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Abstract—We have pursued the use of polymer-networked
engineered nanoparticles as a candidate material capable of
retaining information or perhaps even processing information
in some prescribed way. Such operations would be of use for
the neuromorphic engineering of materials that can compute
intrinsically—that is, that they are in no way subject to a
von Neumann architecture—and they have been identified as
autonomous computing materials. Using trajectories integrated
to much longer time steps than previously observed, we can now
confirm that the response of the polymer-networked engineered
nanoparticle arrays are highly sensitive to external perturbations.
That is, the specific internal connections around given nanopar-
ticles can be assigned to states useful for information processing,
and the variations in their physical properties can result in
specific responses allowing the state to be read. Moreover, their
resulting equilibrium properties also depend on such external
driving, and hence are subject to control which is a minimal
requirement for these materials to be candidates for autonomous
computing. We also demonstrate that using long polymer chains
can help regulate the networks structures by increasing the 1st
nearest links and reducing other links.

Index Terms—engineered nanoparticles, materials design,
coarse-grained dynamics, computing primitives

I. INTRODUCTION

Over the last decade, it has become clear that conventional
very-large-scale integration (VLSI) is reaching key scaling
limits [1], [2], [3], [4]. Meanwhile, the energy efficiency of
human-engineered electronic devices is many orders of magni-
tude lower as compared to biological computational structures.
The pursuit of devices that are capable of mimicking brain
function often emphasizing the processing of spike trains,
has led to the many successes in the field of neuromorphic
engineering [5], [6], [7]. The discovery of memristors [8], [9]
completed the scope of possible basic electronic components
that can relate voltage, charge current, and flux bilinearly to
each other. It has been critical to the design of modern-day
neuromorphic chips [10], [11], [12], [9], [13], [14]. However,
this line of research has mostly remained tied to the use of
semiconductor components that are invariably limited by the
lengths that cannot be smaller than the width spanned by a
few silicon atoms.

We therefore need a new class of materials that can enable
computing but which are not bound by the rules of conven-
tional VLSI, and we are inspired by the fact that the brain
is an existence proof for such low-energy consumption and
high-computing speed materials that do not rely on a von
Neumann architecture [15], [16], as it operates at exascale
speeds while consuming about 20 W energy [17]. In our
recent papers [18], [19], we demonstrated that two and three
dimensional arrays of polymer connected gold nanoparticles
(AuNPs) could exhibit emergent structure in response to
external fields, and posited that these arrays could be used as
autonomous computing materials (ACMs) [16]. In these 2D
engineered nanoparticle (ENP) array, connections are formed
primarily by Coulombic forces, which makes the network
structure reprogrammable and volatile. In the current work, we
show the network dynamics of the 2D square (SQ) ENP array
at long-enough simulation times. This conclusion is accessible
here because we report coarse-grained (dissipative particle
dynamics (DPD)) simulations integrated to a much longer
time—viz 400 million steps—than previously reported—viz
60 million steps—by nearly an order of magnitude. The
network structures can be mapped onto different physical
properties and data states, which is necessary for processing
information. We also demonstrate how the network connectiv-
ity and other emergent properties are affected by the nature
and number of polymers linking the AuNPs.

II. SIMULATION MODEL

A. 2D SQ ENP array

The details of the DPD simulation model construction can
be found in our previous work [18], [19]. In brief, each ENP
has a 4 nm diameter AuNP core and a polymer poly(allylamine
hydrochloride) (PAH) with 200 repeating units. The coarse-
grained (CG) AuNP model assumes 400 Au atoms at the
surface, and CG PAH uses 2 particles to represent each
repeating unit. We set the charge of 200 Au atoms—selected
uniformly—to -1 e to represent the citrate capped AuNP
(cit-AuNP) on the surface[20], [21], [22], [23]. Each PAH
chain with 200 repeating units is fully ionized and each
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Fig. 1. ENP in 2D SQ regular array with a distance of 10 nm between two
ENPs. (a) The four 1st nearest links in x+, x−, y+, and y− directions. (b)
Scheme of an isotropic network by temperature activation. (c) Scheme of an
anisotropic network by E-field regulation.
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Fig. 2. Simulation models with differing PAH chain compositions and
structure: single PAH200, double PAH200, and single PAH400 on each ENP.

