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We investigate the effects of fluid elasticity on the flow forces and the wake structure when
a rigid cylinder is placed in a viscoelastic flow and is forced to oscillate sinusoidally in
the transverse direction. We consider a two-dimensional, uniform, incompressible flow of
viscoelastic fluid at Re = 100, and use the FENE-P model to represent the viscoelastic
fluid. We study how the flow forces and the wake patterns change as the amplitude of
oscillations, A∗, the frequency of oscillations (inversely proportional to a reduced velocity,
U∗), the Weissenberg number, Wi, the square of maximum polymer extensibility, L2, and
the viscosity ratio, β, change individually. We calculate the lift coefficient in phase with
cylinder velocity to determine the range of different system parameters where self-excited
oscillations might occur if the cylinder is allowed to oscillate freely. We also study the
effect of fluid elasticity on the added mass coefficient as these parameters change. The
maximum elastic stress of the fluid occurs in between the vortices that are observed in the
wake. We observe a new mode of shedding in the wake of the cylinder: in addition to the
primary vortices that are also observed in the Newtonian flows, secondary vortices that
are caused entirely by the viscoelasticity of the fluid are observed in between the primary
vortices. We also show that, for a constant Wi, the strength of the polymeric stresses
increases with increasing reduced velocity or with decreasing amplitude of oscillations.
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1. Introduction

Vortex-induced vibration (VIV) is a model problem in fluid–structure interactions, in

which a flexibly mounted or a flexible bluff body oscillates due to fluctuating forces
that act on it from the vortices that are shed in its wake. During VIV, the oscillation
frequency and the shedding frequency are synchronized, and ‘lock-in’ is observed. If a
flexibly mounted rigid body is allowed to oscillate in the direction perpendicular to the
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direction of flow, crossflow VIV is observed (Sarpkaya 2004; Williamson & Govardhan
2004), in which large-amplitude oscillations (with a magnitude of an order of the diameter
of the cylinder) occur over a range of reduced velocities (defined as U∗ = U∞/( fnD),
where U∞ is the incoming flow velocity, D is the cylinder’s diameter and fn is the natural
frequency of the structure in the air). If the degree of freedom is in the direction of
flow, responses are observed over two ranges of reduced velocities (inline VIV), and
the magnitude of response is about 10 % of the cylinder diameter (Cagney & Balabani
2013a,b; Gurian, Currier & Modarres-Sadeghi 2019). The inline and crossflow VIV
responses survive even at relatively large deviations from a pure inline or a pure crossflow
direction (Benner & Modarres-Sadeghi 2021). If the cylinder is free to oscillate in both the
crossflow and inline directions, then figure-eight trajectories and higher harmonics in the
flow forces are observed (Dahl, Hover & Triantafyllou 2007; Dahl et al. 2010; Carlson,
Currier & Modarres-Sadeghi 2021). Vortex-induced vibration can also be observed
in long and flexible cylindrical structures (Bourguet et al. 2011; Seyed-Aghazadeh &
Modarres-Sadeghi 2016; Gedikli, Chelidze & Dahl 2018; Seyed-Aghazadeh, Edraki &
Modarres-Sadeghi 2019; Bourguet 2020). In these cases different modes of the structure
can be excited and transitions from one mode to another mode as well as multimodal
excitation (where more than one mode is excited at the same time) are observed. Since
flexible structures are allowed to oscillate in both the crossflow and inline directions,
figure-eight trajectories are observed at their cross-sections.

To better understand the responses of a flexibly mounted cylinder placed in flow,
and to explore several possible combinations of the incoming flow velocity, amplitude
of oscillations and frequency of oscillations, several studies have been conducted on
cylinders that are forced to oscillate in incoming flow with prescribed amplitudes and
frequencies. Sarpkaya (1977) conducted experiments of uniform flow past a sinusoidally
oscillating rigid cylinder at high Reynolds numbers (Re = 6000 to Re = 35 000) and
measured the forces acting on the cylinder and discussed a method to use the flow force
databases that are created from such tests to predict the amplitude of a freely vibrating
cylinder. Also, Sarpkaya (1977) decomposed the lift coefficient into its components
in phase with acceleration (CLA = −CL cos(φ)) and in phase with velocity (CLV =
CL sin(φ)), where the phase angle, φ, is the angle by which the fluctuating lift force
leads the imposed oscillating motion. Following this decomposition, CLV represents the
flow-induced damping effects and CLA the added mass effects. The phase angle, φ,
determines the sign of the power transfer between the cylinder and the fluid. Values in
the range of 0 < φ < +π correspond to power transfer from the fluid to the cylinder,
which correspond to the cases for which the cylinder can be excited by the fluid flow. The
magnitude of the power transfer depends on the phase angle as well as the magnitude of
the lift coefficient. In particular, power transfer is determined by the inner product of the
lift force vector with the cylinder velocity vector. Sarpkaya (1978) used these coefficients,
CLV and CLA, in a linear equation of motion to predict the amplitudes of oscillations of
a flexibly mounted self-excited cylinder. Staubli (1983) measured the fluid forces acting
on the transversely oscillating cylinder at a higher Reynolds number (Re ≈ 60 000), and
used those measurements to predict the self-excited VIV response. Gopalkrishnan (1993)
constructed a large database of CLV and added mass coefficients Cm (that is related to CLA)
for different imposed amplitudes and frequencies with the goal of extending the prediction
of the self-excited response to the reconstruction of long flexible cylindrical structures in
a sheared flow using a quasi-steady flow (strip theory) assumption. Gopalkrishnan (1993)
showed that at high reduced velocities (low dimensionless oscillation frequencies), the
effective fluid inertial force must be represented by a negative added mass coefficient.
Carberry, Sheridan & Rockwell (2001) experimentally studied the forced oscillations of
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a cylinder at frequencies close to von Kármán frequency at Re = 2300. They observed
a shift in the wake mode from 2P to 2S with the increased oscillation frequency. This
wake mode transition was associated with the shift from a small-amplitude lift force
out of phase with the cylinder oscillations to a large-amplitude in-phase lift force. They
also studied a larger range of Reynolds number, 2300 ≤ Re ≤ 9000, and amplitudes of
0.25 ≤ A/D ≤ 0.6 (Carberry, Sheridan & Rockwell 2005) and discussed methods to relate
the forced and free oscillations of the cylinder using the concept of energy transfer.
The forced oscillations of a cylinder have also been studied at low Reynolds numbers
by several groups of researchers. Guilmineau & Queutey (2002) numerically studied the
forced oscillations of a cylinder in the crossflow direction at Re = 185 and investigated the
vortex switching as the forcing frequency normalized by the Strouhal frequency increased
in the range of 0.8 ≤ f /fSt ≤ 1.2. Leontini, Thompson & Hourigan (2007) investigated the
effect of crossflow oscillations on the transition to three dimensionality in the wake of a
cylinder and concluded that locked oscillation at close to the Strouhal frequency can delay
the onset of three dimensionality until Re = 280. Kumar, Navrose & Mittal (2016) studied
the lock-in phenomenon in the forced oscillation of a cylinder and defined the lock-in
region, transition region and no lock-in region in the A∗–f ∗ plane.

