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Highlights:

e Cross-shelf plumes are formed by light-to-moderate upwelling favorable winds
e Stronger winds shut down the estuarine outflow separation from the coastline

e High river discharge reduces the optimal wind stress range for cross-shelf plumes
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Abstract

Buoyant cross-shelf river plumes can extend far offshore through the combined effect of
buoyancy and wind forcing, creating a critical land-ocean link in global biogeochemical

cycles. On the Carolinas continental shelf, cross-shelf plume structure has been analyzed using
satellite imagery, with forcing conditions represented by an estuarine Richardson number, wind
stress, and alongshore pressure gradient. Three distinct cross-shelf plume patterns emerged, each
occurring under an upwelling-favorable wind: (1) The separated plume, when a single filament
of buoyant water spreads offshore (a prototypical cross-shelf plume structure); (2) The upwind-
curving plume, which turns against the wind at some offshore distance and is created by stronger
buoyancy forcing; and (3) The multi-lobe plume, which is partially trapped by the coast with
multiple streaks protruding offshore and is created by stronger wind forcing, and further aided by
a coincident alongshore pressure gradient force. The latter two regimes represent a low-wind,

high discharge limit and a strong-wind limit of cross-shelf plumes. High-resolution satellite
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images reveal rich submesoscale variability associated with each plume type. Results suggest
plume transport may extend farthest offshore in low-energy separated plumes through a balance

of weak buoyancy and weak wind forcing.

1 Introduction

Globally, rivers represent a major pathway for the delivery of terrigenous material (both
dissolved and suspended) into a coastal ocean. Most material fate is local to continental shelves,
such as the 100-km wide South Atlantic Bight which separates local river mouths in the
southeastern United Sates from the Gulf Stream (Bane et al., 1981). The partitioning of river-
borne nutrients between coastal and open-ocean consumption by primary production is addressed
in several recent studies (e.g., Sharples et al., 2017; Izett and Fennel, 2018a, b). In these papers,
the authors link the offshore transport of nutrients to the dynamics of coastal plumes. How these
nutrients extend across broad continental shelfs to global ocean currents is critical to our

understanding of biogeochemical cycles (Bauer et al., 2013; Horner-Devine et al., 2015).

One pattern of the coastal plume formation particularly efficient for cross-shelf exchange
was recently described by Yankovsky et al. (2022) and Yankovsky and Yankovsky (2024),
where it is referred to as a cross-shelf plume. The cross-shelf plumes are characterized by an
elongated, filament-like structure with length-to-width aspect ratio reaching O(10). They are
generated by light-to-moderate upwelling-favorable winds which transport buoyant water
offshore without substantial entrainment of the ambient shelf water. However, formation of
cross-shelf plumes is not just an externally-forced advective process, as those plumes exhibit
intrinsic dynamics as well—which maintain their tight transverse dimension and arise from their
supercritical regime (in terms of the internal Froude number) (Yankovsky and Yankovsky,
2024). The supercritical regime is sustained over long cross-shelf distances due to a
superposition of the buoyancy-driven plume circulation and the wind-induced surface currents
(Yankovsky et al., 2022). The advection of buoyancy-driven momentum by wind-induced
currents prevents the geostrophic adjustment within the plume and leads to the continuous
radiation of internal solitons from plume’s downwind edge into the plume, in the upwind
direction (Yankovsky and Yankovsky, 2024). As a result of this internal wave radiation, the

plume accumulates buoyant water on the upwind side and exhibits minimal downwind diffusion.
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In this work we analyze satellite images of cross-shelf plumes off Winyah Bay in several
frequency bands representing various seawater properties over time span from 2017 through
early 2020. We then assess forcing conditions preceding the observed events. The forcing
comprises the freshwater discharge, its tidal mixing in the estuary and the wind stress operating
on the continental shelf. The combination of freshwater discharge and tides defines properties of
the buoyant outflow and can be represented by the estuarine Richardson number (Rik) following
Nash et al. (2009). The role of wind stress is twofold: (i) vertical mixing determined by the wind
stress magnitude, and (i1) advection of buoyant water by offshore Ekman transport and
alongshore geostrophic circulation, both controlled by the alongshore wind stress component.
The rest of the paper is organized as follows. Section 2 describes the data and their processing, as
well as physical hypotheses governing the analysis. Sections 3 presents, interprets and discusses

the results, while section 4 concludes the paper.

