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Transformer encoder with
multiscale deep learning for pain
classification using physiological
signals

Zhenyuan Lu, Burcu Ozek and Sagar Kamarthi*

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA,
United States

Pain, a pervasive global health concern, affects a large segment of population
worldwide. Accurate pain assessment remains a challenge due to the limitations
of conventional self-report scales, which often yield inconsistent results
and are susceptible to bias. Recognizing this gap, our study introduces
PainAttnNet, a novel deep-learning model designed for precise pain intensity
classification using physiological signals. We investigate whether PainAttnNet
would outperform existing models in capturing temporal dependencies. The
model integrates multiscale convolutional networks, squeeze-and-excitation
residual networks, and a transformer encoder block. This integration is pivotal
for extracting robust features acrossmultiple timewindows, emphasizing feature
interdependencies, and enhancing temporal dependency analysis. Evaluation
of PainAttnNet on the BioVid heat pain dataset confirm the model’s superior
performance over the existing models. The results establish PainAttnNet as a
promising tool for automating and refining pain assessments. Our research not
only introduces a novel computational approach but also sets the stage for more
individualized and accurate pain assessment and management in the future.

KEYWORDS

pain intensity classification, multiscale convolutional networks, transformer encoder,
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1 Introduction

An estimated 25.3 million adults reportedly have experienced daily pain for the last
3 months in the U.S., and almost 40 million adults suffer from severe pain, leading
to deteriorating health conditions (Nahin, 2015). Building on this, recent studies show
that individuals enduring chronic pain are five times more likely to be afflicted with
mental disorders such as depression or anxiety compared to those without chronic pain
(De La Rosa et al., 2023). Furthermore, the prevalence of chronic pain outnumbers other
prevalent chronic conditions like diabetes and hypertension, with an annual incidence rate
of 52.4 cases per 1,000 (Nahin et al., 2023).

Pain serves as a multi-faceted biological alarm system, indicating potential
or ongoing tissue damage, defined by Merskey et al. (Merskey, 1979). This alarm
system is not merely physiological but also engages psychological and emotional
dimensions. Its primary function is to activate the body’s defense mechanisms,
aiming to counteract harmful stimuli and mitigate further tissue damage.
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Over the last 2 decades, the field of pain research has seen
significant growth, both in terms of interest and scholarly output.
A comprehensive review study by Ozek et al. analyzed 264,560
scientific articles published from 2002 and reveals the growth
in pain research. A sevenfold increase in the use of ‘pain’ as a
keyword nearly tripled the number of research papers discussing
pain (Ozek et al., 2023). Particularly, they have been focusing on
topics such as chronic pain, painmanagement, pain assessment, and
neuropathic pain. Recent trends between 2017 and 2021 indicate
a multidisciplinary approach, exploring pain’s relationship and
management with opioids, analgesia, and psychological factors such
as anxiety and quality of life.

Despite these advancements in understanding pain and pain
management are noteworthy, a significant gap exists in the area
of accurate and objective pain assessment (Hämäläinen et al.,
2022). Accurate pain assessments are critical for monitoring the
effectiveness of pain management strategies and observing changes
in pain severity over time. These assessments are particularly
crucial in clinical settings, where they guide healthcare providers in
customizing treatment plans (Leigheb et al., 2017).

A key aspect of these assessments lies in the quantification
of pain, often accomplished by measuring its intensity. Widely
recognized methods for this purpose include self-report scales
such as Visual Analog Scales, Verbal Rating Scales, and Numeric
Rating Scales (Lazaridou et al., 2018). While these methods are
useful but also have limitations, especially for specific populations
such as neonatal infants (Cascella et al., 2019; Eriksson and
Campbell-Yeo, 2019) and individuals with cognitive impairments
or communication barriers (Deldar et al., 2018;Werner et al., 2022).
This limitation underscores the need for more automated and
objective techniques (Zamzmi et al., 2018).

Physiological signals, including electrodermal activity (EDA),
electrocardiography (ECG), electromyography (EMG), and
electroencephalography (EEG), are frequently employed for pain
intensity classification (Werner et al., 2022). Among these, EDA,
also known as galvanic skin response (GSR), has garnered particular
interest for its non-invasive nature and ease of data acquisition
through wearable sensors (Chen et al., 2021a). EDA measures
variations in skin conductance, serving as a valuable indicator of
pain (Ledowski et al., 2009; Braithwaite et al., 2013). Its ease of data
collection and the insights it provides into the body’s physiological
response to pain make it a practical choice for real-time and
continuous monitoring (Erekat et al., 2021). However, traditional
methods often fall short of capturing the complexities inherent,
especially the temporal features, in EDA responses to pain.

Recognizing this limitation, our study introduces a deep
learning framework, PainAttnNet, conceived to classify pain levels
using physiological signals. PainAttnNet is an innovative model
integrating Multiscale Convolutional Network (MSCN), a Squeeze-
and-Excitation Residual Network (SEResNet), and a transformer
encoder block.

1) The MSCN is designed to extract both short-, medium- and
long-window sequential features from signals. The architecture can
capture essential information about the overall trends and variations
in the physiological data, offering valuable insight into the pain
intensity.

2) The SEResNet in proposed model learns the
interdependencies among the extracted features, enhancing their

representation capability. This network selectively weights the
importance of different channels and adaptively recalibrates the
feature maps, thereby improving the model’s sensitivity to the most
informative features.

3) The transformer encoder block in PainAttnNet extracts the
temporal representations. This block uses a multihead attention
layer in conjunctionwith a temporal (causal) convolutional network,
allowing the network to process the input sequence simultaneously,
while effectively capturing the dependencies between the input and
output over time.