The question then arises on how the response of the structure and the wake behaviour
are changed if instead of a Newtonian fluid, the cylinder is forced to oscillate in the flow of
a viscoelastic fluid. What will be the role of the elasticity in the fluid in the flow structure
in the wake? The effects of fluid inertia and fluid elasticity are competitive in nature. At
large Reynolds numbers, Re � 1, and a small Weissenberg number (defined as Wi = λγ̇ ,
where λ is the fluid relaxation time and γ̇ is the shear rate), Wi � 1, fluid inertia leads to
flow separation downstream of a fixed obstacle (Williamson & Govardhan 2004), while
for Re � 1 and Wi � 1, fluid elasticity (e.g. in a polymer solution) causes flow separation
upstream of an obstacle (McKinley, Pakdel & Öztekin 1996; Rothstein & McKinley 2001;
Kenney et al. 2013). An elastic flow instability occurs for a low-Reynolds-number flow
of a viscoelastic fluid (Qin et al. 2019) and it has been demonstrated both numerically
(Mompean & Deville 1997; Xue, Phan-Thien & Tanner 1998) and experimentally (Rodd
et al. 2007) that increasing the Reynolds number while keeping the Weissenberg number
constant can reduce the size of the separated viscoelastic vortex upstream of an obstacle.
The separated viscoelastic vortex upstream of the obstacle disappears completely when the
Reynolds number and the Weissenberg number become comparable. At larger Reynolds
numbers, separation is observed downstream of the fixed obstacle, but the nature and the
strength of the vortices are greatly affected by the elasticity in the fluid as shown both
experimentally (Cadot & Lebey 1999; Cadot & Kumar 2000; Cadot 2001) and numerically
(Xiong, Bruneau & Kellay 2010, 2011).

Cadot (2001) experimentally studied the vortex street downstream of a cylinder for the
flow of water and water mixed with a high molecular weight polymer injected just ahead
of the cylinder. They showed that with the addition of fluid elasticity, the wavelength of
the vortex street downstream of the cylinder increases, the shedding frequency decreases
and the vorticity strength reduces. The wake structure also qualitatively changes as the
vortices appear more centred behind the cylinder, the formation region behind the cylinder
elongates, and the interconnectivity of the vortices strengthens. Oliveira (2001) later
reproduced these observations through finite volume simulations of the flow of polymer
solutions past a cylinder using the FENE-CR constitutive model (Chilcott & Rallison
1988). They showed that the addition of fluid elasticity reduces the fluctuating lift force by
a factor of more than 3 as Wi is increased from Wi = 1 to Wi = 3. Both these numerical
and experimental studies focused on a Reynolds number range of 50 < Re < 150 where
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the flow is two dimensional and laminar. Hamid, Sasmal & Chhabra (2022) carried out
numerical simulations of viscoelastic flow past a fixed cylinder in the laminar regime
for a Weissenberg number range of 0 ≤ Wi ≤ 2 and viscosity ratio of 0.5 ≤ β ≤ 0.85

using the Oldroyd-B model. They showed the stretching of the shear layers, reduction in

vortex shedding frequency and the suppression of base region vorticity with increasing

viscoelasticity using the dynamic mode decomposition method. Xiong et al. (2019)

carried out numerical simulations of VIV of a cylinder in viscoelastic fluids in the
Reynolds number range of 30 < Re < 500. At Re = 500, they observed that the maximum
amplitude for self-excited oscillations decreases from A∗ = 0.6 for Newtonian fluids to
A∗ = 0.3 for viscoelastic fluids (Wi = 10). For Re < 150, they showed the complete
suppression of VIV when enough elasticity is added to the fluid.

Here, we study the wake and the flow forces that act on a cylinder that is forced to
oscillate in a viscoelastic flow. In forced oscillations we have control over the frequency

and amplitude of oscillations that enables us to explore the rich vorticity dynamics that

are observed in the wake of the cylinder over a wide range of system parameters. We also
study the interplay between the fluid deformation time scale (frequency of oscillations)
and the stress relaxation time scale (relaxation time of the polymer solution) to explore its
impact on the polymeric stress development and the vorticity generation in the wake of
the cylinder. Most studies involving viscoelastic fluids in the literature have been carried
out at infinitesimal Reynolds numbers where inertial effects do not exist. In order to keep
the inertial effects alive along with the viscoelasticity, we consider the Reynolds number
of Re = 100 in our study. In this study we explore a five-dimensional parameter space
by systematically varying the amplitude of oscillations, the frequency of oscillations,
the Weissenberg number, the maximum polymer extensibility and the viscosity ratio. We

explore the effect of the variation of these parameters on the vortex shedding pattern and
the flow forces acting on the cylinder.

2. Problem formulation

2.1. Governing equations and numerical methods
We consider a two-dimensional, steady and incompressible flow of viscoelastic fluid in a
domain containing a cylinder that is forced to oscillate in the crossflow direction only. The
unsteady, incompressible Navier–Stokes (N–S) equations govern this flow:

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ . (2.2)

Here, u is the velocity vector, ∇ is the del operator, ρ is the density of the fluid, p is the

pressure and τ is the total extra-stress tensor.
In order to simulate the viscoelastic flow, it is a common approach to split the total

extra-stress tensor into a solvent contribution and a polymeric contribution, i.e.

τ = τ s + τ p, (2.3)

where the constitutive equation for solvent contribution, τs, can be written as

τ s = ηs(∇u + ∇uT), (2.4)

where ηs is the viscosity contribution from the solvent.
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To have a closed set of equations, we need a constitutive equation for the polymeric

stress contribution. In this work we employ a molecular-based finitely extensible nonlinear
elastic FENE-P model, where P represents the closure proposed by Peterlin (Bird, Dotson
& Johnson 1980). It approximates an individual member of a polymer solution as a
dumbbell, where two beads are connected by a finitely extensible nonlinear spring. Due to
the nonlinear spring, we get the bounded stress (Bird et al. 1980)

τ p = ηp

λ

(
L2 − 3

L2 − tr(A)
A − I

)
, (2.5)

where ηp is the viscosity contribution from the polymer, λ is the relaxation time, L2

corresponds to the square of maximum polymer extensibility and A refers to the polymer
conformation tensor. The evolution of polymer conformation tensor is described as

∂A

∂t
+ u · ∇A − A · (∇u) − (∇u)T · A = A∇ = −τ p

ηp
, (2.6)

where A∇ is the upper convected derivative of the polymer conformation tensor. The

incompressible N–S equations and the constitutive equation can be made dimensionless
using the following scaling parameters: cylinder diameter, D for length; incoming flow
velocity, U∞ for velocity; D/U∞ for time; ρU∞2 for pressure; ηsU∞/D for the solvent
contribution of stress; and ηp/λ for the polymeric contribution of stress. The dimensionless
continuity, momentum and constitutive equations are as follows:

∇∗ · u∗ = 0, (2.7)

ρ

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ + β

Re
∇∗ · τ s

∗ + 1 − β

Wi Re
∇∗ · τ p

∗, (2.8)

τ p
∗ = L2 − 3

L2 − tr(A)
A − I, (2.9)

∂A

∂t∗
+ u∗ · ∇∗A − A · (∇∗u∗) − (∇∗u∗)T · A = −τ p

∗

Wi
. (2.10)

The ratio of solvent zero-shear-rate viscosity to the total solution zero-shear-rate viscosity
is defined as viscosity ratio, β = ηs/(ηs + ηp). The Reynolds number is defined as Re =
ρU∞D/(ηs + ηp). The degree of viscoelasticity is defined using the Weissenberg number,
Wi = λU∞/D, which is the ratio of a characteristic polymer relaxation time scale, λ, and
a characteristic flow time scale, D/U∞.

The N–S equations can be coupled with the FENE-P model using (2.7)–(2.10). In this
work we have assumed that the polymer concentration is uniform throughout the domain.
We have chosen the FENE-P model because it is important to have finite extensibility to
achieve bounded solutions for problems with large Weissenberg numbers and large strain
rates. The linear spring model, Oldroyd-B (Oldroyd & Wilson 1950), is not well suited
for such problems, since Oldroyd-B does not give bounded solutions at high Weissenberg
numbers due to its infinite extensibility.

