
1.  Introduction
Much of the current discussion on our changing climate centers around the concept of tipping points (Alley 
et al., 2003; Lenton et al., 2008; Steffen et al., 2018). Climate tipping points occur when a change in the climate 
system becomes self-perpetuating (D. I. A. McKay et al., 2022). They describe moments in the evolution of a 
climate system during which the behavior of the climate changes in a fundamental way. In other words, they bridge 
the gap between separate dynamical regimes. In reference to global warming, climate tipping points are typically 
used to describe moments in which positive feedback loops are created, resulting in runaway warming. More 
generally, within the context of nonlinear dynamical systems theory, tipping points are the critical thresholds; 
when crossed, they lead to abrupt and irreversible changes to the dynamics of the underlying system, that is, these 
are points in the parameter space of the system, where, due to influences such as noise, perturba tions or parameter 
drift, the shape of the system's typical trajectory, or attractor, changes significantly (Kaszás et al., 2019).

Within the context of paleoclimate, tipping points are interesting because they can inform us about conditions 
under which the climate has undergone fundamental changes in the past in response to forcings and might do 
so again. Given the increasingly unstable nature of our current climate system, understanding when and where 
tipping points have occurred in the past is deeply valuable for policymakers, scientists, and citizens alike. Addi-
tionally, assuming we are able to observe synchronous tipping points at different locations or between different 
archive types and proxy records, it can inform our understanding of the history of climate teleconnections as well 
as how changes in climate regimes are reflected in various paleoclimate records.

Developing analytical tools to detect significant changes in system dynamics is an ongoing field of study (Kantz 
& Schreiber,  2003; Marwan et  al.,  2007). In this paper, we will explore the application of a novel four-step 
method we colloquially refer to as Laplacian eigenmaps of recurrence matrices (LERM), originally developed 
and published by Malik (2020). In their paper, Malik (2020) provided evidence that LERM was able to robustly 
detect changes in the dynamics of an idealized experiment in the presence of noise and missing values before 
applying it to a Holocene speleothem record to probe questions regarding the climate's influence on the collapse 
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of the Harappan civilization. We seek to expand upon their findings, providing further validation that this tech-
nique is effective in identifying significant climate regime changes when applied to paleoclimate records, as well 
as exploring some potential shortcomings. We also present an open-source Python package (James, 2023a) meant 
to simplify carrying out this workflow, alongside Jupyter notebooks to support the reproducibility of our results 
(James, 2023b).

2.  LERM: A Basic Algorithm
In this section, we briefly describe the method and its core principles. A much more thorough discussion can be 
found in the original publication (Malik, 2020). LERM is a recurrence plot-based time series analysis technique. 
Recurrence plots/matrices are a popular nonlinear time series analysis method that transforms a time series into 
a binary matrix, in which elements with value one correspond to time points close in phase space (Eckmann 
et al., 1987; Marwan et al., 2007; Zou et al., 2019). Analysis of spatial patterns in a recurrence plot using dynam-
ical systems theory can provide deep insights into the nonlinear and stochastic dynamics of the system underly-
ing the data (Bradley & Kantz, 2015; Eckmann et al., 1987; Marwan et al., 2007; Zou et al., 2019). The LERM 
method consists of four main steps.

2.1.  Step 1: Phase Space Reconstruction

Nonlinear time series analysis relies on phase space reconstruction, which projects the time series on a time-delay 
coordinate system. This time-delay embedding of a time series is a consequence of the classical theorem by Floris 
Takens, colloquially known as Takens' theorem, which states conditions under which a topologically equivalent 
attractor can be constructed from single scalar observations (Packard et al., 1980; Takens, 1981). Time-delay 
embedding constructs phase space vectors from time-shifted snippets of a time series x(t) of length N. For 
example, for time delay τ and embedding dimension m, a vector in time-delay embedding would be x(t) = [x(t), 
x(t − τ), x(t − 2τ), …, x(t − mτ)]. The parameter m determines the length of the phase space vectors. The standard 
technique for choosing m is the method of false nearest neighbor (Abarnabel, 1997; Kantz & Schreiber, 2003). 
However, heuristics show that in the presence of noise, the principle of over-embedding (Hegger et al., 2000; 
Malik et al., 2014) is more appropriate. This principle suggests taking m > 2(D + P), where D is the dimen-
sionality of the system and P is the number of time-dependent parameters. Our numerical experimentation indi-
cates that m between 10 and 15 leads to robust results for our application. The parameter τ (time-delay) can be 
chosen as the time point corresponding to the first minimum of lagged mutual information or the first zero of the 
autocorrelation function; for details, see Abarnabel (1997). Further discussion of these choices can be found in 
Abarnabel (1997), Kantz and Schreiber (2003), Malik (2020), and Malik et al. (2014).

