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Central pattern generators are circuits generating rhythmic movements,
such as walking. The majority of existing computational models of these
circuits produce antagonistic output where all neurons within a pop-
ulation spike with a broad burst at about the same neuronal phase
with respect to network output. However, experimental recordings re-
veal that many neurons within these circuits fire sparsely, sometimes
as rarely as once within a cycle. Here we address the sparse neuronal
firing and develop a model to replicate the behavior of individual neu-
rons within rhythm-generating populations to increase biological plau-
sibility and facilitate new insights into the underlying mechanisms of
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rhythm generation. The developed network architecture is able to pro-
duce sparse firing of individual neurons, creating a novel implementa-
tion for exploring the contribution of network architecture on rhythmic
output. Furthermore, the introduction of sparse firing of individual neu-
rons within the rhythm-generating circuits is one of the factors that
allows for a broad neuronal phase representation of firing at the popula-
tion level. This moves the model toward recent experimental findings of
evenly distributed neuronal firing across phases among individual spinal
neurons. The network is tested by methodically iterating select parame-
ters to gain an understanding of how connectivity and the interplay of
excitation and inhibition influence the output. This knowledge can be
applied in future studies to implement a biologically plausible rhythm-
generating circuit for testing biological hypotheses.

1 Introduction

The current scientific literature suggests three main network architectures
for the rhythm-generating spinal circuits, commonly called central pattern
generators (CPGs) (Grillner & El Manira, 2020; Marder & Bucher, 2001; Ran-
cic & Gosgnach, 2021). Graham Brown (1911) suggested the existence of
CPGs based on his research with decerebrate cats in the early 1900s. He
also proposed the first viable architecture for these circuits, the half-center
oscillator where two neuronal populations mutually inhibit each other to
produce an antiphasic population output for controlling an antagonistic
muscle pair (e.g.; flexor/extensor; Graham Brown, 1911, 1914), which was
later supported experimentally (Jankowska et al., 1967). Since then, the unit
burst generator and two-layer network architectures have been proposed to
account for more complex firing patterns observed during rhythmic move-
ment (Ausborn et al., 2021; Grillner & Kozlov, 2021; Rancic & Gosgnach,
2021; Rybak et al., 2015). However, these architectures replicate alternating
firing where the neurons in the active population are all firing either at the
same or opposite phase and each burst consists of many spikes, covering
most of the related active period during locomotion. We term this “neu-
ronal phase” in contrast to the “population phase.” We define neuronal phase
as the phase angle relationship between the local maximums of the firing
rates of individual neurons firing in the network and the population output
from one of the rthythm-generating populations. This provides us with the
neuronal phase of any given neuron with respect to the network output.
Population phase is used to refer to comparing the phase difference between
the output signals of the network.

In contrast to the above models, a study by Kozlov et al. (2007) uses a
mathematical model to mimic single spiking and tonic firing of neurons
over a particular frequency range. This moves closer to biological record-
ings that show sparse neural activity (Dougherty et al., 2013; Hart & Giszter,
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Sparse Firing in a Hybrid Central Pattern Generator 761