To numerically solve this system of equations, we use an open-source solver package,
rheoTool (Pimenta & Alves 2017), which is developed on the basis of OpenFOAM (Weller
et al. 1998). We use the PISO algorithm to solve the unsteady, incompressible N–S
equations. To stabilize the numerical scheme for viscoelastic flow simulations at high Wi,
the log-conformation tensor approach is used (Fattal & Kupferman 2004, 2005). It involves
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a change of variable when the polymeric extra-stress tensor is evolving in time. A new
tensor is defined as the natural logarithm of the conformation tensor. The log-conformation
approach is a particular case of the kernel-conformation method (Afonso, Pinho & Alves
2011). Detailed information on this method can be found in Pimenta & Alves (2017).

A second-order accurate and implicit backward differencing scheme is used for temporal
discretization. For the advection term in the constitutive equation, the CUBISTA (a
convergent and universally bounded interpolation scheme for the treatment of advection)
scheme is used. It is a third-order accurate scheme based on the QUICK scheme (Alves,
Oliveira & Pinho 2003). A second-order linear interpolation with Gaussian integration
is used for the diffusion term in the N–S equations. A linear interpolation (central
differencing) with Gaussian integration is also used for calculating the gradient terms.

In this problem we use a body-fitted mesh, which means that the mesh cells deform in
order to accommodate the motion of the cylinder. In order to maintain the quality of the
mesh close to the cylinder, we move the mesh nodes in close proximity to the cylinder
in such a way as if they were part of a rigid body. This zone where mesh nodes move
rigidly with the cylinder is called the inner zone and the diameter of the inner zone is
6D. We allow the mesh deformation only in the areas outside the inner zone. To solve for
the displacement of the mesh nodes in the dynamic mesh following the cylinder velocity,
the diffusion-based smoothing method is used, in which we solve the modified Laplace
equation

∇ · (γ∇u) = 0, (2.11)

xnew = xold + u�t, (2.12)

where u is the point velocity field used to modify the position of mesh nodes, xold and xnew
are the point positions before and after the mesh motion, respectively, and �t is the time

step. In the modified Laplace equation, γ is a constant or variable diffusion field, chosen
to govern the mesh motion. We have chosen γ = 1 to provide uniform diffusion.

2.2. Problem specification
The cylinder is forced to oscillate sinusoidally in the crossflow direction using the equation

y(t) = A sin(2πft), (2.13)

where f is the forcing frequency in Hz and A is the oscillation amplitude. The
cylinder displacement, y, and the oscillation amplitude, A, can be normalized by the
cylinder diameter as y∗ = y/D and A∗ = A/D. To represent the forcing frequency in a
dimensionless form, we use the reduced velocity, which is inversely proportional to the
forcing frequency,

U∗ = U∞
fD

. (2.14)

The system parameters are given in table 1. Figure 1(a) shows the 28D × 12D
two-dimensional domain that is meshed using a structured grid. Table 2 gives the summary

of our grid-independence study, in which, for each grid level, the number of cells is nearly

doubled. The inner zone is a circle of diameter 6D centred at the centre of the cylinder. The
change in the average drag coefficient is within 1 % when the grid is made finer from M2
to M3. Therefore, we use grid M2 for our study. In grid M2 the total number of hexahedral
cells is 246 400 and the total number of nodes is 495 460. Figure 1(b) shows the structured
mesh in the domain along with the details of the mesh close to the cylinder. The gradient
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Figure 1. (a) Schematic of the numerical domain, and (b) the structured mesh used in the study.

Reynolds number, Re 100
Weissenberg number, Wi 0–10
Viscosity ratio, β 0.5–1

Square of maximum polymer extensibility, L2 100, 10 000
Amplitude of oscillations, A∗ 0.2–1
Reduced velocity, U∗ 4–9

Table 1. System parameters used in the simulations

in the mesh density in the radial direction has been chosen in such a way that the mesh
is very fine in the proximity of the cylinder to resolve the details in the boundary layer.
The maximum skewness parameter is 0.85 in this study. In order to maintain the mesh
quality close to the cylinder during the mesh motion, we have kept mesh nodes within the
inner zone to move rigidly along with the cylinder without any deformation. The mesh
deformation occurs only outside this inner zone and, therefore, the cells with maximum
skewness will be found only in the outer zone.

The boundary conditions are imposed as follows. At the inlet, uniform and steady flow
is provided in the streamwise direction; ux = U∞ and uy = 0. The pressure gradient is
set to zero; ∂p/∂n = 0, where n is the direction normal to the inlet patch. The polymer
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Grid Cells in the domain Cells in the inner zone Mean CD

M0 68 200 24 000 2.33
M1 132 800 51 200 2.22
M2 246 400 96 800 2.15
M3 480 500 192 200 2.15

Table 2. Grid-independence study for Re = 100, Wi = 10, β = 0.9, L2 = 10 000, U∗ = 5 and A∗ = 0.5.

contribution to the extra stress is set to zero. At the outlet, the pressure is set to zero.
For all other variables, the Neumann-type boundary condition is used, i.e. the gradient of
the variable is set to zero. At the top and bottom walls, a shear-free boundary condition
is used for the streamwise velocity, i.e. ∂ux/∂y = 0 and uy = 0. The polymeric stresses
are linearly extrapolated onto the walls. At the surface of the cylinder, a no-slip boundary
condition is used, i.e. ux = 0 and uy = 0. The pressure gradient is set to zero and the
polymeric stresses are linearly extrapolated onto the surface.

The solver has been validated in our previous work (Patel, Rothstein &
Modarres-Sadeghi 2022). To further validate our numerical results for the specific system
considered here, we compared the mean values of drag forces for a case of forced
oscillations of a cylinder in Newtonian flow at A∗ = 0.25 and Re = 100 and for frequencies
varying from 0.5fSt to 1.5fSt with those presented by Placzek, Sigrist & Hamdouni (2009).
The mean drag values were within 5 % of the results of Placzek et al. (2009) and the
pattern by which the mean drag coefficient varied with varying forcing frequency matched
the previous data as well.

3. The influence of Weissenberg number on the wake and flow forces

First, we consider the influence of viscoelasticity on the wake structure and the flow forces
acting on the oscillating cylinder by systematically varying the Weissenberg number. We
consider a range of Wi = 0.01 to Wi = 10 by changing the relaxation time of the fluid
while keeping other system parameters constant at the oscillation amplitude of A∗ = 0.5,
the reduced velocity of U∗ = 5, the viscosity ratio of β = 0.9 and L2 = 10 000.

3.1. The wake structure and the elastic stress development
Figure 2 shows snapshots of the vorticity in the wake of the cylinder for three sample

Weissenberg numbers across the range that we consider here. In all snapshots the cylinder

is at the centre and moves upward. The case of a very small Weissenberg number,
Wi = 0.01, is given as a reference. For Wi = 0.01, the vorticity plot very closely resembles
the Newtonian case (shown in figure 14b) as the elasticity in the fluid is not sufficient
to cause any noticeable change in the flow pattern. For this case, we observe a typical
2S shedding pattern, where one vortex is shed from each side of the cylinder during
one oscillation cycle. The shedding frequency is governed by the imposed oscillation
frequency of the cylinder as the shedding frequency is locked in with the oscillation
frequency of the cylinder. In the case of forced oscillations, the lock-in would be confirmed
when the following two criteria are satisfied as described in the work of Kumar et al.
(2016). (i) The most dominant frequency in the power spectrum of lift forces matches the
forcing frequency of the cylinder oscillations, f . (ii) The other peaks, if they exist, are

present only at superharmonics of f . With increasing Weissenberg number, new structures
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Figure 2. Normalized vorticity for different Weissenberg numbers: (a) Wi = 0.01, (b) Wi = 4, (c) Wi = 10.
For all these cases, other system parameters are kept constant at Re = 100, U∗ = 5, A∗ = 0.5, L2 = 10 000 and
β = 0.9.

appear in the vorticity plots that are not observed in the case of the Newtonian fluid.
For both Wi = 4 and Wi = 10, we observe stretched bands of vorticity that are originated
from the rear stagnation region of the cylinder and are extended in the wake, while they
are entrained between the large vortices that are shed from the two sides of the cylinder.
These vorticity bands remain as tails to the large vortices and eventually disappear. To
understand the origin of these bands, we will investigate the contribution of normal stress
in the wake.