Although the method of time delay embedding has been known to introduce spurious correlations into phase 
space trajectories and spurious structures into the recurrence plot (Thiel et al., 2006; Wendi et al., 2017), certain 
metrics are less dependent on embedding parameter choices. For example, Thiel et  al.  (2006) observed that 
second-order Renyi entropy and correlation dimension can be calculated using arbitrary embedding parameter 
choices. Similarly, as we will show, LERM appears to be robust with respect to embedding parameter choices. 
Additionally, Wendi et al. (2017) demonstrated that over-embedding leads to more reliable measurement of the 
determinism metric.

For any given time series, phase space vectors are created for all points along the time axis for which it is possible. 
Note that, due to indexing constraints, phase space vectors cannot be constructed for the last m ⋅ τ points. The 
above method of time-delay embedding satisfies the condition of Takens' theorem: the phase space reconstructed 
using suitable time-delay embedding of time series data is topologically equivalent to the original phase space of 
the system (Takens, 1981). In practice, uneven spacing of data, noisy sensors, and imperfect selection criteria for 
the embedding dimension and delay parameters prevent perfect topological equivalency. However, if proper care 
is taken in the data selection and embedding steps, the reconstructed phase space can still provide deep insights 
into the system's dynamics.

2.2.  Step 2: Recurrence Plot

The next step is to analyze recurrence relationships within the reconstructed phase space. Both recurrence quan-
tification analysis and recurrence network analysis focus on characterizing recurrence plots. Recurrence plots 
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(RPs) are graphical representations of the recurrence matrix of a time series, which is a binary square matrix of 
size N defined as Rij = Θ(ϵ − ‖xi − xj‖). xi and xj are time-embedded vectors at time points i and j. Θ is the Heavis-
ide step function, that is, Θ(y) = 1 if y > 1 and otherwise Θ(y) = 0 and ‖xi − xj‖ is the distance between embedded 
vectors xi and xj (in this work, we use the Euclidean norm). The threshold ϵ is interpretable as a radius defining 
the largest distance that can separate two points in phase space if they are considered in the same neighborhood. 
If the distance between two points is greater than ϵ, the value inside the Heaviside function will be negative and 
the recurrence matrix will record a zero at that intersection. If the distance between two points in phase space is 
less than ϵ, then the recurrence matrix entry is unity at that intersection, indicating that the system is visiting a 
similar state at those indices. ϵ is typically chosen so that the recurrence density (number of ones in the recurrence 
matrix divided by the total number of entries) is around 5%, a heuristic that is supported by other studies on the 
topic (Kraemer et al., 2018; Malik, 2020; Malik et al., 2014).

2.3.  Step 3: Laplacian Eigenmaps

Laplacian eigenmaps is a manifold learning (nonlinear dimensionality reduction) technique, where the eigenvec-
tors of the Laplacian corresponding to a proximity graph constructed from a point cloud of the data are used to 
project the data onto lower dimensional space (Belkin & Niyogi, 2003). Laplacian eigenmaps are closely related 
to spectral clustering techniques and, similarly, preserve the local distance between points. Laplacian eigenmaps 
are used here to extract low-dimensional structures from an RP, as these low-dimensional structures are the 
basis of RP-based metrics and analysis. For example, diagonal lines in an RP are related to the determinism of 
the underlying system (Marwan et al., 2007). We expect that, as the system moves between different dynam-
ical regimes, the manifolds extracted through our technique should also evolve and change, and hence, these 
low-dimensional manifolds will track transitions in dynamical regimes.

To calculate the Laplacian, we first define the elements of the weighted adjacency matrix W of the graph as 
Wij  =  Rij  +  1 and then the corresponding graph Laplacian is L  =  D  −  W, where D is a diagonal matrix with 
Djj = ∑jWij. To construct W, the one is added to each element of the recurrence matrix to avoid numerical compli-
cations when solving for the eigenvalue problem (see below). The graph Laplacian or the Laplacian matrix L can be 
considered the discrete analog to the continuous version of the Laplacian operator, and it is used to model diffusion 
on graphs (Merris, 1994). To obtain the manifolds, we solve the eigenvalue problem Lϕ = λDϕ. Let ϕ0⋯ϕN−1 be the 
solution of this eigenvalue problem with 0 = λ0 ≤ λ1 ≤ ⋯ ≤ λN−1 being the corresponding eigenvalues. The first eigen-
vector ϕ0 is dropped as it corresponds to the eigenvalue 0, and all elements in it are ones. The manifolds are obtained 
by projecting each point in the reconstructed phase space xi to the m-dimensional Euclidean space: [ϕ1(i), …, ϕm(i)].