2010; Musienko et al., 2022; Petersen & Berg, 2016; Zhong et al., 2011). Sparse
firing among neurons has further been shown to manifest as a skewed dis-
tribution across the population, which is similar to a normal distribution
on a logarithmic x-axis, that is, a log-normal firing rate distribution (Berg,
2017; Petersen & Berg, 2016). Although rarely reported experimentally, the
distribution of firing rates across the neuronal population provides im-
portant clues for the organization of the CPG network topology (Lindén
& Berg, 2021). Based on these findings, our study implements a spiking
CPG containing both sparsely and abundantly firing neurons within the
rhythm-generating populations. The rhythm generators (RGs) are designed
with random, sparse connectivity (Radosevic et al., 2019), which is inspired
by the balanced sequence generator (BSG) (Lindén et al., 2022). A spiking
version of the BSG model using leaky integrate-and-fire neurons was first
developed by Najarro et al. (under preparation). We increase the complex-
ity of this scheme by implementing a more detailed neuron model, which
is capable of producing bursting and tonic firing patterns. Currents that
support bursting activity in individual neurons have been demonstrated
in multiple core RG populations (Brocard et al., 2013; Dougherty & Ha,
2019; Dougherty et al., 2013; Shevtsova et al., 2020; Song et al., 2020; Wilson
et al., 2005). We therefore decided to explore their inclusion in our mod-
els. We implement two spiking RG networks connected in a conventional
CPG architecture with reciprocal inhibition between them. The resulting
network bridges recent work that implements a random, sparse architec-
ture (Lindén et al., 2022; Radosevic et al., 2019) and the population-based
architectures reviewed in Dougherty and Ha (2019) and Rancic and Gosg-
nach (2021). As this network merges two types of architectures previously
modeled distinctly from each other, we call it a hybrid architecture. Our
hybrid network places two RGs that are implemented using balanced ex-
citation and inhibition (Berg et al., 2019) in a half-center oscillator architec-
ture using mutual inhibition to produce antiphasic signals. The output of
this architecture is able to produce alternating signals from a network with
sparse firing. This means an antagonistic pair, such as the flexor and ex-
tensor, can be controlled by this network. Notably, the output also shows
that the neural activity from the RG populations resembles rotational dy-
namics, evenly distributed neuronal phases of individual spinal neurons,
observed in the lumbar spinal cord (Lindén et al., 2022), ventral respiratory
column in the medulla (Ramirez & Bush, 2022), and the primate motor cor-
tex (Churchland et al., 2012; Kalidindi et al., 2021). However, even though
our model is developed using biological constraints, it only encompasses
the core RGs of a spinal CPG network. Our results therefore do not exhibit
perfect rotational dynamics, a neuronal phase representation that covers all
phases nearly evenly, as seen in experimental recordings from a larger num-
ber of spinal neurons and explained by a new theory (Lindén et al., 2022).
Regardless, our work indicates that introducing sparse firing into the RG
populations combined with a topology of balance between excitation and
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Figure 1: Model schematics. (A) The basic structure of a single RG popula-
tion. Each RG contains two subpopulations, one excitatory (E) and one in-
hibitory (I) subpopulation that randomly and sparsely connect both to each
other and to themselves (i.e., a balanced network). The inhibitory population is
pictured as smaller because it contains fewer neurons based on the selected in-
hibitory/excitatory ratio (see Table 3, P1, in section 2.5). (B) Schematic showing
the basic configuration of the hybrid CPG architecture. The two RG populations
are connected via mutual inhibition using antagonistic inhibitory interneuron
populations (Alnh) to inhibit antagonistic output. Each Alnh population is ex-
cited by the excitatory populations in the RG and then inhibits all neuron types
in the antagonistic RG (pictured as gray lines in panel A). The amount of con-
nectivity is set by the synaptic sparsity of the network.

inhibition allows for a broader neuronal phase representation. This is in
contrast to previously proposed modular architectures for intralimb coor-
dination where strict alternation is observed and all neurons burst with
abundant spikes within a single discrete neuronal phase (Ausborn et al.,
2018, 2021; Grillner & Kozlov, 2021; Rybak et al., 2015).

2 Methodology

The spinal circuit is implemented as a spiking neural network. The hybrid
network architecture comprises two RG populations with recurrent excita-
tion and inhibition, a balanced network (Berg et al., 2019; Petersen et al.,
2014), arranged in a CPG half-center oscillator configuration (see Figure 1).

2.1 Rhythm Generator. The implementation of each RG is inspired by
the balanced sequence generator, a network with recurrent excitation and
inhibition where the activity is stable yet close to instability in relation to
equilibrium points (Lindén et al., 2022). Each RG contains 2000 neurons
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Table 1: Parameter Values of Two Neuronal Firing Behaviors (Tonic Firing and
Bursting).

Parameter  Tonic Firing  Bursting

Vi (mV) —-50 —52+1
tres (ms) 1402 1402
C (pP) 200 + 40 500 + 80
Tyias (PA) 320 =+ 80 160 + 40
gL (nS) 10 26

Ep (mV) -70 —60
AT (mV) 2 2

7y (ms) 30 130

a (nS) 3 —11

b (pA) 0 30
Viveset (mV) —58 —48

divided into two subpopulations, one excitatory and one inhibitory, that
connect both to each other and to themselves (see Figure 1A). The balance is
indicated as the ratio of excitatory to inhibitory neurons, one of the param-
eters to be tested (P1) and is further explained in section 2.5. In alignment
with theoretical findings, the subpopulations are designed to be random
and sparsely connected (Berg et al., 2019; Radosevic et al., 2019; Zhou & Yu,
2018). A sparsely connected network is defined here as having a low prob-
ability of connections between neurons; in our final model, this is 3% and
9% depending on the populations.

2.2 Central Pattern Generator Network. The central pattern generator
network (CPG) network architecture is based on the flexor/extensor half-
center RG architecture (Ausborn et al., 2021, 2018; Kiehn, 2016; Rybak et al.,
2015) and comprises two RG populations mutually inhibiting each other via
two inhibitory interneuron populations (see Figure 1B). The population of
excitatory neurons (E, n = 1667) within the RG excites a population of an-
tagonistic inhibitory interneurons (Alnh, n = 100). The neurons within the
Alnh populations extend inhibitory connections to all neurons in the antag-
onistic RG (Rybak et al., 2015). The connectivity between the RG and Alnh
populations is set using the synaptic sparsity parameter and is explained in
section 2.5, parameter P2. The inhibitory subpopulation (I, n = 333) in the
RG only projects locally within the RG.