Our contributions are twofold. First, we introduce a deep
learning framework with multiple modules adopted from different
fields and previous studies, which effectively classifies pain intensity
from physiological signals by utilizing various strategies to capture
the features. Second, we demonstrate that PainAttnNet outperforms
the existing models in classifying pain intensities, indicating its
potential for automated pain intensity classification.

2 Related work

2.1 Pain classification

2.1.1 Conventional machine learning models
Conventional machine learning models have served as

foundational parts in the domain of pain intensity classification.
Models such as k-Nearest Neighbors (KNN) were explored by
Cao et al. (Cao et al., 2021), while the Support Vector Machine
(SVM) approach was researched by Campbell et al. (Campbell et al.,
2019). Bayesian models have also found their place in this domain,
with notable work by Santra et al. (Santra et al., 2020). Tree-based
models, especially XGBoost and AdaBoost, have been frequently
utilized, with research by Shi et al. (Shi et al., 2022), Naeini et al.
(Naeini et al., 2021), and Cao et al. (Cao et al., 2021) leading
the way. A notable combination was by Pouromran et al., who
integrated BiLSTM with XGBoost for more nuanced pain intensity
classification (Pouromran et al., 2022).

2.1.2 MLP-based models
Multilayer perceptron (MLP), being feedforward neural

networks, have been commonly used in the domain of pain intensity
classification. Lopez-Martinez and Picard (Lopez-Martinez and
Picard, 2017) introduced a deep MLP model tailored for classifying
pain intensity based on physiological signals. Gouverneur et al.
(Gouverneur et al., 2021) further applied MLP, emphasizing its
utility when combined with distinct hand-crafted features for
classifying heat-induced pain.

2.1.3 RNN-based models
Recurrent Neural Networks (RNNs), especially their advanced

variants, have been recognized for their capacity to handle
time-series data, making them particularly apt for pain
signal classification. The BiLSTM model, an evolution of
the traditional RNN, addresses challenges like vanishing and
exploding gradients. A notable application was presented by
Wang et al. (Wang et al., 2020), who integrated a BiLSTM layer
for temporal feature extraction, further enhanced with hand-
crafted features. Then the features are sent to a MLP block for
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classification. Furthermore, Pouromran et al. (Pouromran et al.,
2022) demonstrated an innovative combination by employing
BiLSTM for feature extraction, which was then processed by
XGBoost, providing a nuanced approach to pain intensity
classification.

2.1.4 CNN-based models
Convolutional Neural Network (CNN) models have

significantly transformed pain analysis by offering both recognition
and classification capabilities. Thiam et al. (Thiam et al., 2019)
proposed a model using a deep Convolutional Neural Network
(CNN) framework followed by fully connected layers (FCL).
This model was primarily tailored for pain recognition, and
then leveraging spatial features from data for accurate binary
classification: ‘pain’ or ‘no pain’. With modifications and given
suitable training data, such architectures have the inherent potential
for broader classification tasks, such as categorizing different pain
levels or types. Similarly, SubramaniamandDass (Subramaniamand
Dass, 2020) developed a hybrid deep learning model that combines
the strengths of CNN, for spatial feature extraction, with LSTM
to capture temporal dynamics. The extracted features were then
processed by an FCL to categorize the signals into ‘pain’ or ‘no pain’
categories.

2.1.5 Limitations
While these models have shown potential in classifying pain

intensities, they possess inherent limitations. RNNs, despite their
capacity for capturing temporal dependencies in sequential data, can
struggle with long-term dependencies in the input sequences and
their sequential nature hampers parallel training.MLPs, on the other
hand, may not effectively capture temporal dependencies in input
signals. CNNs have been shown as a powerful tool in the domain of
pain intensity classification due to their capability in spatial feature
extraction from data. Their ability to identify patterns in the data
that are crucial for pain recognition. However, when it comes to
EDA data, which is inherently time-series in nature, CNNs might
face challenges. Specifically, traditional CNN architectures, while
effective for many tasks, may not be optimally designed to capture
these temporal dependencies in EDA signals, underscoring the
need for hybrid models that can better handle time-series data. To
overcome these limitations, we introduce PainAttnNet, a framework
leveraging a transformer encoder for pain intensity classification
using physiological signals.

2.2 Feature extraction

CNN has proven its efficacy in various tasks, e.g.,
audio classification (Lee et al., 2009) and image classification
(Krizhevsky et al., 2017). Nevertheless, traditional CNNs operate at
a fixed scale, extracting features at one level of granularity. This can
result in overlooking significant features that exist across multiple
scales or frequencies. In response to this limitation, Multiscale
Convolutional Neural Network (MSCN) were developed. MSCN
has a unique multiscale layer and learnable convolutional layers,
enabling the automatic extraction of features at diverse scales and
frequencies. This capacity allows MSCN to discern more intricate
patterns in the data that may be overlooked by conventional CNNs,

potentially leading to superior feature representation and enhanced
classification performance (Cui et al., 2016; Li and Yu, 2016). Fu
et al. (Fu et al., 2018) introduced a novel architecture to overcome
the limitations of depth estimations by incorporating multi-scale
information concatenated channel-wise. In a similar vein, Gong
et al. (Gong et al., 2019) extracted deep multiscale features from
hyperspectral images, thereby improving the model’s performance.
Moreover, Peng et al. (Peng et al., 2020) integrated traditional signal
filtering techniques with CNNs to develop a multiscale network
for feature extraction to diagnose wheelset-bearing faults under
strong noise and variable load conditions. These applications
demonstrate the potential of MSCNs to discern more complex
patterns in the data, leading to superior feature representation
and improved classification performance. We adopt MSCN in
PainAttnNet to effectively capture intricate, multi-scale patterns
in physiological signals, thus enhancing pain intensity classification.
The features extracted at different scales aremerged via channel-wise
concatenation, which preserves unique information and provides a
robust, comprehensive feature representation.

