
Container Adoption in Campus High Performance Computing at
Texas A&M University

Richard Lawrence
rlawrence@tamu.edu
Texas A&M University

HPRC1

College Station, TX, USA

Dhruva K. Chakravorty
chakravorty@tamu.edu
Texas A&M University

HPRC1

College Station, TX, USA

Lisa M. Perez
perez@tamu.edu

Texas A&M University
HPRC1

College Station, TX, USA

Wesley Brashear
wbrashear@tamu.edu
Texas A&M University

HPRC1

College Station, TX, USA

Zhenhua He
happidence1@tamu.edu
Texas A&M University

HPRC1

College Station, TX, USA

Joshua Winchell
jwinchell@tamu.edu
Texas A&M University

HPRC1

College Station, TX, USA

Honggao Liu
honggao@tamu.edu

Texas A&M University
HPRC1

College Station, TX, USA

ABSTRACT
Containers promise benefits for both researchers and cyberinfras-
tructure (CI) professionals, by offering pre-assembled software
stacks with a lower barrier to entry. However, the benefits of con-
tainers are best realized in a well-developed CI ecosystem with
support from administrators. In this paper, we report on the emerg-
ing container ecosystem supported by Texas A&M University’s
High Performance Research Computing Group (HPRC)1; lessons
learned from the perspective of a team that manages a diverse CI
portfolio. Here we share our experience with the following: build-
ing a container ecosystem for HPRC computing resources, outreach
to researcher communities, and documenting use cases that inspire
uptake by others. HPRC container deployment has facilitated ac-
cess to and support for a wide variety of research software at Texas
A&M. Our progress is described from multiple perspectives that
reflect the varied ways that our researchers and administrators
utilize containers.

CCS CONCEPTS
• Human-centered computing → Visualization systems and
tools; • General and reference → Metrics; • Software and its
engineering → Software configuration management and version

1High Performance Research Computing (HPRC)

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670550

control systems; • Security and privacy→ Virtualization and se-
curity; • Social and professional topics→ Informal education;
Software selection and adaptation; File systems management.

KEYWORDS
Containers, Rootless Docker, Singularity, Apptainer, Charliecloud,
Podman, Slurm, Training, HPC, Cyberinfrastructure

ACM Reference Format:
Richard Lawrence, Dhruva K. Chakravorty, Lisa M. Perez, Wesley Brashear,
Zhenhua He, Joshua Winchell, and Honggao Liu. 2024. Container Adoption
in Campus High Performance Computing at Texas A&M University. In
Practice and Experience in Advanced Research Computing (PEARC ’24), July
21–25, 2024, Providence, RI, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3626203.3670550

1 INTRODUCTION
Containers are a technology for facilitating scientific research work-
flows on high-performance computing (HPC) systems with several
known benefits [13][16]. Container users are largely unaffected by
changes to the host environment, such as relocation of the con-
tainer to a different host or changes made to the host environment.
This makes them attractive to researchers trying to reproduce re-
sults from others. The container user should be able to continue
to use the same build of their software if the host architecture re-
mains the same. This increases the longevity of their build and
the reproducibility of any results obtained using that build [17].
Containers have the potential to increase the adoption of software
applications at research computing centers [4]. Research comput-
ing centers, however, have environments that differ from "cloud"
environments that were designed for container-native approaches
[13]. Researchers may use containers in an indirect manner or in-
tentional manner at these sites. Here, the life cycle of a code plays
an important role. In these settings, a software maturity lifecycle

https://orcid.org/0000-0002-1451-0277
https://orcid.org/0000-0001-7739-3701
https://orcid.org/0000-0003-1176-1027
https://orcid.org/0000-0002-3015-4751
https://orcid.org/0000-0003-1706-3561
https://orcid.org/0000-0001-5122-3034
https://orcid.org/0009-0002-2942-9014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670550
https://doi.org/10.1145/3626203.3670550
https://doi.org/10.1145/3626203.3670550


PEARC ’24, July 21–25, 2024, Providence, RI, USA Lawrence et al.

may be applied to classify application software as "large commu-
nity codes," "mature research group code bases," "single user code,"
"development code," or "unused code." These applications could
all be supported by containerized technologies in different ways
[20]. Here, we visit various scenarios. Large community codes used
by many researchers are candidates for containerization. This ap-
proach allows centers to support builds for specific architectures
to ensure performance across all devices, and has been adopted by
HPRC to support applications like CryoSPARC, "a state-of-the-art
scientific software platform for cryo-electron microscopy used in
research and drug discovery pipelines" [19]. In the second scenario,
a research group may want to preserve and share its "in-house"
code with select collaborators at other institutions. In this case,
a center can offer researchers a means by which to share their
code in a versioned manner via containers which is useful when
building container native workflows. While the former approach
has researchers using containers in an indirect manner, the latter
approach is more intentional. These approaches are visualized in
Figure 1.