2.4.  Step 4: Fisher Information

Laplacian eigenmaps result in p-dimensional projections of the original data, and our numerical experimentation 
indicates that p = 4 produces the most robust results; higher values only add redundant information to the analysis, 
whereas lower values do not always yield stable results. From this low-dimensional subspace, we then seek to 
create a univariate statistic that reflects changes in the complexity and dynamics represented by the multidimen-
sional eigenmaps in order to ease interpretability. To do so, Malik (2020) proposed a modified version of the Fisher 
information statistic (FI). As defined by Ahmad et al. (2016), the FI is an invariant over the manifolds resulting 
from Laplacian eigenmaps, that is, as the dynamics of underlying system change regimes, the extracted manifolds 
change. Consequently, FI captures this regime change as a single numerical value (Malik, 2020). In general, FI is 
a practical and robust way of discovering shifts in multivariate data's behavior and information content (Ahmad 
et al., 2016). FI can also be thought of as a way to measure the complexity of the underlying dynamics, as it 
can capture the complexity of the geometric object that represents a dynamic process, for instance, an attractor. 
The segments of the time series where the values of FI are higher (lower) are also the sections of the time series 
where the underlying dynamics are of higher (lower) complexity. Our numerical experimentations indicate that FI 
behaves like an invariant metric or a constant of motion; values remain the same over the same dynamical regime 
(when control parameters are kept fixed). This means that when the parameter changes significantly, a change in 
dynamics has occurred. We discuss how we assess the significance of changes in the next section.

The calculation of FI requires the specification of two key parameters: window size and window increment. These 
specify the size and step of the sliding window that will be used to calculate FI. The choice of these parameters 
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is arbitrary, and depends on the record and phenomenon being studied. Larger window sizes and increments will 
result in a smoothing effect, improving the robustness of results while reducing time resolution and smoothing 
over smaller transitions. Smaller window sizes and increments will tend to introduce more spurious behavior, but 
will also improve time resolution of the FI and allow for the detection of subtler shifts in time series character. 
Given this, two competing factors drive the choice of window size. The first is that one wants the window size to 
be long enough that FI values converge toward a stable value. That is, the window size should not be so small that 
FI is not convergent or robust. The second is that the time scale on which one would like to resolve the transitions 
must not be so large that multiple transition points get fused into one. This is especially important when dealing 
with abrupt events. Further explanation and justification of this choice for this specific problem, and the specific 
variant of FI we are using, can be found in Malik (2020).

The endpoint of the FI window is used to determine the time index of the FI value for a given window. Typically 
we then take a block average over another window of several consecutive FI values. This average is then plotted 
for all the points within that window. That is, all the points within this window are assigned the same average FI. 
This minimizes the possible artifacts of the start/center/endpoint choice for a block average over a window. In this 
paper we occasionally do not do this in order to show the actual variability of the FI, which in some cases can be 
erratic. When this is the case, the FI is plotted with a fill (e.g., Figure 4). When we have smoothed the FI, we plot 
it as a scatter, with the width of scatter points indicating the width of the smoothing window (e.g., Figure 2). A 
pictorial overview of this workflow is shown in Figure 1.

2.5.  Significance of Transitions

To determine whether changes in our FI statistics are significant, we employ the same strategy as Malik (2020). Our 
null hypothesis for this test is that no transition has occurred. This would be indicated by the FI statistic not exhibiting 

Figure 1.  Description of the full workflow presented in this section. In this figure, we use the LR04 benthic stack from Lisiecki and Raymo (2005) as an example, 
and examine the dynamical transition that occurred around 1,000 kyr BP known as the Mid-Pleistocene Transition. Step 1, time delay embedding, is described further 
in Section 2.1. Step 2, generating the recurrence plot, is described in Section 2.2. Step 3, the calculation of the graph Laplacian and its eigenvectors (creating the 
eigenmaps) is described in Section 2.3. The last step, step 4, describing the calculation of the Fisher information statistic is described in Section 2.4. We also show 
the final result, plotting the evolution of the Fisher information statistic over time. Here we smooth the statistic using a block size of 5 to isolate the dominant statistic 
behavior, and calculate a confidence interval to detect significant transitions in the statistic. The calculation of this confidence interval is described in Section 2.5. The 
dashed gray line in the final plot shows the detected transition.
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a significant change in values. Significance in this case is ascertained via the usage of a confidence interval. To do 
this, we sample with replacement from the FI series, creating an ensemble of M samples with w points each. Typically, 
we set M to 10,000, and w = 50. This choice was largely arbitrary, as the analysis did not show strong sensitivity to 
these parameters. We then take the mean of each of these samples and calculate a confidence interval from the distri-
bution of means. The bounds for this confidence interval are typically taken to be 5% and 95%. When the FI statistic 
crosses this confidence interval, moving either from above the 95% boundary to below the 5% boundary or vice versa, 
we claim that this is a significant change, thereby marking a transition in the dynamical regime of the system. The 
midpoint of this transition is taken as the transition timing. This is only one approach to establishing significance, and 
others may be possible. We note that this significance test often produces many false positives when applied to time 
series without dynamical transitions, and as such all results should be verified across multiple records (see below).