Hu et al. (Hu et al., 2018) introduced the Squeeze-and-
Excitation Network (SENet). It has gained attention as a critical
tool for efficient feature extraction and representation. SENet
enhances the network’s representational power by modeling
interdependencies between convolutional feature map channels.
Its utility is showcased in various applications such as EEG seizure
detection by Li et al. (Li et al., 2020), sleep staging based on multi-
modal physiological signals by Jia et al. (Jia et al., 2022), and single
EEG channel sleep classification where SENet was applied for
feature extraction by Eldele et al. (Eldele et al., 2021), demonstrating
superior performance. Building on the success of SENet, the
Convolutional Block Attention Module (CBAM) expands the
concept by refining feature maps along both spatial and channel
dimensions. However, the increased complexity associated with
CBAM can be a double-edged sword, enhancing performance
at the cost of increased computational demands (Woo et al.,
2018). In this context, the simplicity and effectiveness of Residual
Networks (ResNets) provide a significant benefit. ResNets tackle the
vanishing gradient problem and provide a supportive structure for
SENet, enabling optimal utilization of all channels in the feature
maps (He et al., 2016). The combination of ResNets and SENet
capitalizes on the strengths of both, making it a crucial component
of PainAttnNet. This combination highlights the potential of
incorporating these robust networks into our framework, thereby
enhancing its performance in pain intensity classification tasks.

Temporal Convolutional Networks (TCNs) have found
successful applications across a range of domains. In the domain
of action segmentation, TCNs have been utilized as an effective
method for action segmentation. These networks have shown
superior ability in capturing long-range relationships, longer
segment durations, and complex action compositions compared
to LSTM (Lea et al., 2016). In audio processing, TCNs have been
utilized for generating raw audio waveforms, achieving state-of-the-
art performance inmusical audio synthesis and text-to-speech tasks.
This achievement underscores the ability of TCNs tomodel complex
patterns in temporal data (Oord et al., 2016). Van Den Oord et al.
(Van den Oord et al., 2016) presented a model that conditions
PixelCNN on latent space for specific image class generation. This
innovative approach showcases the potential of merging TCNs with
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architectures like PixelCNN. In proposed model, we employ TCNs
to extract temporal representations from physiological signals.
These representations are then sent to a Transformer Encoder, an
architecture built on the attention mechanisms first introduced by
Bahdanau et al. (Bahdanau et al., 2014) and later refined by Vaswani
et al. (Vaswani et al., 2017), for effective handling of sequence
dependencies.

The Transformer architecture revolutionized the machine
learning field by proposing a model that relies solely on self-
attention mechanisms, thereby discarding the need for recurrent
layers. Dosovitskiy et al. (Dosovitskiy et al., 2020) demonstrated the
effectiveness of Transformer Encoders in computer vision field,
showing their ability to outperform CNNs in image recognition
taskswhen trained on large-scale datasets. Anotherwork introduced
a dual-branch transformer that combines image patches to generate
better image representations, demonstrating the potential of
Transformer Encoders in handling multi-scale data (Chen et al.,
2021b). In proposed model, we utilize the Transformer Encoder
to further enhance the extraction of temporal features, thereby
improving the classification of pain intensity from physiological
signals.

3 Methodology

Building on the importance of EDA in pain intensity
classification, as highlighted in the introduction, we introduce
a novel framework for automated pain assessment named

PainAttnNet. The architecture of this framework is outlined in
Figure 1. This framework 1) applies a multiscale convolutional
network (MSCN) to extract multiscale features from EDA. 2)
Following this, we incorporate a Squeeze-and-Excitation Residual
Network (SEResNet) to boost the interpretability of the extracted
features by understanding their interdependencies. 3) A multi-head
attention framework combined with a TCN is used to encapsulate
the temporal aspects of the extracted features. Supplemental
information and source code are available at: https://github.com/
zhenyuanlu/PainAttnNet.

3.1 Multiscale convolutional network
(MSCN)

EDA signals are inherently non-stationary, necessitating a
model capable of capturing diverse features. PainAttnNet approach
employs a Multiscale Convolutional Network (MSCN) designed
to sample varied lengths of EDA signal sequences through three
convolutional layers (Figure 2). Taking inspiration from deep
learning models from several studies (Li and Yu, 2016; Gong et al.,
2019; Peng et al., 2020; Eldele et al., 2021), the branches cover
windows of 2 s, 1 s, and 0.1 s using kernels of 1,024, 512, and 50,
respectively.

TheMSCN architecture, depicted in Figure 2, includes twomax-
pooling layers and three convolutions per branch. The output from
each convolution is normalized by a batch normalization block
before the Gaussian Error Linear Unit (GELU). Max-pooling, a

FIGURE 1
Outline framework of our proposed PainAttnNet. Left bottom: Multiscale Convolutional Network (MSCN). Left top: Squeeze-and-Excitation Residual
Network (SEResNet). Right: Transformer Encoder.
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FIGURE 2
The structure of the multiscale convolutional network (MSCN).

downsampling technique, reduces feature map dimensionality and
controls overfitting by determining the maximum value in a given
feature map region. Consider an inputX = {x1,…,xN} ∈ ℝ

N×L×C, the
max-pooling operation can be represented as:

fc (x) =max
i,j
(xi,j,c) . (1)

here, f represents the feature map, x denotes the input feature map
for each channel, c denotes the channel, i and j are the dimensions.
The max pooling operation is used for each channel separately. The
function fc(x) outputs the maximum value among the elements
present in channel c. For instance, fc(x) in the feature map X
corresponds to the largest value of all elements residing at the cth
channel.