Strong flows of viscoelastic fluids, such as the high-Weissenberg-number flows shown
in figure 2, can lead to the development of large elastic normal stresses in the fluid, τp,xx
and τp,yy. These elastic stresses are not observed in flows of Newtonian fluids. However,
for viscoelastic fluids, as a fluid element is stretched, compressed or even sheared, the
elasticity of the fluid can lead to dramatic changes in the flow where the elastic normal
stresses are large. To illustrate this more clearly, the elastic normal stresses are plotted
in figure 3 for the three sample Weissenberg numbers that we consider here, Wi = 0.01,
Wi = 4 and Wi = 10. In these plots the magnitude of elastic normal stress is calculated

as (τ 2
p,xx

+ τ 2
p,yy

)(1/2), and it is normalized by ηp/λ. Figure 3(a) shows that for Wi = 0.01,

the elastic stresses are zero as the elasticity in the fluid is not significant for Wi � 1.
This also explains the similarity between the wake observed for this case in figure 2(a)
and the wake observed in a Newtonian case. For Wi = 4 and Wi = 10, the elastic stresses
are clearly developed and they extend up to a considerable distance downstream before
fading out. The elastic stress is maximum close to the cylinder where the extension rate
is maximum. Moving further downstream, the magnitude decreases and eventually goes
to zero as the fluid relaxes and goes back to its equilibrium state. The thick red bands of
the high-stress region in figure 3(b,c) are observed in the same region where the vorticity
bands are observed in figure 2(b,c). It is this elastic stress that stretches the fluid and creates
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Figure 3. Normalized polymeric stress for different Weissenberg numbers: (a) Wi = 0.01, (b) Wi = 4,
(c) Wi = 10. For all these cases, other system parameters are kept constant at Re = 100, U∗ = 5, A∗ = 0.5,

L2 = 10 000 and β = 0.9.
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Figure 4. Superimposition of normalized vorticity and normalized elastic stress for Wi = 10, L2 = 10 000,
β = 0.9, U∗ = 5 and A∗ = 0.5.

the vorticity bands. In figure 3(b,c) the elastic stress is also present at the periphery of
the large vortices observed in the wake and it affects the roll-up dynamics of the vortices.
However, it is not as prominent as in the region between the counter-rotating large vortices.
With increasing Wi, the magnitude of elastic stress increases and it takes longer for these
stresses to fade out in the wake.

To depict the influence of the elastic stresses on the vorticity structures, we overlay the
elastic stress field on the vorticity plot in figure 4 for Wi = 10, where we observe the largest
magnitude of elastic stress. The opacity of overlaid images is reduced to 50 % to show both
fields clearly. The locations where we observed the vorticity bands in the vorticity plot are
accompanied by large magnitudes of elastic stress. Therefore, we can confirm that the
development of the elastic stress in the wake is the reason behind the appearance of these
structures in the vorticity plots of viscoelastic fluids. The question then arises on whether
these structures have a rotational component or they are just the stretched shear layers.
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Figure 5. Contours of positive Q for (a) Wi = 0 and (b) Wi = 10. For both cases, A∗ = 0.2 and U∗ = 5.

3.2. A new mode of vortex shedding
To confirm that the new structures observed in the wake of the cylinder are vortices, we
plot the contours of Q, the second invariant of the velocity gradient tensor, in the wake.
The Q corresponds to the local balance between the shear strain rate and the vorticity
magnitude. Hunt, Wray & Moin (1988) described an eddy structure as a region with a
positive value of Q since positive Q shows the regions where rotation is dominant over
shear. Here Q is defined as (‖Ω‖2 − ‖S‖2)/2 (Jeong & Hussain 1995), where ‖Ω‖ =
[tr(ΩΩT)]1/2, ‖S‖ = [tr(S ST)]1/2, and S and Ω are the symmetric and antisymmetric
components of the velocity gradient tensor described as S = (∇u + ∇uT)/2 and Ω =
(∇u − ∇uT)/2, respectively. Figure 5 shows the plots of positive Q for the Newtonian
fluid (Wi = 0, figure 5a) and viscoelastic fluid (Wi = 10, figure 5b). In both cases, the
imposed amplitude of oscillations is A∗ = 0.2, and the reduced velocity is U∗ = 5. As
expected, in the Newtonian case, a positive Q is observed in the areas that correspond
to the vortices that are observed in the wake. In the viscoelastic case, positive Q values
are observed both in the areas of large vortices that are observed in the wake and in the
areas corresponding to the vorticity bands, suggesting that these extended bands are in
fact elongated vortices that are shed in the wake, besides the large (primary) vortices.
Therefore, in the wake of the cylinder oscillating in this viscoelastic fluid, we observe
two types of vortex shedding: (i) the primary vortices that are shed from the sides of the
cylinder, similar to those observed in the Newtonian fluids; and (ii) the secondary vortices
that are shed in between the primary vortices and are caused solely by the viscoelasticity
of the fluid.

To understand how these secondary vortices are interacting with the primary vortices
and travel downstream, we consider nine instances during an oscillation cycle as shown in

figure 6. The vorticity plots are shown for these nine instances in figure 6(a–i) and these
instances are shown in one cycle of oscillations in figure 6( j). The sample case shown in
this figure is for A∗ = 0.2. In the figure, vortices rotating in the clockwise direction are
shown in blue and the vortices that rotate in the counterclockwise direction in red. Here,
we focus on the formation of the secondary vortices. Due to elasticity in the fluid, shear
layers are peeled off from the rear stagnation region of the cylinder and are stretched in the
wake between the primary vortices. One such shear layer is marked by (I) in figure 6(a).
In figure 6(a) the red entrained shear layer (marked by (I)) is closer to the cylinder and
a small entrained blue shear layer is also observed underneath the red one, creating a
red-blue vortex pair. The blue primary vortex that is formed in the wake interacts with the
red entrained shear layer and cuts the entrained red shear layer (I), as seen in figure 6(b),
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Figure 6. Normalized vorticity plots at different instances during an oscillation cycle for Wi = 10,
L2 = 10 000, β = 0.9 and A∗ = 0.2.

into two vortices marked by (II) and (III) in figure 6(c). At this point, the entrained blue
shear layer marked as (IV) peels off some part of the red primary vortex marked as (V)
in figure 6(e) and creates a pair of blue-red (blue vortex on top of the red vortex) vortices
marked as (VI) in figure 6( f ). That is how a switch from the initial orientation of red-blue
secondary vortices to blue-red secondary vortices occurs. It is important to note that in the
blue-red vortices marked as (VI), the red one originates from the primary vortex and the
blue one originates from the rear stagnation region. This process then repeats itself with
the entrained blue shear layer marked as (VII) being closer to the cylinder, as shown in

figure 6( f ), and being cut into two vortices (VIII) and (IX) due to its interactions with the
red primary vortex (figure 6g).