2 Data and Methods
2.1 Study Site and Data Sources

The South Atlantic Bight is a broad (~100 km) shelf with a gentle (~5x10) slope along
the southeastern United States (Figure 1). At the shelf break, the Gulf Stream flows northward
(Bane et al., 1981). Terrestrial waters and nutrients enter through numerous rivers, making the
shelf a relatively diffuse region of freshwater influence—governed by buoyancy, Coriolis, wind
stress, and bed friction—and is noted for being sediment deprived (McCarney-Castle et al., 2010;
Patchineelam et al. 1999). The largest freshwater source is Winyah Bay, which commonly
ranges 100-1,400 m3s™! (50-95™ percentile) and has a mean river discharge Q, of 510 m?s!
(2007-2021). The watershed area Aw is 47,060 km? and includes the Pee Dee River (Q,: 390
m’s™!, Aw: 36,520 km?), the Waccamaw River (Q,: 50 m’s™!, Aw: 3,730 km?), and the Black River
(Q,: ~50 m3s”!, Aw: 4,040 km?) (Figure 2a). Winyah Bay is a partially mixed estuary (Kim &
Voulgaris, 2005) with semidiurnal tides that range 0.94-1.54m. At subtidal frequencies, salinity
is strongly influenced by river discharge (Figure 2b). Exiting Winyah Bay through a narrow
navigational channel flanked by jetties, the plume is commonly supercritical, based on the
internal Froude number, and surface trapped (e.g., Yankovsky & Voulgaris, 2019; Yankovsky et
al., 2022).
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Satellite images of the Winyah Bay plume were collected from the NOAA CoastWatch

East Coast Node website (https://coastwatch.chesapeakebay.noaa.gov/region_cl.php) to inform a
planned field campaign in March 2020 (Yankovsky et al., 2022) focused on the offshore
transport of the Winyah Bay plume water. A set of 40 events spanning time interval from
January 2017 through January 2020 was initially selected using the following criteria: visible
detachment from the coast and offshore spreading of the plume seen in multiple frequency bands
(e.g., sediment index, chlorophyll, turbidity, true color, etc.). Some events included imagery for
several consecutive days. At the time of image selection, no assumptions were made regarding
the dynamics or forcing conditions. Many image products revealed elongated, filament-like
structures separating from the coast and crossing the shelf at various angles, from gently oblique
to near normal. A subset of 15 events was then selected that illustrated the variety of forms this
cross-shelf plume structure could take.

These 15 events are the basis for this study. Each event is referred to by the single, most
representative day if multiple day imagery is available. For instance, temporal evolution of the
event on January 31, 2017 is discussed by Yankovsky and Yankovsky (2024), their Figure 17.
For this study, the images are level 2 products of remote sensing reflectance (Rrs) at 667 and 671
nm from MODIS Aqua L2 and VIIRS SNPP L2, respectively—proxies for suspend sediment—
and the associated chlorophyll-a products—proxies for biological productivity
(https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod). Both are commonly used to capture
plume structure (e.g., Barnes et al., 2015; Dzwonkowski et al., 2015; Stumpf and Pennock,
1989). For categorizing various structures of cross-shelf plumes (section 3.1), additional
frequency bands were utilized as proxies for turbidity and particulate organic carbon (see
Supporting Information). Fine details of the plume structure were characterized on select days
using satellite data collected by the Sentinel-2 MultiSpectral Instrument
(https://scihub.copernicus.eu) and the Landsat 8 Operational Land Imager
(https://earthexplorer.usgs.gov).

Timeseries observations were accessed from the United States Geological Survey
(USGS) for river discharge data (stations: 02135200, 02110704, 02136030), the National
Oceanic and Atmospheric Administration (NOAA) National Data Buoy Center (NDBC) for
wind (station: 41013) and water level data (stations: 8661070, 8658163), and the National
Estuary Research Reserve (NERR) for estuary data (station: NIWWSWQ); Table 1). The estuary
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water level and surface salinity data are collected 113 km downstream of the Pee Dee River
station (02135200) where the estuary channel width is 1.2 km, similar to the estuary mouth (1.4
km) 17 km further downstream. Spatial data for ground elevation came from the shuttle radar

topography mission (SRTM+, Farr et al., 2007).