After each convolutional layer, the batch normalization layer
accelerates network convergence by decreasing internal covariate
shifts and stabilizes the training process (Ioffe and Szegedy, 2015).
Batch normalization normalizes the activations of the previous
network by using channel-wise mean μc and standard deviation σc.
The batch normalization formulas are as follows: Let feature map
X ∈ ℝN×L×C over a batch, where C is the channel, L represents the
length of each feature, andN denotes the overall number of features.
The formula for batch normalization is as follows:

yγ,β,c =
xi,j,c − μc

σc
⋅ γ+ β, (2)

here,

μc =
1
NL
∑
i,j
xi,j,c, (3)

σ2c =
1
NL
∑
i,j
(xi,j,c − μc)

2. (4)

where c is the channel index, i and j are spatial indices; μc and σ
2
c are

the mean of the values and the variance in channel c for the current
batch, respectively. In the above equations, γ and β are learnable
parameters introduced to allow the network to learn an appropriate
normalization even when the input is not normally distributed.

GELU is a form of activation function that is a smooth
approximation of the behavior of the rectified linear unit (ReLU)
(Nair and Hinton, 2010) to prevent neurons from vanishing while
limiting how deep into the negative regime activations (Hendrycks
and Gimpel, 2016). This allows some negative weights to pass

through the network, which is important to send the information
to the subsequent task in SEResNet. As GELU follows the Batch
Normalization Layer, the featuremap inputsX ∼N (0,1).TheGELU
is defined as:

g (x) ≔ x ⋅Φ (x) = x ⋅ 1
2
(1+ erf( x

√2
)). (5)

Here, Φ(x) denotes the cumulative distribution function,
represented by P (X ≤ x), and erf (⋅) corresponds to the error
function. GELU can boost the representation capabilities of the
network by introducing a stochastic component that enables more
diversity. In addition, it has been demonstrated that GELU has a
more stable gradient and a more robust optimization landscape
than ReLU and leaky ReLU, because of this GELU can promote
faster convergence and improved generalization performance.

Additionally, we employ a dropout layer after the first
max pooling in all branches and concatenate the output features
channel-wise from these branches of the MSCN.

3.2 Squeeze-and-excitation residual
network (SEResNet)

Using the SEResNet (Figure 3), we can adaptively recalibrate
the concatenated features from the MSCN to enhance the
most important global spatial information of EDA signals. The
mechanism of the SEResNet aims to model the interdependencies
between the channels to enhance the extracted convolutional
features and amplify the network’s sensitivity to themostmeaningful
features (Hu et al., 2018). This recalibration process emphasizes
informative features while suppressing less relevant ones, yielding
a more interpretable feature representation for subsequent tasks.
The SEResNet functions by condensing the channel-wise data of
the feature maps into a global information representation, and the
excitation operation uses this descriptor to adaptively scale the
feature maps (Figure 3).

Particularly, PainAttnNet model starts with the implementation
of two convolutions, each having 1 kernel size and 1 stride, with
activation conducted via ReLU.Herewe use ReLU, other thanGELU,
to improve the performance on the convergence. At the squeezing
stage in the SEResNet, the global spatial information from the
two convolutions is then compressed by global average pooling.
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FIGURE 3
The outline of Squeeze-and-Excitation Residual Network (SEResNet).

It reduces the spatial dimensions while keeping the informative
features. Let the feature map from the MSCN as X ∈ ℝN×L×C, we
apply two convolutional layers to X that results in obtaining new
feature maps V ∈ ℝN×L×C, and then shrink the V to generate the
statistics z ∈ ℝC:

zc =
1
NL

N

∑
i=1

L

∑
j=1

vi,j,c, (6)

where zc is the global average of L data points per each channel.
Next comes the excitation (adaptive recalibration) stage, in which
two FCL generate the statistics used to scale the feature maps. As a
bottleneck, the first FCL with ReLU is to reduce the dimensionality.
The second FCL with sigmoid recovers the channel dimensions
to their original size by performing a dimensionality-increasing
operation. Let the z ∈ ℝC. We define adaptive recalibration as
follows:

α = σ (W2δ (W1z)) , (7)

where δ denotes the ReLU, and σ represents the sigmoid function.
W1 ∈ ℝ

C
r
×C and W2 ∈ ℝ

C× C
r is the learnable weights for the first and

the second FC layer, respectively. Here, r is the ratio of reduction.

These weights reveal the interdependencies among the channels and
provide insights into the most informative channel.

Following this, the original feature map denoted by v scaled by
the activation α, and this is done by channel-wise multiplication:

M = αc ⊗ vc, (8)

X̃ = X⊕M. (9)

where X̃ is the final output of the SEResNet, which results from the
original input X and the enhanced featuresM.

3.3 Transformer encoder

3.3.1 Temporal convolutional network (TCN)
TCN framework, inspired by the works of Lea et al.

(Lea et al., 2016) and Van den Oord et al. (Oord et al., 2016;
Van den Oord et al., 2016), has been used effectively for processing
and generating sequential data, e.g., audio or images. TCN employs
one-dimensional convolutional layers to extract the temporal
dependencies over the sequential input data, like the recalibrated
features from SEResNet. In contrast to a regular convolutional
network, the output of TCN at a given time t depends only on
the inputs at times preceding t. TCN only permits the convolutional
layer to look back in time by masking future inputs. Like the regular
convolutional network, each convolutional layer contains a kernel
with a specific width to extract certain patterns or dependencies in
the input data across time before the present t. To preserve the same
length for the output and input, one additional padding mechanism
is appended to the left side of the input to offset the window shift in
the input.