To further show that the elasticity in a fluid is responsible for the formation of these
secondary vortices, in figure 7 we show the plots of vorticity and normalized polymeric
stress for both FENE-P and Oldroyd-B (Oldroyd & Wilson 1950) models for the same
system parameters. Clearly, the secondary vortices are observed using both models, with
minor differences in their details. Additionally, in our previous study (Patel et al. 2022) we
conducted simulations of inelastic shear-thinning fluids using the Carreau model where we
did not see such secondary structures in the vorticity plots. This comparison strengthens
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Figure 7. The normalized vorticity (a,b) and the normalized polymeric stress (c,d) for (a,c) the FENE-P

model with L2 = 10 000 and (b,d) the Oldroyd-B model. The system parameters are kept constant at Wi = 10,
β = 0.8, U∗ = 5 and A∗ = 0.5.

(b)(a)

Figure 8. ‘Vortex arm’ representations of the wake of a cylinder forced to oscillate with A∗ = 0.5, U∗ = 5
(a) in a Newtonian fluid, and (b) in a viscoelastic fluid with Wi = 10, β = 0.5, L2 = 10 000.

the claim that elasticity in the fluid is the driving cause of the secondary vortices that we
have observed.

In order to emphasize the differences between the wake of a cylinder forced to oscillate
in a viscoelastic fluid with a cylinder forced to oscillate in the Newtonian fluid, figure 8
represents the ‘vortex arm’ representations of the wakes for two sample cases. This
representation is adopted here following Boersma et al. (2023) to show the time variation
of the wake in a three-dimensional plot (with time in the vertical axis) that freezes the
wake. Here, we have shown two cycles of oscillations. The typical 2S shedding is observed
in the wake of the cylinder in Newtonian fluid that is shown in the plot as two arms that
leave the body in each cycle of oscillations. For the cylinder in the viscoelastic fluid,
however, besides the large vortices that are shed from the two sides of the cylinder, the
secondary vortices are also observed in the region in between the two large vortices.
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3.3. Effect of Wi on the lift force coefficients
When a cylinder is flexibly mounted and allowed to oscillate in the crossflow direction, the
energy can either transfer from the fluid to the structure, causing the oscillations to grow,
or from the cylinder to the fluid, dampening the oscillations. In self-excited oscillations
the energy transfer fluctuates during the oscillations. However, if the cylinder oscillations
are regular and repeatable, the total average power calculated over one oscillation cycle
must be zero to satisfy the conservation of energy. If the average power is positive then

the energy that is being transferred to the cylinder is growing, and vice versa. The average
power will be zero if the oscillation amplitude is constant.

In the case of forced oscillations, however, the cylinder’s oscillation is prescribed.
Therefore, the system can not adjust to different amplitudes to move toward an average

power of zero. In forced oscillations the average power can take positive or negative
values depending on the imposed motion. The region with zero average power in forced
oscillations indicates a region where self-excited oscillations are expected. It is shown
by Dahl (2008) that the expected free vibration regions as predicted from the forced
oscillations are a fine estimate.

The average power over a cycle is defined as the integral of total force times the velocity
over one cycle period. It is normalized to get the average power coefficient (CAP). For
purely crossflow oscillations, the average power coefficient is proportional to the lift force
coefficient in phase with velocity (CLV ); CAP and CLV are directly related by a constant
(CAP = CLV(ωAdim)/(2U∞), where ω is the oscillation frequency in rad s−1 and Adim is
the dimensional oscillation amplitude). In this work, in order to estimate the potential for
the system to undergo oscillations in its interactions with the viscoelastic fluid around it,
we calculate values of CLV , defined as CLV = CL sin(φ), where φ is the phase difference
between the lift force acting on the cylinder and the imposed motion of the cylinder, and
CL is the lift force coefficient and is defined as

CL = 2

ρDlU∞2

∫
[(−pI + τ s + τ p) · n] · j dS, (3.1)

where n is the outward normal unit vector, j is the unit vector in the y direction, l is

the reference length in the z direction and S is the surface area of the cylinder. The lift
coefficients are the amplitudes of the lift coefficient time history calculated as the time

history’s root mean square (r.m.s.) multiplied by
√

2.
The added mass effect can also be determined by calculating the component of the lift

force coefficient that is in phase with acceleration as CLA = −CL cos(φ). The magnitude
of added mass is then given by the total lift force in phase with acceleration divided by the
magnitude of acceleration as

ma =
1
2ρlDU2CLA

Y0(2πf )2
, (3.2)

where Y0 is the dimensional oscillation amplitude and f is the imposed oscillation
frequency. The added mass coefficient is calculated by dividing the added mass by the
mass of the displaced fluid as

Cm = ma

ρV
, (3.3)

where V is the volume of the displaced fluid.
Gopalkrishnan (1993) and Dahl (2008) have generated databases of average power,

lift force coefficient in phase with velocity and added mass coefficient for different
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Figure 9. (a) Lift coefficient in phase with velocity, CLV , and (b) added mass coefficient, Cm, versus the

Weissenberg number, Wi, for Re = 100, L2 = 10 000, β = 0.9, U∗ = 5 and A∗ = 0.5.

reduced velocities and amplitudes for Newtonian fluids, respectively, for a one and two

degree-of-freedom cylinder forced to oscillate in water. Here, we explore how these
coefficients change with the Weissenberg number while keeping other system parameters
such as reduced velocity and the oscillation amplitude constant. We choose U∗ = 5
because it lies in the lock-in range of the VIV response in Newtonian fluids (Williamson
& Govardhan 2004). We also choose an amplitude of A∗ = 0.5. As shown in figure 9(a),
by increasing Wi, CLV decreases initially and then increases slightly for higher values
of Wi, but stays positive for all Wi values. This means that for all these cases, the
energy is transferred from the fluid to the cylinder, which implies that if we allow
the cylinder to oscillate freely in the crossflow direction at U∗ = 5 and with an initial
amplitude of A∗ = 0.5, the amplitude of oscillations will tend to increase, suggesting
that self-excited steady-state oscillations might be observed with higher amplitudes of
oscillations. However, it is important to note that the values of CLV for all viscoelastic cases
are smaller than CLV = 0.15 that is observed in the Newtonian case (Wi = 0). Therefore,
the power that is transferred from the fluid to the cylinder is smaller in viscoelastic
cases compared with the Newtonian case, suggesting that a reduction in the amplitude
of oscillations is possible if the cylinder is allowed to oscillate freely in viscoelastic fluids.
Figure 9(b) shows that the added mass coefficient is negative for all Wi values meaning
that the cylinder feels lighter at U∗ = 5 and A∗ = 0.5, which could positively influence
the self-excited oscillations. The question then arises on how these CLV and Cm values as
well as the overall flow behaviour in the wake change for other prescribed amplitudes and
reduced velocities.

4. The influence of reduced velocity on the wake and flow forces

In order to investigate the influence of reduced velocity on the wake pattern, stress
development and flow forces when the cylinder is forced to oscillate in a viscoelastic

fluid, we keep all system parameters constant at Re = 100, Wi = 10, L2 = 10 000, β = 0.9
and A∗ = 0.5, and vary the reduced velocity, U∗, by varying the oscillation frequency.
A smaller reduced velocity corresponds to a larger oscillation frequency. We choose
Wi = 10 to emphasize the influence of elasticity on the observed behaviour. It ought to
be mentioned here that the reduced velocity is related to the Deborah number, De =
λf (which is defined as the ratio of the polymeric stress relaxation time scale to the
flow deformation time scale), as De = Wi/U∗. As we keep Wi constant in this section,
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Figure 10. Vorticity plots for different reduced velocities: (a) U∗ = 4, (b) U∗ = 5, (c) U∗ = 6, (d) U∗ = 7,
(e) U∗ = 8, ( f ) U∗ = 9. The Deborah number for these cases are (a) De = 2.5, (b) De = 2, (c) De = 1.67,
(d) De = 1.43, (e) De = 1.25, ( f ) De = 1.11. For all these cases, system parameters are kept constant at

Re = 100, Wi = 10, L2 = 10 000, β = 0.9 and A∗ = 0.5.