Containerized applications can take on varied perspectives in
a campus HPC environment. Metrics used to measure uptake in-
clude release cycles, downloads, and adoption sites [9]. HPC centers
use containers in manners that extend beyond the metrics, such
as the percentage of containerized applications, or the number of
containers launched. It’s tempting to ask "Are users independently
choosing to adopt containers?" but that’s a narrow view. We must
also determine if it’s useful for an application to be available in a
containerized form. A center can certainly measure the container-
ization of community codes. A researcher developing ad-hoc code
that will never be shared, may not use a containerized approach.
Whenever their code becomes production-ready, and they decide
to share their work, then it becomes relevant whether they choose
containers or some other method of sharing. One must also account
for how containers are used - intentionally or indirectly.

Mixed software module/container environments are becoming
more common in research computing environments [24][22]. CI
professionals may use containers to install software on central
resources such as an HPC center. Such environments simplify a
researcher’s workflow by offering default applications within por-
tals and toolchains [23]. Here a researcher may prefer to launch
the default application, which could be containerized or not. In
this setting, it is reasonable to ask if a researcher running an ap-
plication should even be aware of the underlying technology, or
have to worry about choosing a containerized or installed software
environment. In such cases, what are the effective means to accu-
rately measure container usage? In consideration of containers’
role in making codes easier to share, one could count the number
of research computing centers that support such a container. While
this metric could inform the center about its standing among peers,
it is, however, unlikely to be useful to researchers who may never
need that application. A more informed approach could be to count
the number of research groups adopting a technology since each is
likely to have internally correlated container usage. In light of these
observations, we must carefully define what it means for software
to be available in a containerized form, and ask the question, "Are
users benefitting?"

As we discuss these topics, it is important to understand con-
tainerization technologies typically used by researchers. Docker
(Rootless), Podman (Rootless), Singularity / Apptainer, and Char-
liecloud are common varieties [13]. Container runtimes are de-
signed for use on different computing resources. Singularity and
Charliecloud, for example, use flat image files and single-user maps
to obtain good performance on network file systems [14][18]. Other
container runtimes, including Docker and Podman, lack these fea-
tures because they were designed to operate in a cloud environment,
which has different use cases and constraints. As such, it is antici-
pated that HPC-focused container runtimes will remain dominant
on campus computing centers for the foreseeable future [13]. These
container runtimes have been selected for use at shared campus
computing centers because they can defer security issues to the
Linux kernel by operating in an unprivileged (rootless) manner.
From inside the container, one may self-identify as any user, includ-
ing root, and this is mapped to their actual user identity outside
the container [5]. The Linux user namespace feature enables this
practice. It doesn’t entirely eliminate the need to think about privi-
lege, but it does give users the freedom to act as though they have
whatever privilege is needed, including root access, even if they
normally would not. For a large fraction of container use cases,
this practice is sufficient to both build and run software within the
container. As long as one is willing to trust the Linux kernel and
the user namespace feature, supporting unprivileged containers
adds only a negligible security risk [3]. Other Linux namespaces
exist, such as the network namespace, but they are generally not
needed for HPC applications.

2 MATERIALS AND METHODS
At Texas A&M HPRC, container-native workflows are supported
on several computing clusters. These include the hybrid comput-
ing environment offered by the Grace cluster, and several systems
supported by the National Science Foundation (NSF), including the
CC* Launch cluster, the MRI FASTER hardware-composable cluster
[8], and the ACES hardware-composable computing cluster [7].
All support different central processing unit (CPU) and graphics
processing unit (GPU) technologies, with ACES extending support
to field programmable gate array (FPGA), co-processor, intelligence
processing unit (IPU), and vector engine technologies. While the
Grace, Launch FASTER, and ACES computing environments use
the Slurm scheduler, the ACES cluster will soon offer job orchestra-
tion via Kubernetes. Supporting applications for individual builds
is a continuous challenge in such a varied environment. To ensure
that researchers can use the latest center-managed software, or use
software from community resources, HPRC supports Singularity
and Charliecloud container runtimes by providing technical devel-
opment, user interface integration, and researcher training. At the
same time, rootless Docker and rootless Podman runtimes are also
provided on the ACES cluster.