Let input feature map X ∈ ℝ1×L×C1 , where L is the input length
and C1 is the dimension of the input channels. We have kernel
W ∈ ℝK×C1×C2 , and the size of padding (K− 1) ∈ ℝ, where K is the
kernel size, and C2 is the dimension of the output channels. Then
we have the output from TCN as φ(⋅) ∈ ℝ1×L×C2 . This approach
can assist us in constructing an effective auto-regressive model that
only retrieves temporal information with a particular time frame
from the past without cheating by utilizing knowledge about the
future.

3.3.2 Multi-head attention (MHA)
MHA is a popular method for learning long-term relationships

in sequences of features (Figure 4). We adapt this algorithm
from Vaswani et al. (Vaswani et al., 2017), Dosovitskiy et al.
(Dosovitskiy et al., 2020), and Bahdanau et al. (Bahdanau et al.,
2014). It has significant performance in different fields, e.g., BERT
(Devlin et al., 2019) and GPT (Brown et al., 2020) models in natural
language process, and physiological signals classification for sleep
Eldele et al. (Eldele et al., 2021), Zhu et al. (Zhu et al., 2020). MHA
consists of multiple layers of Scaled Dot-Product Attention, where
each layer is capable of learning different temporal dependencies
from the input feature maps (Figure 4). MHA aims to obtain a more
comprehensive understanding of how the ith feature is relevant
to jth features by processing them through multiple attention
mechanisms. In particular, let the output feature maps from
SEResNet, X = {x1,…,xN} ∈ ℝ

N×L. Then we take three duplicates
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FIGURE 4
The structure of multi-head attention, consists of H heads of Scaled
Dot-Product Attention layers with three inputs from TCNs.

ofX such that X̃ = φ(X), here φ(⋅) is the TCN, and X̃ is the output of
TCN. Next, we send the three outputs, X̃(Q), X̃(K), X̃(V) to attention
layers. This allows us to calculate the weighted sum, the attention
scores zi:

zi =
L

∑
j=1

αijφ(x̃
(V)
j ) , (10)

the weight αij of each φ(x̃j) is computed by:

αij =
exp(eij)

∑L
r=1

exp(eir)
, (11)

here,

eij =
1
√L
⋅ x̃(Q)i ⋅ x̃

(K)⊤
j . (12)

then the output of one attention layer is z = {z0,…,zL} ∈ ℝ
N×L.

Next, MHA calculates all the attention scores Z(H) frommultiple
attention layers parallelly, and then concatenates them into Z̃MHA ∈
ℝN×HL, where H is the number of attention heads, and HL is the
overall length of the concatenated attention scores.

We apply a linear transformation with learnable weight W ∈
ℝHL×L to make the input and output sizes the same.This allows us to
easily process the subsequent stages. The overall equation for MHA
is represented as follows:

Z̃MHA = Concat(z(
1),…,z(H)) ⋅W ∈ ℝN×L. (13)

After concatenating these attention scores, we process
them with the original X̃ using an addition operation and
layer normalization adopted from (Ba et al., 2016), formed as
Φ(X̃+ Z̃MHA), which can be described as a residual layer with
layer norm function Φ1 (⋅). Then the output of Φ1 (⋅) is processed
by the FCLs and the second residual layer Φ2 (⋅). Finally, pain
intensity categorization results are obtained from two fully
connected networks, which are then followed by a Softmax
function.

4 Experimental results

4.1 BioVid Heat Pain Database

In our experiment, we used the Electrodermal Activity (EDA)
signals from BioVid Heat Pain Database (BioVid), generated
by Walter et al. (Walter et al., 2013). As described in Figure 1,
Electrodermal Activity (EDA) is a useful indicator of pain intensity
(Ledowski et al., 2009). Walter et al. (Walter et al., 2013) conducted
a series of pain stimulus experiments in order to acquire five
distinct datasets, including video signals capturing the subjects’
facial expressions, SCL (also known as EDA), ECG, and EMG.
The experiment featured 90 participants in ages: 18–35, 36–50 and
51–65. Each group has 30 subjects, with an equal number of male
and female participants. At the beginning of the experiment, the
authors calibrated each participant’s pain threshold by progressively
raising the temperature from the baseline T0 = 32°C to determine
the temperature stages TP and TT; here TP represents the
temperature stages at which the individual began to experience the
heat pain; TT is the temperature at which the individual experiences
intolerable pain.Then four temperature stages can be determined as
follows:

Ti =
{
{
{

TP + [(i− 1) × γ] i ∈ {1,2,3,4}

TB i = 0
(14)

here,

γ = (TT −TP)/4 (15)

where TP and TT are respectively defined as T1 and T4. The
individual received heat stimuli through a thermode (PATHWAY,
Medoc, Israel) connected to the right arm for the duration of the
experiment. In each trial, pain stimulation was administered to
each participant for a duration of 25 min. In each experiment,
they determined five temperatures, Ti∈{0,1,2,3,4}, to induce five
pain intensity levels from lowest to highest. Each temperature
stimulus was delivered 20 times for 4 s, with a random interval
of 8–12 s between each application (Figure 5A). During this
interval, the temperatures were kept at the pain-free (32°C) level.
EDA, ECG, and EMG were collected by the according sensors
to a sampling rate of 512 Hz with segmentation in a length
of 5.5 s. Due to technical issues in the studies, three subjects
were excluded, resulting in a final count of 87. Therefore, the
training sample of each signal creates a channel with dimensions of
2,816× 20 × 5× 87.