De and U∗ are inversely proportional. Small Deborah numbers correspond to flows for
which the elastic stresses have sufficient time to become fully developed, while large
Deborah numbers correspond to flows where elastic stresses do not have sufficient time
to reach equilibrium and the flow is dominated by elastic stress transients.

4.1. The influence of U∗ on vortex shedding patterns and the generation of elastic
stresses

The vorticity plots as well as the normalized polymeric stress plots for different reduced
velocities are shown in figures 10 and 11, respectively. In these figures the reduced velocity
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Figure 11. Normalized polymeric stress for different reduced velocities: (a) U∗ = 4, (b) U∗ = 5, (c) U∗ = 6,
(d) U∗ = 7, (e) U∗ = 8, ( f ) U∗ = 9. The Deborah number for all cases are (a) De = 2.5, (b) De = 2,
(c) De = 1.67, (d) De = 1.43, (e) De = 1.25, ( f ) De = 1.11. For all these cases, other system parameters

are kept constant at Re = 100, Wi = 10, L2 = 10 000, β = 0.9 and A∗ = 0.5.

is varied from U∗ = 4 to U∗ = 9, which corresponds to a change in the Deborah number
from De = 2.5 to De = 1.11. Clearly, the shedding pattern, its frequency and the stress
distribution change as the reduced velocity is increased. The vortex shedding frequency
decreases with increasing reduced velocity (decreasing the imposed oscillation frequency)
since the shedding frequency is governed by the frequency of oscillations. The stress
distributions of figure 11 follow a similar trend since regions of high stress are observed
in between the shed vortices. As shown in figure 10(a), the vortices are very close to
each other due to the high shedding frequency. In all cases, the vortices are closely
intertwined due to the elasticity in the fluid. The Deborah number for this case (figure 10a)
is De = 2.5, which means that the fluid stress relaxation time is larger in comparison
with the fluid deformation time, and as a result, the fluid does not have enough time to
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fully develop its elastic stresses before it is deformed. This is observed in figure 11(a),
where the area with a large stress magnitude is small in this case. The large magnitude
of stress occurs in the rolled shear layers of only the first two counter-rotating vortices
closest to the cylinder and does not extend farther downstream. The entrainment of the
secondary vortices is not observed in figure 10(a) because the developed elastic stress is
not strong enough. With increasing reduced velocity, the secondary vortices begin to be
observed as illustrated in figure 10(b), as the stress development in the wake grows. This
growth of the stress continues as the Deborah number is decreased and we move from
figures 11(c) to 11( f ). Longer and thicker branches of large-magnitude elastic stress are
observed for larger reduced velocities, as the stress relaxation time scale becomes smaller
in comparison with the deformation time scale. It is the development of these long and
thick elastic stress tails that delays the interactions between the shear layers separated
from the two sides of the cylinder and causes a delay in shedding of the primary vortices
in the wake of the cylinder at higher reduced velocities. This is observed in the plots of
figure 10 as the primary vortices are elongated to several diameters downstream, and not
shed yet. This behaviour resembles the influence of a flexible splitter plate in the wake

of a cylinder placed in a Newtonian fluid (e.g. Kwon & Choi 1996; Lee & You 2013),
but achieved here without having a physical splitter plate, due to the existing elasticity in
this viscoelastic fluid at smaller Deborah numbers and high enough Weissenberg numbers.
This observation suggests that the interactions of shear layers that are separated from the
two sides of a cylinder can be delayed by generating elastic stresses in the wake, such that
a ‘fluid stress wall’ is created between the two shear layers.

In figure 10 the centre-to-centre distance between counter-rotating vortices remains the
same in the vertical direction for all reduced velocities, as this distance is governed by
the amplitude of the imposed oscillations of the cylinder. However, the overall size of the
wake increases with increasing the reduced velocity, as the size of the tails of the vortices
grows with U∗. This is associated with the growth of elastic stresses with an increase in
U∗. When U∗ is increased (De is decreased), the fluid develops more elastic stresses before
it is deformed, and as a result, the vortices pull apart more vorticity while they are being
shed and create the long elastic tails attached to the vortex core. We call these tails elastic
tails since they are produced as a result of high elastic stresses in these regions. When
these vortices with large elastic tails move downstream and rotate, they spread their tails
wide in the wake and increase the width of the wake.

4.2. The influence of U∗ on the lift force coefficients
The changes in the wake pattern and stress formation for varying reduced velocities are
accompanied by changes in the lift force in phase with velocity, CLV , and the added mass,
Cm. These values are shown in figure 12 for two different oscillation amplitudes, A∗ = 0.3
and A∗ = 0.5. For both amplitudes, the overall trend of changes in CLV and Cm remains the
same: CLV is negative for smaller U∗ values and it increases with increasing U∗, becomes
positive, and reaches a local maximum at a reduced velocity of around U∗ = 5, and then
starts decreasing and becomes negative again. For this set of parameters, the reduced
velocity range where the power goes from the fluid to the structure is very small, as CLV is
positive only for a small range of reduced velocities around U∗ = 5. The CLV magnitudes
are larger for A∗ = 0.3 and the range of U∗ for which we observe the positive values of
CLV is wider. This implies that for self-excited oscillations at Wi = 10, oscillations might
occur for a reduced velocity range of 4.5 < U∗ < 7. As shown in figure 12(b), for both
amplitudes, the added mass coefficient remains negative for all reduced velocities.
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Figure 12. (a) Lift coefficient in phase with velocity and (b) added mass coefficient versus the reduced

velocity. For all these cases, other system parameters are kept constant at Re = 100, Wi = 10, L2 = 10 000
and β = 0.9.

5. The influence of oscillation amplitude on the wake and flow forces

In previous sections we investigated how Wi and U∗ influence the wake and the flow forces

that act on a cylinder forced to oscillate in a viscoelastic flow. In the results of figure 12 we
observed that the amplitude of prescribed oscillations also has an influence on the wake
and flow forces. To investigate this influence further, in this section we vary the amplitude
of oscillations over a range for constant values of the Weissenberg number, Wi = 10, and
the reduced velocity, U∗ = 5.

5.1. The influence of A∗ on the wake and the generation of elastic stresses
Increasing the oscillation amplitude while keeping the oscillation frequency constant
means that the cylinder has to travel faster. Therefore, at higher A∗ values, the rate of
fluid deformation is larger and the time scale of fluid deformation compared with the
stress relaxation becomes smaller. Thus, at higher A∗ values, the elastic stresses are not
developed fully before the fluid is deformed. Figure 13(a) shows the thick and long bands
of elastic stress with large magnitudes. The elastic stress becomes less pronounced with
increasing A∗ as shown in figure 13(a–d). By decomposing the elastic stress into τxx and
τyy components, we find that for small A∗ values τxx is dominant, and for large A∗ values τyy
is dominant. This is also manifested in the plots of figure 13: as the oscillation amplitude
is increased from A∗ = 0.2 to A∗ = 1, the dominant direction of stretching switches from
mainly inline to mainly crossflow.