3.  Detecting Gradual Transitions
In this section, we demonstrate how LERM performs when applied to records that are known to contain 
a gradual shift in dynamics. For our gradual transition, we chose the Mid-Pleistocene Transition (MPT). 
The MPT was a transition from the “41  kyr world” to the “100  kyr world” (Paillard,  2001). That is, the 
dominant periodicity of the glacial-interglacial cycles switched from 41,000 years to 100,000 years. The 
transition occurred over several hundred thousand years, from around 1,200 to 800 ka (Chalk et al., 2017; 

Figure 2.  Overview of Laplacian eigenmaps of recurrence matrix analysis applied to five Ocean Drilling Project records. (a) 
Shows a map of the considered records, (b) shows the oxygen isotope time series trace in black, and the Fisher information 
statistic in color.
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Clark et al., 2006). There are many theories as to why this transition occurred, which are not germane to our 
purpose as they all indicate the presence of a dynamical change. We are primarily interested in the ability 
of the LERM technique to detect the MPT in real paleoclimate archives. To study the outcome of applying 
LERM to data influenced by the MPT, we applied the method to five benthic oxygen isotope records drawn 
from Lisiecki and Raymo (2005) as well as data from a conceptual glacial/interglacial cycle model (Leloup 
& Paillard, 2022). Oxygen isotopes were chosen as during the Pleistocene they are typically interpreted as 
representing changes in ocean temperature and global ice volume (Waelbroeck et al., 2002), with ice volume 
being the dominant signal. If there is a significant change in the dynamics that control global ice volume, 
such as the MPT, we should be able to observe it by applying LERM to benthic foraminiferal oxygen isotope 
observations.

3.1.  Tests With Observational Data

We apply the technique to oxygen isotope records from marine sediment cores taken at five Ocean Drilling Project 
(ODP) sites 925 (Bickert et al., 1997; Billups et al., 1998; Franz & Tiedemann, 2002), 927 (Bickert et al., 1997; 
Franz & Tiedemann, 2002), 929 (Bickert et al., 1997; Billups et al., 1998; Franz & Tiedemann, 2002), 846 (Mix 
et al., 1995; Shackleton et al., 1995), and 849 (Mix et al., 1995). Their oxygen isotope records were drawn from 
the compilation of Lisiecki and Raymo (2005), and the age models for each are those aligned to the age model 
of the LR04 stack. Core locations are shown in Figure 2 and their traces are shown in Figure 2. These records 
were chosen due to their length and general lack of hiatuses. Each record was linearly interpolated using their 
mean time increment (2.67, 3.92, 3.43, 2.46, and 3.10 kilo-years, respectively) to produce a uniform time axis 
for each record. The records can be roughly subdivided into two geographical groups, those in the East Pacific 
and those in the West Atlantic. In this case, record locations starting with the number eight lie in the East Pacific 
and those starting with nine lie in the West Atlantic. The geographic division of these records means that if we 
observe any local effects, they will likely be apparent in the results. ϵ values were selected by finding the value 
that produced a density of 5% in the recurrence matrix, in accordance with the recommendation of Kraemer 
et al. (2018). m was chosen according to the principle of over-embedding as described by Malik (2020) and set 
to 13 indices. τ was set by calculating the first minimum of lagged mutual information in accordance with the 
recommendation of Abarnabel (1997). In this example, these values range between 4 and 8 indices. Window size 
and window increment were set to 50 (roughly 100–150 kyr) and 5 indices, respectively, in pursuance with the 
recommendation of Section 2.4.

The results of this analysis are shown in Figure 2. There is strong agreement between these records as to the 
timing of a climate regime transition. The mean value and standard deviation of the transition is 908 ± 66 kyr 
BP (1 σ). This agrees with what we would expect to see, assuming the MPT was the dominant climate regime 
transition in this set of records. We then place all of the records onto a shared, evenly spaced time axis. The 
timestep for this shared axis is the mean of each of the records, and the bounds are the maximum of the 
minimum and the minimum of the maximum of the collection of record time axes. That is, the most conserv-
ative endpoints are chosen such that all records cover the full shared time axis. Each record is then linearly 
interpolated over this shared axis. No changes to the underlying age models are made during this process. By 
doing so, we find that our mean transition occurs at 911 ± 51 kyr BP (1σ), reducing the uncertainty in this 
estimate. This reduction in uncertainty, while small in this case, illustrates the importance of time axis consid-
erations when conducting this kind of analysis. We will further explore such considerations in Section 5. We 
also note that the standard deviation of a transition timing across records is not necessarily the best measure 
of uncertainty. We recommend the employment of ensemble-based approaches for more robust uncertainty 
quantification.