2.3 Neuron Model. The spiking neurons are modeled as adaptive expo-
nential integrate-and-fire (AdEx) neurons (Naud et al., 2008) with two dif-
ferent sets of parameters (see Table 1). The majority of neurons fire tonically
when activated, while the remainder of the neurons produce bursting be-
haviors; the percentage of tonic versus bursting neurons is one of the tested
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parameters (see P3 in section 2.5). Some neuronal parameters are initialized
as normal distributions in order to create a variance in characteristics while
maintaining overall behavior—tonic firing or bursting. These distributed
parameters are indicated by providing their mean and standard deviation
(example: 200 £ 40 (mean =+ standard deviation)). Additionally, the mem-
brane potential of individual neurons is assigned an initial value of —60 &
10 mV. Finally, the capacitance, leak conductance, and spiking threshold
have been manually tuned to move closer to the physiological output fre-
quency range of 0.27 to 1.84 Hz as reported in Danner et al. (2015).

In Table 1, Vi, is the voltage threshold potential, . is the refractory pe-
riod, C is the membrane capacitance, Iy is the bias current, V,, is the mem-
brane potential, g;, is the leak conductance, E, is the resting potential, A7 is
the sharpness factor, t,, is the adaptation time constant, a is the subthresh-
old adaptation conductance, b is the spike-triggered adaptation, and Vi is
the reset potential (Naud et al., 2008). The noise is created as gaussian white
noise; it is updated every 0.1 ms, which is the designated time step of the
simulation. At each time step, the noise is added to the bias current of each
neuron. Noise is one of the tested parameters (see P5, Table 3) so it changes
for different tests. However, the mean is always 0 pA; this means that bias
current can be reduced by the noise if it receives a negative noise value.

Equations 2.1 and 2.2 describe the AdEx neuron’s dynamics:

de V=V
C at = _gL(Vm - EL) +8L(AT)€ AT _ge(t)(vm — EE)
— &) (Vin — Ei) — w + Ibigs, (2.1)
dw
oy =V —E) —w. 2.2)

The reset equation for each is

V, =V,
IV, >0mV,then| " " (2.3)
w— w +b.

Equation 2.1 defines the change in membrane potential per time step,
whereas equation 2.2 outlines the current adaptation (w) in pA and the re-
set functions for each are in equation 2.3. The parameters are the same as
those defined in Table 1 with the addition of the parameters for synaptic
conductance. The neural simulation tool (NEST) used in this study (Sinha
et al., 2023) models the synaptic conductance within the neuron model
equation by adding a calculation for both excitatory (g.(f)(V,, — E.)) and in-
hibitory (gi(t)(V,, — E;)) synaptic conductances into equation 2.1. The term
g.(t) is the excitatory conductance, E, is the excitatory reversal potential,
gi(t) is the inhibitory conductance, and E; is the inhibitory reversal poten-
tial. The rise and decay times of the synapses are modeled as alpha functions

d-ajo11B/098U/NPa W 108IIP//:d1Y WOy papeojumog

0 & 009U/96/99€ET/6SL/S/9E/P

20z 1snbny 6z uo 3senb Aq 4pd-0991



Sparse Firing in a Hybrid Central Pattern Generator 765

in the selected NEST neuron model, aeif_cond_alpha. Both excitatory and
inhibitory kinetics are provided in equation 2.4:

t

e Twn_in (2.4)

—_t
e gi(t) = Wi

e (t) = We
syn_ex Tsyn_in

where W, is the excitatory weight, ¢ is the time of the presynaptic spike,
Tsyn_ex i the excitatory rise time, W; is the inhibitory weight, and 4,
is the inhibitory rise time. The synaptic parameters are left at the default
values defined by NEST. Specifically, the excitatory rise time is 0.2 ms and
the inhibitory rise time is 2 ms. The synaptic weights are initialized as a
distribution and tuned so that each RG population is balanced with a slight
excitatory bias up to 10%. The synaptic connections from the inhibitory pop-
ulations to the postsynaptic RG neurons are two times stronger than the
inhibitory weights within the RG itself. This trade-off produces antiphasic
population output from the RGs while allowing individual RGs to maintain
sparse firing. Balance within each RG and in the overall network is calcu-
lated using equations 2.5 and 2.6:

sum_of_excitatory_weights — sum_of_inhibitory_weights
total_weight

balance =

’

(2.5)
individual_weight = synaptic_weight % Z(g(t)) s« #_of_spikes. (2.6)