Figure 14 shows the comparison of vorticity patterns between a Newtonian fluid
(figure 14a–d) and the viscoelastic fluid (figure 14e–h) for different values of A∗. The effect
of the large magnitude of elastic stress at smaller A∗ values is reflected in the vorticity plots
of figure 14(e, f ), where the secondary vortices are clearly observed, and the vorticity
patterns look significantly different from their Newtonian counterparts (figure 14a,b).
However, at larger A∗ values (figure 14g,h), the secondary vortices are not as pronounced,
due to the weak elastic stresses, and therefore, at larger A∗ values for viscoelastic fluids,
the vorticity patterns look more similar to their Newtonian counterparts (figure 14c,d),
although the secondary vortices are still observed for these values of A∗.
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Figure 13. Normalized polymeric stress for different oscillation amplitudes: (a) A∗ = 0.2, (b) A∗ = 0.5,
(c) A∗ = 0.7, (d) A∗ = 1. For all these cases, other system parameters are kept constant at Re = 100, Wi = 10,

L2 = 10 000, β = 0.9 and U∗ = 5.

5.2. The influence of A∗ on the lift force coefficients
Figure 15(a) shows the CLV values for the viscoelastic fluid (Wi = 10) at different
oscillation amplitudes. The values for the Newtonian fluid (Wi = 0) are also given in
the figure as a basis for comparison. For the viscoelastic fluid, CLV is positive at lower
amplitudes of oscillations (A∗ ≤ 0.55), and it becomes negative for larger amplitudes of

oscillations. For Newtonian fluids, CLV is positive for 0.2 < A∗ < 0.55. The amplitude of
CLV is significantly larger for Newtonian fluids than the viscoelastic cases for A∗ < 0.5.
This means that adding elasticity to the fluid causes a reduction in the lift force in-phase
with velocity, which suggests that the amplitude of the self-excited oscillations in the
crossflow direction could decrease due to the elasticity in the flow. Figure 15(b) shows
the added mass coefficients for Newtonian and viscoelastic fluids for different A∗ values.
For all cases, Cm remains negative. The added mass coefficient for the viscoelastic fluid is
smaller than the Newtonian fluid in this case (except for A∗ = 0.2), and in both cases, the
added mass increases as the imposed amplitude of oscillation is increased.

6. The influence of finite extensibility parameter and viscosity ratio on the wake and
flow forces

So far, we have shown that the generation of fluid stress in the wake has a significant
influence on the wake and flow forces that act on the structure. In addition to the relaxation
time of the polymeric solution, there are two other important material parameters that
influence the polymeric stress generation and the wake patterns. These parameters are the
square of polymer finite extensibility, L2, and the viscosity ratio, β. In this section we
investigate their influence on the observed wake and flow forces.
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Figure 15. (a) Lift coefficient in phase with velocity and (b) added mass coefficient versus the oscillation
amplitude. The other system parameters are kept constant at Re = 100 and U∗ = 5 for both Newtonian and
viscoelastic fluids. The viscoelastic fluid parameters are Wi = 10, L2 = 10 000 and β = 0.9.
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Figure 16. The normalized vorticity (a,b) and the normalized polymeric stress (c,d) for (a,c) L2 = 100,
(b,d) L2 = 10 000. For all these cases, other system parameters are kept constant at Wi = 10, β = 0.9, U∗ = 5
and A∗ = 0.3.

6.1. The influence of finite extensibility parameter squared, L2

So far we have considered a constant value of the finite extensibility parameter, L2 =
10 000. The finite extensibility parameter is defined as the ratio of the fully extended
dumbbell length to the r.m.s. end-to-end separation of the polymer chain under equilibrium

conditions. Here, we consider two different finite extensibility values: L2 = 100 and

L2 = 10 000. The Weissenberg number and the viscosity ratio are kept constant at Wi = 10
and β = 0.9, respectively, for both cases. In the wake of the cylinder the flow is primarily
extensional in nature. In this region, the extension rate can be quite high. For both of these
cases, the extension rate was calculated to be approximately ε̇ = (∂u/∂x − ∂v/∂y)/2 ≈
10s−1. The Weissenberg number based on the extension rate thus becomes Wiext = λε̇ ≈
10. Because Wiext > 1/2, the polymer chains go through a coil-stretch transition and
develop significant elastic stress in the wake of the cylinder as the chains elongate, as
seen in figure 16. Based on the flow field, we can calculate the total accumulated strain by
multiplying the extension rate by the residence time of the polymer in extensional flow,
ε = ε̇t. For both the L2 = 100 and L2 = 10 000 cases studied here, the total accumulated
strain is sufficient to reach the high-strain plateau of the transient extensional viscosity. In
the high-strain plateau region the maximum extensional viscosity for L2 = 10 000 is two

orders of magnitude larger than that for L2 = 100, since the extensional viscosity for a
FENE-P fluid is known to scale with L2. If, as we hypothesize, the changes in the wake
that we have observed so far are due to the presence of elastic stress in the fluid, these
changes will be less significant for fluids with smaller finite extensibility, i.e. L2 = 100.
This is clearly evident in the plots of figure 16, where the vorticity patterns (figure 16a,b)
as well as elastic stress distributions (figure 16c,d) are shown in the wake for L2 = 100
(upper row) and L2 = 10 000 (lower row). It is clear from these plots that the secondary
vortices are not present in the case of L2 = 100, but are clearly present when the finite
extensibility is increased to L2 = 10 000. For L2 = 100, the structure in the wake is more
similar to the Newtonian or low-Weissenberg-number limit than it is to the highly elastic,

L2 = 10 000, case. The changes to the structure in the wake can be directly related to
changes in elastic stress. As seen in figure 16(c,d), increasing the value of the finite
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Figure 17. The normalized vorticity (a–e) and the normalized polymeric stress ( f –j) for (a, f ) β = 0.9, (b,g)
β = 0.8, (c,h) β = 0.7, (d,i) β = 0.6, (e, j) β = 0.5. For all these cases, other system parameters are kept

constant at Wi = 10, L2 = 10 000, U∗ = 5 and A∗ = 0.5.

extensibility from L2 = 100 to L2 = 10 000 results in larger values of elastic stress in
the wake of the cylinder along with an increase in the distance the elastic stress persists
downstream of the cylinder.

6.2. The influence of viscosity ratio, β

The concentration of the polymer in the solution is another important material parameter
that affects the generation of elastic stresses and alters the wake patterns. So far we have
considered a dilute polymer solution that has a viscosity ratio of β = 0.9, and we have
observed that even a dilute solution can have a significant influence on the observed wake
and measured flow forces. Then the question arises on how the wake and the flow forces
are affected if a semi-dilute or a concentrated polymer solution is used as the working
fluid, where the elastic effects will be accentuated. In this section we increase the polymer
concentration by decreasing the viscosity ratio from β = 0.9 to β = 0.5 in increments of
0.1 while keeping other system parameters constant at the Reynolds number of Re = 100,
the Weissenberg number of Wi = 10, the finite extensibility of L2 = 10 000, the reduced
velocity of U∗ = 5 and the oscillation amplitude of A∗ = 0.5.

The subplots on the left in figure 17 show the vorticity plots and the subplots on the
right show the polymeric stress magnitude for different viscosity ratios. With increasing
polymer concentration, the bands with a large magnitude of elastic stress increase in
thickness as well as in their extent in the wake. When the viscosity ratio is decreased from
β = 0.9 to β = 0.5, the largest magnitude of normalized elastic stress increases almost
threefold: from 1600 for β = 0.9 to 4200 for β = 0.5. In figure 17( f –j) the colour bar
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Figure 18. (a) Lift coefficient in phase with velocity and (b) added mass coefficient versus the viscosity ratio.