3.2.  Tests With Synthetic Data

3.2.1.  A Conceptual Model for Glacial Cycles

We applied LERM to the conceptual model presented by Leloup and Paillard (2022). This model generates a 
unitless variable v which represents normalized ice volume. The equation that controls the evolution of this vari-
able depends on whether the model is in the slow glaciation regime (g) or the fast deglaciation regime (d). The 
equations that define how each of these states govern the change in v over time are shown in Equation 1a and 1b.
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Equations 2a and 2b describes when the model is to switch from (g) to (d) and vice versa.
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τi, τd, and τg are time constants, and I is normalized summer insolation forcing at 65°N. By varying the deglacia-
tion parameter V0, we can emulate a dynamical change in the evolution of ice volume similar to the one observed 
during the MPT. We generated a time series of v with a length of 2,500 time units and placed a transition from a 
V0 value of 3.4–5.2 at time step 1,000. This was in accordance with Leloup and Paillard (2022), who evaluated 
which values of V0 most accurately reflected the pre-MPT and post-MPT ice volume dynamics. We used summer 
solstice insolation at 65°N as our insolation scenario as this produced the most accurate results for the last 
1,500 Ma (Leloup & Paillard, 2022). We then bin the series to the time axes of Cores 925, 927, 929, 846, and 849 
from the Ocean Drilling Project (ODP). This is done by placing bin edges between time points for each time axis 
and averaging the conceptual model data over each bin, assigning each time point its associated average. This was 
done to compare the effect of differing time axes on our analysis. The LERM workflow is then applied to each of 
these series. The same parameters are used here as those in the previous section, though τ now varies between 3 
and 4 indices. The results of this analysis are shown in Figure 3.

The method performs reliably when applied to this simple test, locating the point of the transition with relative 
accuracy, regardless of which time axis was used. The mean transition timing for each of the binned series is 
849 ± 44 kyr BP (1σ). We conducted several other tests to see how the method responded to the addition of noise, 
missing values, and how it behaved when no transition was present at all. These are presented in Figure 4. Each 
of these tests uses the version of the conceptual model time series binned onto Core 925.

3.2.2.  Sensitivity Analysis

Here, we present the results of the LERM method when applied to the conceptual model MPT time series depicted 
in the top panel of Figure 3 when varying levels of noise are present. We used an AR(1) model to create a noise 
time series and added it to our conceptual model MPT time series “signal.” We define the signal-to-noise (S/N) 
ratio as being the standard deviation of the MPT signal divided by the standard deviation of the noise. We tested 
four S/N ratios. An example of one of the tests using an S/N ratio approximately equal to two is shown in Figure 4. 
The actual S/N ratio for a given test approximates the targeted S/N ratio as our noise generation process is impre-
cise and cannot create a series with exactly the standard deviation necessary to create the targeted S/N ratio.

We repeated the process of creating and analyzing noisy time series 1,000 times for each S/N ratio. We then 
produced a Kernel Density Estimate (KDE) of the distribution of detected transitions and normalized each KDE 
to have a maximum amplitude of 1. These KDEs are interpreted as representing the “probability” (the normaliza-
tion process means the y-axis cannot be literally interpreted as such) of a transition occurring at different points 
in time given a specific S/N ratio. The results of this analysis are shown in the top panel of Figure 7.

For higher S/N ratios, the method is quite consistent in its detection of the primary transition point. However, as 
the S/N ratio decreases, while the detection of the actual transition point remains consistent, the method begins to 
return a large number of false positives. This suggests that this tool is best used within a comparative context in 
order to bolster the confidence of the results. That is, if multiple records agree on the timing of a transition, this 
is good evidence that the transition is real. If not, we may just be observing spurious system behavior resulting 
from our requirement that our recurrence matrix be 5% populated. This effect is especially apparent in panels (c) 
and (d) of Figure 4. When no transitions are present in a series, we observe random fluctuations in the FI metric. 
This is likely due to the minimum recurrence density requirement used when choosing a recurrence threshold 
and from our confidence interval-based approach to significance testing. Alternate approaches to selection of the 
recurrence threshold parameter ϵ and the definition of significant transitions could improve these results. In the 
meantime, this is further evidence of the necessity of verifying potential dynamical transitions across multiple 
records.
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Additionally, when the stable time series is artificially coarsened and then interpolated, as shown in panels (e) 
and (f) of Figure 4, the LERM technique suggests that the coarsened section experienced a change in dynamics. 
This effect only became noticeable in our experiments when over 60% of the points in a section were removed, 
though this likely depends heavily on the series being considered and the length of the coarse sub-section. As 
such, caution is advised when applying this method to evenly spaced versions of unevenly sampled time series, 
which are common within the field of paleoclimatology. In such cases, it is important that transitions observed 
near changes in resolution be viewed with skepticism. On the other hand, in paleoclimate research, a change in 
resolution can suggest a change in system dynamics. For example, a decrease in the resolution of speleothems can 
be interpreted as reflecting a period of aridification in the region (Henselowsky et al., 2021). Teasing apart these 
effects is difficult and domain-specific. This further emphasizes the importance of comparing multiple records 
when using this technique. If detected dynamical transitions cannot be reproduced in nearby records, they are 
unlikely to reflect robust changes in climate dynamics.