Informed by the previous studies (Werner et al., 2014;
Lopez-Martinez and Picard, 2017; Gouverneur et al., 2021;
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FIGURE 5
The heat stimuli, with a break in between interval and window segmentations. (A) Demonstrates the original experiment settings of BioVid, with a
duration of 4 s for each heat stimulus and an interval of 8–12 s between each stimulus. The yellow segmentation displays the 5-s timeframe for each
collected signal. (B) Thiam et al. (Thiam et al., 2019) introduces a different segmentation in red-strip rectangle which takes 4.5 s as opposed to 5.5 s.

Pouromran et al., 2021; Shi et al., 2022; Shi et al., 2022), we
adopted the data from BioVid and used the EDA signal in a
dimension of 2,816× 20 × 5× 87 with a 5.5-s segmentation as
the input in our experiment for pain intensity classification
based on five pain labels. This 5.5-s window for signal
segmentation is the default setting provided by the BioVid
database. Our decision to maintain this original 5.5-s window
aims to preserve the integrity of the original data, thereby
allowing for a comprehensive and unaltered representation of
pain signal characteristics. This contrasts with the approach
taken by some previous studies. For instance, Subramaniam
and Dass et al. (Subramaniam and Dass, 2020) removed 20
out of 87 subjects, resulting in 2,816× 20 × 5× 67 training
samples. In contrast, Thiam et al. (Thiam et al., 2019) utilized
a 4.5 s segmentation truncating the original time frame by 1 s
(Figure 5B). In the next sections, we will compare these latest SOTA
methods.

4.2 Experimental settings

In our study, we compared PainAttnNet with six
baselines, Random Forest (Werner et al., 2014), MT-NN
(Lopez-Martinez and Picard, 2017), SVM (Pouromran et al.,
2021), TabNet (Shi et al., 2022), MLP (Gouverneur et al.,
2021), and XGBoost (Shi et al., 2022). In contrast, we also
listed other two models, CNN + LSTM (Subramaniam
and Dass, 2020), CNN (Thiam et al., 2019), with different
segmentation and sample selections on the EDA signals as the
input.

We used 87-fold cross-validation for the BioVid by splitting the
subjects into 87 groups, therefore, each subject is in one group as
a leave-one-out cross-validation (LOOCV). We trained the model
on 86 subjects and tested it on one subject with 100 epochs for
each iteration. Ultimately, the macro performance matrices were
computed by combining the projected pain intensity classes from
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TABLE 1 PainAttnNet’s performance through three evaluationmetrics through six tasks: 1) T0 vs (T1, T2, T3, T4), 2) T0 vs T1, 3) T0 vs T2, 4) T0 vs T3, and 5) T0 vs T4,
on BioVid dataset.

Tasks Specificity Sensitivity ACC MF1 κ

T0 vs (T1, T2, T3, T4) 3.05 99.73 80.39 47.45 0.04

T0 vs T1 43.85 69.54 56.70 55.97 0.13

T0 vs T2 67.10 70.48 68.78 68.79 0.38

T0 vs T3 81.67 73.16 77.41 77.37 0.55

T0 vs T4 88.28 82.70 85.56 85.49 0.71

TABLE 2 The performance comparison between PainAttnNet and other SOTA approaches. CNN + LSTM‡ (Subramaniam and Dass, 2020); CNN‡ (Thiam et al.,
2019); CNN‡ (Thiam et al., 2019); Random Forest (Werner et al., 2014); MT-NN (Lopez-Martinez and Picard, 2017); SVM (Pouromran et al., 2021); TabNet, XGBoost
(Shi et al., 2022); MLP (Gouverneur et al., 2021). ‡: as these two approaches proposed two different procedures on the data input, we just list them here but are
not able to compare themwith others.

Method T0 vs T1 T0 vs T2 T0 vs T3 T0 vs T4 Procedure

CNN + LSTM‡ 85.65 74.47 80.80 80.17 5.5s Segment, n = 67 × 20 × 5

CNN‡ 61.67 66.93 76.38 84.57 4.5s Segment, n = 87 × 20 × 5

Random Forest 55.40 60.20 65.90 73.80

5.5s Segment; n = 87 × 20 × 5

MT-NN 50.01 60.34 69.76 79.98

SVM - - - 83.30

TabNet 65.57 67.76 74.54 83.99

MLP 59.08 65.09 75.14 84.22

XGBoost 61.49 68.39 76.15 85.23

PainAttnNet (Ours) 56.70 68.78 77.41 85.56

all 87 iterations. We created PainAttnNet using Python 3.10 and
PyTorch 1.13 on a GPU powered by an Nvidia Quadro RTX 4000.
We selected the batch size of 128 for the training dataset, and set
the optimizer as Adam applied a weight decay (1e-03) with a 1e-03
initial learning rate. PyTorch’s default settings for Betas and Epsilon
were (0.9, 0.999) and 1e-08. In the transformer encoder, we utilized
five heads for multi-head attention structure, with each feature’s size
being 75.

4.3 Performance of PainAttnNet

The performance of PainAttnNet was assessed on the BioVid
dataset through five distinctive experimental scenarios: 1) T0 vs
all (T1, T2, T3, T4), 2) T0 vs T1, (3)T0 vs T2, 4) T0 vs T3, and 5)
T0 vs T4 (refer to Table 1). These tasks were designed to assess the
model’s ability to distinguish between various pain intensity levels,
with a particular focus on tasks 1, 4, and 5.These tasks are of clinical
significance as they involve distinguishing between no pain and
various levels of pain intensity, a crucial factor in enhancing patient
care.