For all these cases, other system parameters are kept constant at Re = 100, Wi = 10, L2 = 10 000, U∗ = 5 and
A∗ = 0.5.

is restricted to a maximum of 150 to enhance the details of polymeric stress patterns.
The influence of increased polymeric stress on the vorticity patterns is clearly observed in
figure 17(a–e). For β = 0.9 (figure 17a), the secondary vortices do not travel beyond the
second pair of primary vortices and they are weak since the bands of large-magnitude
elastic stress are not very strong (figure 17f ). For this case (figure 17a), the far wake
resembles that of a case with Newtonian fluids. However, as the polymer concentration
increases, the extent of the secondary vortices increases in the wake. For β = 0.5
(figure 17e), the secondary vortices travel as far as the fifth pair of primary vortices.
Close to the cylinder, the secondary vortices become stronger with increasing polymer
concentration. This increased polymeric stress results in a major change in the type of
vortex that is observed: in each half-cycle, the primary and secondary vortices that are shed
from the same side are merged into a pair of vortices, which results in a shedding pattern
similar to the 2P shedding (two pairs of vortices are shed in each cycle of oscillations) that
is observed in VIV responses in Newtonian fluids under certain conditions (Williamson
& Govardhan 2004). Here, this 2P shedding is caused solely due to the presence of
extensional stress in the wake. In this pair of vortices marked by (I) in figure 17(e), the
large blue vortex is the primary vortex and the small red vortex is the secondary red vortex
that merges with another red vortex that is peeled off from the primary red vortex. Due to
the increased elastic stress, the secondary red vortex rolls up with the primary blue vortex
and creates a pair of vortices. This pair of vortices is created due to elasto-inertial effects
in the flow where one vortex in the pair is generated due to inertial effects and the other
vortex is generated due to the elasticity of the fluid. This pair of vortices is very short lived
as the weaker vortex (the red vortex in circle (I) and the blue vortex marked in circle (II))
dissipates relatively quickly as the extensional stress relaxes while travelling downstream.
Therefore, the vortex shedding further downstream follows a 2S pattern.

To investigate how the change in the wake for increased concentration of polymer
influences the flow forces that act on the cylinder, we plot the lift coefficient in phase with
velocity, CLV , and the added mass coefficient, Cm, for different viscosity ratios in figure 18.
A sudden drop in CLV is observed as the viscosity ratio is decreased to β ≤ 0.7. This has
important implications for the ability of increased polymer concentration in suppressing
VIV. For larger β values, CLV is positive and the power is transferred from the fluid to
the structure, which implies it is possible to obtain self-excited oscillations for a relatively
dilute polymer solution if the cylinder is allowed to oscillate in the crossflow direction.
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For smaller values of β, CLV becomes negative and stays negative, which suggests that for
high concentrations of polymer, power transfers from the structure to the fluid, which has
dampening effects for the self-excited oscillations of the cylinder, and suggests suppression
of VIV for these parameters in a self-excited system. The added mass coefficient shown in
figure 18(b) stays negative for all values of β considered here. The plots of figure 18 then
suggest that by adding enough elasticity (hereby decreasing β) we can potentially suppress
VIV completely.

7. Conclusions

We have numerically studied the wake and flow forces that act on a cylinder placed in the
flow of a viscoelastic fluid at Re = 100 and forced to oscillate in the crossflow direction.
We investigate the influence of important material parameters, namely, the relaxation time,
the finite extensibility parameter and the viscosity ratio of the polymer solution on the

generation of polymeric stress, vorticity patterns and flow forces acting on the cylinder,
over a range of imposed amplitudes and frequencies of oscillations to explore the interplay
between the rate of fluid deformation and the generation of elastic stresses.

Instead of exploring all possible combinations of system parameters in the
five-dimensional parameter space that governs the response of this system, we explore
different dimensions of the space, one at a time. We start by exploring the influence
of viscoelasticity on the system by varying the Weissenberg number from Wi = 0.01
(very close to a Newtonian fluid) to Wi = 10 by changing the relaxation time. For this
parameter sweep, we keep the other parameters constant at β = 0.9, L2 = 10 000, U∗ = 5
and A∗ = 0.5. For small Wi, due to the small stress relaxation time scale, the elastic effects
are not enough to generate elastic stresses in the wake and affect the structure of the
vortices. However, at large Wi, the generated elastic stresses sustain for a longer distance
in the wake and influence the vorticity patterns. Besides the primary vortices that are
shed from the two sides of the cylinder, for large Wi numbers, we observe stretched bands
of vorticity originating from the rear stagnation region of the cylinder and extending in
the wake, which are then shed as smaller secondary vortices that remain in the space in
between the two primary vortices. We confirm this new mode of shedding, which is purely
due to the viscoelasticity of the fluid, by plotting the Q-criterion. For all these cases, we
observe a positive CLV , suggesting that the fluid has the potential to excite the structure in
a self-excited setting.

Then, we keep the Weissenberg number constant at Wi = 10 (since we observed a
change in the wake due to the viscoelasticity of the fluid at this Wi number), and explore
the influence of the imposed frequency (represented in the form of a reduced velocity, U∗)
on the wake and flow forces. By changing the reduced velocity from U∗ = 4 to U∗ = 9, the
Deborah number is also changed from De = 2.5 to De = 1.11. At De = 2.5 (U∗ = 4), the
extent of the large-magnitude elastic stresses is smaller than that of De = 1.11 (U∗ = 9)
because the fluid deformation occurs faster than the development of elastic stresses.
Despite oscillating at the same amplitude, the vertical span of the vortices increases with
increasing reduced velocity (decreasing Deborah number) due to elongated elastic tails of
the vortices caused by the large elastic stresses. We observe a change in the CLV values
from negative to positive and back to negative as U∗ is varied, suggesting that the flow can
both excite and dampen the oscillations as the reduced velocity is changed. The ranges for
excitation and dampening also depend on the imposed amplitude of oscillations.

To quantify how the amplitude of oscillations influences the wake and flow forces, we
vary the amplitude from A∗ = 0.2 to A∗ = 1. By increasing the amplitude of imposed
oscillations, we observe that the bands of large-magnitude elastic stresses decrease in
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size as well as in their extent, since the cylinder has to travel faster at larger oscillation
amplitudes, which increases the fluid deformation rate. The secondary vortices observed
at smaller oscillation amplitudes disappear when the amplitude increases. We also observe
that the CLV values stay positive for smaller amplitudes and move to the negative range
for larger amplitudes of oscillations, suggesting the dampening of oscillations in the
self-excited setting when the cylinder is initiated to oscillate at large amplitudes.

We show that if the finite extensibility value is decreased from L2 = 10 000 to L2 = 100,
the magnitude and the extent of elastic stress decrease, and the secondary vortices that
are observed in the case of L2 = 10 000 disappear. We also show that if the viscosity
ratio is decreased from β = 0.9 (dilute) to β = 0.5 (concentrated), the bands with a
large magnitude of elastic stress increase in thickness as well as in their extent, and
the secondary vortices travel farther in the wake. A short-lived 2P shedding pattern
is observed for concentrated polymer solutions as the stretched secondary vortices roll
up with the primary vortices. The CLV values stay negative for smaller viscosity ratios
(concentrated polymer solutions), suggesting that the self-excited oscillations are expected
to be suppressed for these polymer solutions.

Overall, we show that as the contribution of elasticity is increased in the fluid, the
observed wake deviates more significantly from the wake in the Newtonian fluid case.
Secondary vortices, which are purely a result of increased elasticity, are shed in the wake.
These secondary vortices travel downstream either as independent vortices or merge into
the primary vortices that are typically observed in the wake of a cylinder and create pairs
of vortices in cases of higher elasticity in the wake. The higher elasticity also implies
smaller amplitudes of oscillations and a narrower lock-in range in a self-excited system
based on the variations of CLV when the imposed amplitude and frequency of oscillations
are varied. These results also suggest that complete suppression of VIV is expected if
enough elasticity is injected into a Newtonian fluid.
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