Singularity was initially chosen to support container workflows
because at that time it was the only container runtime considered
secure enough for use on shared systems while also offering good
performance for HPC applications [1]. It was installed cluster-wide
because at the time it required root permission to install. Newer ver-
sions of Singularity and Apptainer lack this constraint. Singularity



Container Adoption in Campus HPC PEARC ’24, July 21–25, 2024, Providence, RI, USA

Figure 1: Diagram of three distinct container use cases emerging in HPC. Figure created using stock images from Adobe under
Texas A&M’s Education License, 2024.

was installed in one location, at the root level because its interface
changes slowly enough that multiple version tenancy is not neces-
sary. Usage of Singularity is tracked through Singularity’s internal
logs. Charliecloud, the unprivileged container runtime from Los
Alamos National Lab, also meets these expectations for security
and performance and was adopted more recently [18]. Charliecloud
is installed in our module system because it is an actively developed
project with new features coming out all the time. Thus, keeping
the versions separate from each other in the module system pro-
vides a benefit to users. Lmod maintains a record of when modules
are loaded to our site, which tracks Charliecloud usage.

Researchers use container runtimes to fetch up-to-date builds
of scientific software from remote repositories curated by experts.
For example, NVIDIA provides builds of GPU-ready software that
are more up-to-date than system-installed builds and usually more
performant than user-installed builds. Researchers copy and use
these images whole, with little or no modification. This practice
saves time for users and system administrators without sacrificing
performance.

HPRC maintains several forms of support for researchers who
wish to use containers, including training on the use of contain-
ers as in Table 1, container documentation in written form in our
knowledge base [10] and in video form on our YouTube channel
[11], and unique technical container support in our ACES web
portal powered by Open OnDemand [12]. The Jupyter Notebook in-
teractive app supports the use of user-supplied containers through
both Singularity and Charliecloud engines. HPRC already supports
containerized Jupyter Notebooks in the Open OnDemand frame-
work using both Charliecloud and Singularity runtimes as shown
in Figure 2.

Figure 2: This screenshot was captured on ACES, and was
used to train researchers who were new to containers during
a September 2023 short course.

3 RESULTS
Container usage continues to grow on our systems, as shown in
Figures 3 and 4. Researchers from a variety of scientific fields have
adopted container use on our clusters, but most especially in the
domain of biology and domains which employ machine learning



PEARC ’24, July 21–25, 2024, Providence, RI, USA Lawrence et al.

workflows. Please see Appendix A. The majority of container im-
ages seen in use on our clusters have been recognizable community
codes with established container support. We see little evidence
that researchers are containerizing their in-house codes.

We note that training and support for container usage are still
broadly lacking across NSF ACCESS resource provider sites. Please
see Appendix B. Beyond flagship sites, container adoption may
be held back by insufficient support. Small sites still don’t have
an unprivileged container build option for users; they must either
ask the system administrator to build a container image, or the
user must build it themselves on another machine that they own.
This could be due to the over-committed system administrators at
these sites. The other half of small sites are supporting unprivileged
builds using one or more variants of Singularity and/or Apptainer,
and report that the ability for users to build autonomously has been
game-changing for container adoption since it reduces the need for
administrator support.

In an ACES workshop post-event survey, 77% of respondents
who attended the Charliecloud session rated it "Very Informative."

Several HPRC courses geared towards biology make use of con-
tainerized applications, including "Introduction to Next Genera-
tion Sequencing Analysis," "Alphafold Protein Structure Prediction,"
CryoSPARC courses (CryoSPARC itself running in a container, for
example), and courses covering NVIDIA’s Parabricks software.

HPRC has recently installed rootless Docker and rootless Pod-
man on an experimental basis and will offer courses starting in
Summer 2024.

