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ABSTRACT 

 
Active back-support exoskeletons are increasingly being perceived as potential solutions to 

the ergonomic risks of construction work. However, users of exoskeletons are susceptible to 
increased cognitive load could thwart the benefits of the device. Using self-reported cognitive 
load and electroencephalogram (EEG) data, this study investigated the detection of the cognitive 
load of users of an active back-support exoskeleton. EEG data and perceived ratings of cognitive 
load from participants performing flooring tasks are trained with several classifiers. The 
performance of the best classifier, Ensemble, improved using synthetic minority oversampling 
technique. This study contributes to existing knowledge by providing evidence of the extent to 
which cognitive load can be detected from the brain activity of exoskeleton users. The study also 
advances knowledge of the extent to which synthetic data could enhance the detection of 
cognitive load. Therefore, the study opens doors for improving exoskeleton designs to better 
support human cognition and performance. 
 
INTRODUCTION  
 

Wearable robots, in the form of back-support exoskeletons, have the potential to reduce 
work-related musculoskeletal disorders in the construction industry. These exoskeletons can 
augment a user's body and provide support while performing physically demanding tasks that are 
associated with abnormal postures, forceful exertion, bending or twisting of the back, and 
repetitive movements (CDCP 2023). Active back-support exoskeletons, in particular, are 
effective in reducing the risk of back-related disorders by reducing the load on the user's back 
muscles and joints. These devices can be particularly useful for construction workers who 
perform repetitive or strenuous tasks, such as lifting heavy loads or operating power tools, which 
can increase the risk of developing back-related disorders.  

Despite the potential of active back-support exoskeletons to reduce back disorders, there are 
several concerns associated with the use of the device in the work environment that can increase 
the cognitive load of a user. These concerns stem from difficulty working in confined spaces 
(Jebelli, Hwang et al. 2018), fall risks due to the additional weight of the device (Capitani, 
Bianchi et al. 2021), pressure or discomfort to body parts (Ogunseiju, Gonsalves et al. 2021), 
restrictions in movement (Ogunseiju, Gonsalves et al. 2021), catch and snag risks (Okpala, Nnaji 
et al. 2022), thermal discomfort (Liu, Li et al. 2021) and difficulty adjusting to fit (Fox, Aranko 
et al. 2019). Furthermore, unequal loading and balancing of body parts due to exoskeleton use 
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can cause users to be more aware of the device and the task they are performing, leading to an 
increase in cognitive load (Fox, Aranko et al. 2019). Prolonged increases in cognitive load can 
result in distraction, emotional distress, anxiety, and stress, which can negatively impact a 
worker's overall well-being and performance Zhu, Weston et al. (2021). 

Electroencephalogram (EEG) signals can help infer physiological and psychological states 
which can enhance detection of cognitive load. EEG produces electrical signals which represent 
brain activity in response to external and internal stimuli (Jebelli, Hwang et al. 2018). By 
detecting the cognitive load of users of exoskeletons, adjustments can be made to the device to 
optimize performance and reduce the risk of cognitive overload. This could also inform the 
contextual use of the device, length of usage, and appropriate training to support the users. 
Therefore, the objective of the study is to investigate the extent to which cognitive loads of users 
of active back-support exoskeletons can be recognized from EEG data. Supervised machine 
learning algorithms are employed for the detection. The ability of the Synthetic Minority 
Oversampling Technique to enhance the performance of the machine learning models is 
presented. The results of this study highlight the potential of supervised learning classifiers in 
facilitating the adaptation of exoskeleton designs to users’ cognitive loads. Given the increasing 
rate of back-related disorders associated with construction activities such as flooring, this study 
used simulated flooring work as a case study.  
 