repeating unit carries +1 e charge. As a result, the overall
charge for each ENP is neutral. A 10× 10 ENP regular array
of these particles is constructed by replicating with random
rotations of an ENP at the vertices of a 2D square lattice
with a 10 nm lattice constant; see Figs. 1 and 2. Random
rotations of the polymers around the nanoparticles provide
nontrivial new network structures due to their asymmetry. In
the current model, the PAHs are not electrically conductive, but
the network structure of PAH-AuNP can regulate ion transport
and ionic conductivity to access different states.

B. Simulation protocol

The initial structure has no network connections between
ENPs; see Fig. 1a. The ENP-polymer binding interaction
results from Lennard-Jones (LJ) and Coulombic forces, the
polymer-polymer interaction is modeled using a DPD force,
and the E-field-polymer interaction is driven by the electro-
static force [18], [19]. Each PAH chain can make a move and
build connections in 4 different directions—viz. x+, x−, y+,
and y−. With increasing temperature, PAHs are increasingly
likely to be activated by random forces and can generate

isotropic network structures; see Fig. 1b. When applying an
E-field, PAHs are driven by the E-field direction and generate
anisotropic networks; see Fig. 1c. In recent work [18], [19],
we have already performed parametric studies on the network
connections, at various E-field strengths and temperatures.
We use the Large-scale Atomic Molecular Massively Parallel
Simulator (LAMMPS) package to propagate all simulations
[24]. Our simulation time step size is 1 CG DPD time, which
represents > 1 fs for each step [18], [19]. A typical production
simulation time is 60 million steps [18], [19]. For temperature
activated models, the network connection simulations can
approach equilibrium. However, for the E-field driven models,
the network connection simulations are far from equilibrium.
To improve the network dynamics simulation, we extend the
simulation time to 200 to 400 million steps and calculate the
number of links in different directions.

C. Change PAH number and chain length

We have designed new AuNP models using 2 PAH200

chains and 1 PAH400 chain to compare with the 1 PAH200

chain model on the 2D SQ array; see Fig. 2. For 2 PAH
and 1 PAH400 models, the AuNP core is set with -1 e/atom
and a total of -400 e to neutralize the PAHs. We run 60
million steps to simulate the network connections in these 3
models at temperatures from 60 K to 500 K; see Fig. 2 for
representative schemes of network connections at 320 K. The
degree of valency of the AuNPs affects the resulting network
structure [25]. In the present case, AuNPs have a valency of 2
because of polymer-polymer exclusion effects and the limited
area available on a given AuNP surface. The sum of all first
nearest links (

∑
ni) and the number of other links (nother)

are reported. Since the network structure is isotropic using
temperature activation, we expect the nx+, nx−, ny+, and
ny− values to be similar.

III. RESULTS AND DISCUSSION

Constrained by the available computing time, we previously
reported the behavior of the network connections in prototype
ACMs—viz SQ arrays—for times corresponding to 40 to 60
million DPD simulation steps [18], [19]. This was reasonable
because the underlying atomistic simulation models are also
carried out at the nanosecond time scales. However, much
longer simulation times are required to characterize the dy-
namics of some of the polymer network structures reported
here. Consequently, theDPD simulations were run for times up
to 200 to 400 million steps for the 2D SQ array under three
different conditions—viz. no E-field 320 K, Ex = 0.000112
V/Å (Ex = 10h) 160 K, and Ex = 0.0000112 V/Å (Ex = 1h)
320 K; see Fig. 3.