3.1 two anecdotes
In June 2023, an experienced researcher used Charliecloud to de-
ploy their personal Dockerfile on the FASTER cluster, used the local
GPUs, and interacted with a running Jupyter notebook by tunnel-
ing from their personal machine. The researcher was then able to
performmachine learning tasks for research. The most difficult part
of the implementation was working with the Conda environment
within the container. Conda makes assumptions about the /home
partition that are not necessarily true on HPC; it helps to anticipate
this and manage it accordingly. Before reaching out, the researcher
tried unsuccessfully to install this Conda environment on bare
metal, which failed due to the limitations of the network filesystem.
This anecdote showcases the importance of container runtimes
which are designed to work around HPC hardware constraints.

In August 2023, a novice researcher used Charliecloud to fetch a
container image for Progressive Cactus bioinformatics software [2]
and modified it to suit their needs by editing one of the root-owned
files in the image. This task was straightforward enough that the
researcher was fully trained in the correct use of Charliecloud for
this task in under an hour, and all steps were performed on a single
login node. The researcher was then able to perform genomics tasks
for research. Before reaching out for assistance, the researcher had
unsuccessfully tried to perform these tasks using an older build of
the Singularity runtime installed on an older HPC system running
CentOS 7, which had disabled editing of root-owned files directly in
the container image for security reasons. This anecdote showcases
the importance of modern, unprivileged container runtimes.

4 DISCUSSION AND CONCLUSION
As the adoption of container technologies continues to grow, it
becomes essential to assess their effectiveness and impact on re-
searchers. The overwhelming majority of Charliecloud module
loads have been one of two cases: HPRC staff testing or develop-
ing curriculum, and participants of a tutorial doing their exercises
during class. A handful of users are independently loading a Char-
liecloud module outside of these contexts. This could mean that
researchers are installing Charliecloud in their personal directories,
or it could mean that researchers are using Charliecloud at other
institutions after attending HPRC training, but more likely it means
that Charliecloud adoption is still in its infancy.

Historically, HPC use cases have revolved around command-line
interfaces and traditional applications deployed within containers.
However, the Open OnDemand platform introduces interactive
graphical computing, primarily managed by system administrators
familiar with conventional software installations. Unfortunately,
containers have been somewhat overlooked in this context. Never-
theless, cloud-based scenarios are now highlighting the advantages
of interactive computing with containerized backends. To fully em-
brace this shift, effective graphical container management becomes
essential for orchestrating the front end. As researchers adapt to
these changes, we can expect a growing demand for comprehensive
end-to-end graphical computing solutions [15].

The Kubernetes scheduler, which is built upon the foundation
of containers, is expected to continue to grow in popularity. As it
does, it will put pressure on application developers and users to
containerize, which will in turn put pressure on HPC administrators
to integrate container support into the HPC ecosystem.

The most important feature of a proposed container adoption
metric should be that it can account for container adoption at
multiple levels. Since researchers can benefit from containers that
they are not even aware of, directly querying the community about
their container experiences doesn’t suffice. Instead, the focus should
be on identifying which researchers are benefiting from container
use, and how. The following metrics will help HPRC shape policies
and inform documentation in the future:

• Release frequency and update frequency of versioned pack-
ages and libraries. Does container adoption deliver researchers
more recent and/or more stable software?

• Deployment time; the time it takes from writing code to hav-
ing it compiled and deployed in production is critical. Does
container adoption accelerate design and testing processes?

• Rate of job crashes. Do containerized jobs crash less fre-
quently than bare metal jobs?

• Satisfaction among researchers. Does container use lead to
the continued use of an HPC platform?

• Ticket volume. Do container users require administrative
assistance less frequently than bare metal users?

• Quantity and variety of products and services facilitated by
containers. Does container adoption attract new research
projects to HPC?

The direct benefits of containerization are well-known: software
portability, reproducible science, and reduction of security risk.
However, there are additional benefits of working to establish and
support a container ecosystem. When researchers are properly



Container Adoption in Campus HPC PEARC ’24, July 21–25, 2024, Providence, RI, USA

Event Title Container Runtime Date Event Type
Introduction to Containers (Charliecloud) Tutorial Charliecloud February Short Course /Tech Lab
Using Containers on HPRC Resources (Singularity/Apptainer) Singularity March Short Course
ACES: Charliecloud Container Training Charliecloud July Workshop
ACES: Introduction to Containers (Charliecloud) Tutorial Charliecloud September Short Course
ACES: Fundamentals of Containers Charliecloud/Singularity October Short Course
ACES: Containers for Scientific Workflows (Singularity / Apptainer) Singularity October Short Course

Table 1: Training events for Containers in 2023 at Texas A&M

Singularity Charliecloud

Figure 3: Number of unique container users on HPRC clusters in 2023 by month, separated by cluster (color) and container
runtime (Singularity left, Charliecloud right). Training events are indicated by triangles. The large spike in April (72 users) is
due to a semester coursework assignment from the biochemistry department; they were using an Alphafold image provided by
HPRC.

