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A B S T R A C T

We study Vortex-Induced Vibration (VIV) of a one-degree-of-freedom cylinder placed in inertial-elastic flows
experimentally. We show that there is a critical Reynolds number for the onset of VIV in these flows and
this critical Reynolds number increases when the elasticity in the fluid is increased. We also show that at a
constant Reynolds number, adding elasticity to the fluid reduces the amplitude of oscillations and eventually
suppresses VIV entirely. For the cases where VIV is observed, the onset of the lock-in range does not depend
on the Reynolds number, as a result of the competing effects of shear-thinning and elasticity. The vortices that
are observed in the wake are significantly different from those observed in Newtonian VIV: the vortices are
S-shaped with relatively long tails that influence the formation of the vortices that are formed in the following
cycle.

1. Introduction

A flexibly-mounted rigid cylinder placed in flow constitutes a model
problem in Fluid-Structure Interactions (FSI). Above a critical Reynolds
number, defined as 𝑅𝑒 = 𝜌𝑈𝐷∕𝜇, where 𝜌 is the fluid density, 𝑈 is the
free-stream velocity, 𝐷 is the cylinder diameter, and 𝜇 is the dynamic
viscosity of the fluid, vortices are shed in the wake of the cylinder.
If the shedding frequency equals the system’s natural frequency, the
cylinder oscillates. The synchronization between the natural frequency
and the shedding frequency occurs over a range of reduced velocities,
defined as 𝑈∗ = 𝑈∕𝑓𝑛𝐷 where 𝑓𝑛 is the structure’s natural frequency,
and the 𝑈∗ range where this synchronization is observed is called
the lock-in range. The observed oscillations in the lock-in range are
called vortex-induced vibrations (VIV) [1–3]. If the cylinder is allowed
to oscillate only in the direction perpendicular to the flow, or the
crossflow direction, large oscillations, on the order of one cylinder
diameter, can be observed [4,5]. A subcritical response has also been
observed in the crossflow VIV, where synchronization between the
vortex shedding frequency and the cylinder oscillation frequency occur
at Reynolds numbers below the critical Reynolds number for shedding
in the wake of a fixed cylinder (𝑅𝑒𝑐𝑟,𝑓 𝑖𝑥𝑒𝑑 = 47 [6]). The critical
Reynolds number for a flexibly-mounted cylinder in crossflow has been
shown both numerically and experimentally to be 𝑅𝑒𝑐𝑟 = 19 [7–9]. Up
until very recently, VIV had only been studied in Newtonian fluids.
In this paper, we will investigate the non-Newtonian effects of fluid
viscoelasticity on the VIV response of a flexibly-mounted cylinder.

The influence of viscoelasticity on the vortex shedding from a
fixed cylinder has been studied both numerically and experimentally.
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Coelho and Pinho [10] studied the effect of shear-thinning, weakly
elastic fluids on the generation of vortices in the wake of a fixed
cylinder in the Reynolds number range of 50 < 𝑅𝑒 < 9000. They
found that shear-thinning reduces the boundary layer thickness and
vortex formation length. This leads to an increase in the vortex shed-
ding frequency and by extension, the Strouhal number, defined as
𝑆𝑡 = 𝑓𝑠𝐷∕𝑈 , where 𝑓𝑠 is the vortex shedding frequency. Fluid elasticity
has the opposite effect, where the formation length is increased and
the shedding frequency and Strouhal number are reduced [11–14].
Lashgari et al. [15] studied numerically the wake instability of a fixed
cylinder in power-law thinning flow. They found that shear-thinning
reduces the stability of the boundary layer and the vorticity close to
the cylinder is intensified. Hamid et al. [16] discussed the influence of
a viscoelastic fluid on the flow structures behind a fixed cylinder in the
inertial-elastic regime. Through dynamic mode decomposition (DMD),
they observed the stretching of the shear layers and the suppression of
the vortex shedding frequency. The energy associated with each DMD
mode decreases with fluid viscoelasticity, which suppresses velocity
fluctuations when compared with Newtonian fluids.

As shown for the case of the fixed cylinder, often the effects of
shear-thinning and elasticity can have very different and sometimes
competing influences on the flow. To deconvolute the effects of each
on the VIV response of a cylinder, we previously conducted exper-
imental [17] and numerical [18] studies that explored the effect of
shear-thinning and shear-thickening on the VIV response in the absence
of fluid elasticity. In our previous experimental work we investigated
the VIV response of a flexibly-mounted cylinder in the cross-flow of
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inelastic shear-thinning Xanthan gum solutions [17]. In that work, we
studied a wide range of concentrations of Xanthan gum in water. The
rheology of these fluids were found to be well described by a power-
law fluid both in shear and in extension. With increasing Xanthan gum
concentration and increasing strength of shear-thinning of the fluid
viscosity, the VIV response was found to be increasingly suppressed
with the onset of oscillations being shifted to larger Reynolds numbers,
the maximum amplitude of oscillations being reduced, and the lock-
in range being shifted to lower 𝑈∗ values. Indeed, at the largest
Xanthan gum concentrations tested, no VIV was observed within the
accessible range of Reynolds numbers. We showed numerically [18]
that by defining a characteristic Reynolds number based on a viscosity
evaluated at a characteristic shear rate, 𝛾̇ = 𝑈∕𝐷, the amplitude of
the VIV response, in the reduced velocity ranges where oscillations are
observed, stays very similar for the shear-thinning, shear-thickening
and Newtonian fluids.

Although viscoelastic effects on VIV have yet to be studied at high
Reynolds numbers, Viscoelastic Fluid-Structure Interactions (VFSI) has
been studied at vanishingly small Reynolds numbers (𝑅𝑒 ≪ 1) and
high Weissenberg numbers. Here, the Weissenberg number is defined
as 𝑊 𝑖 = 𝜆𝛾̇, where 𝜆 is the fluid relaxation time and 𝛾̇ is the shear
rate. The Weissenberg number describes the relative importance of fluid
elasticity to fluid viscosity in a flow. Dey et al. [19–23] placed flexible
and flexibly-mounted sheets and cylinders in viscoelastic flows where
𝑊 𝑖 > 1 and 𝑅𝑒 ≪ 1. In these viscoelastic flows, the VFSI response is not
dominated by inertial shedding of vortices, but by the onset of elastic
instabilities that drive oscillations at frequencies equal to the fluid
instability frequency. In addition to the experimental work from our
group, Hopkins et al. [24] studied multiple thin flexible glass cylinders
resembling cilia in a microfluidic flow cell with𝑊 𝑖 > 1 and 𝑅𝑒 ≪ 1 and
found that individual cylinders oscillating through a viscoelastic fluid
instability can synchronize and move in unison.