Task 1, T0 vs all (T1, T2, T3, T4), is a binary classification task
that distinguishes between no pain (T0) and any level of pain all (T1,
T2, T3, T4). Tasks 2 through 5 are binary classification tasks that
distinguish between zero pain and each pain level. For instance, Task
2, T0 vs T  1, aims to differentiate between no pain and low pain.

The performance of PainAttnNet wasmost impressive on Task 5,
achieving an accuracy of 85.56%, a κ of 0.71 and anMF1 of 85.49%.
Conversely, the model’s performance was relatively weaker on Task
1, with an accuracy of 80.39%, a κ of 0.04 and an MF1 of 47.45%.
The performance on Tasks 2, 3, and 4 was intermediate, with varying
levels of accuracy, Cohen’s Kappa, and macro F1 score.

We further compared the performance of PainAttnNet with
other SOTA models on the BioVid dataset for pain intensity
classification (refer to Table 2). For ease of comparison, we selected
four of the six classification tasks: T0 vs T1, T0 vs T2, T0 vs T3, and
T0 vs T4.

The first two approaches, CNN + LSTM (Subramaniam and
Dass, 2020) and CNN (Thiam et al., 2019), employed different
sample selections and data segmentation strategies, respectively.
Hence, their results are listed in Table 2 but are not directly
compared with others.
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FIGURE 6
ROC curve for five tasks: T0 vs T1, T0 vs T2, T0 vs T3, T0 vs T4, and T0 vs all (T1, T2, T3, T4).

FIGURE 7
Ablation for four configurations among four tasks: T0 vs T1, T0 vs T2, T0 vs T3, T0 vs T4.

The proposed model, PainAttnNet, outperformed other SOTA
models in tasks T0 vs T3, and T0 vs T4, where it is critical to
distinguish between no pain and nearly intolerable pain. However,
in task T0 vs T2, PainAttnNet achieved lower accuracy compared to
the best-performing SOTAmodel (68.10% vs. 68.39%). In task T0 vs
T1, the model introduced by Shi et al. (Shi et al., 2022) achieved the
highest accuracy.

In conclusion, the comparative analysis underscores the
potentiality of PainAttnNet, PainAttnNet, as a robust application
for classifying pain intensity levels in Electrodermal Activity
(EDA) signals. The model’s performance across various tasks,
particularly in distinguishing between no pain and severe pain,

highlights its potential utility in clinical settings for improved patient
care.

4.4 ROC curve analysis

We employed ROC curves to assess the capacity of
PainAttnNet to classify varying degrees of pain intensity. The
area under the ROC curve (AUC) served as an assessment of
performance.

We conducted ROC curve analyses for five distinct binary
classification tasks, yielding AUC scores of 0.56, 0.69, 0.81, 0.9,

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2023.1294577
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Lu et al. 10.3389/fphys.2023.1294577

FIGURE 8
Visualization of average feature maps (T4) pre and post SE recalibrartion. The bottom-left plot depicts the learned channel weights, guiding the
recalibration. The comparison between the top-left and top-right plots illustrates the adaptive feature recalibration effected by the SE module.

and 0.57 for the tasks T0 vs T1, T0 vs T2, T0 vs T3, T0 vs T4,
and T0 vs all (T1, T2, T3, T4), respectively (Figure 6). PainAttnNet
demonstrated a higher proficiency in distinguishing between the
absence of pain and high levels of pain than between the absence
of pain and lower pain levels.

Despite an accuracy of 80.39%, the AUC for T0 vs all (T1, T2,
T3, T4) was relatively low (0.57). This is due to the model’s low
recall forT0 (3.05%), indicating frequentmisclassification of no pain
instances as pain, leading to a higher false positive rate and a lower
AUC.

The performance of PainAttnNet was superior when
distinguishing between the absence of pain and the highest level
of pain intensity, which holds considerable practical relevance.
However, there is potential for improvement in distinguishing
between the absence of pain and lower pain intensities.

In conclusion, PainAttnNet’s performance improves as
the difference in pain intensity increases, aligning with
recent research and promising for practical applications,
especially in distinguishing between no pain and high levels of
pain.

4.5 Ablation study

In this segment, we elucidate the ablation studies conducted
to assess the efficacy of various components in our deep learning
model, PainAttNet.The following is our model configuration for the
ablation study.

• PainAttNet (Full Model):
• MSCN (Multiscale Convolutional Neural Network): It

provides a method to capture features at various scales and
resolutions. This helps in discerning intricate patterns and

ensures that features of varying sizes are accounted for in
the analysis.
• SEResNet (Squeeze−and−Excitation Residual Network): It

offers an attention mechanism to focus on the most relevant
features by dynamically recalibrating channel-wise feature
responses. This boosts the model’s sensitivity to important
patterns within the data.
• Transformer Encoder: An architectural paradigm that

utilizes self−attention mechanisms to weigh feature
importance, allowing the model to focus on critical aspects
of the input data while discarding less relevant information.

• MSCN + Transformer Encoder: By integrating MSCN with the
Transformer Encoder, this configuration seeks to capitalize on
the MSCN’s spatial feature extraction and the Transformer’s
ability to capture long-range temporal dependencies in the data.
• MSCN + SEResNet: By fusing the multiscale feature extraction
capabilities of MSCN with the channel-wise recalibration
offered by SEResNet, this configuration aims to enhance
the focus on important features without the self-attention
mechanism of the transformer.
• MSCN Only: This module serves as the foundational model,
MSCN Only focuses on extracting multi-scaled spatial features
from the input data without the additional enhancements
provided by the other components.