Singularity Charliecloud

Figure 4: Number of container jobs on HPRC clusters in 2023 by month, separated by cluster (color) and container runtime
(Singularity left, Charliecloud right). Training events are marked as triangles. The largest share of containerized jobs is owned
by a handful of users on the Grace cluster, where Singularity is the only container runtime option.



PEARC ’24, July 21–25, 2024, Providence, RI, USA Lawrence et al.

trained in the use of modern container features, they are less reliant
on administrator assistance to perform simple tasks. Administrators
can provide a wider variety of research software, more rapidly.
Container utilization has helped HPRC deploy scientific software,
both with and without the researcher’s knowledge. With this rapid
growth of different container uses, the metrics need to evolve to
track this moving target.

ACKNOWLEDGMENTS
This work was supported by NSF award number 2112356 ACES -
Accelerating Computing for Emerging Sciences; NSF award number
2019129 FASTER - Fostering Accelerated Scientific Transformations,
Education, and Research; and NSF CC* Cyberteam award number
1925764 SWEETER - SouthWest Expertise in Expanding, Training,
Education and Research. We would like to thank Megan Phinney
of Los Alamos National Lab, who led two of the training sessions
reported on in this work. We would also like to acknowledge the
following individuals who, although not directly involved in the
scientific aspects of this work, played crucial roles in preparing and
refining this manuscript: Elizabeth Leake, Reid Priedhorsky, and
Joshua Winchell.

REFERENCES
[1] Carlos Arango Gutierrez, Remy Dernat, and John Sanabria. 2017. Performance

Evaluation of Container-based Virtualization for High Performance Computing
Environments. Revista UIS Ingenierías 18 (09 2017). https://doi.org/10.18273/
revuin.v18n4-2019003

[2] J. Armstrong, G. Hickey, M Diekhans, and et al. 2020. Progressive Cactus is a
multiple-genome aligner for the thousand-gen. Nature (2020). https://doi.org/10.
1038/s41586-020-2871-y

[3] Luciano Baresi, Giovanni Quattrocchi, and Nicholas Rasi. 2024. A qualitative and
quantitative analysis of container engines. Journal of Systems and Software 210
(2024), 111965. https://doi.org/10.1016/j.jss.2024.111965

[4] Erik Ferlanti, William J. Allen, Ernesto A. B. F. Lima, Yinzhi Wang, and John M.
Fonner. 2023. Perspectives and Experiences Supporting Containers for Research
Computing at the Texas Advanced Computing Center. In Proceedings of the SC
’23 Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (Denver, CO) (SC-W ’23). Association for Comput-
ing Machinery, New York, NY, USA, 155–164. https://doi.org/10.1145/3624062.
3624587

[5] Olivier Flauzac, Fabien Mauhourat, and Florent Nolot. 2020. A review of native
container security for running applications. Procedia Computer Science 175 (2020),
157–164. https://doi.org/10.1016/j.procs.2020.07.025 The 17th International
Conference on Mobile Systems and Pervasive Computing (MobiSPC),The 15th
International Conference on Future Networks and Communications (FNC),The
10th International Conference on Sustainable Energy Information Technology.