BACKGROUND  
 

According to Zhu, Weston et al. (2021), the presence of physical risks or environmental and 
situational disturbances will neuro-cognitively burden users of exoskeletons and could ultimately 
reduce the benefits associated with the device. Recently, studies have explored the physical risks 
associated with exoskeletons (Huysamen, de Looze et al. 2018, von Glinski, Yilmaz et al. 2019, 
Kim, Nussbaum et al. 2021, Linnenberg and Weidner 2022). For example, Huysamen, de Looze 
et al. (2018) assessed the perceived pressure, contact pressure, and subjective usability of an 
active back-support exoskeleton for dynamic lifting and lowering handling tasks. The results 
showed that the participants experienced pressure on the back and thigh while using the device. 
Additionally, there was strong contact pressure on the upper leg, and this caused a restriction in 
their movement. von Glinski, Yilmaz et al. (2019) evaluated discomfort while using the HAL 
active back-support exoskeleton for repetitive lifting tasks. The participants reported discomfort 
due to pressure in the low back area. Linnenberg and Weidner (2022) examined fatigue, distress 
pain, and arms drop while using four exoskeletons, including an active exoskeleton, for an 
overhead task. The participants experienced fatigue and pain in the upper arm due to the weight 
and anthropometric fit of the devices. The exoskeletons also interfered with their arms which 
could have caused a restriction in blood flow, leading to fatigue. Kim, Nussbaum et al. (2021) 
assessed the usability and perceived rate of exertion of an active back-support exoskeleton for 
lifting tasks. The participants perceived a higher rate of exertion while using the exoskeleton. 
There were also usability issues related to the weight of the device. The aforementioned risks 
could negatively impact worker’s cognitive load.  

Over the years, researchers have demonstrated the efficacy of machine learning for 
classifying cognitive loads from EEG data. For instance, Liu, Habibnezhad et al. (2021) assessed 
cognitive load for brick-laying activity involving human-robot collaboration. The authors 
classified cognitive load using EEG data collected from participants (n=14) with different levels 
of cognitive load. The data was labeled using the results of the NASA-Task Load Index (NASA 
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TLX), and a 9-point rating scale (RS9). Multilayer perceptron (MLP) Neural Network was the 
best-performing classifier with an accuracy of 81.9%. Using Multi-Attribute Task Battery 
(MATB)-II task, Salaken, Hettiarachchi et al. (2020) classified cognitive load using EEG data of 
five participants (n=5). The task was simulated in two different stages, representing low, 
medium, and high cognitive loads. NASA TLX was also employed for labeling the EEG data. A 
classification accuracy of 95% was achieved with the Random Forest classifier. Zarjam, Epps et 
al. (2015) investigated the detection of cognitive load levels during a human-computer 
interaction-related task involving n=12 participants. The participants’ EEG data was labeled 
using levels of cognitive tasks ranging from level 1 to level 7 (i.e., very low to extremely high). 
MLP structure of artificial neural network performed best with an accuracy of 98.8%. Despite 
the risks of increased cognitive loads, scarce studies are exploring the use of machine learning 
frameworks for automated detection of cognitive loads during exoskeleton-use for construction-
related tasks. 
  
METHOD  
 

This study classified the cognitive load of the users of an active back-support exoskeleton for 
simulated construction flooring work. Both subjective and objective evaluation approaches, 
using NASA TLX and EEG brain signals respectively, were employed in this study. EEG data 
are processed, labeled with NASA TLX data, and classified using machine learning algorithms 
to predict the cognitive loads of users of an active exoskeleton. Figure 1 presents an overview of 
the methodology.  

 

 
 

Figure 1. Overview of methodology. 
 

Experimental Design. An experiment, involving a simulated flooring task, was conducted 
with participants (n=8) wearing an active back-support exoskeleton (Figure 2) and an EEG 
device (Figure 3). The participants are students from construction-related programs at Virginia 
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Tech. The mean and standard deviation of the participant’s demographic information are age: 30 
± 6 years, weight: 79.8kg ± 15.8, and height: 1.84m ± 0.1. The experiment was conducted with 
the approval of the Virginia Tech Institutional Regulation Board (IRB: 19-796). The flooring 
task consists of lifting, placing, and installing subtasks. The participants were asked to lift six 
stacks of timber tiles with each stack totaling twenty timber tiles, place the tiles beside each of 
the bays, and install the tiles in the bays (Figure 4). This process is performed in six cycles, i.e., 
six lifting cycles, six placing cycles, and six installation cycles. Before commencing the study, 
the participants were given orientations on how the exoskeleton works and how to adapt the 
devices to their preferences. The participants had the opportunity to practice and be comfortable 
with the device before commencing the experiment. The EEG device was used to record the 
participants’ brain signals. This was captured across the 14 channels of the device at a frequency 
of 256Hz. At the end of the study, the participants provided ratings of their cognitive load, via 
the NASA TLX questionnaire, on a scale of 0 to 20 where ‘0’ represents very low and ‘20’ 
represents very high.  

