the agent’s actions, balancing them with
potential electricity generated by solar PV plants and traffic density
(charging demand) as described in the fourth reward factor. For
example, as shown in Fig. 7(c), our model devises optimal plans to install
more charging stations or increase capacities in areas with high charging
demand and energy supply. Our model achieves distributed installation
of EVFCS in suitable areas by controlling the fifth reward factor. In other
cases, our model installs low capacity charging stations in areas with
high charging demand but low potential energy supply, where sur-
rounding electricity production from solar PV plants cannot meet the
demand for charging.

The strategies involving the starting point of the agent (charging
station) and the number of charging stations can play a critical role in
solving the optimal decision-making problem in a vast and unknown
complex environment. Through experimentation, it was found that our
model can make optimal decisions by approximating a partially
observable state in each episode, even if the agent encountered the state
the first time. The feature allows the use of a random starting point-
based model achieved stable performance among all other scenarios.
Although the fixed point-based model showed the highest learning
performance (third scenario), it is not validated in other regions where
the environment is significantly different from the training areas, which
may result in the issue of overfitting. It can be inferred that the random
starting point-based model serves a role similar to the cross-validation
technique, helping to avoid overfitting issues by adapting to varied en-
vironments in each episode. It also implies that the random starting
point method can assist the model in constructing a robust probability
distribution of the state, which is used to estimate the value function in
our model because the agent can experience various states during
training.

Furthermore, the number of charging stations plays a crucial role in
the decision-making process within our model, presenting both advan-
tages and disadvantages. On the positive side, regions with high
charging demand (traffic density) and potential energy supply (elec-
tricity availability) can accommodate concentrated installation of a
large number of charging stations, provided they meet additional con-
ditions such as avoiding duplication with existing stations and ensuring
available installation areas. However, selecting sites where either the
charging demand or potential energy supply is low may lead to biased
decision-making or loss of previous learning in our model. For example,
in the sixth scenario, the model prefers that many charging stations be
closely installed in specific regions, resulting in the opposite results
compared to the other five scenarios. The reasons for these results can be
attributed to two reasons: (1) the biased learning outcomes resulting
from the total reward values obtained by duplicating the installation of
multiple charging stations in suitable areas significantly outweigh the
penalty in the fifth reward factor (R5), which aims to the prevention of
duplicating installation in suitable areas; and (2) the biased learning
outcomes stemming from the estimated total capacities of charging
stations exceeding the amount of electricity generated by solar PV plants
in the fourth reward factor (R4). To address these challenges, our pro-
posed method explores optimal combinations, such as deploying 1000
charging stations with a random starting point and optimizes the dis-
tribution of charging station placements. This approach carefully eval-
uates the capacities of potential charging stations while adhering to the

best scenario (i.e., the fifth scenario). This strategy aims to enhance the
effectiveness and efficiency of our decision-making process in urban EV
infrastructure planning.

Future studies should address the following limitations. First, while
the proposed model effectively explores optimal sites for EVFCS
throughout a city, it is less effective in exploring boundary areas. For
example, in Fig. 7(a), the eastern area with high charging demand and
potential energy supply remains underexplored due to the boundary
area’s shape, which hinders the model’s ability to navigate the next
target site. Second, this study solely on the city of Chicago as a case
study. Although the proposed model demonstrated generalizability by
exploring optimal sites from random starting points, further investiga-
tion is needed to apply the model in other cities with distinct geospatial
features. To overcome these limitations, future research can expand the
current site selection model by training it in diverse cities and utilizing
meta-learning techniques to enhance the model’s adaptability across
multiple tasks and environments. This approach will enable broader
applicability and robustness of the proposed EVFCS installation opti-
mization model.

6. Conclusion

The transition to Electric Vehicle (EVs) is seen as a promising solu-
tion for reducing greenhouse gas emissions in cities. However, the lack
of availability of public charging infrastructure, particularly fast-
charging stations, poses a challenge to widespread EV adoption. Also,
their inadequate placement could result in significant economic losses.
In addition, the increasing demand for EV Fast Charging Stations
(EVFCS) strains the national electricity grid, demanding a shift to
renewable energy sources like solar power.