In equation 2.5, the balance is approximated by taking the difference be-
tween the sum of all excitatory (excitatory_weight) versus inhibitory weights
(inhibitory_weight) and dividing this by the sum of all synaptic weights
(fotal_weight) in the populations being measured. If the balance value is
positive, the network skews excitatory; if it is negative, the network skews
inhibitory. Equation 2.6 describes the calculation of an individual excita-
tory_weight or inhibitory_weight. In order to account for the actual impact
of each synapse, equation 2.6 multiplies the number of spikes (#_of_spikes)
sent on a particular synapse with the synaptic weight (synaptic_weights) of
that synapse. Furthermore, the integral of the conductance (}_(g(f))) is also
multiplied in order to account for the different rise times of excitatory and
inhibitory synapses. The conductance, g(t), is the same that is referred to in
equation 2.4.

2.4 Network Performance. The performance of the network is mea-
sured using two metrics in order to make sure the developed model is op-
erating as desired. Table 2 outlines each metric, the desired result, and the
method.
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Table 2: Metrics for Measuring the Performance of the Developed Network

Architecture.
Metric Desired Result Method
Antagonistic Output activity shows Plot population firing rate output
output antiphasic population output; and comparison of time of
peaks should be 180° apart local maximums of each
when comparing the output population’s output (see
from each RG population. equation 2.7).
Firing sparsity =~ A percentage of neurons fire two  Plot a line graph tallying the

times per period or less often.

number of neurons that spike a

certain number of times
throughout the simulation
(example: if 100 neurons spike
10 times, the point is placed at
(10,100), showing a bias
toward zero). Calculate the
percentage of sparsely firing
neurons in the RGs.

The neural network is run using NEST and written in Python, code that
is also available on GitHub (Strohmer, 2023). The network data analysis is
performed within the Python script. The first metric, antagonistic output,
is found by analyzing the output activity from each RG population. This
activity is analyzed by detecting spikes for each rhythm-generating popu-
lation and applying a sliding time window, counting spikes per window to
produce a plot of population activity. The time window is 5 ms in length
and moves at an interval of 0.1 ms to create a smooth population firing rate
approximation from each RG. The signals are then compared by recording
the timing of their local peaks. This is used to confirm antiphasic population
output by applying equation 2.7,

peaks,, — peaks,,

avg_phase_diff = (2.7)

avg_period

where avg_phase_diff is the average population phase difference between
the two output signals, peaksrg1 represent the local maximums of the first
output signal, ;oeaksrg2 are the local maximums of the second output signal,
and avg_period is the average period of both signals over the complete sim-
ulation.

The frequency of bursting should be close to the interval 0.27 to 1.84 Hz
to align with surface electromyographic (EMG) signals recorded after stim-
ulating a functionally isolated human spinal cord (Danner et al., 2015). The
most realistic comparison to the developed network is an isolated spinal
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cord because the model does not incorporate sensory feedback. The fre-
quency is calculated by subtracting two consecutive peak times of an indi-
vidual RG output signal and averaging them as described in equations 2.8
and 2.9:

1
- peak2 — peakl’

Xfreq 29)
#_of data_points’ ’

freq (2.8)

avg_freq =

where freq is the frequency of a single population, and peak2 and peakl
are the times of two consecutive peaks recorded from a single population.
avg_freq is the average frequency of a single population over the complete
simulation time, and #_of data_points is the total number of peak times
recorded for a single population.

The second metric of firing sparsity is measured by counting the number
of spikes produced by each neuron throughout the complete simulation.
The total number of spikes per neuron is plotted as a line graph with the
number of neurons on the y-axis and the number of spikes on the x-axis
to confirm that the plot skews toward zero. Additionally, the number of
neurons spiking four times or less per second (two times or less per period
based on an average population firing rate output frequency of 2 Hz) is
counted and divided by the total number of spiking neurons to provide a
percentage of sparsely firing neurons.

The network is manually tuned using the operational performance met-
rics. Antagonistic output is ensured by plotting the population firing rate
output of each RG and calculating the average population phase differ-
ence (see equation 2.7). Firing sparsity is checked using the percentage of
sparsely firing neurons. By tuning the network parameters using these met-
rics, we are able to define a functional network for testing. The parameters
of the control network after tuning are found in section 3.2.

2.5 Network Testing. In order to understand the network, a method-
ology is constructed to step through changes in the network and neuronal
parameters. The parameters are selected in order to test connectivity, ex-
citatory/inhibitory balance, and robustness. One parameter is tested at a
time in an iterative process to understand the relationship between the spe-
cific parameter and network output. All of the tests are performed using
the same random seed to ensure a direct causality between changing a pa-
rameter and the change in output (see Table 3).