Few studies exist where both elasticity and fluid inertia are relevant
to an FSI system, as opposed to the cases where either dominates.
Fluid inertia and elasticity are competitive in nature. Inertia causes
instabilities downstream of an obstacle [4] while elasticity causes in-
stabilities upstream of an obstacle [25–27], although the instability can
depend on the blockage ratio [28]. At a constant Weissenberg number,
the size of the separated vortex upstream of an obstacle decreases as
the Reynolds number is increased until it disappears completely when
the Reynolds and Weissenberg number become comparable [29–31].
As the Reynolds number continues to increase, and the influence of
fluid inertia increases, the flow instability can occur downstream of the
obstacle, although the strength and nature of the wake is still strongly
a function of the fluid properties [32–36]. In addition to fluid inertia
and elasticity, fluid rheology is known to have an effect of generation
of vortices in the wake of an obstacle [10,37]. Patel et al. [38] studied
the forced oscillations of a cylinder in FENE-P and Oldroyd-B fluids at
0.01 ≤ 𝑊 𝑖 ≤ 10 and 𝑅𝑒 = 100. In addition to the primary vortices, they
observed stretched vorticity bands as 𝑊 𝑖 is increased. They confirmed
that their observation is a new mode of shedding by determining that
the bands are rotationally dominated, and that these secondary vortices
are formed purely due to the fluid elasticity. They predicted that in
a free-to-oscillate VFSI system where fluid inertia and elasticity are
important, the oscillation amplitude would be reduced until completely
suppressed as the effect of elasticity is increased. Xiong et al. [39] con-
ducted numerical VFSI simulations of a flexibly-mounted rigid cylinder
in FENE-P fluid at Reynolds numbers of 30 to 500 and Weissenberg
numbers of 0 to 80. They found that as the Weissenberg number or
polymer extensibility increases, the VIV response is suppressed and that
the oscillation amplitude is more dependent on the Reynolds number,
especially at higher Weissenberg numbers, than when in Newtonian
flow.

As discussed above, the majority of VIV research has been focused
on cases where 𝑅𝑒 ≫ 1 and 𝑊 𝑖 ≪ 1. Only recently, has a new branch
of fluid structure interactions is being explored, where 𝑅𝑒 ≪ 1 and

Table 1

Consistency indices, power-law exponents, infinite extensional viscosity, and relaxation
times for 0.02 and 0.03 g/L Flopaam 3330.

𝑐 (g/L) 𝑚 (Pa s𝑛) 𝑛 (–) 𝜂𝐸,∞ (Pa s) 𝜆 (ms)

0.02 0.010 0.6 2.8 9.4
0.03 0.014 0.6 10.0 14.7

𝑊 𝑖 > 1. The present work focuses on a region in between, were fluid
elasticity and inertia are important, 𝑅𝑒 ≫ 1 and 𝑊 𝑖 > 1. A flexibly-
mounted cylinder is suspended in a viscoelastic flow. A characteristic
Reynolds number and a Weissenberg number are defined and the
regions of 𝑅𝑒 ≫ 1 and 𝑊 𝑖 > 1 are explored. Comparisons are made to
the cases of Newtonian flow and fixed cylinders. The wake is observed
through particle image velocimetry (PIV) and the VIV response is
recorded through the amplitude and frequency measurements.

2. Fluid rheology

The fluid used in these experiments is Flopaam 3330s (SNF), a high
molecular weight, water-soluble polyacrylamide that displays viscosity-
thinning and elastic behaviors [40]. The Flopaam is mixed in distilled
water (DI) at two concentrations, 0.02 g/L and 0.03 g/L. The shear
rheology is measured using a cone-and-plate TA Instruments Discovery
HR-3 hybrid rheometer and is shown in Fig. 1(a). Flopaam 3330s is
shear-thinning and follows the power law relation, 𝜂 = 𝑚𝛾̇𝑛−1 [41],
where 𝜂 is the shear viscosity, 𝑚 is the shear consistency index, 𝛾̇ in
the shear rate, and 𝑛 is the shear power-law exponent given in Table 1.

Because the viscosity is a function of the fluid deformation, a
Reynolds number is defined using a relevant shear viscosity, 𝜂, and a
relevant characteristic shear rate. A typical shear rate used to describe
flow around a cylinder in non-Newtonian fluid at low Reynolds num-
bers is 𝛾̇ = 𝑈∕𝐷 [17,18,38,39]. However, at high Reynolds numbers,
the shear rate within the boundary layer is typically much larger as
the lengthscale of interest is the boundary layer thickness and not the
diameter of the cylinder. As a result, in this case, the choice of the
appropriate shear rate to describe the flow is not clear a priori. In the
results discussed here, Particle Image Velocimetry (PIV) will be used
to measure the shear rate close to the cylinder wall and determine the
appropriate characteristic shear rate for calculating the Reynolds and
Weissenberg numbers. We will show later, in Section 4, that for 𝑐 = 0.02
g/L Flopaam solution, the characteristic shear rate is approximately
𝛾̇𝑐ℎ𝑎𝑟 = 4𝑈∕𝐷, while for the 𝑐 = 0.03 g/L Flopaam solution, the
characteristic shear rate is even larger at 𝛾̇𝑐ℎ𝑎𝑟 = 8𝑈∕𝐷. The viscosity
at the characteristic shear rate is calculated from the power law model
fit to the data, 𝜂𝑐ℎ𝑎𝑟 = 𝑚𝛾̇𝑛−1

𝑐ℎ𝑎𝑟
. This allows us to define the Reynolds

number of the flow as 𝑅𝑒 = 𝜌𝑈𝐷∕𝜂𝑐ℎ𝑎𝑟, and to quantify the importance
of elasticity by defining a Weissenberg number, 𝑊 𝑖 = 𝜆𝛾̇𝑐ℎ𝑎𝑟. For any
given fluid, the Weissenberg number and the Reynolds number are
coupled and cannot be varied independently. In order to modify the
relative importance of inertia to elasticity, the fluid must be changed.
One can capture the relative importance of elasticity to inertia with
the elasticity number, 𝐸𝑙 = 𝑊 𝑖∕𝑅𝑒 = 𝜆𝜂𝑐ℎ𝑎𝑟∕𝜌𝐷2, which has no
explicit dependence on flow strength. However, it should be noted
that the elasticity number is not a constant since the fluid viscosity is
shear thinning and depends on the shear rate. The elasticity number
will therefore decrease slightly with increasing Reynolds number and
Weissenberg number.

The extensional rheology is measured using dripping onto substrate
capillary breakup extensional rheology (CaBER-DoS) [17,42,43]. In
CaBER-DoS, a droplet of fluid is ejected from a nozzle at a very slow
flow rate. While still attached to the nozzle, the droplet wets a surface
just below the tip of the nozzle. As the fluid wets the substrate, the
droplet is drawn down from the nozzle, creating a fluid filament that
breaks up due to capillary forces. For a viscoelastic fluid, the fluid
filament undergoes an elasto-capillary decay, resulting in a diameter
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Fig. 1. Rheology of 0.02 g/L (blue circles) and 0.03 g/L (green triangles) Flopaam 3330s at room temperature: (a) Shear viscosity as a function of shear rate with power-law fit,
(b) filament diameter thinning during capillary breakup extensional rheology (CaBER) with viscoelastic fit, and (c) calculations of the extensional viscosity as a function of strain
showing strain hardening of each fluid.