A. Temperature Activated Isotropic Network

Increasing temperature to 320 K can activate a PAH even
though the driving force on the polymer chain is random. It
generates structures that appear as the random walks seen in
polymer diffusion. Under no applied e-field, we found a small
peak at 200 million simulation steps in the net orientation
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Fig. 3. Long time dynamics and stability of network structures. The top
panel shows isotropic link connections for 400 million simulation steps, at
scaled temperature equal to 320 K. The middle panel shows anisotropic link
connections for 315 million simulation steps, at scaled temperature equal to
160 K. The bottom panel shows slightly anisotropic link connections for 240
million simulation steps, at scale temperature 320 K. Representative schemes
of final frames are given on the right side. All panels share the same legend
shown in the bottom panel: 1st nearest links in x+, x−, y+, and y− are
labeled as nx+, nx−, ny+, and ny−, respectively.

∑
ni is the sum of nx+,

nx−, ny+, and ny−. nother represents other links not belonging to ni. The
scaled E-field magnitude h = 0.0000112 V/Å.

(or connectivity)
∑

ni, but this transient net orientation is
fleeting, and it appears that such systems equilibrate (with
nearly zero net orientation) at 60 million simulation steps;
see the top panel in Fig. 3. Meanwhile, we found that nother

increases significantly with time in our DPD simulations until
nearly 250 million simulation steps, when it finally reaches
an equilibrium. Thus at shorter times, the polymer chains
reach the nearest ENPs, making links primarily between 1st
nearest neighbor AuNPs. We thus found that simulation times
up to 60 million steps tend to be enough to recover network
structures when the 1st nearest links dominate. In such cases,
we found earlier that a Spin-Ising Potts model, whether solved
by mean field theory (MFT) approximation or Monte Carlo
(MC) simulation, provided good agreement in the observed
link structures temporally and at equilibrium [18], [19]. On
the other hand, when the polymers begin to link ENPs beyond
nearest neighbors, characteristic relaxation and equilibrium

required simulations with more than 250 million simulation
steps which lies within the regime reported here.

B. E-field Regulated Anisotropic Networks

Applying an E-field can drive positively charged PAH
chains to align with the E-field direction. This field can be used
to regulate ionic conductivity inside ENP arrays because ions
move faster along the polymer alignment direction, but they
are jammed in the orthogonal direction. When the E-field is
strong, at Ex = 10h (Ex = 0.000112 V/Å) 160 K, the links in
the positive (x+) direction nx+ dominate the total sum,

∑
ni;

see the middle panel in Fig. 3. For this strong-driving regime,
we find that nx+ continues to increase linearly even at the
last DPD simulation step of 315 million steps reported here.
Meanwhile, nother seems to approach equilibrium after 200
million steps, likely due to the relatively low temperature of the
system. For comparison, we also performed simulations under
a reduced E-field strength at Ex = 1h (Ex = 0.0000112 V/Å),
and an increased temperature at 320K; see the bottom panel in
Fig. 3. We then find that both

∑
ni and nx+ appear to reach

equilibrium starting at 120 million steps, but nother continues
to increase even at 240 million steps; see the bottom panel
of Fig. 3. We also find that nx+ is slightly larger than nx−,
ny+ or ny−, because the E-field driving force is comparable
to the temperature driving random force. Our simulations thus
demonstrate that by tuning the E-field, system temperature,
and simulation time, we can create predictable and varied
network structures on the ENP array. Using a top-down MC
model, whose parameters are found from bottom-up molecular
dynamics (MD) simulations, [18], [19] much longer simulation
time and length scales can be accessed for these systems under
E-Field. In turn, the MC model was used to confirm that those
MD simulations posited above to reach near their equilibrium
limits did so.

C. Network connections in the 2 PAH200 model

Although longer-time simulations are sometimes required
(and reported in this work), for many of our simulations, we
integrate only up 60 million steps. Such “shorter” runs require
1-2 weeks of system computer time to complete on our HPC
resources, which is already computationally expensive, and
they are enough to offer direct comparison with our previous
work [18], [19]. As we reported in section III-A above, this
simulation time is just enough to allow the 1st nearest links to
reach equilibrium for temperature activated random networks.
The top panels in Fig. 4 show the network connections,