The ratio of excitatory-versus-inhibitory neurons (P1) is defined by the
number of excitatory and inhibitory neurons within each RG. Therefore, an
RG with a 5:1 ratio of excitatory-to-inhibitory neurons has five excitatory
neurons for every one inhibitory neuron, or 1/6 of neurons are inhibitory.
Synaptic sparsity (P2) refers to the network sparsity or the amount of
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Table 3: Parameters Tested to Determine Their Effect on Network Output.

1D Description Test Strategy
P1  Ratio of excitatory Test with 5:1, 4:1, 3:1 excitatory-to-inhibitory neurons
versus inhibitory (ratio based on biological findings in Sukenik et al.,
neurons in RG 2021).
P2 Synaptic sparsity Test with network connectivity up to 10% (RG) and 30%
(AlInh).
P3  Neuronal subtype Update percentage of bursting neurons to find the
(tonic, bursting) minimal number of bursting neurons necessary.
P4  Network balance Update the balance by skewing the RGs to either
excitation or inhibition through synaptic weights.
P5 Noise Update the amount of current noise in the network to

see how much noise can be added before the output
characteristics are compromised.

connectivity in the network. A connectivity percentage of 10% means that
there is a 10% chance that any presynaptic neuron is connected to any post-
synaptic neuron. There are two values used for connectivity—one for con-
nections within the RG and from the RG neurons to the AInh population,
the other for connections from the AInh population to the postsynaptic RG
neurons. The RG connectivity is three times as sparse, meaning if AInh con-
nectivity is 3%, RG connectivity is 1%. This ratio was found through manual
testing where AInh needed greater connectivity to ensure antiphasic popu-
lation output. Neuronal subtypes (P3) specifically relate to firing behavior
when isolated from the network, that is, whether the neurons are innately
tonically firing or bursting. Network balance (P4) is updated by chang-
ing the weights of the excitatory and inhibitory synapses to bias the RG
populations to be overall excitatory, inhibitory, or balanced. This is a valid
approach according to biological findings that confirm the human brain
regulates balance through changing excitatory/inhibitory connections
(Sukenik et al., 2021). Finally, robustness of the network is tested through
the addition of noise (P5). This is added directly to individual neurons as
current noise: the mean of the noise is always 0 pA, but the standard devi-
ation is updated based on the test. For example, if initial current bias for a
neuron is 320 pA and it receives a noise value of —100 pA, the current bias
at that time step will be 220 pA. This will be updated again at the next time
step when the noise is recalculated. The noise is always applied to the initial
current bias, which remains constant throughout a simulation.

In order to further test robustness, another round of tests is performed
using the control parameters but changing the initial value (seed) for the
random number generator each time. This is completed 20 times to con-
firm that output characteristics remain consistent across randomly initial-
ized trials. The random initialization seed value determines which neurons
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are connected and changes the overall initialization of noise in the network.
Therefore, changing the random seed tests that the network is not overfitted
to produce the desired output for only a single network configuration.

3 Results

There are two main results of this study: (1) the implementation of a net-
work architecture that is able to produce rhythmic, antiphasic population
activity while exhibiting sparse firing and (2) how specific parameters affect
network output.

3.1 Network Performance. The behavior of individual neurons as ton-
ically firing or bursting is confirmed prior to connecting them within a net-
work (see Table 1 and Figure 2). For this initial behavior test, the neurons are
provided an increasing external current in order to find a suitable current
input range based on firing pattern.

The plots show that using a normal distribution to initialize some pa-
rameters allows for individual neurons to start firing at different times and
fire at different frequencies while keeping their overall tonic or bursting be-
havior. The external current ramp confirms that tonic firing of most neurons
begins around 250 pA and around 110 pA for bursting.

The hybrid CPG architecture is constructed in Figure 1B with the follow-
ing parameter values: P1: 5:1 excitatory/inhibitory ratio; P2: 3% (RG), 9%
(AInh) connectivity; P3: 30% bursting neurons; P4: balanced with a slight
excitatory bias (average of RGs: 9.79%); P5: 320 pA (tonic), 160 pA (burst-
ing) current noise (see Table 3). The parameter values are manually tuned
until an antagonistic output is produced from a network with sparse firing
(see Figure 3, top row).

The interburst interval (see Figure 3B) and firing sparsity (see Fig-
ure 3C) validate the network with sparsely firing neurons, producing the
desired output. The population firing rate shows that the RG popula-
tions are firing in an antiphasic pattern to allow for control of an antag-
onistic muscle pair. This is evidenced by comparing the local maximums
from each population and ensuring they are antiphasic (see Figure 3B).
When equation 2.7 is used, the average population phase difference is
determined to be 188.44°. The average frequency of the output from the
RGs is 2.08 Hz. The firing is sparse across the population, and the dis-
tribution of spike count is low and biased toward zero (see Figure 3C).
Dividing the number of sparsely firing neurons by the total number of fir-
ing neurons reveals that more than one-fifth of the neurons (24.36%) fired
twice or less per cycle. Importantly, some neurons only fire once or twice
throughout the whole simulation, in accordance with the experimental ob-
servation of firing rate distribution, which is skewed toward zero (Berg,
2017; Lindén & Berg, 2021; Petersen & Berg, 2016). The presented results in-
dicate that the manually tuned network produces antagonistic output while
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Table 4: Range of Select Parameters Able to Maintain Antagonistic Output with
Sparse Firing.