that decays exponentially with time. The diameter decay is observed by
a high-speed camera and then digitized using EdgeHog (KU Leuven),
a Matlab program that extracts diameter as a function of time from
CaBER-DoS. The diameter decay is shown in Fig. 1(b). The extensional
viscosity and relaxation time are determined by first fitting the di-
ameter to 𝐷𝑚𝑖𝑑 (𝑡) = 𝐴𝑒−𝐵𝑡 − 𝐶𝑡 + 𝐸 [44], where 𝐴, 𝐵, 𝐶, and 𝐸

are fitting parameters and 𝐷𝑚𝑖𝑑 (𝑡) is the fluid filament diameter as a
function of time. For an Oldroyd-B fluid, the relaxation time can be
extracted from the fitting constants such that 𝜆 = 1∕(3𝐵) [44]. The
relaxation times for the two fluids are given in Table 1. The extensional
viscosity is calculated by differentiating the fit to the diameter decay
such that 𝜂𝐸 (𝑡) = −𝜎(𝑑𝐷𝑚𝑖𝑑 (𝑡)∕𝑑𝑡)−1 [44], where 𝜎 = 72 mN/m is
the surface tension of water. The extensional viscosity is plotted in
Fig. 1(c) as a function of Hencky strain which is defined as 𝜖(𝑡) =
2𝑙𝑛(𝐷0∕𝐷𝑚𝑖𝑑 (𝑡)), where 𝐷0 = 1.6 mm is the diameter of the nozzle used
in CaBER-DoS [42]. The results show that the extensional viscosity of
both fluids are strongly strain hardening with measured extensional
viscosity values much larger than the shear viscosity at similar shear
rates, 𝛾̇ ≈ 100 s−1, shown in Fig. 1(a). The resulting Trouton ratios
are very large, 𝑇 𝑟 = 𝜂𝐸∕𝜂 > 1000, and are consistent with other
high molecular weight dilute polymer solutions. Additionally, the final
breakup of the fluid filament provides information about the finite
extensibility of the polymer. The extensional viscosity in the limit of
infinite strain can be calculated from the fit to the diameter decay at
long times. It is presented alongside the relaxation time in Table 1.

3. Experimental setup

The experiments were conducted in a rotating water channel com-
prised of two concentric acrylic cylinders, an acrylic bottom, and an

open top, that was spun on its axis by a high torque, low rpm motor
(Fig. 2). This design created a flow velocity without the need for pumps
and flow straighteners with flow velocities at the center of the channel
in the range of 1.8 cm/s to 9.1 cm/s with a resolution of 0.1 cm/s, and
9.1 cm/s to 24 cm/s with a resolution of 0.2 cm/s, depending on the
motor that was used. The channel had an outer radius, 𝑅1, of 30 cm
and an inner radius, 𝑅2, of 23.5 cm, and as a result, a channel width
of 4.6 cm with a distance from the center of the cylinder to the center
of the channel, 𝑅, of 27.7 cm. The set-up was used for tests both on a
flexibly-mounted cylinder (Fig. 2(a)), and a fixed cylinder (Fig. 2(b)).
More details on this setup can be found in our previous work [8,17].

A rigid aluminum cylinder with 𝐷 = 0.4 cm was used for the non-
Newtonian experiments and a rigid aluminum cylinder with 𝐷 = 0.2 cm
was used in the Newtonian experiments. The cylinder was suspended
by two pieces of rectangular spring steel which acted as springs. The
reduced velocity, 𝑈∗, was varied by varying the natural frequency of
the system by adjusting the length of the springs through an adjustable
collar. This allowed the Reynolds number to be fixed by holding
the flow velocity constant, while changing the reduced velocity. The
natural frequency was measured in air using a decay test. The cylinder
used in the non-Newtonian experiments had a submerged aspect ratio
of 25.75𝐷, was placed 0.75𝐷 from the bottom of the channel, and had a
blockage ratio of 11.5. The cylinder used in the Newtonian experiments
had an aspect ratio of 56.5𝐷, was placed 1.5𝐷 from the bottom of
the channel, and had a blockage ratio of 23. The springs limited the
cylinder’s motion to the crossflow direction. The structural damping
provided by the springs was measured using a decay test in air and
was on the order of 10−2 for all spring lengths. The mass-damping
coefficient, defined as 𝑚∗𝜁 where 𝜁 is the damping ratio and 𝑚∗ is the
mass ratio, was on the order of 10−1, which is in the range where
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Fig. 2. Schematic of the experimental setup used here, (a) where a flexibly-mounted cylinder is placed in a rotating water channel and can oscillate in a direction perpendicular
to the direction of flow, and (b) where the cylinder is fixed at the top and does not oscillate.

relatively large-amplitude oscillations are expected in a Newtonian
fluid [4]. The specific values of natural frequencies, damping ratios, and
mass ratios for each data point are given in the Appendix (Table A.1
for the Newtonian cases, and Tables A.2 and A.3 for the non-Newtonian
cases). In short, these parameters are within the following ranges: 2.3 ≤

𝑓𝑛 ≤ 21.8 Hz, 0.011 ≤ 𝜁 ≤ 0.029, and 23.1 ≤ 𝑚∗ ≤ 33.3 for the Newtonian
case, and 2.9 ≤ 𝑓𝑛 ≤ 21.8 Hz, 0.011 ≤ 𝜁 ≤ 0.029, and 6.7 ≤ 𝑚∗ ≤ 8.7 for
the viscoelastic cases.

The cylinder’s oscillation amplitude and frequency were measured
using a high resolution distance measuring laser (Panasonic HL-G11).
The flow was visualized by seeding the fluid with 10 μm neutrally
buoyant glass spheres (Dantec Dynamics) and illuminating a horizontal
plane with a laser sheet. The flow was captured using a Phantom
V4.2 high speed camera and Particle Image Velocimetry (PIV) post-
processing was conducted using PIVlab v2.62 [45]. PIVlab was used to
calculate the local vorticity, 𝜔, and the shear rate, 𝛾̇. The expressions
for these values are 𝜔 = ∇× 𝑢, where the velocity vector is 𝑢 = 𝑢𝑥𝑖+ 𝑢𝑦𝑗
and 𝛾̇ = 𝜕𝑢𝑥∕𝜕𝑦 + 𝜕𝑢𝑦∕𝜕𝑥.

4. The wake of a fixed cylinder

In this section we consider the wake of a fixed cylinder in the
two viscoelastic Flopaam solutions for a mean flow velocity range of
1.8 ≤ 𝑈 ≤ 24 cm/s. An example of the wake during the shedding cycle
is shown in Fig. 3 for the viscoelastic 𝑐 = 0.02 g/L Flopaam solution at
a fixed flow velocity of 𝑈 = 20.3 cm/s. In these plots, the normalized
vorticity and strain rate are plotted, where they are normalized by the
maximum vorticity in the wake, 𝜔𝑚𝑎𝑥 = 240 s−1, and the maximum
shear rate in the wake, 𝛾̇𝑚𝑎𝑥 = 227 s−1, respectively, both found by
averaging the top 10% maximum of their values over at least 100
frames of the particle image velocimetry (PIV) results. Shear rate is
overlayed on the vorticity plot to show where shear rate is high in
relation to the vorticity.

The maximum local shear rate that is observed here in the wake
of a cylinder is significantly larger than the characteristic shear rate
used by Patel et al. [18], 𝛾̇𝑚𝑎𝑥 > 𝑈∕𝐷. The relation between maximum
shear rate measured through PIV, 𝛾̇𝑚𝑎𝑥, and Patel’s characteristic shear
rate 𝑈∕𝐷 is given in Fig. 4(a) for both viscoelastic fluids over the
entire range of flow velocities tested. For the 𝑐 = 0.02 g/L Flopaam
solution, a fit to the data shows that the maximum shear rate is linearly
proportional to 𝑈∕𝐷 and grows as approximately 𝛾̇𝑚𝑎𝑥 = 4𝑈∕𝐷. For
the 𝑐 = 0.03 g/L Flopaam solution, a similar trend is observed, but

with a larger slope of 𝛾̇𝑚𝑎𝑥 = 8𝑈∕𝐷. This difference means that using
a characteristic shear rate of 𝑈∕𝐷 would under-predict the Reynolds
number, the Weissenberg number, and the elasticity number of the flow
for both fluids. Moving forward, the characteristic shear rate will be
defined as the maximum shear rate from the PIV measurements. For
𝑐 = 0.02 g/L Flopaam solution, the characteristic shear rate is thus
defined as 𝛾̇𝑐ℎ𝑎𝑟 = 4𝑈∕𝐷, while for the 𝑐 = 0.03 g/L Flopaam solution,
the characteristic shear rate is defined as 𝛾̇𝑐ℎ𝑎𝑟 = 8𝑈∕𝐷.