Figure 3.  Overview of the application of the Laplacian eigenmaps of recurrence matrix pipeline to conceptual model data. 
The top panel shows data generated by the Leloup Paillard glacial/interglacial cycle conceptual model using with transition of 
V0 threshold parameter from 3.4 to 5.2 at time step 1,000 (vertical dashed line). The lower panels show the Fisher information 
statistic of conceptual model data from the top panel after being binned onto the time axis of each Ocean Drilling Project core 
(shown in black). The binning process is described in Section 3.2.1.
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4.  Detecting Abrupt Transitions
In this section, we demonstrate how LERM performs when applied to a record that contains an abrupt, short-lived, 
transition from one climate regime to another. To do this, we apply the technique to four Greenland ice core 
oxygen isotope records and an Antarctic ice core oxygen isotope record, which have been interpreted as being 
proxies for temperature (Johnsen et al., 2001; Jouzel et al., 1997). In doing so we explore the potential climate 
regime shifts that occurred around the 8.2 ka event, a period of intense, abrupt cold (Alley & Ágústsdóttir, 2005) 
that has been observed primarily in Greenland ice cores (Thomas et al., 2007), though it has appeared in other 
archives from the Northern Hemisphere (Cheng et al., 2009) as well as some from the Southern Hemisphere 
(Chase et al., 2015). We also apply the technique to synthetic data designed to mimic the Greenland ice core 
oxygen isotope records.

4.1.  Tests With Observational Data

The four Greenland cores we analyzed are NGRIP (Andersen et al., 2004), Renland (Johnsen et al., 1997), GRIP 
(Johnsen et al., 1992), and GISP2 (Grootes & Stuiver, 1997) ice core records. The time axes of the GRIP and 
NGRIP records have been aligned to Greenland Ice Core Chronology 2005 (GICC05) (Rasmussen et al., 2006; 
Vinther et al., 2006). We also analyze oxygen isotope data from a high-resolution section of ice cores from EPICA 
Dome C (Stenni et al., 2010) and the locations and traces of all the ice core records are shown in Figure 5. Each of 
these records was interpolated to its mean time step (20, 10, 5, 20, and 18 years, respectively). Among them, we 
observe strong agreement regarding the effect of the 8.2 ka event on climate dynamics in the region.

The agreement between the Greenland records as to the timing of the onset of the change in dynamics is some-
what unsurprising given the evident anomalous nature of the 8.2 ka event in the time series. However, the results 

Figure 4.  Laplacian eigenmaps of recurrence matrix sensitivity analysis for gradual transitions. Conceptual model data 
is binned onto Ocean Drilling Project core 925 oxygen isotope time series time axis, to which we add AR(1) noise. 
Signal-to-noise (S/N) ratio is defined as the standard deviation of the conceptual model data divided by the standard deviation 
of the noise. Shown in the top panel is an example of this test applied to a noisy series with an S/N ratio of 2. In the middle 
panel, we show the result of applying the technique to a series without a transition. In the bottom panel, we apply the method 
to a stable series that has a coarsened section over which we have interpolated to show the propensity of the technique to 
return false positives for imputed sections of a record when no transitions are present.
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do illustrate the edge effects that are inherent with time delay embedding techniques, as can be seen in the appear-
ance of a climate regime shift occurring prior to the 8.2 ka event. This is caused by the way time delay embedded 
vectors are constructed. Each vector that is associated with a given time point contains time information that 
extends m ∗ τ beyond that time point. In our case, we used m = 12 and τ = 4, continuing our practice of choos-
ing m via over-embedding. Note that we choose tau by hand here, as the first minimum of mutual information 

Figure 5.  Overview of Laplacian eigenmaps of recurrence matrix analysis applied to Greenland and Antarctica records. (a) Shows a map of the Greenland records, (b) 
shows a map of the Antarctica record, (c) shows the oxygen isotope time series trace in black, and the Fisher information statistic in color.
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heuristic fails when applied to some of these records, resulting in excessively large values for tau. This means 
that data from the following 48 time points are included in a given time point of our embedded data. Then, if the 
resolution of our time series is 20 years, the information from the subsequent 960 years is included in any given 
year. This can result in a smearing effect, where changes in dynamics that happen at one point in the time axis 
can affect the result of our analysis at a different point in time. This smearing effect is uni-directional, occurring 
only in the direction of the time delay embedding, which is best taken with the flow of time in order to preserve 
the temporal structure of the record in the constructed phase space.

We also observe that the choice of window size and window increment can exacerbate this smearing effect. When 
a large window size is chosen, the detection timing of abrupt transitions tends to “widen,” or move outward from 
the actual edges of the transition. In order to minimize this effect, we used a smaller window size of 20 indices 
(around 100–400 years) and window increment of 4 indices for these tests. Window increment tends to have less 
of an effect (see the accompanying Holocene Ice Window Increment and Holocene Ice Window Size notebooks 
for examples of this effect; James, 2023b).

What is somewhat surprising is the agreement between these records and the high-resolution oxygen isotope 
record from EPICA Dome C, suggesting hemispheric synchrony between Greenland and Eastern Antarctica 
during the 8.2 ka event. However, this result should be viewed with some caution, as other records we tested 
from different regions in Antarctica do not show a synchronous climate regime transition at this point (see the 
Holocene Ice Analysis notebook from James (2023b)).