Across all tasks, PainAttnNet consistently outperforms other
configurations (Figure 7). This reinforces the cumulative advantage
of integrating MSCN, SEResNet, and the transformer encoder
components into a unified architecture. The accuracy trends
observed for MSCN when paired with either the Transformer
Encoder or SEResNet suggest their value addition over solely
utilizing the MSCN. Both combinations consistently deliver
improved results over the MSCN Only configuration across the
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FIGURE 9
Comparison of the performance of different MSCN Window Lengths against the baseline across T0 vs T1, T0 vs T2, T0 vs T3, and T0 vs T4 Task. For each
experiment, only one window length was altered while keeping other windows constant to ensure isolated effects of the variation. Baseline settings:
short window, 0.1s; medium window, 1s; long window, 2s.

specified tasks. It is evident that while the accuracy improvements
in some configurations may seem marginal, they are nonetheless
significant. Even slight increments in accuracy can underscore the
capability of the model to capture intricate nuances within the pain
signal data, especially when dealing with real-world datasets.

In summation, the ablation study results demonstrate the
inherent benefits of these specific architectures, with PainAttnNet
manifesting as the most proficient.

4.6 Visualization of SE Module
Recalibration

The Squeeze-and-Excitation (SE) module’s primary purpose
is to adaptively recalibrate channel-wise feature responses. This
recalibration emphasizes certain informative features while
diminishing less relevant ones, providing a more refined feature
representation. The visualizations in Figure 8 are derived from the
trained model in the previous sections. To elucidate the SE module’s
recalibration effects, we processed the entire training dataset
through the trainedmodel. By examining the averaged feature maps
from these samples, we intended to highlight the consistent patterns
of recalibration that the SE module introduces, both before and after
its operation.

Before SE Module Recalibration: As visualized in the top-left
plot of Figure 8, the “Feature Maps before SE Recalibration” exhibits
the distribution of channel-wise features. This representation is

the outcome post the Multiscale Convolutional Network (MSCN)
processing. SE Channel Importance Weights: The bottom-left plot
of Figure 8 showcases the “Channel Weights for SE Module,”
which are learned during the training process. These weights
dictate the importance of each channel and subsequently guide
the SE operation in recalibrating the features. After SE Module
Recalibration: In the top-right plot of Figure 8, one can observe
the feature map “after” SE recalibration. Distinct changes in the
feature intensity and emphasis are evident, with some features
becoming more pronounced, while others diminish. While it
is apparent that the SE module emphasizes certain features and
diminishes others, identifying the specific nature or type of these
features is non-trivial. This is primarily because the features
have already been processed by the MSCN, making their innate
characteristics intricate to identify purely based on SE module
visualization.

4.7 Sensitive analysis on MSCN scales

Our analysis investigates three specific window scale
combinations (Figure 9): short, medium, and long. The chart in
Figure 9 presents the performance variations observed across
different MSCN window lengths and four tasks. Each of the
bars corresponds to a specific window length combination. Our
chosen baseline of Short Window 0.1s + Medium Window 1s
+ Long Window 2s consistently performs well across various
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tasks, even if it does not always achieve the highest accuracy. We
have thoroughly examined all configurations and found that the
baseline performs solidly in most cases, making it the best overall
choice. While some combinations slightly outperform the baseline
in certain situations, these nuanced differences do not show a
consistent improvement, confirming our confidence in our chosen
baseline.

The width of the window in the MSCN is a pivotal parameter
influencing the model’s performance. Each window length captures
specific features from the pain signals, enabling themodel to analyze
patterns at various temporal granularity. Longer windows provide
a broader view, capturing low-frequency components and global
patterns, while shorter windows allow the model to capture high-
frequency components. The integration of these diverse window
lengths enables the model to construct a comprehensive and
multi-granular feature representation, enhancing its capacity to
discern subtle patterns and thereby improving its overall predictive
performance.

5 Discussion and conclusion

PainAttnNet, the framework we introduced, serves as a
novel approach for classifying pain severity using EDA signals.
The model integrates MSCN and SEResNet for robust feature
extraction from EDA signals. A TCN and multiple Scaled Dot-
Product Attention layers form themulti-head attention architecture,
designed to capture temporal dependencies and relationships
among input features. Evaluations on the BioVid heat pain
dataset confirm the model’s superior performance over existing
methods.

While PainAttnNet demonstrates proficiency in distinguishing
the absence of pain from various pain intensities, room for
improvement remains, especially in differentiating between distinct
levels of pain intensity. One primary limitation is the dataset’s
distribution shift among subjects, particularly concerning age
and gender demographics. Based on our findings and existing
studies, pain perception can vary significantly across different
age groups (Murray et al., 2021). Gender differences in pain
perception have also been reported, adding another layer of
complexity to pain assessment (Keogh, 2022). Additionally,
the current dependency on lab-controlled data presents a
limitation for the model’s applicability in real-world clinical
settings.

6 Future work

Moreover, expanding the scope of pain classification signals
is pivotal for comprehensive understanding and accuracy.
While this paper primarily leverages EDA signals, future
iterations of PainAttnNet will incorporate a broader range
of physiological signals, such as ECG, EMG, etc. Integrating
multiple signals can offer a comprehensive view of pain
assessment, considering the multifaceted nature of pain
responses.

To refine PainAttnNet further, we plan to employ masked
models and adaptive embedding for enhanced feature extraction.

We also intend to explore the application of contrastive learning
in conjunction with domain adaptation on large unlabeled datasets
and small segments of labeled data (Zhang et al., 2023). These
enhancements aim to improve PainAttnNet’s clinical applicability
by addressing its limitations, including those related to age- and
gender-based pain perception. Future studies will also aim to train
and evaluate the model using more ecologically valid, real-world
data.
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