The Weissenberg numbers, 𝑊 𝑖, and elasticity numbers, 𝐸𝑙, are
shown as a function of 𝑅𝑒 in Fig. 4. The symbols in the plots refer to
the cases with stable separated vortices (square) and vortex shedding
(diamond). For comparison, a data point for an inelastic (𝑊 𝑖 = 0)
shear thinning case is also shown in the plot reproduced from Boersma
et al. [17]. From these plots, it is observed that 𝑊 𝑖 and 𝑅𝑒 are
coupled and cannot be varied independently without changing the
fluid. Additionally, the Elasticity number, 𝐸𝑙, decreases slowly with
increasing Reynolds number due to the decrease in the shear viscosity
with increasing flow velocity and shear rate. Note that the Elasticity
number of the more concentrated solution is 2–3 times larger then
the less concentrated solution and as such more significant effects of
elasticity will be present at lower Reynolds numbers for the 𝑐 = 0.03
g/L Flopaam solution.

Returning to the vortex shedding patterns shown for the 𝑐 = 0.02
g/L Flopaam solution in Fig. 3, we can now define the flow in terms of
the appropriate characteristic Reynolds number, Weissenberg number,
and Elasticity number, 𝑅𝑒 = 726, 𝑊 𝑖 = 2.2, and 𝐸𝑙 = 3.0, respectively.
This particular case was chosen because it is the largest Reynolds and
Weissenberg number case that could be tested in our flow cell for the
𝑐 = 0.02 g/L Flopaam solution. As a result, the vortex structure and
dynamics are most strongly affected by the elasticity of the fluid and
in many ways quite different from the vortex structure observed for
a Newtonian fluid [1,3]. For instance, in Fig. 3(a,b), the head of a
positive (red) vortex is located quite far from the cylinder at 𝑥∕𝐷 ∼ 4.3
and 𝑦∕𝐷 ∼ −0.75. This is different from what has been observed for
Newtonian and shear-thinning and shear-thickening fluids for which
the vortex formation length is considerably shorter and the vortices
shed from much closer to the cylinder [17]. Similar elongated vortices
and large vortex formation lengths have been observed previously both
numerically and experimentally for flows of viscoelastic liquids [10,16,
38,46]. Another difference observed from Newtonian fluid at a similar
Reynolds number is that the vortex heads of positive vorticity do not
interact directly with the vortex heads of the opposite sign. As seen in
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Fig. 3. The wake of a fixed cylinder at 𝑅𝑒 = 726, 𝑊 𝑖 = 2.2, and 𝐸𝑙 = 3.0 for 𝑐 = 0.02 g/L shown in the form of vorticity (left) and with shear rate overlayed on vorticity (right)
at (a, b) 0%, (c, d) 20%, (e, f) 40%, (g, h) 60%, (i, j) 80%, and (k, l) 100% of the shedding cycle. In the plots, 𝜔𝑚𝑎𝑥 = 240 s−1 and 𝛾̇𝑚𝑎𝑥 = 227 s−1. The hatched area represents
the locations very close to the cylinder where the PIV results are not reliable.

Fig. 3(a and b), this is due to the fact that the tail of the previously
shed vortex (the red tail) acts as a barrier. Numerical simulations of
Patel et al. [38] have shown that large elastic stresses exist within
the elongated tail likely leading to the reduction in vortex interaction.
Furthermore, the shear rate in the head is significantly smaller than the
shear rate in the tail of the previously shed vortex. In Fig. 3(c and d as
well as e and f), the red vortex head moves further downstream and
begins to curl over itself, but remains attached to the cylinder through
a long red tail. Separation begins in Fig. 3(g and h as well as i and
j) around 𝑥∕𝐷 ∼ 3 where the tail of the red vortex starts to roll, and
produces an S-shaped pattern for the vortex. The tail then interferes
with the vortex that is being formed in the next cycle (Fig. 3(k,l)), and
isolates it from the vortex with the opposite sign. This cycle repeats
on both sides of the cylinder. The vortex has been stretched to almost
4𝐷 in length with the largest shear rates, and therefore the largest
accumulation of elastic stress in the entire shedding cycle occurs in the
attached shear layer.

Snapshots of the wake for 𝑐 = 0.02 g/L and 𝑐 = 0.03 g/L at
various combinations of Reynolds and Weissenberg numbers are shown
in Fig. 5. For both fluid concentrations, the cylinder wake is stable at
the first Reynolds numbers shown (𝑅𝑒 = 151 for 𝑐 = 0.02 g/L and
𝑅𝑒 = 215 for 𝑐 = 0.03 g/L) and becomes unstable for the second
Reynolds number shown (𝑅𝑒 = 238 for 𝑐 = 0.02 g/L and 𝑅𝑒 = 317 for
𝑐 = 0.03 g/L). The corresponding Weissenberg numbers are presented
in the Figure caption. The critical Reynolds number for the onset of
shedding is much larger in cases shown here in comparison with both

a Newtonian fluid and a shear thinning fluid with similar power law
exponent [17]. In fact for a Newtonian fluid, the critical Reynolds
number for vortex shedding, 𝑅𝑒𝑐𝑟𝑖𝑡 = 47, is significantly smaller than
the value observed here. Thus, it is clear that fluid elasticity stabilizes
the wake of a fixed cylinder in cross flow.

As the Reynolds and Weissenberg numbers continue to increase,
the maximum vorticity as well as the vortex formation length increase.
The vortex formation length, 𝐿, is determined through measuring the
recirculation bubble length, which is the boundary in the wake where
the time average components of flow are equal to 𝑢 = 𝑣 = 0.
These values are given in Fig. 6. From these results, it is apparent
that increasing the fluid elasticity at a fixed Reynolds number by
increasing the polymer concentration increases the vortex formation
length slightly. Additionally, unlike Newtonian fluids where increasing
Reynolds number causes a decrease in formation length, increasing
Reynolds number for a viscoelastic fluid increases vortex formation
length because increasing Reynolds number is accompanied by a cor-
responding increase in Weissenberg number and elastic stress in the
fluid.

To better illustrate the changes in vortex interactions and to calcu-
late the shedding frequency and Strouhal number, we plot the vorticity
in the wake of the cylinder at a distance of 𝑥∕𝐷 = 4 downstream of the
cylinder and over a range of locations from 𝑦∕𝐷 = −2 to 𝑦∕𝐷 = 2 as
a function of time in Fig. 7. The outer peaks correspond to the vortex
head and the inner peaks correspond to the vortex tails. The S-shapes
that are observed in these time histories represent the entire vortex. For
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Fig. 4. (a) Maximum shear rate, 𝛾̇𝑚𝑎𝑥, as a function of 𝑈∕𝐷, (b) the Weissenberg number, 𝑊 𝑖, and (c) the elasticity number, 𝐸𝑙, as a function of 𝑅𝑒 for a fixed cylinder placed
in 𝑐 = 0.02 g/L and 𝑐 = 0.03 g/L Flopaam solution. The stars correspond to the values for an inelastic fluid with similar shear behavior [17].