2.2 Assumptions on the governing dynamics

Our analysis is based on several assumptions about the leading-order dynamics which
result in the formation of cross-shelf plumes. The buoyant outflow from Winyah Bay is
determined by the freshwater discharge and the estuarine tidal mixing, which jointly control the
volumetric transport, salinity anomaly, and velocity of buoyant outflow through the mouth. This
buoyancy forcing can be represented as the estuarine Richardson number (Fischer 1972, Nash et

al. 2009):

] ! QT
Rig = g' ;o5 (1,

where g’ is the reduced gravitational acceleration associated with the freshwater density p
anomaly relative to the ambient seawater on the shelf po with salinity of 34 (g’=g(p—po)po’!, g is
gravity), assumed to have a constant value of 0.25 m s%; O, is the river discharge; W is the
estuary width (1.2 km); and U is the peak tidal velocity. Because direct velocity measurements
are not available, U is inferred from tidal gauge data assuming that semi-diurnal tidal species

propagate in the form of long gravity waves:

U = Ut\[% (2),

where 7; is the free surface tidal amplitude and / is the water depth (e.g., MacCready, 1999).
Next, we assume that the cross-shelf plume regime can be established under favorable
wind forcing conditions when buoyant water is transported offshore beyond natural limits of the
unforced plume. The primary mechanism is the Ekman transport associated with the alongshore
wind stress component (e.g., Fong & Geyer, 2001; Lentz, 2004), which can only be established
when the Ekman layer is shallower than the local water depth. This implies that surface and
bottom boundary layers should remain separated in the vertical, and the wind-induced turbulence
cannot overcome stratification of the buoyant layer. In this regard, two elements of the wind
forcing will be analyzed: the alongshore wind stress responsible for the Ekman transport, and the

magnitude of the wind stress responsible for the vertical mixing.
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Lastly, wind-induced advection of the buoyant layer is more complex than the offshore
Ekman transport alone, and includes the alongshore wind-driven current (e.g., Yankovsky &
Yankovsky, 2024). Under simplifying assumptions of the uniform alongshore topography and
steady-state wind, the alongshore current is driven by the cross-shore pressure gradient through
the geostrophic balance. The cross-shore pressure gradient arises from the Ekman transport
divergence nearshore and is proportional to the alongshore wind stress. However, under more
realistic conditions of 2-dimensional topography and/or non-uniform wind forcing, alongshore
current can also be affected by the alongshore pressure gradient (APG) (e.g., Carton, 1984). APG
is established after the passage of continental shelf waves propagating in the direction of the
Kelvin wave phase (hereinafter, referred to as downstream), originating at the upstream edge of
the forcing area. In this regard, the change in coastline orientation is similar to the change of the
alongshore wind stress (e.g., Crépon et al., 1984). The APG force typically (but not always)
opposes the alongshore wind stress component, and can substantially reduce (or even reverse)
the alongshore current. Hence, the APG will also be analyzed as a possible contributor to the

alongshore advection of the buoyant water.

2.3 Data analysis

Timeseries data were analyzed for wind stress, APG and Rie. For wind stress, the drag
coefficient Cq is nonlinear following Trenberth et al. (1990). The along-shore and cross-shore
wind stresses are defined at 40° and 130° from north, respectively. APG is approximated using
the water level difference between Myrtle Beach and Wilmington (~140 km, Figure 1) such that
its positive value corresponds to the APG force pointing upstream. All time series are low-pass
filtered with a 40-hour Lanczos filter (e.g., Dzwonkowski et al., 2015) to represent subinertial
dynamics.