ID  Description Value Range
P1  Ratio of excitatory versus inhibitory 4:1or5:1
neurons in RG

P2 Connectivity (RG) 3%

P2 Connectivity (Alnh) 9%

P3  Neuronal subtype (bursting) Minimum of 25%

P4  RG balance Balanced with a slight bias toward
excitation (average of RGs: 9.5%)

P4  Network balance Inhibitory bias

P5 Noise 90% to 500%

Note: The corresponding plots are found in the supplementary material (Figures 4-8)
and specific figure references can be found in the text following the table.

maintaining sparse firing. Furthermore, we observe that the neuronal
phase-sorted plot of firing rates (see Figure 3D) along with the neuronal
phase distribution plot (E) have a somewhat wide distribution. The low-
dimensional activity is revealed by a simple structure of the population fir-
ing rate trajectory, illustrated by the principal component analysis (PCA) in
time (F). Even though the neuronal phase distribution has a distinct peak
at 7 and 27 (see Figure 3E) and limited representation at intermediate neu-
ronal phases, it is not as limited in neuronal phase as the abundantly firing
network. When removing inhibition within the RG, thus increasing firing
and removing balance, the distinct mode in the neuronal phase distribution
is distinctly pronounced around 7 and 2x (see Figure 3, bottom row). The
individual neuronal firing rates for all neurons are compared to the output
from RGI; therefore, neurons in RG1 will fire mostly in-phase (0 and 2x),
and neurons in RG2 will fire mostly in antiphase ().

The “unbalance” of excitation and inhibition within the RGs resulted in
a clear alternation between the two RG populations (see Figures 3B to 3D),
and a noncircular, U-shaped PCA representation (F). The firing rates across
the population were very high with 0% sparsely firing neurons, and the dis-
tribution had a clear mode (see Figure 3E) due to the removal of inhibition
and the uncontrolled escalation of activity, as described previously (Lindén
& Berg, 2021). In such an unbalanced RG network, all the neurons of a par-
ticular population tend to fire together; hence, the neuronal phase of their
activity peaks around the same time during each period and the distribu-
tion has strong peaks at zero/2m and n (see Figure 3E). These results show
that while alternating activity is still produced by unbalanced abundantly
firing networks, fewer neuronal phases are represented.

3.2 Parameter Testing. Table 4 shows the values or ranges per parame-
ter producing alternating output with sparse firing.
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Sparse Firing in a Hybrid Central Pattern Generator 773

Additionally, running the simulation with the control parameters but ini-
tializing with a new random seed gives an average frequency over 20 tri-
als of 1.92 Hz, an average population phase difference between signals of
174.69° and an average firing sparsity of 23.69%. Based on the collected data,
the network can be described as robust because even with a noise-to-signal
ratio of 5:1, some sparse firing (4.18%) and alternating activity (191.73°) are
still recorded (see Figure 8, top row, in the supplementary material). In other
words, the network still produces desired results when the standard devi-
ation of the noise parameter is five times larger than the input bias current.
The output of the network with 6:1 noise depicts degradation in population
firing rate output (see Figure 8, bottom row, in the supplementary mate-
rial). It is important to note that the network requires 90% noise to produce
enough random spiking to promote continuous oscillations throughout the
simulation. Furthermore, it can be concluded that the RG populations must
be balanced with a slight excitatory bias to produce an alternating output
for the duration of the simulation. If the individual RG populations have an
inhibitory bias (see Figure 7, first row, in the supplementary material), the
network does not have persistent oscillating output. Alternatively, if the RG
populations are too excitatory in their bias, the neural activity becomes al-
ternating, showing neuronal phase representation at close to zero/2x and
m, and the spiking per neuron increases (see Figure 7, second row, in the
supplementary material). When inhibition is removed from the individual
RG populations, there is an anti-phasic population output from the net-
work but neuron spiking increases and neuronal phase representation is not
distributed (see Figure 3, bottom row). Furthermore, when the mutual inhi-
bition is removed so the RG populations fire as individual populations, out-
put from each RG is independent so the population phase is not consistent.
There is an increase in output frequency and neuron spiking as well as a
preference for neuronal in-phase firing (see Figure 7, fourth row, in the sup-
plementary material). In-phase firing is determined by a large single peak
at0/2x radians in the neuronal phase distribution histogram. Finally, when
all inhibition is removed from the network, neurons fire abundantly and fire
in-phase within each RG without a consistent population phase difference
between RG populations (see Figure 7, third row, in the supplementary ma-
terial). Additionally, the connectivity must be weak as decreasing synaptic
sparsity forces neurons to spike at the same time, reducing neuronal phase
representation (see Figure 5, middle row, in the supplementary material)
and eventually leads to oversuppression of network output (see Figure 5,
bottom row, in the supplementary material). However, if connectivity is too
weak, firing will be random (see Figure 5, top row, in the supplementary
material). Finally, the percentage of bursting neurons must be at least 25%
to produce continuous oscillations (see Figure 6, top row, in the supplemen-
tary material). Based on biological findings, the percentage of neurons that
are bursting varies based on extracellular ion levels (Brocard et al., 2013),
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so we attempt to find the lowest percentage of bursting neurons for our
network that still provides alternating output.