both 𝑐 = 0.02 g/L and 𝑐 = 0.03 g/L, in Fig. 7a, no shedding is observed at
𝑅𝑒 = 151 and 𝑊 𝑖 = 0.6 and 𝑅𝑒 = 215 and 𝑊 𝑖 = 3.0, respectively. Then
as Reynolds and Weissenberg numbers are increased to 𝑅𝑒 = 238 and
𝑊 𝑖 = 0.9 for 𝑐 = 0.02 g∕L and 𝑅𝑒 = 317 and 𝑊 𝑖 = 3.8 for 𝑐 = 0.03 g∕L,
shedding is observed. The periodic pattern that shows up in these plots
corresponds to the shedding of vortices. The frequency of shedding is
calculated from these time histories and presented as a non-dimensional
Strouhal number in Fig. 8. For both cases, the shedding frequency
increases as 𝑅𝑒 and 𝑊 𝑖 are increased further, however, as shown in
Fig. 8, the Strouhal number remains roughly constant, independent of
the Reynolds number. Fig. 8 confirms that viscoelasticity reduces the
shedding frequency, as had been observed before for other viscoelastic
fluids. The Strouhal number for the Newtonian fluid is 𝑆𝑡 ≈ 0.2 over
the range of Reynolds numbers considered here. The Strouhal number
drops to 𝑆𝑡 ≈ 0.18 for 𝑐 = 0.02 g/L and 𝑆𝑡 ≈ 0.17 for 𝑐 = 0.03 g/L, and
stays relatively constant over this range of Reynolds numbers, which
means that for these viscoelastic fluids too, the shedding frequency
from a fixed cylinder increases linearly with increasing flow velocity.

5. Newtonian VIV as a basis for comparison

In this section, we present the Newtonian VIV response of the system
for a series of constant Reynolds number cases. The reason to present
these results here is that no previous set of experimental work at a
constant Reynolds number and within this range of Reynolds numbers
exists in the literature. The overall VIV behavior that is observed is
similar to the general VIV behavior of any 1 DOF cylinder placed in
flow, however the specific values for the range of the lock-in range as
well as the amplitude of oscillations are not necessary the same.

The amplitude and frequency responses of VIV in Newtonian fluid
(water) are presented in Fig. 9 for 100 ≤ 𝑅𝑒 ≤ 400. The amplitude is

normalized by the cylinder diameter, so that 𝐴∗ = 𝐴∕𝐷, where 𝐴 is
the oscillation amplitude, and the frequency response is normalized by
the natural frequency in air, so that 𝑓 ∗ = 𝑓𝑜𝑠𝑐∕𝑓𝑛, where 𝑓𝑜𝑠𝑐 is the
oscillation frequency. The amplitude and frequency responses follow
what is typically observed in the VIV response of a flexibly-mounted
cylinder in water [3,4]. The lock-in range begins at a 𝑈∗ ≈ 6.1 for
𝑅𝑒 = 100 and 𝑈∗ ≈ 5.5 for 𝑅𝑒 = 400. The oscillation amplitudes
then increases rapidly and the maximum amplitude of 𝐴∗ ≈ 0.5 is
reached in the range of 6.5 < 𝑈∗ < 6.9 for all Reynolds numbers. As
𝑈∗ is increased, the amplitude decreases at a steeper slope for lower
Reynolds numbers. The previous experimental results in the super-
critical Reynolds number range (i.e., 𝑅𝑒 > 47) have been conducted
such that the Reynolds number changes along the lock-in range, since
the reduced velocity is increased by increasing the incoming flow veloc-
ity, and are typically conducted at larger Reynolds number ranges. By
increasing the Reynolds number, the sharp decrease in the amplitude
transitions to a slower initial decrease of the amplitudes, resembling
a plateau at 𝐴∗ ≈ 0.4, followed by a sudden drop of amplitude at
the end of the lock-in range—a trend that is more often observed in
the experimental results of VIV responses at higher Reynolds numbers.
Lock-in ends for all Reynolds numbers at 𝑈∗ values between 9.4 and
9.9. Note that for Reynolds numbers of 𝑅𝑒 = 300 and higher, the results
become essentially independent of Reynolds number for Newtonian
fluids.

The reduced frequency response, 𝑓 ∗, is similar at all Reynolds
numbers tested. It stays close to 𝑓 ∗ ≈ 1 over the entire lock-in range.
The frequency starts at a value slightly below one and increases slowly
to a value slightly larger than one as 𝑈∗ is increased. This is typically
observed in VIV responses of Newtonian fluids. The plateau of the
reduced frequency reaches slightly higher values at higher Reynolds
numbers, but the maximum difference in the 𝑓 ∗ plateau at 𝑅𝑒 = 100
and 𝑅𝑒 = 400 is only roughly 𝛥𝑓 ∗ ≈ 0.03.
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Fig. 5. The wake of a fixed cylinder at 𝑐 = 0.02 g/L (left column) and 𝑐 = 0.03 g/L (right column) and different Reynolds and Weissenberg numbers: (a) 𝑅𝑒 = 151, 𝑊 𝑖 = 0.6. (b)
𝑅𝑒 = 215, 𝑊 𝑖 = 3.0. (c) 𝑅𝑒 = 238, 𝑊 𝑖 = 0.9. (d) 𝑅𝑒 = 317, 𝑊 𝑖 = 3.8. (e) 𝑅𝑒 = 333, 𝑊 𝑖 = 1.2. (f) 𝑅𝑒 = 419, 𝑊 𝑖 = 4.5. (g) 𝑅𝑒 = 521, 𝑊 𝑖 = 1.7. (h) 𝑅𝑒 = 632, 𝑊 𝑖 = 5.9. (i) 𝑅𝑒 = 726,
𝑊 𝑖 = 2.2. (j) 𝑅𝑒 = 840, 𝑊 𝑖 = 7.1. The maximum vorticities in these plots are (a, b) 𝜔𝑚𝑎𝑥 = 75 s−1, (c, d) 𝜔𝑚𝑎𝑥 = 112 s−1, (e, f) 𝜔𝑚𝑎𝑥 = 130 s−1, (g, h) 𝜔𝑚𝑎𝑥 = 217 s−1, and (i, j)
𝜔𝑚𝑎𝑥 = 240 s−1.

Fig. 6. Normalized formation length, 𝐿∗ = 𝐿∕𝐷, of a fixed cylinder for 𝑐 = 0.02 and
𝑐 = 0.03 g/L measured from the center of the cylinder.

Sample snapshots of the wake of the cylinder undergoing VIV are

shown in Fig. 10 for the two extreme Reynolds numbers that we have

considered here: 𝑅𝑒 = 100 and 𝑅𝑒 = 400. At 𝑈∗ = 5 (the first row of

the figure), the lock-in has not started yet, and the cylinder does not yet

oscillate, and as a result, the shedding that is observed is at a frequency

predicted by the Strouhal law for the shedding off a fixed cylinder.

Note the large difference in the formation lengths between the two

Reynolds number and that the trend with Reynolds number is opposite

of what was observed for the fixed cylinder in the viscoelastic fluids in

the previous section. At 𝑈∗ = 6.5 (the second row of the figure), the
oscillation amplitude is at its maximum, two single vortices are shed in
the wake of the cylinder. These vortices are shed at a frequency equal to
the oscillation frequency. At the highest reduced velocity shown here,
𝑈∗ = 9 (the third row of the figure), still two vortices are shed in
each cycle, however, the distances between vortices become larger in
comparison with the previous reduced velocity.