Discharge from inland observations—where rivers are accurately measured—need
corrections to represent the magnitude and timing of river effects near the coast (Dykstra &
Dzwonkowski, 2020). Corrections for river discharge magnitude were made by low-pass
filtering the tidal variability of each record and summing the most complete records (Pee Dee
River and Waccamaw River). To approximate downstream sources and unaccounted tributaries,
the magnitude was multiplied by the ratio of total watershed area to monitored watershed area

(e.g., Dykstra & Dzwonkowski, 2021). To approximate river discharge timing near the estuary
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mouth, In(Qr) and salinity were cross-correlated with temporal offsets at 1 hour intervals. The
best relationship was with O, lagged 22 hours (R?=0.86; Figure 3), and even though R? was the
same value to 60 hours, the cross-covariance grew weaker with time. For discharge magnitude
effects on the temporal offset, a sensitivity test of binning events by size showed little change for
all but extreme events. The 22-hour lag time suggests a river wave celerity of ~1.5 m s}, an
expected value for a river-marine transition under non-flooding conditions (Dykstra &
Dzwonkowski, 2020). Because flooding can delay and attenuate river events, subsequently
affecting river plume dynamics (Dykstra & Dzwonkowski, 2020), we limit our analysis to
discharges with in-channel flow. The peak tidal velocity in (1) is calculated from a timeseries of
the Greater Diurnal Tidal Range (i.e., 2%,) which is determined by finding the daily high tide and
daily low tide, spline fitting each, and finding the difference.

3 Results and Discussion
3.1 Observations of Plume Structure

Remote sensing reflectance and satellite derived chlorophyll-a observations of the
Winyah Bay plume were sorted and compared to forcing conditions. Sorting the records for
visible cross-shelf plumes, i.e., cloudless and distinct from background ambient shelf conditions,
yielded fifteen representative examples (Figures 4, 5). The events cover all four seasons and
have consistent structures in the satellite imagery of many bands (see also Kd490 and POC in the
Supporting Information Figures S1, S2).

All cases correspond to the upwelling favorable wind stress at and prior to observations
(vectors, Figures 4, 5). All images exhibit elongated filaments extending offshore from the coast,
but their size, orientation, and number varies widely between the cases, as described in section
2.1. To facilitate discussion of forcing conditions, we distinguish three specific patterns of cross-
shelf plumes. A prototypical cross-shelf plume comprises a series of tidal sub-plumes aligned as
a single streak of buoyant water which detaches from the coast at the mouth. It extends upstream
(e.g., northward) and offshore, and is referred to as a separated plume (Figures 4g-1, 5g-1).

In some cases, there are more than one streak of buoyant water protruding offshore and
originating not only from the mouth, but also from coastline farther upstream. This happens
when the plume is partially trapped by the coast, such that more than one tidal pulse maintain

contact with the coastline. This structure is referred to as multi-lobe plumes (Figures 4a-f, Sa-f).
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7321
1

For instance, cases “b”’ and “i” look somewhat similar, but the former remains attached to the
coast upstream from the mouth, while the latter is detached, so they are categorized as multilobe
and separated, respectively.

Finally, upwind-curving plumes (Figures 4m-o, 5Sm-o0) turn anticyclonically and spread
against the wind, so that the plume at its maximum offshore extension still resides at the
alongshore coordinate of the mouth. Recalling that the alongshore coordinate is defined as 40
deg from true north, this implies that the offshore tip of the plume crosses the line running from

the mouth at 130 deg from true north.

3.2 Plume Forcing Conditions

The unique plume forcing conditions are further examined to describe plume structure
based on external parameters. We explain the logic of our analysis by first focusing on the
conditions preceding one example: a characteristic separated plume observed July 8, 2017 at
19:00 (Figures 4h, Sh). The instantaneous wind stress magnitude was variable and doubled 2-3
days before the satellite observation (thin lines, Figure 6a). Nearly all the wind stress was
accounted for in the along-shelf component. The low-passed along-shelf wind stress, known to
control Ekman transport and cross-shore circulation (Gill, 1982), was consistently positive,
indicating stable upwelling conditions and offshore surface transport. The wind stress was
counteracted by the alongshore pressure gradient (APG), shown here using a water level
difference (Figure 6a). Similar consistency was observed in the Estuary Richardson number due
to relatively steady river discharge and maximum tidal velocity conditions (Figure 6b). The
relatively low river discharge to tidal velocity ratio (Rie~0.07) indicates weak estuary
stratification. The external forcing conditions of each plume were summarized using the 3-day
averages of wind stress, Rig, and the water level difference preceding satellite observations.
Because the image acquisition times varied over a two-hour period (17:24-19:18 UTC) and
plume responses to wind action having a several-hour time lag (Qu & Hetland, 2019), for
simplicity, means were taken from 12:00 3 days before observation day to 12:00 of observation
day (e.g., gray area, Figure 6a, b).