 

 
 

Figure 2. Cray X Exoskeleton 

 
 
 

 
 

Figure 3. EEG 
 

 
 

Figure 4. Wooden frame (left) and installation of timber floor tiles (right) 
 

Data Collection 
 

Electroencephalography. EEG is a non-invasive technique for collecting and studying the 
electrical activity of the brain through electrodes attached to various portions of the scalp (Cohen 
2017). The brain, which controls the central nervous system, produces electrical signals of brain 
waves at different frequencies such as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13Hz), beta (13-
30Hz), and gamma (>30Hz) (Hwang, Jebelli et al. 2018). According to Hwang et al. (2018), the 
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delta band is produced during deep sleep, the beta band corresponds to powered thinking, 
alertness, concentration, and attentional processing, and the gamma band involves high mental 
activity and information processing. The EEG device used in this study is a 14-channel EPOCx 
by EMOTIV. 

NASA TLX. The participants completed the NASA-TLX questionnaire to provide subjective 
ratings on their cognitive workload while performing the task. The questionnaire was used to 
capture five subscales of the NASA TLX i.e., mental demand, physical demand, performance, 
effort, and frustration, which were employed to compute the cognitive load of the participants. 
Mental demand (MD) measures how much brain activity such as looking, thinking, and 
remembering is needed while using the exoskeleton. Physical demand (PD) measures the 
participants’ level of exertion while performing the task. Performance (P) measures how 
successful the participants felt while executing the task. Effort (E) on the other hand, measures 
how difficult the participants must work to seek and understand how to use the exoskeleton for 
the task, and Frustration (F) measures how irritated discouraged, or stressed learners feel when 
interacting with an exoskeleton to perform the flooring task (Shayesteh and Jebelli 2022). 
 
Data Preprocessing 
 

Artifacts removal. EEG data are prone to artifact contamination, especially data obtained 
when subjects are exercising physical body movement in activities like construction work 
(Jebelli, Hwang et al. 2018). These artifacts significantly affect the quality of the signal. These 
artifacts can be classified as intrinsic and extrinsic artifacts (Jebelli, Hwang et al. 2018). The 
intrinsic artifacts are generated by subjects' bodies through eye movements, blinking, and muscle 
movement. In contrast, the extrinsic artifacts are generated by external factors such as wiring 
noise, environmental noise, and electrode popping. The study employed the framework 
developed by Jebelli, Hwang et al. (2018) to process the EEG signal obtained during the 
simulated task. EEGLAB was also used to remove the artifacts. The raw EEG data were fed into 
EEGLAB, and a channel location file developed by the authors was uploaded to map out and 
structure the EEG data. To remove the extrinsic artifacts, a bandpass filter was applied between 
frequencies of 0.5-65 Hz (Hwang, Jebelli et al. 2018). A notch filter was also applied at a 
frequency of 60 Hz to remove the noise from the electrode wire. 

The intrinsic artifacts were removed using independent component analysis (ICA) (Hwang, 
Jebelli et al. 2018, Jeon and Cai 2021). The filtered EEG data was decomposed by ICA using the 
Extended Infomax method recommended by Delorme and Makeig (2004). The component was 
decomposed into 14 components and displayed using a scalp heat map. The components with 
intrinsic artifacts were removed using the ICA. 