6. The amplitude and frequency of viscoelastic VIV

The amplitude and frequency responses for 𝑐 = 0.02 and 𝑐 = 0.03
g/L cases are shown in Fig. 11 over a range of 151 ≤ 𝑅𝑒 ≤ 840 and
0.6 ≤ 𝑊 𝑖 ≤ 7.1. The differences between the viscoelastic VIV and
Newtonian VIV in Fig. 9 are clearly observed in terms of the amplitudes
of oscillations, the width, onset and end of the lock-in range, as well as
the overall shape of the amplitude response versus the reduced velocity.
The maximum oscillation amplitude at the highest Reynolds numbers
studied reduces from 𝐴∗ = 0.5 for the Newtonian case to 𝐴∗ = 0.16 for
the 𝑐 = 0.02 g/L Flopaam solution. The maximum observed amplitude
of oscillations decreases even further with increasing fluid elasticity
from 𝐴∗ = 0.16 for the 𝑐 = 0.02 g/L Flopaam solution to 𝐴∗ = 0.06
for the 𝑐 = 0.03 g/L Flopaam solution. The oscillations for the 𝑐 = 0.03
g/L Flopaam solution are at the lower limit of what could be measured
experimentally. For 𝑅𝑒 ≤ 151 in the case of 𝑐 = 0.02 g/L Flopaam
solutions, and 𝑅𝑒 ≤ 215 in the case of 𝑐 = 0.03 g/L Flopaam solutions,
no oscillations of the cylinder are observed. At those same Reynolds
numbers, large amplitude oscillations are observed in the Newtonian
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Fig. 7. Vorticity over the 𝑦∕𝐷 direction as a function of time at 𝑥∕𝐷 = 4 for 𝑐 = 0.02 g/L (left column) and 𝑐 = 0.03 g/L (right column) at different Reynolds and Weissenberg
numbers: (a) 𝑅𝑒 = 151, 𝑊 𝑖 = 0.6. (b) 𝑅𝑒 = 215, 𝑊 𝑖 = 3.0. (c) 𝑅𝑒 = 238, 𝑊 𝑖 = 0.9. (d) 𝑅𝑒 = 317, 𝑊 𝑖 = 3.8. (e) 𝑅𝑒 = 333, 𝑊 𝑖 = 1.2. (f) 𝑅𝑒 = 419, 𝑊 𝑖 = 4.5. (g) 𝑅𝑒 = 521, 𝑊 𝑖 = 1.7.
(h) 𝑅𝑒 = 632, 𝑊 𝑖 = 5.9. (i) 𝑅𝑒 = 726, 𝑊 𝑖 = 2.2. (j) 𝑅𝑒 = 840, 𝑊 𝑖 = 7.1. The maximum vorticities in these plots are (a, b) 𝜔𝑚𝑎𝑥 = 75 s−1, (c, d) 𝜔𝑚𝑎𝑥 = 112 s−1, (e, f) 𝜔𝑚𝑎𝑥 = 130 s−1,
(g, h) 𝜔𝑚𝑎𝑥 = 217 s−1, and (i, j) 𝜔𝑚𝑎𝑥 = 240 s−1.

Fig. 8. Strouhal number as a function of Reynolds number for Newtonian flow [1],
and viscoelastic flows used here, 𝑐 = 0.02 g/L, and 𝑐 = 0.03 g/L.

case. Thus, viscoelasticity can fully suppress VIV at low to moderate
Reynolds numbers. Additionally, increasing fluid viscoelasticity by in-
creasing polymer concentration increases the critical Reynolds number
necessary to observe VIV. With the right polymer additives, it would be
possible to increase VIV suppression to even larger Reynolds numbers.
This was, in fact, observed for a 𝑐 = 0.05 g/L Flopaam solution, not
presented here, that showed complete VIV suppression over the entire
range of Reynolds numbers tested, 𝑅𝑒 ≤ 700.

As observed in Fig. 11, the form of the oscillation amplitude curve
for the viscoelastic fluids within the lock-in range is very different from
the typical Newtonian response shown in Fig. 9. For the viscoelastic

cases, a plateau in the oscillation amplitude is not observed within
the lock-in range. Instead, the oscillation amplitude increases mono-
tonically with increasing reduced velocity until it reaches a maximum.
For the lower Reynolds numbers tested for the 𝑐 = 0.02 g/L Flopaam
solution, the oscillation amplitude increases rapidly then decreases
slowly to zero over one or two units of reduced velocity. For the
larger Reynolds numbers tested, 𝑅𝑒 > 521, the decrease in oscillation
amplitude is quite sharp and sudden. The sudden drop in the magnitude
observed at 𝑈∗ = 5 in the case of the 𝑐 = 0.02 g/L Flopaam solution
at Reynolds numbers larger than 𝑅𝑒 > 521 is likely directly related
to the elasticity on the fluid. With increasing Reynolds number, the
Weissenberg number also increases leading to increased elastic stress.
In these cases, for 𝑅𝑒 > 521, the Weissenberg number is greater than
𝑊 𝑖 > 1.7. However, elastic stress does not just depend on Weissenberg
number. Elastic stresses build up with time or strain. If the oscillation
frequency is too high, elastic stresses do not have sufficient time to
build up, reach steady state and impart their maximum effect on the
flow. The Deborah number, 𝐷𝑒 = 𝜆𝑓𝑜𝑠𝑐 , can be used to determine
whether elastic stresses have had sufficient time to reach steady state.
At a large Deborah number, the elastic stresses of the fluid are far from
equilibrium. While at a small Deborah number, 𝐷𝑒 < 1, the fluid elastic
stresses have sufficient time to become fully developed. This analysis
was used by Patel et al. [38] to demonstrate numerically that for a
viscoelastic liquid, the elastic stresses can be built up as the oscillation
frequency is reduced, and the reduced velocity, 𝑈∗, is increased.

Within the lock-in range, where 𝑓𝑜𝑠𝑐 = 𝑓𝑛, 𝐷𝑒 is inversely propor-
tional to 𝑈∗ such that 𝐷𝑒 = 𝜆𝑈∕𝐷𝑈∗. For the 𝑐 = 0.02 g/L Flopaam
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Fig. 9. (a) Amplitude and (b) frequency responses of a flexibly-mounted cylinder placed in Newtonian flow of water in the Reynolds number range of 100 ≤ 𝑅𝑒 ≤ 400.

Fig. 10. Sample snapshots of the wake of a flexibly-mounted cylinder undergoing VIV in Newtonian flow at 𝑅𝑒 = 100 (left column) and 𝑅𝑒 = 400 (right column) and at three
reduced velocities: 𝑈 ∗ = 5 (first row), 𝑈 ∗ = 6.5 (second row), and 𝑈 ∗ = 9 (third row).

solution, the Deborah number can also be related to the Weissenberg

number such that 𝐷𝑒 = 𝑊 𝑖∕4𝑈∗ for 𝑐 = 0.02 g/L and 𝐷𝑒 = 𝑊 𝑖∕8𝑈∗

for 𝑐 = 0.03 g/L. Thus for the case of 𝑅𝑒 = 726 and 𝑊 𝑖 = 2.2,
the observed sharp transition in oscillation amplitude occurs when

the Deborah number is roughly 𝐷𝑒 ≈ 0.1. As seen in the data, with
decreasing Weissenberg number, this transition occurs at smaller and

smaller 𝑈∗ which translates into roughly the same Deborah number for

each case, 𝐷𝑒 ≈ 0.1. This observation lends credence to our hypothesis
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Fig. 11. Amplitude and frequency responses of a flexibly-mounted cylinder placed in viscoelastic flow: 𝑐 = 0.02 g/L (left column) and 𝑐 = 0.03 g/L. (right column).

that for elasticity to maximally affect VIV, the elastic stresses require
sufficient time during the oscillation cycle to approach steady state.