[6] David Y. Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-Childs,
Marlon Pierce, Suresh Marru, J. Eric Coulter, Matthew Vaughn, Brian Beck, Nirav
Merchant, Edwin Skidmore, and Gwen Jacobs. 2021. Jetstream2: Accelerating
cloud computing via Jetstream. In Practice and Experience in Advanced Research
Computing (Boston, MA, USA) (PEARC ’21). Association for Computing Machin-
ery, New York, NY, USA, Article 11, 8 pages. https://doi.org/10.1145/3437359.
3465565

[7] Zhenhua He, Sandra Nite, Joshua Winchell, Abhinand Nasari, Hieu Le, Jiao Tao,
Dhruva Chakravorty, Lisa Perez, and Honggao Liu. 2023. Development of a
Training Framework for Novel Accelerators. In 2023 IEEE Frontiers in Education
Conference (FIE). 1–6. https://doi.org/10.1109/FIE58773.2023.10343498

[8] Zhenhua He, Aditi Saluja, Richard Lawrence, Dhruva K. Chakravorty, Fran-
cis Dang, Lisa M. Perez, and Honggao Liu. 2023. Performance of Distributed
Deep Learning Workloads on a Composable Cyberinfrastructure. In Practice
and Experience in Advanced Research Computing (Portland, OR, USA) (PEARC
’23). Association for Computing Machinery, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3569951.3603632

[9] Benjamin Holmes. 2019. Application lifecycle management for container-
native development. https://developers.redhat.com/blog/2019/06/11/application-
lifecycle-management-for-container-native-development. Accessed: 2024-05-16.

[10] HPRC. 2024. Knowledge Base. https://hprc.tamu.edu/kb/
[11] HPRC. 2024. Youtube Channel. https://www.youtube.com/channel/

UCgeDEHE5GwkxYUGS0FDLmPw

[12] Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, Eric Franz, Trey
Dockendorf, and Brian L. McMichael. 2018. Open OnDemand: A web-based
client portal for HPC centers. Journal of Open Source Software 3, 25 (2018), 622.
https://doi.org/10.21105/joss.00622

[13] R. Keller Tesser and E. Borin. 2022. Containers in HPC: a survey. J Supercomput
(2022). https://doi.org/10.1007/s11227-022-04848-y

[14] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1–20.
https://doi.org/10.1371/journal.pone.0177459

[15] Richard Lawrence, Tri M. Pham, Phi T. Au, Xin Yang, Kyle Hsu, Stuti H.
Trivedi, Lisa M. Perez, and Dhruva K. Chakravorty. 2022. Expanding Inter-
active Computing to Facilitate Informal Instruction in Research Computing.
The Journal of Computational Science Education 13 (April 2022), 50–54. Issue 1.
https://doi.org/10.22369/issn.2153-4136/13/1/9

[16] D. Moreau, K Wiebels, and C. Boettiger. 2023. Containers for computational
reproducibility. Nat Rev Methods Primers (2023). https://doi.org/10.1038/s43586-
023-00236-9

[17] "National Academies of Sciences, Engineering, and Medicine". 2019. Reproducibil-
ity and Replicability in Science. The National Academies Press, Washington, DC.
https://doi.org/10.17226/25303

[18] Reid Priedhorsky, R. Shane Canon, Timothy Randles, and Andrew J. Younge.
2021. Minimizing privilege for building HPC containers. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing Machinery,
NewYork, NY, USA, Article 32, 14 pages. https://doi.org/10.1145/3458817.3476187

[19] A. Punjani, J. Rubinstein, D. Fleet, and et al. 2017. cryoSPARC: algorithms
for rapid unsupervised cryo-EM structure determination. Nat Methods (2017).
https://doi.org/10.1038/nmeth.4169

[20] Andrew Solis, William J. Allen, and Erik Ferlanti. 2022. Containerizing Vi-
sualization Software: Experiences and Best Practices. In Practice and Experi-
ence in Advanced Research Computing (Boston, MA, USA) (PEARC ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 22, 8 pages.
https://doi.org/10.1145/3491418.3530769

[21] X. Carol Song, Preston Smith, Rajesh Kalyanam, Xiao Zhu, Eric Adams, Kevin
Colby, Patrick Finnegan, Erik Gough, Elizabett Hillery, Rick Irvine, Amiya Maji,
and Jason St. John. 2022. Anvil - System Architecture and Experiences from
Deployment and Early User Operations. In Practice and Experience in Advanced
Research Computing (Boston, MA, USA) (PEARC ’22). Association for Computing
Machinery, New York, NY, USA, Article 23, 9 pages. https://doi.org/10.1145/
3491418.3530766

[22] Yucheng Zhang and Lev Gorenstein. 2022. BioContainers on Purdue Clusters.
In Practice and Experience in Advanced Research Computing (Boston, MA, USA)
(PEARC ’22). Association for Computing Machinery, New York, NY, USA, Article
92, 2 pages. https://doi.org/10.1145/3491418.3535152