4.2.  Tests With Synthetic Data

To investigate LERM's behavior in a controlled setting, we once again resort to synthetic data. Our signal is 
defined as a ramp with a peak amplitude of −1. The onset of the spike occurred at 8,400 kyr BP, terminating 
at 7,800 kyr BP to produce a signal that was not as easily nullified by noise and more consistently represented 
an 8.2 k event-like signal, as shorter events tended to be entirely obscured when noise was added. This signal is 
shown in Figure 6. To test detection, we added perturbations to this signal using a simple AR(1) process with an 
autocorrelation coefficient of 1. In this case, the S/N ratio is the amplitude of the perturbation divided by the stand-
ard deviation of the AR(1) series. We repeated our sensitivity analysis as in Section 3.2.2, this time using relatively 
large S/N ratios of 1, 2, 3, and 4, as the method proved to be less robust for brief, abrupt transitions than gradual 
ones. We constructed our synthetic series using the same time axis as the NGRIP oxygen isotope record for these 
experiments. Parameters used were m = 13, τ = 5, wsize = 20 (window size), wincre = 4 (window increment). The 
KDEs from these experiments are shown in the bottom panel of 7. The asymmetrical offset of detection times 
from the edges of the transition is driven by the edge effects associated with using the FI statistic in the case of the 
termination side of the event, and a combination of the FI window effect with the uni-directional time-embedding 
effect in the case of the beginning side of the event (resulting in a greater offset than the termination side).

The results are similar to those of the gradual transition synthetic tests, though the S/N ratios required to achieve 
reliable detection are much higher for the abrupt transition. This result suggests that unless S/N ratios are high, 
this method will return a large number of false positives when regime transitions present in a record are shorter 
and less durable. However, it seems that the detection of the shift is consistent even at lower S/N ratios, again 
suggesting the benefit of applying this technique to an ensemble of records and looking for shared transitions as 
a way of filtering out false positives.

5.  Time Axis Considerations
Throughout this paper, we have mentioned the importance of time axis properties at various points. In this section, 
we demonstrate how the detection of dynamical regimes changes depending on the resolution of the time axis. For 
this, we will use the marine sediment oxygen isotope data from ODP Site U1308 (Hodell et al., 2008). This is a 
high-resolution deep-sea core with a median time step in the published age model of approximately 270 years. By 
averaging oxygen isotope values across bins of varying sizes, we can coarsen the series to various time steps, and 
examine how this changes the results of our analysis. First, we interpolate the time series using the mean time step, 
which is approximately 302 years. This is done in order to prevent gaps in the binned version of the time series, as 
there is one short section with low resolution. We prioritize creating a continuous binned version of the time series 
in order to emulate our workflow from the previous sections. We use bin sizes of 0.5, 2.5, and 4.5 kyr. We use an 
embedding dimension of 13 indices and τ values ranging from 5 indices for the maximum bin size and 12 indices 
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Figure 7.  Kernel density estimates (KDE) of detected transitions for Mid-Pleistocene Transition-like scenarios (top) and 
8.2 ka event-like scenarios (bottom). KDEs were normalized against their maximum value.

Figure 6.  Overview of Laplacian eigenmaps of recurrence matrix sensitivity analysis applied to synthetic data designed to mimic the 8.2 ka event. The top left panel 
shows the signal used in these tests. In the top right panel, we show the noisy series to be analyzed. In the bottom panel, we see the result of the analysis. The gray 
region indicates the spike interval.
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for the minimum bin size. Window size and window increment are again set to 50 and 5 indices, respectively. The 
results of this analysis are shown in Figure 8.

In Figure 8, when the time step is relatively large as in panel (d), we detect only the MPT. However, as we move 
to finer time steps, we begin to observe the detection of other regime shifts. These appear to be glacial-interglacial 
shifts, as dynamical transitions are observed every 100 kyr during shifts from glacial to interglacial periods and 
vice versa. This effect illustrates the importance of temporal resolution when using this technique. Higher reso-
lution allows for the detection of shorter regime shifts. With coarser time series, we primarily detect the gradual 
regime shifts that occur over longer time scales. If one is primarily interested in a relatively gradual transition like 
the MPT, it can be useful to coarsen our record in order to minimize the detection of these shorter transitions, like 
glacial-interglacial cycles.

Another detail worth noting is that we do not observe the detection of glacial-interglacial cycles during the 
“41 ky world” (the interval during which these cycles have a periodicity of 41 kyr). This is likely due to 
the minimum resolution we use. Were we to employ an even higher resolution of this time series, we might 
be able to get at these higher frequency phenomena. However, in this case, only the detection of the slower 
100 kyr cycles is available to us with this choice of τ and m. The precise relationship between the time scale 

Figure 8.  Results of Laplacian eigenmaps of recurrence matrix analysis applied to oxygen isotopes from U1308 with different time resolutions. Panel (a) shows the 
original, unaltered oxygen isotope record from U1308 in blue, the version of the record with values averaged over bins of 500 years in gray, and the transitions after 
the Mid-Pleistocene Transition detected in the Fisher information for the binned version of the series highlighted in blue and orange. Panels (b), (c), and (d) show the 
analysis in blue applied with a time step of 0.5, 2.5, and 4.5 kyr, respectively. Oxygen isotopes from U1308 with values averaged over their associated time step are 
shown in gray.
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of the phenomena being detected and the resolution of the time series is not yet known, though it likely 
depends both on resolution and the parameters chosen. Constraining this relationship further is a subject for 
future work.