In general, the drop in the magnitude within the lock-in range in
comparison with the Newtonian case is significant for both viscoelastic
cases shown here. The maximum amplitude observed for the case of
𝑐 = 0.02 g/L Flopaam solution is around 𝐴∗ = 0.18 and the maximum
amplitude observed in the case of 𝑐 = 0.03 g/L Flopaam solution is only
around 𝐴∗ = 0.07. Oscillations of amplitude less than 𝐴∗ < 0.1 are often
considered negligible in the crossflow VIV responses of Newtonian
fluids.

The width of the lock-in range for both viscoelastic fluids was found
to be significantly smaller than that of a typical Newtonian fluid. For
a Newtonian fluid, lock-in occurs in the reduced velocity range of
5.7 ≤ 𝑈∗ ≤ 9.8, while for the viscoelastic fluids studied here, this
range is reduced to 4.0 ≤ 𝑈∗ ≤ 5.7. Also, the onset of lock-in for the
viscoelastic fluids shifts to lower reduced velocities, from 𝑈∗ = 5.7 to
𝑈∗ = 4.0, but stays at the same reduced velocity independent from the
Reynolds and Weissenberg number. This is expected due to the fact
that the Strouhal numbers reported for these fluids in Section 4 stay
constant in this range of Reynolds and Weissenberg numbers. It is the
value of the Strouhal number that controls the onset of lock-in in a
VIV response. We had shown previously [17] that for a purely shear-
thinning fluid, the lock-in range shifts to smaller reduced velocities with
increasing Reynolds number. This was due to the fact that the shedding
frequency of a purely shear-thinning fluid increases with increasing
Reynolds number, and as a result the synchronization between the
shedding frequency and the system’s natural frequency occurs at lower
reduced velocities, 𝑈∗. In a purely elastic fluid, however, the shedding
frequency has been found to decrease with increasing Reynolds number
[10,12–14,16]. Since in the fluids considered here both elastic and
shear-thinning effects are at the play, it appears that the competition
between the two has roughly canceled each other out and resulted
in the start of the lock-in range being at the same reduced velocity
independent of Reynolds and Weissenberg numbers.

The normalized frequency, 𝑓 ∗, is presented in Fig. 11 (lower row)
for both the viscoelastic solutions tested here. At the beginning of the
lock-in range the normalized frequency is 𝑓 ∗ ≈ 0.9 and it increases
with increasing 𝑈∗ until it reaches 𝑓 ∗ = 1 toward the end of the
lock-in range. As opposed to the response of the Newtonian case, the
normalized frequency never reaches a plateau at 𝑓 ∗ = 1, but it is still
close to one and the PIV measurements show clear synchronization
between the shedding frequency and oscillation frequency confirming
that lock-in has been achieved. The deviation from one is likely due
to the fact that 𝑓 ∗ is normalized with respect to the natural frequency

of the cylinder in air and not in the viscoelastic fluids we are studying
here. The natural frequency of the system in these viscoelastic fluid
is expected to be smaller than that in air, which implies had 𝑓 ∗ been
normalized with respect to the natural frequency in fluid, it would have
resulted in larger values at the beginning of the lock-in range and would
have been closer to one.

7. The wake in the viscoelastic cases

The wake of the cylinder in viscoelastic flow at 𝑈∗ = 4.75 is shown
in Fig. 12 over one cylinder oscillation cycle for both the 𝑐 = 0.02 g/L
Flopaam solution (at 𝑅𝑒 = 238 and 𝑊 𝑖 = 0.9) and the 𝑐 = 0.03 g/L
Flopaam solution (at 𝑅𝑒 = 317 and 𝑊 𝑖 = 3.8). These cases exhibit
oscillations of very small amplitudes, less than 𝐴∗ = 0.05 for both
viscoelastic fluids, which explains why the wake in both cases resem-
bles the wake of a fixed cylinder placed in viscoelastic fluids (Fig. 5),
where the vortices are elongated and have a tail, which influences the
formation of the next vortex of the same sign, clearly, very different
from those observed in the wake of the cylinder in Newtonian fluid
shown in Fig. 10. For the case with higher elasticity (𝑐 = 0.03 g/L),
the wake is wider, similar to what had been observed previously in
the wake of the fixed cylinder. The formation of these vortices exerts
a periodic force on the cylinder and causes oscillations—although with
very small amplitudes.

At a higher Reynolds numbers and at the same Reduced velocity,
𝑈∗ = 4.75, the wake is very different. In Fig. 13, the wakes for one
cylinder oscillation cycle for both the 𝑐 = 0.02 g/L Flopaam solution
(at 𝑅𝑒 = 726 and 𝑊 𝑖 = 2.2) and the 𝑐 = 0.03 g/L Flopaam solution
(at 𝑅𝑒 = 840 and 𝑊 𝑖 = 7.1) are shown. At these Reynolds numbers,
narrow wakes are formed behind the cylinder in each fluid. Note that
the amplitude of oscillations is larger than the previous cases shown,
but still much smaller than for a Newtonian fluid. When the fluid is less
elastic, the vortices are formed closer to each other in the wake. Patel
et al. [38] showed that an elastic stress forms along the exterior of the
vortices, which influences the roll-up dynamics of the vortex. If a fluid
is more elastic, the vortices are not able to roll up as tightly, which
decreases the strength of the vortex. This also influences the width of
the wake: the less elastic fluid has a wider wake. The stronger vortices
that are formed in the case of the 𝑐 = 0.02 g/L Flopaam solution likely
lead to the larger amplitude of oscillations observed in this case.

8. Conclusions

We study the VIV response of a flexibly-mounted rigid cylinder in
inertia-viscoelastic flows. Previous studies on VIV of such systems have
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Fig. 12. Snapshots of the wake of the flexibly-mounted cylinder at 𝑈∗ = 4.75 for the 𝑐 = 0.02 g/L Flopaam solution at 𝑅𝑒 = 238 and 𝑊 𝑖 = 0.9 (left column) and the 𝑐 = 0.03 g/L
Flopaam solution at 𝑅𝑒 = 317 and 𝑊 𝑖 = 3.8 (right column) at four instances within one cycle of oscillations: (a, b) 0%, (c, d) 25%, (e, f) 50%, and (g,h) 75% of the cycle. (i,j) A
cycle of oscillations. In the plots, the vorticity is normalized by 𝜔𝑚𝑎𝑥 = 117 s−1.

been conducted for cases where either fluid inertia or fluid elasticity are
dominant, i.e., 𝑅𝑒 ≫ 1 and 𝑊 𝑖 < 1 or 𝑅𝑒 ≪ 1 and 𝑊 𝑖 > 1. In this work,
both fluid inertia and elasticity are significant. We have conducted a
series of VIV experiments using viscoelastic fluids that are made by
mixing the Flopaam in distilled water at two different concentrations:
𝑐 = 0.02 g/L and 𝑐 = 0.03 g/L. For the fluid that we use here, increasing
the Reynolds number is accompanied by an increase in the Weissenberg
number. To define the Reynolds number, we use the maximum shear
rate observed in the wake from our PIV measurements, and therefore
the exact Reynolds number is not known a priori, and is calculated after
the experimental data are analyzed.