Forcing conditions are summarized for the 15 cases in Figure 7 and Table S1. The most
important agents—the buoyant outflow and the upwelling-favorable wind stress component (Fig.

7a)—reveal that cross-shelf plumes are formed under light-to moderate wind stress: the average
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value of its alongshore component is less than 0.1 Pa. The upwind curving plumes tend to form,
when the buoyancy forcing is large (higher values of Rir), while the upwelling favorable wind is
relatively weaker. For weak winds, high Rir delineates most upwind curving plumes from low
Rir separated plumes. The strongest alongshore winds produce multi-lobe plumes, although
there is no clear separation between multi-lobe and other types in Figure 7a.

This pattern can be explained by the partial trapping of multi-lobe plumes nearshore,
through the inner-shelf regime. This regime requires stronger vertical mixing, which is
proportional to the total wind stress magnitude, not just its alongshore component: Figure 7b
shows a better separation between multi-lobe and other types of cross-shelf plumes, especially
when both the mean and standard deviation are considered (i.e., right extent of bars). However,
even in this diagram there is some ambiguity represented by cases d, e (both are multi-lobe) and
n (upwind-curving), the latter corresponding to a stronger averaged wind stress, although all
three have comparable wind stress variations over a three-day period. This feature can be
reconciled, when the third forcing factor is taken into account, the APG force (Fig. 7c). As
expected, in the majority of cases the APG force points downstream, against the alongshore wind
stress. One of the strongest APG is seen in case n, thus preventing the upstream advection along
the coast, and the formation of the multi-lobe plume. On the other hand, cases d and e are
characterized by a less common situation, when the APG force coincides with the alongshore
wind stress orientation, which promotes advection of the buoyant water upstream along the
coast.

3.3 High-resolution Images

We conclude the analysis of satellite imagery with high-resolution images of cross-shelf
plumes; one of each plume type and one in the early stages of cross-shelf plume formation. The
separated and upwind curving plume images (Fig. 8a and b, respectively) correspond precisely to
the events presented in Figure 4 (cases n and j, respectively) and the multi-lobe plume image is
obtained two days earlier than case b, on February 11, 2017 (Fig. 8c). The last image
corresponds to the shipboard measurements collected on March 11, 2020, reported by
Yankovsky et al. (2022; Fig. 9).

In a highly simplified interpretation, the cross-shelf plume can be considered as a train of
tidal pulses (or sub-plumes) aligned along the direction of the wind-induced drift and kept

together by mixing processes occurring at interior fronts separating sub-plumes (Yankovsky &



278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

Manuscript submitted to Remote Sensing of Environment

Voulgaris, 2019; Yankovsky et al., 2022). Similar structure is seen in Figure 8a, where three
distinctive sub-plumes can be recognized (marked with numbers 1-3). The first, nearest to the
mouth, is the newly discharged tidal plume, with concentric rings. While the exact nature of
these rings cannot be established due to a lack of simultaneous in situ measurements, the
modeling of Marmorino and Evans (2021) suggests these frequently seen features are generated
by shear instabilities. Separation of the plume from the coast is also clearly seen in this image.
Figure 8b corroborates the curving-back plume structure of case n as the two images look nearly
identical (Figures 8b, 4n). While the plume’s upstream (downwind) edge in Fig. 4 appears
diffuse, the high-resolution image reveals a sharp front around most of the plume circumference,
except for its nearshore part, consistent with recent modeling study (Yankovsky & Yankovsky,
2024). Case b on February 13, 2017 represents the multi-lobe structure, when the plume is
partially trapped at the coastline upstream from the mouth. At the time of the high-resolution
image on February 11, the upwelling-favorable wind has already been operating (Fig. 8c). The
plume spreads along the coast over some distance upstream (northward), then sharply turns
offshore retaining its distinct elongated shape. All three high resolution examples (Fig. 8a-c)
reveal rich submesoscale variability associated with cross-shelf plumes, as was also found in the
high-resolution model runs of Yankovsky and Yankovsky (2024).