Data Processing 
 

Features extraction. The choice of features for training machine learning classifiers is critical 
to improving the performance of classification models. Grounded in similar studies that classified 
cognitive load (Medeiros et al. 2021 and Liu et al. 2021), time and frequency domain features were 
extracted from the processed EEG data. The time domain features include the maximum value of 
the EEG amplitude (peak), location of maximum EEG amplitude (peak location), time between 
EEG signal peaks (peak to peak), skewness, mean amplitude, standard deviation, variance, 
kurtosis, and root mean squares. The frequency domain features are theta mean power, delta mean 
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power, beta mean power, alpha mean power, and average peak among EEG frequency of the signal 
power. 196 features were extracted from the EEG data for the 14 channels.  

Data Labeling. The aforementioned features were grouped into cognitive load levels based 
on the results of the feedback obtained from the participants via the NASA TLX questionnaire. 
NASA TLX has been leveraged for labeling cognitive load levels for machine learning 
classifications (Bilalpur, Kankanhalli et al. 2018, Liu, Habibnezhad et al. 2021). NASA TLX 
score of 0 to 50 was considered low, and a score of 51 to 100 was considered high (Bilalpur, 
Kankanhalli et al. 2018). Out of the eight participants, two participants had a low cognitive load 
and the remaining six participants had a high cognitive load. Their corresponding EEG data were 
labeled accordingly. 

SMOTE data augmentation. The suitability of SMOTE data augmentation for data 
balancing has been established by previous studies (Jiang, Lu et al. 2016). Due to the imbalanced 
nature of the datasets, the SMOTE (Awada, Srour et al. 2021) was employed to balance the EEG 
data. For example in Table 1, the ratio of the raw dataset of the classes (i.e., High cognitive 
load:Low cognitive load) is 1:4. Additional datasets were generated with SMOTE algorithm to 
match the datasets of the minority class (i.e., low cognitive load) with the class with the higher 
datasets (i.e., the high cognitive load).  

 
Table 1. Raw and SMOTE augmented data for each class. 

 
 

Classes 
Un-augmented data SMOTE 

Raw Data Training Data (80%) Testing Data (20%) (Training data) 
High cognitive load 1356 1085 271 4488 
Low cognitive load 5610 4488 1122 4488 

 
Data Analysis 
 

Classification. The labeled EEG data were split into training and testing using 80:20 ratios 
(see Table 1) (Wang, Xu et al. 2006). The training data (i.e., the raw and SMOTE augmented 
data) for both cognitive load levels were trained with several classifiers such as Support Vector 
Machine, Neural Networks, K-Nearest Neighbor, Discriminant, Tree, Kernel, Binary GLM 
Logistic Regression, and Ensemble, to determine the classifiers that would provide the best 
performance. MATLAB R2023a, installed on a machine with NVIDIA GeForce GTX 1060 GPU 
and 16GB memory, was employed for the prediction. Holdout and 5-fold cross-validation were 
employed to reduce the overfitting of machine learning models (Mahmoodzadeh, Mohammadi et 
al. 2020). 

Performance measures. The performance of the classifiers with the highest accuracy was 
evaluated using accuracy, precision, recall, and F1-score. Accuracy represents the number of 
correctly predicted instances of all classes out of the total number of data instances. Precision 
represents the proportion of positive class predictions that belong to the positive class. Low 
precision signifies that there are more false predictions than true predictions in a class. The recall 
represents the proportion of true positives across all class samples. Recall illustrates how 
accurately a model can predict true classes or the percentage of classes that are true. Low recall 
shows that there are more false negatives than true positives in a class. F1-score combines the 
effect of precision and recall. A high F1 score indicates high precision and recall values. The 
following parameters were determined to estimate these metrics: true positive, true negative, 
false positive, and false negative. 
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RESULTS  

This section presents the extent to which cognitive loads of exoskeleton users can be 
recognized by comparing the performance of the raw and SMOTE-augmented EEG data. While 
the raw and SMOTE augmented data were trained on 9 classifiers, Ensemble emerged as the top-
performing classifier. The performance of the classifier is described as follows:  