Despite recent efforts to optimize the placement of renewable-
powered EV charging stations, current planning methods face scalabil-
ity issues. In this respect, this study proposes a robust decision-making
model for the optimal planning of EVFCS powered by solar power
using a geospatial map-based advantage actor-critic (A2C) deep rein-
forcement learning (DRL) approach. The model can recognize the spatial
features and patterns of a vast city environment. These learning patterns
are utilized to investigate the optimal sites for the installation of EVFCS
and to evaluate the capacities of EVFCS. Conventional approaches to site
selection of EVCS (Table 1) primarily focus on the investigation of
optimal sites for EVCS at a small scale (considering less than 100
charging stations), best refueling locations with estimating charging
demands, or considering grid connected charging stations. This may not
always integrate the optimal planning of EVFCS placement with
distributed energy resources (DERs) powered by solar Photovoltaic (PV)
plants, covering the vast and complex city environment. Unlike such
approaches, the A2C DRL-based decision-making model can find the
optimal sites, satisfying various geospatial factors, which can highly
affect the placement of the charging stations, while estimating the ca-
pacities of its charging stations.

As a result, the proposed model was tested in the city of Chicago and
achieved a total reward value percentage of 74.30 % except for R2 in the
scenario involving 1000 charging stations and random starting points,
fifth scenario. Based on the results, the major findings and implications
are summarized as follows: (1) The A2C DRL-based decision-making
model allowed for the mapping of geospatial patterns in a vast complex
city environment; (2) the combination of the starting point and the
number of charging stations strongly affected stable learning perfor-
mance (e.g., total reward values ranging from 0.33 % to 81.33 %)
(Table 6) and proposed unbiased decision-making process; (3) the
evaluation of capacities of potential EVFCS is strongly affected by the
balance of energy supply and charging demand (Fig. 7); and (4) the
combination of reward factors was also a critical factor affecting the
nonstationary environment-based decision-making model. The pro-
posed learning model can be used to investigate suitable EVFCS place-
ments within a vast and complex urban environment. It can also
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evaluate the capacities of potential EVFCS by balancing charging de-
mand (traffic density) and energy supply (potential electricity genera-
tion). The model is designed to pinpoint detailed locations for EVFCS at
optimal sites such as commercial areas, ensuring no duplication with
existing charging infrastructures and appropriate spacing between po-
tential charging stations. In addition, the proposed learning model can
facilitate charging services for potential EV users by strategically
distributing a large number of charging stations across urban
environment.

This study contributes to broadening the body of knowledge in large-
scale infrastructure planning and optimization, particularly enhancing
real-world applicability. By leveraging geospatial data and employing
the proposed A2C DRL-based geospatial analysis decision-making
model, this research offers a comprehensive framework for EVFCS
infrastructure planning, thereby accelerating the adoption of EVs and
promoting sustainable urban mobility. However, despite the higher
scalability and complexity of the proposed learning model, future
studies should further develop it by incorporating advanced search
methods to investigate unsmoothed regions (i.e., boundary regions) and
by applying it to other cities with dissimilar geographic, climate, and
urban policy characteristics compared to the case study city (Chicago).
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Appendix A

Figure A: Best maps of Potential electric vehicle fast charging stations in A.1 Scenario 1; (A.2) Scenario 2; (A.3) Scenario 3; (A.4) Scenario 4; (A.5)
Scenario 6.

Fig. A.1. Fixed starting point and 500 charging stations in Scenario 1.
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Fig. A.2. Fixed starting point and 1000 charging stations in Scenario 2.
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Fig. A.3. Fixed starting point and 1500 charging stations in Scenario 3.
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Fig. A.4. Random starting point and 500 charging stations in Scenario 4.
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Fig. A.5. Random starting point and 1500 charging stations in Scenario 6.
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