Finally, we revisit the event on March 11, 2020, which is not included in the 15 cases
discussed here. According to Yankovsky et al., 2022, the observed plume represented an early
stage of the cross-shelf plume formation: it had all the requisites of such a plume, but lacked an
elongated shape, because the upwelling favorable wind operated for less than two days by the
end of the survey. Nevertheless, the plume extended offshore for more than 30 km as inferred
from the shipboard data and even farther, according to a satellite image (Fig. 2 in Yankovsky et
al., 2022). As mentioned in the introduction, the maintenance of the cross-shelf plume regime
occurs (at least in part) through the upwind (in this case, southward) radiation of internal waves;
reducing the downwind diffusion of buoyant water. The evidence for such waves is presented in
Figure 9 (arrows). Unlike the modeling results by Yankovsky and Yankovsky (2024) where
internal waves remain trapped within the plume due to unstratified ambient shelf flow, here the
shelf water has some ambient stratification, so that internal waves leak outside of the plume. It
should be emphasized, that these internal waves originate neither at the mouth nor at the

shelfbreak, two principal sources of internal wave energy previously reported in numerous

10
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publications (e.g., Jackson, 2004; Nash & Moum, 2005; Wright & Coleman, 1971). While
Yankovsky et al. (2022) deduced the presence of internal waves from elevated values of TKE
dissipation below the plume and away from the mouth, as well as from the vertical phase
propagation in band-passed current measurements, Figure 9 provides direct observational
evidence for internal wave radiation during this event occurring in the upwind (southward)

direction—providing maintenance of the cross-shelf plume regime.

3.4 Discussion

Our analysis reveals that the formation of cross-shelf plumes is based on a delicate
balance between buoyancy forcing of the estuarine outflow, nearshore mixing producing the
inner-shelf regime (e.g., Lentz, 1995), and wind-induced transport—both offshore and along-
shore. The inner-shelf dynamics are characterized by a merging of surface and bottom boundary
layers, the former being primarily wind driven, and the latter resulting from the combined action
of tides, waves, and low-frequency currents (e.g., Lentz & Fewings, 2012). Increasing wind
stress expands the inner-self regime offshore, such that the discharged buoyant water remains
within the inner-shelf and cannot be advected offshore by means of the Ekman transport (see
annotated diagram of Figure 4a-f in Figure 10a). Because the estuarine discharge is time
dependent (modulated by tides), the most energetic part of the ebbing outflow can episodically
escape the inner-shelf area, thus forming multiple filaments of buoyant water (Yankovsky &
Yankovsky, 2024). Similar episodic pulsing detachments can be formed by fluctuations in wind
forcing. Overall, we conclude that strong wind stress shuts down the cross-shelf plume regime.
It should also be noted that in many areas of the world ocean tides are the primary driver of the
bottom boundary layer, and the bottom-induced turbulence can significantly affect the plume
even without the wind forcing (Spicer et al., 2021). Hence, even moderate winds can trap an
estuarine outflow in the inner-shelf regime in the presence of tidal mixing.

Both separated (cases g, 1, j, 1) and upwind-curving plumes exhibit anticyclonic turning of
the buoyancy-driven jet as it crosses the shelf (Figures 4, 10b, ¢). This can be associated with the
lateral shear of the wind-driven alongshore current which tends to decay offshore (e.g., Brink,
1991), but can also be due to the Coriolis effect on a free jet (e.g., Avicola & Huq, 2003). In
general, the anticyclonic turning makes the shelf crossing more efficient, when the plume

approaches a normal angle with the shelf orientation (as in cases j, m, and n). However, as the

11
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balance between the wind-induced advection and the buoyancy forcing shifts towards buoyancy,
a free jet can curve back toward the coast (which appears to happen in case o). For this reason,
upwind-curving plumes represent a limiting case of the cross-shelf plume regime, when the
buoyancy dominates and the plume can potentially evolve into a conventional anticyclonic bulge
(e.g., Avicola & Huq 2003; Dzwonkowski et al., 2015).