Performance of the Ensemble classifier. Table 2 shows the overall performance of all the 
trained classifiers with Ensemble and Kernel having the highest and lowest accuracies 
respectively. Figures 5 and 6 show the accuracy, precision, recall, and F1-score of the raw and 
SMOTE augmented datasets of the Ensemble classifier in predicting the cognitive load levels 
during exoskeleton use. From Figure 5, an increase in the accuracy of the classifier was observed 
with the SMOTE augmented data for the high cognitive load class. With the SMOTE augmented 
data, the classifier achieved an accuracy of 99.55%, which is higher compared to the raw data 
with 98.35%. The SMOTE augmented data had higher values of precision, recall, and F1 score 
compared with the raw data i.e., about 3.09%, 4.46%, and 3.78% increase (respectively) was 
observed with the SMOTE augmented data. Similar increases were observed in the performance 
of the Ensemble classifier in predicting the low cognitive load class. From Figure 6, the use of 
the SMOTE augmented data resulted in an increase of about 1%, 0.16%, and 0.58% in the values 
of the precision, recall, and F1-score, respectively. 

 
Table 2. Overall performance of trained classifiers 

 

Classifiers 
Accuracy 

Original SMOTE 
Ensemble 98.35% 99.55% 
Neural Network 98.26% 99.32% 
SVM 98.24% 99.48% 
Binary GLM Logistic Regression 96.93% 98.79% 
KNN 96.86% 99.25% 
Tree 95.85% 98.81% 
Discriminant 94.17% 98.95% 
Naïve Bayes 85.03% 97.46% 
Kernel 84.60% 97.63% 

 

 

Figure 5. Comparison of performance of raw and SMOTE data for high cognitive load. 
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Figure 6. Comparison of performance of raw and SMOTE data for low cognitive load. 
 

Confusion matrix. The confusion matrixes show the correctly and wrongly predicted 
classes. Figure 7 shows the confusion matrix for the prediction of the cognitive load classes (i.e., 
high cognitive load (HCL) and low cognitive load (LCL)) using the raw data. 96.1% of the total 
high cognitive load was correctly predicted as high cognitive load while 3.9% was misclassified 
as low cognitive load. Also, 98.9% of the total low cognitive load was correctly predicted as low 
cognitive load while 1.1% was wrongly predicted as high cognitive load. The confusion matrix 
that classifies the SMOTE augmented data into the cognitive load classes is shown in Figure 8. 
99.2% of the total high cognitive loads were correctly predicted as high cognitive load while 
0.80% was misclassified as low cognitive load. Moreover, 99.9% of the total low cognitive load 
was correctly predicted as low cognitive load while 0.1% was wrongly predicted as high 
cognitive load.  

 

 
 

FIGURE 7. Confusion matrix for Raw Data 

 
 

FIGURE 8. Confusion matrix for 
SMOTE data 

 
CONCLUSION AND FUTURE WORK  
 

Physical risks, such as discomfort to the body parts, anthropometric fit, additional weight, 
thermal discomfort, movement restrictions, and catch and snags, could trigger increases in 
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cognitive load while using exoskeletons. A prolonged increase in cognitive load could 
undermine the benefits of exoskeletons. Thus, detection of cognitive load levels while using 
exoskeletons could inform contextual use or applications of the device, length of usage, and 
appropriate training to support the users. Moreover, this could also inform investigations into 
designs that are more adaptive to construction work and work environment. This study explored 
the use of machine learning for detecting cognitive loads of users of active back-support 
exoskeletons from EEG signals of their brain activity. EEG signals obtained from participants 
performing flooring tasks with an active back-support exoskeleton are trained using supervised 
learning classifiers. The study revealed the Ensemble classifier as the best-performing classifier. 
The performance of the resulting model improved when trained on the SMOTE augmented data, 
displaying the suitability of synthetic data obtained via SMOTE. The resulting model motivates 
the redesign of exoskeletons with EEG capabilities to better support human cognition and 
performance. This study contributes to the scarce literature on the potential of detecting cognitive 
load levels of users of exoskeletons from EEG data.  
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