∑
ni

and nother, for the 1 PAH200 model. When each ENP has
2 PAH200 chains in the 2 PAH200 model, the number of 1st
nearest links and other links are larger than those for the 1
PAH200 model; see the middle panels in Fig. 4. As should be
expected, when more polymers are available to bind between
ENPs, the ENPs are consequently more strongly linked; see
the middle schemes in Fig. 3. For example, at 320 K the∑

ni increases by 30% in the 2 PAH200 model. However, such
differences begin to appear only when the system temperature
is at least 300-500 K; see Fig. 5. This is because the network
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Fig. 4. Comparison of the network connections for 3 different ENP cases with
60 million steps. From top to bottom, each ENP has 1 PAH200, 2 PAH200,
and 1 PAH400, respectively. The left panels show 1st nearest links

∑
ni at

different temperatures. The right panels show other links nother at different
temperatures. All panels share the same legend shown in the bottom right
panel.

dynamics are fast enough at higher temperatures to form and
equilibrate the structure. At lower temperatures, T < 300 K, it
takes longer for the polymer to form even the first link between
the ENPs, and the presence of two possible such binders does
not speed it up enough to structure the network.

D. Comparison between PAH200 and PAH400 models

We now double the polymer chain length to make the
total number of PAH units on a single ENP—viz PAH400

model—the same as that of a model system with two chains
of PAH200. Schemes of the single PAH400 model are shown
in the bottom panel of Fig. 3. As the single PAH400 and
double PAH200 models contain the same number of monomers,
comparison of their resulting dynamics reveals the sensitivity
of the system to the nature of their connectivity. First, perhaps
unsurprisingly, we found more 1st nearest links in the single
PAH400 model than in the double PAH200 model, especially
at high temperatures, as shown in Fig. 5 top panel. Second,
we found the fewest number of other links in the single
PAH400 model, when comparing between both single PAH400

and double PAH200 models; see Fig. 4. Interestingly, the total
number of links

∑
ni—viz, the sum of links not in nother—

are similar in the temperature activated random networks
at 300-500 K resulting from both the double PAH200 and
single PAH400 models; see Fig. 5 bottom panel. At lower
temperatures, we need to use longer simulation time to find the
resulting equilibrium network structures. Relative to multiple
short chain polymers, using a single long-chain polymer can
confine the polymer and reduce the random diffusion distance.
This tends to reduce the formation of other links by avoiding

Fig. 5. Comparison of the averaged number of links for ENP models with 1
PAH200, 2 PAH200, and 1 PAH400: 1st nearest links

∑
ni and other links

nother (top panel), and total number of links (ntotal=
∑

ni+nother) (bottom
panel). The average link numbers are calculated from 50 to 60 million steps.

its binding to distant ENPs, which can thereby increase the
probability of creating 1st nearest links.

IV. CONCLUSIONS

In this work, we extended our DPD simulation times to
demonstrate that for temperature driven random networks, the
1st nearest links can approach an equilibrium in about 60
million steps, but the other links need more than 250 million
steps to reach equilibrium. The ENP array in this model is
effectively a single device of ∼ 100 nm in width, which can
adopt one of many states through control of electric field and
temperature. It thereby allows for sequential processing of
information when subjected to a time series of varying exter-
nal perturbations. For E-field regulated anisotropic network
connections, the E-field strength and system temperature are
both important to the dynamics of the network structure. At
low temperatures with strong E-field, all of the links are driven
by the E-field, and the resulting 1st nearest links are aligned
with the E-field. At high temperatures with weak E-field, most
of the links are driven by the random force, and the resulting
network connection is slightly anisotropic with a large number
of other links.

We also find that using either two polymers—viz two
PAH200—or using one longer polymer—viz one PAH400—
can increase the number of 1st nearest links, relative to that
from a single PAH200 model. The total number of links are the
same for both double PAH200 and single PAH400 models. The
number of other links in the double PAH200 model is much



larger than that in the single PAH400 model. We also find that
the single PAH400 model has significantly more 1st nearest
links than the double PAH200 model. This advantage for long
chain polymers can serve as a lever for guiding the design
of ENP-polymer network structures in various engineering
applications. For example, by programming and training the
network structure, we conjecture the possibility of regulating
ionic conductivity so as to construct and maintain states useful
in storing and preserving data.
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