4 Discussion

The connectivity of the network is shown to have a significant impact on the
firing dynamics of the population. If there is strong connectivity, oversup-
pression can occur (see Figure 5, bottom row, in the supplementary mate-
rial) whereas weak connectivity can devolve into random firing (see Figure
5, top row, in the supplementary material), which does not seem to depend
on other neurons in the network. Even a smaller increase in connectivity
can change the behavior of the network, where the RGs can still produce
antagonistic output and sparse firing is recorded but neuronal phase repre-
sentation is not broad. This is due to more neurons firing together and the
sparse neurons also firing within these bursts of activity. The initial test for
5% connectivity within the RG and 15% connectivity from the inhibitory
populations shows an overrepresentation of sparsely firing neurons (see
Figure 5, middle row, in the supplementary material). When the test is re-
run with a different seed, to create different random connections and noise,
the sparse firing is reduced to 8.91% of neurons, a significant reduction from
the original trial showing 39.93%. Based on these observations, the connec-
tivity must be carefully considered when implementing a sparsely spiking
CPG. Optimization methods could be used to tune the connectivity parame-
ters to different desired outputs. During tuning, the synaptic weights were
also observed to have a significant impact on the output of the network.
Increasing the mean synaptic weight from 0.6 nS to 1.2 nS was enough to
reduce firing sparsity and promote neurons firing together.

The specific connectivity of the network is also shown to affect how
quickly alternating activity emerges in the population dynamics. The ran-
dom seed trials show different initialization times (see Figure 9, in the sup-
plementary material). This reinforces the expectation that the network is
producing alternating output and it is not a product of neurons being ini-
tialized in a specific way. For example, if all neurons were given the same
characteristics at start-up, they would begin spiking at the same time. On
the other hand, some of our tests show that firing is random at first, and as
the neurons are allowed to fire, oscillations can emerge based on the con-
nectivity within the network.

The interplay of excitation and inhibition in the network also proves to
be a sensitive parameter. The postsynaptic connections from the Alnh pop-
ulations were less sparse and stronger than those from the RG populations
in order to promote antiphasic population output. The AInh populations do
not have any self-recurrent connections so all inhibitory connections were
with neurons in the RG populations. The balance within the RG popula-
tions had to be balanced with a slight excitatory bias to ensure the output
did not devolve into random firing or complete suppression. This means
that the sum of the weights of the excitatory synapses within the RG was
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larger than that of the inhibitory synapses (as defined by equations 2.5 and
2.6). If the RG was inhibitory, the population firing rate output was noisy
(see Figure 7B, first row, in the supplementary material). However, inhibi-
tion is required within the network; otherwise, the population output from
the RG populations will not be antiphasic (see Figure 7, third row, in the
supplementary material). When inhibition is removed from different parts
of the network, there is a strong preference for neuronal in-phase firing,
and spiking activity increases significantly (see Figure 3, bottom row, and
Figure 7, third and fourth row, in the supplementary material). This is an
intuitive result and confirms the important role of inhibition within the net-
work (Lindén & Berg, 2021; Petersen & Berg, 2016). It is important to note
that our calculation of balance is a simplification, using the synaptic conduc-
tances and spikes traveling across each synapse to approximate the amount
of excitation versus inhibition within a simulation run. A more accurate cal-
culation of balance would include the driving force of the synaptic currents
when an individual spike is sent.

The network shows that a minimum of 25% bursting neurons within the
RGs is necessary to drive continuous oscillations. Bursting neurons rein-
force rhythm by increasing the number of spikes within specific time inter-
vals. This study cannot conclude whether it is the percentage of bursting
neurons or the number of spikes within a time interval that is necessary to
reinforce output oscillations. However, we assert that bursting neurons are
a biologically plausible method to produce a minimum threshold of spikes
at regular intervals.