[23] Yucheng Zhang, Lev Gorenstein, Payas Bhutra, and Ryan DeRue. 2022. Con-
tainerized Bioinformatics Ecosystem for HPC. 1–10. https://doi.org/10.1109/
HUST56722.2022.00006

[24] Gregory J. Zynda, Shweta Gopaulakrishnan, and John Fonner. 2021. Rolling-
GantryCrane: Automation for unpacking containers into HPC environments. In
2021 3rd International Workshop on Containers and New Orchestration Paradigms
for Isolated Environments in HPC (CANOPIE-HPC). 29–34. https://doi.org/10.
1109/CANOPIEHPC54579.2021.00008

https://doi.org/10.18273/revuin.v18n4-2019003
https://doi.org/10.18273/revuin.v18n4-2019003
https://doi.org/10.1038/s41586-020-2871-y
https://doi.org/10.1038/s41586-020-2871-y
https://doi.org/10.1016/j.jss.2024.111965
https://doi.org/10.1145/3624062.3624587
https://doi.org/10.1145/3624062.3624587
https://doi.org/10.1016/j.procs.2020.07.025
https://doi.org/10.1145/3437359.3465565
https://doi.org/10.1145/3437359.3465565
https://doi.org/10.1109/FIE58773.2023.10343498
https://doi.org/10.1145/3569951.3603632
https://developers.redhat.com/blog/2019/06/11/application-lifecycle-management-for-container-native-development
https://developers.redhat.com/blog/2019/06/11/application-lifecycle-management-for-container-native-development
https://hprc.tamu.edu/kb/
https://www.youtube.com/channel/UCgeDEHE5GwkxYUGS0FDLmPw
https://www.youtube.com/channel/UCgeDEHE5GwkxYUGS0FDLmPw
https://doi.org/10.21105/joss.00622
https://doi.org/10.1007/s11227-022-04848-y
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.22369/issn.2153-4136/13/1/9
https://doi.org/10.1038/s43586-023-00236-9
https://doi.org/10.1038/s43586-023-00236-9
https://doi.org/10.17226/25303
https://doi.org/10.1145/3458817.3476187
https://doi.org/10.1038/nmeth.4169
https://doi.org/10.1145/3491418.3530769
https://doi.org/10.1145/3491418.3530766
https://doi.org/10.1145/3491418.3530766
https://doi.org/10.1145/3491418.3535152
https://doi.org/10.1109/HUST56722.2022.00006
https://doi.org/10.1109/HUST56722.2022.00006
https://doi.org/10.1109/CANOPIEHPC54579.2021.00008
https://doi.org/10.1109/CANOPIEHPC54579.2021.00008


Container Adoption in Campus HPC PEARC ’24, July 21–25, 2024, Providence, RI, USA

A CONTAINERS IMAGES IN USE ON OUR
CLUSTERS

alphafold, broad-gotc-prod, cactus, centos desktop, clara parabricks,
dafoam, deep learning (intel), deep-learning (nvidia), fmriprep,
freebayes, gem5, gptneox, hello world, hello world mpi, horovod,
hpc-benchmarks, lammps, lifebitai, llm_eval, megatron_deepspeed,
nemo, pav, pggb, python, pytorch (nvidia), pytorch-nemo, R, reads2maps,
resnet, scipy, tensorflow, tensorflow 2, tensorflow gpu, tensorflow
nn, tensorflow tnn, trimg, ubuntu desktop, vConTACT2, vsearch,
wags.

B OTHER CAMPUS PUBLISHED CONTAINER
TRAINING

All NSF ACCESS resource providers support the Singularity con-
tainer runtime as a requirement for participation. However, among
ACCESS resource providers, only Texas A&M, Purdue, SDSC, PSC,
and TACC provide dedicated Singularity training while five other
resource providers do not. Among ACCESS resource providers, only
Texas A&M, Purdue [21], and Indiana University [6] have published
support or training for Docker and Kubernetes. Besides Texas A&M,
no other ACCESS sites have published support for Charliecloud or
Podman at the time of writing.


	Abstract
	1 Introduction
	2 Materials and Methods
	3 Results
	3.1 two anecdotes

	4 Discussion and Conclusion
	Acknowledgments
	References
	A Containers images in use on our clusters
	B Other campus published container training