Due to their elongated shape, cross-shelf plumes can develop quickly and reach the outer
shelf (or even the shelf break) in a matter of several days. In 6 cases, the upwelling favorable
wind started after the beginning of the nominal 3-day averaging period (that is, lasted less than 3
days). These events are b, d, e (multi-lobe plumes) and m, n, o (all upwind-curving plumes). In
the perhaps most dramatic case, case j, the upwelling-favorable wind was insignificant (~0.02
Pa) prior to the 3-day averaging interval. The other separated plumes, with their low energy
forcing conditions, demonstrate that—by constraining the plume volume in a long filament—Ilow
river discharge and weak upwelling winds can efficiently transport terrestrial nutrients to the
shelf break.

The cross-shelf transport limits of wind stress and buoyancy forcing—observed in the
multi-lobe and upwind-curving plumes (Figure 4)—may constrain the fate of terrigenous
materials near the coast. The associated high river discharges and winds reduce estuary residence
times and resuspend bed materials, making plume nutrients relatively more bioavailable and/or
abundant (Bauer et al. 2013; Hopkinson & Vallino, 1995). While the high energy conditions
may enhance river-ocean links and biogeochemical cycling (e.g., Sharples et al., 2017; Izett and
Fennel, 2018a, b), the high energy transport limits may constrain rapid cycling near the coast.
Instead, lower energy separated plumes consistently transport lower bioavailable nutrients to the
shelf break and Gulf Stream. Overall, the more critical forcing conditions for cross-shelf
exchange were light to medium winds. This may partially explain how the predominantly
downwelling Gulf of Alaska transforms into one of the most productive regions of the world as a
nutrient rich region of freshwater influence is spread offshore by seasonal upwelling favorable

winds that are surprisingly light (Rogers-Cotrone et al., 2008; Weingartner et al., 2005).
4 Conclusion

Cross-shelf plume structures off Winyah Bay are repeatedly seen in various satellite

products suggesting their forcing conditions are ubiquitous. Using several years of satellite
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observations, we found that all cross-shelf plumes were surprisingly forced by upwelling
favorable winds. Light to moderate winds are the most effective cross-shelf plume forcing
conditions, creating separated plumes, detached from the coast. Excessive wind stress shut down
the coastal detachment of the buoyant layer from the coast, advecting multi-lobe plumes
alongshore. The multi-lobe plume represents a strong-wind limit of the cross-shelf plume. A
large river discharge, weaker wind or shorter wind duration shift a competition between wind
and buoyancy forcing towards buoyancy dominance, and the upwind-curving plume pattern
emerges. The upwind-curving plume represents a low-wind limit of the cross-shelf plume. The
separated plumes represent archetypical cross-shelf plumes while cross-shelf advection in the
multi-lobe and upwind curing plumes are limited by partial trapping and curving back toward
shore, respectively. Overall, cross-shelf plumes develop fast, over a period of several days (2.5-
4). Lastly, the identification of a new class of cross-shelf plume structure and methods using

satellite images and easily calculated forcing conditions make this study novel.
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570  Figure 7. Plume parameters determined from the external forcing conditions are compared.
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Figure 8. Higher-resolution satellite imagery capturing details of the plume structure on four
select days: a) April 26, 2019 (Sentinel-2, 15:49 UTC), case j; b) October 28, 2018 (LANDSAT-
8, 15:48 UTC), case n; and c¢) February 11, 2017 (LANDSAT-8, 15:54 UTC), 2 days proceeding
case b. Images combine data from red, green, and blue wavelength bands, and have a spatial
resolution of 10 m (Sentinel) or 30 m (Landsat).
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Figure 9. Same as Figure 8a, but for March 11, 2020 (Sentinel-2, 15:51 UTC). Arrow‘indicate
the local propagation direction of five distinct packets of internal waves. The generally
southward propagation direction is consistent with the theoretically expected upwind radiation of

internal waves (see text).
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