It is also notable that running the RGs independently by removing
mutual inhibition in the network still produces a strong preference for neu-
ronal in-phase firing (see Figure 7, fourth row, in the supplementary mate-
rial). This is not the expected result as the RGs should show nearly equal
neuronal phase representation when operating by themselves as found
in Lindén et al. (2022). This could be an artifact of the firing behavior of
the spiking neuron model since neurons are initialized with similar pa-
rameters coupled with the self-excitation of the excitatory neurons, which
reinforces neuronal in-phase firing. Additionally, spiking neurons have a
refractory period that reduces the ability of the neuron to fire at specific
times, namely, during the refractory period.

The presented results show that random firing of neurons causes the
lowest average neuronal phase distribution difference (for an example, see
Figure 5E, bottom row, in the supplementary material). This makes intuitive
sense as the neurons would have no preference for firing at any particular
time. Therefore, this must be accounted for when developing a quantitative
measure of neuronal phase distribution.

The neuronal phase distribution plots (see Figure 3E) show that the most
represented phases are at 0/27 and 7. This means that while neurons fire
at all neuronal phases, they are more likely to fire in-phase or antiphasic to
each other. This can be accounted for by the configuration of the RG pop-
ulations, which are set up as RG and Alnh populations. Within the RGs,
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the excitatory neurons will fire close to in-phase with each other due to
recurrent excitatory connections. When the inhibitory neurons are firing,
they will suppress excitatory neuron output, leading to fewer neurons firing
between neuronal phases.

The test results for 500% noise in the network appear to contradict our
conclusion that sparse firing enables broad neuronal phase representation
in a spiking network (see Figure 8, top row, in the supplementary material).
The population firing rate output is alternating, and the neuronal phase dis-
tribution histogram shows firing in all phases, but only 4.18% of neurons are
sparsely firing. This indicates that a high amount of noise in the network in-
creases firing per neuron. However, spikes that are elicited by peaks in the
noise do not arise from network connectivity and therefore are not corre-
lated with network activity. These noise-induced spikes thus likely do not
contribute to an increase in alternation between the RGs or in-phase firing
within each RG. Therefore, we maintain that this test is still consistent with
our conclusion that sparse firing is one of the factors that allows for a broad
neuronal phase representation of neuron firing.

In the network where all inhibition is removed (see Figure 7, third row, in
the supplementary material), the PCA for each RG is still circular, although
oval, which taken alone would indicate rotational activity and an expecta-
tion of broad neuronal phase representation. However, the neuronal phase
distribution plot shows that only phases close to 0/2 & are present. This
illustrates that circular trajectory in PCA space is necessary but not suffi-
cient for the network to exhibit rotational activity as defined in Lindén et al.
(2022). Instead, the PCA plot should be considered together with the neu-
ronal phase distribution. Due to the method of relating data using orthogo-
nal vectors, a PCA can show circular behavior with as little as two neuronal
phases represented.

Finally, it is important to note that the simulation shows that some neu-
rons are silent and do not fire at all. These silent neurons were removed from
the firing rate neuronal phase plots. We argue that silent neurons are biolog-
ical as they have been observed in fictive locomotion of the mouse spinal
cord where some neurons stop firing at lower frequencies (Zhong et al.,
2011) and in zebrafish where different motor neurons are recruited at in-
creasing speeds of motion (Jha & Thirumalai, 2020). Furthermore, neurons
are known to be multistable; they are able to switch between tonic, bursting,
and silence depending on the level of hyperpolarization (Malashchenko
et al., 2011). Therefore, the observation of silent neurons during slower fre-
quency firing is predicted by biological studies.

5 Conclusion

Ahybrid CPG network was developed and confirmed to produce antipha-
sic population output in the presence of sparse firing. Furthermore, it was
observed that sparse firing allowed broad neuronal phase representation
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of neurons firing at a population level, which brings the model closer to
exhibiting rotational dynamics as observed in experiments (Lindén et al.,
2022). Testing the network by changing parameters independently and
comparing the output to a control experiment produced the following
observations:

¢ The network is robust against noise.

* The RG populations should be balanced with a slight excitatory bias
to maintain oscillatory output.

e The network should have weak connectivity (3% RG, 9% Alnh) to
promote coordinated output while allowing for a broad neuronal fir-
ing phase distribution.

The implementation of this network, which increases biological fidelity by
reproducing a phenomenon observed in biological studies, namely, sparse
firing, paves the way for further investigation into rhythmic movement. The
next step will be testing the model’s behavior for different cycle frequencies
and interfacing the computational model with a musculoskeletal model that
provides feedback in order to adapt the network output.
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