At each Flopaam concentration, we show that the Reynolds number
influences the VIV response. It is known for a Newtonian fluid that VIV
is observed at Reynolds numbers larger than a critical, i.e., 𝑅𝑒 = 19.
This is also observed here, for both flow concentrations, however, the
critical Reynolds numbers for the onset of VIV in the viscoelastic flows
considered here are 𝑅𝑒 ≈ 150 and 𝑅𝑒 ≈ 215, respectively, for 𝑐 = 0.02
g/L and 𝑐 = 0.03 g/L concentrations. For Reynolds numbers larger than
the critical, in the case of 𝑐 = 0.02 g/L, the VIV amplitude increases
with increasing Reynolds number up to 𝑅𝑒 = 625 after which the VIV
response seems to be independent from the Reynolds number. This is
also similar to the VIV response of a Newtonian case where for post-
critical Reynolds numbers, the VIV response increases with increasing
Reynolds number initially and then reaches a plateau. In the case of
𝑐 = 0.03 g/L, however, although the VIV response is indeed observed for
Reynolds numbers larger than the critical, the amplitude of oscillations

remains very small (i.e., 𝐴∗ ≈ 0.05) and no major increase in the
amplitude is observed versus the Reynolds number.

The onset of VIV response for the viscoelastic cases do not depend
on the Reynolds number. This is also reflected in our measurements of
the Strouhal number in the wake of fixed cylinders placed in these flows
in the same range of Reynolds numbers. Those measurements show that
the Strouhal number stays more or less constant within this range of
Reynolds numbers, and since the onset of lock-in corresponds to when
the shedding frequency and the system’s natural frequency are equal,
the onset of lock-in does not change with the Reynolds number, since
the Strouhal number does not depend on the Reynolds number. This is
different from previous observations on the VIV response of a purely
shear thinning flow, and the VIV response of a purely viscoelastic flow.
For shear thinning, VIV starts at smaller reduced velocities and for
viscoelastic flows, it starts at higher reduced velocities. In the fluid
that we use here, it seems that the competing effects of the two have
canceled each other at least for the onset of the lock-in range.

The vortices that are observed in the wake of the cylinder in the case
of viscoelastic flows are different from those observed in Newtonian
flows. Elongated S-shaped vortices are observed in the wake in the case
of these viscoelastic flows as opposed to the typical vortices that are
observed in the von Karman Street in the wake of a cylinder placed in
Newtonian flow. The tail of the viscoelastic vortices is elongated such
that it intervenes with the formation of the vortices in the following
cycle and prevents them from crossing the centerline of the wake and
travel to the opposite side. The formation length in the case of a fixed
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Fig. 13. Snapshots of the wake of the flexibly-mounted cylinder at 𝑈∗ = 4.75 for the 𝑐 = 0.02 g/L Flopaam solution at 𝑅𝑒 = 726 and 𝑊 𝑖 = 2.2 (left column) and the 𝑐 = 0.03 g/L
Flopaam solution at 𝑅𝑒 = 840 and 𝑊 𝑖 = 7.1 (right column). Four instances within one cycle of oscillation at (a, b) 0%, (c, d) 25%, (e, f) 50%, and (g,h) 75% of the cycle. (i,j) A
cycle of oscillations. In the plots, the vorticity is normalized with 𝜔𝑚𝑎𝑥 = 280 s−1.

cylinder increases with the Reynolds number, but when oscillations
are observed, the formation length decreases substantially and vortices
form much closer to the cylinder.

A major outcome of this work is that adding elasticity to the fluid
at a constant Reynolds number can suppress VIV completely. This is
evident in the decrease of the amplitude of oscillations from 𝑐 = 0.02
g/L concentration to the 𝑐 = 0.03 g/L concentration. We also conducted
a series of tests for a concentration of 𝑐 = 0.05 g/L, and observed no
displacement for all Reynolds numbers that we considered.
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Appendix

Figs. A.1, A.2, A.3, and their corresponding Tables A.1, A.2, A.3,
show how 𝑈∗, 𝑓𝑛, 𝜁 , and 𝑚

∗ vary over the range of Reynolds numbers
tested here and for varying lengths of the springs for the Newtonian
case as well as the viscoelastic cases with 𝑐 = 0.02 g/L and 𝑐 = 0.03 g/L.
As 𝑈∗ increases, the length of the spring increases, which decreases 𝑓𝑛
and 𝜁 , and increases 𝑚∗.

Table A.1

Newtonian case — Summary of 𝑓𝑛, 𝜁 , and 𝑚
∗ for 100 ≤ 𝑅𝑒 ≤ 400 and 4.3 ≤ 𝑈∗ ≤ 11.1.

𝑅𝑒 (–) 𝑓𝑛 (Hz) 𝜁 (–) 𝑚∗ (–)

100 2.3–6.2 0.011–0.013 26.9–33.3
150 3.6–9.0 0.011–0.015 25.5–29.8
200 4.9–11.9 0.012–0.020 24.6–28.1
250 5.8–14.9 0.013–0.025 24.0–27.2
300 7.1–18.6 0.014–0.028 23.4–26.3
350 8.3–21.8 0.015–0.029 23.1–25.8
400 9.9–21.8 0.016–0.029 23.1–25.2
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Fig. A.1. Newtonian case—Values of 𝑈 ∗, 𝑓𝑛, 𝜁 , 𝑚
∗ as a function of normalized spring length where 0% is the spring length at the first 𝑈∗ and 100% is the spring length at the

last 𝑈 ∗.

Fig. A.2. Viscoelastic case with 𝑐 = 0.02 g/L—Values of 𝑈 ∗, 𝑓𝑛, 𝜁 , 𝑚
∗ as a function of normalized spring length where 0% is the spring length at the first 𝑈∗ and 100% is the

spring length at the last 𝑈 ∗.

Table A.2

Viscoelastic case with 𝑐 = 0.02 g/L — Summary of 𝑓𝑛, 𝜁 , and 𝑚∗ for 151 ≤ 𝑅𝑒 ≤ 726
and 3.3 ≤ 𝑈 ∗ ≤ 6.9.
𝑅𝑒 (–) 𝑓𝑛 (Hz) 𝜁 (–) 𝑚∗ (–)

151 2.9–5.8 0.011–0.013 7.7–8.7
238 3.9–7.7 0.011–0.014 7.4–8.2
333 5.1–9.9 0.013–0.016 7.2–7.8
427 6.2–11.9 0.013–0.020 7.0–7.6
521 7.1–13.1 0.03–0.022 7.0 − 7.5
624 7.7–16.7 0.014–0.027 6.8 − 7.4
726 9.0–18.6 0.015–0.028 6.7–7.2

Table A.3

Viscoelastic case with 𝑐 = 0.03 g/L — Summary of 𝑓𝑛, 𝜁 , and 𝑚∗ for 215 ≤ 𝑅𝑒 ≤ 840
and 3.3 ≤ 𝑈 ∗ ≤ 6.1.
𝑅𝑒 (–) 𝑓𝑛 (Hz) 𝜁 (–) 𝑚∗ (–)

215 3.7–7.7 0.011–0.014 7.4–8.3
317 5.1–9.9 0.013–0.016 7.2–7.8
418 6.6–13.1 0.013–0.022 7.0–7.5
525 8.3–16.7 0.015–0.027 6.8–7.3
632 9.0–18.6 0.015–0.028 6.7–7.3
736 10.8–21.8 0.018–0.029 6.7–7.1
840 10.8–21.8 0.018 − 0.029 6.7–7.1
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Fig. A.3. Viscoelastic case with 𝑐 = 0.03 g/L—Values of 𝑈 ∗, 𝑓𝑛, 𝜁 , 𝑚
∗ as a function of normalized spring length where 0% is the spring length at the first 𝑈∗ and 100% is the

spring length at the last 𝑈 ∗.
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