Another effect worth noting is the later detection of the MPT observed in core U1308 compared to the other sedi-
ment cores we have examined. The transition detected in the coarse version of this record shown in Figure 8 panel 
(d) occurred a little before 800 kyr ago, which is somewhat at odds with the timing observed in Figure 2. This is 
caused by the shorter length of the oxygen isotope time series from U1308. If we shorten the time series used in 
Figure 2, we observe a similarly delayed transition timing (not shown). This is likely due to the way in which we 
select our recurrence threshold parameter. Because we require a recurrence matrix density of 5%, the recurrence 
threshold we pick will depend both on the dynamics that are present in a given time series, and the prevalence 
of those dynamics in a particular record. The more stable the dynamics of a given time series are, the lower and 
more selective the recurrence threshold will be, and vice versa. Different recurrence thresholds mean that differ-
ent sections of the time series will be considered recurrent and the detected transition timings will change. In the 
case of U1308, the record is shorter and less of the pre-MPT interval is present. This results in a lower recurrence 
threshold, which results in different recurrence patterns, in turn leading to the detected transition timing being 
pushed toward the end of MPT window. This is the point in time when the 100 kyr cycles have begun in earnest 
and as such, where the change in dynamics is more evident. There are other approaches to the choice of recur-
rence threshold that may minimize this effect, though we do not explore them here. The effect described above 
is demonstrated further in the MPT Core Length Comparison notebook found in the supplement (James, 2023b).

6.  Discussion
These examples show that the LERM technique shows promise in the detection of gradual and abrupt regime 
transitions in paleoclimate records. It robustly detected the MPT in a set of marine sediment oxygen isotope 
records, and was resistant against noise and missing values when applied to synthetic data. One caveat is that the 
method is prone to false positives when a time series does not contain a regime transition. It also shows strong 
sensitivity to the resolution of the time axis.

As with any recurrence-based technique, there are a few key considerations that must be taken into account when 
determining what time axis to use for a given record when applying this technique. The time axis must be evenly 
spaced; this is a strict requirement of methods that rely on uniform time delay embedding. The time axis should 
also minimize the generation of new data (upsampling). Recurrence analysis-based techniques are often very 
sensitive to changes in time series structure. Interpolating over coarse sections of a time series using too fine a 
time step can produce false positives. It is best when using these techniques to be as conservative with one's time 
imputation scheme as possible. When comparing multiple records, it can be valuable to align the time axes of 
each record via a technique such as linear interpolation of the time series onto a shared time axis. This will mini-
mize the possibility of time axis-dependent effects influencing the results of one's analysis. There is a trade-off 
between the consistency of time axes and the maintenance of the original time axis. In certain cases, this trade-off 
can be mitigated by using skillfully aligned records, such as in the case of the GICC05 time scale used to align 
Greenland ice cores. However, this requires the independent construction of aligned time axes for a specific set of 
records, which can either be expensive or impossible depending on the records under consideration. The question 
of the appropriate time axis to use in these studies is best handled on a case-by-case basis. Ideally, the results 
produced by this type of analysis should be reasonably robust across time axes, and variation in the precise timing 
of transitions due to different time axes and parameter choices should be included in the uncertainty quantifica-
tion. Another topic related to the choice of time-axis that is worthy of scrutiny is the usage of age model ensem-
bles (N. P. McKay et al., 2021). None of the records we considered in our analysis had age model ensembles, so 
we leave the determination of how to handle this kind of uncertainty for future work.

When applied to a set of four oxygen isotope records from Greenland ice cores and one from an Antarctica ice core, 
this technique suggested a shift in climate dynamics around the 8.2 ka event. In Greenland, this was unsurprising 
given the obvious shift in the character of the time series during the event, but the Antarctica result is intriguing. The 
result should be viewed with caution, as other records from different regions of Antarctica did not experience the same 
shift. However, this could be the product of an inter-decadal bipolar seesaw mediated by the Atlantic Ocean (Chylek 
et al., 2010; Wang et al., 2015). In this case, due to the abrupt nature of the 8.2 ka event, its effects as mediated by 
this teleconnection could have manifested more as a dynamical disturbance than an opposing temperature response.
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7.  Conclusion
With appropriate parameter selection and precautions regarding time sampling, the LERM technique shows prom-
ise in application to paleoclimate time series data. The technique can reveal, in a holistic way, when changes in 
the behavior of univariate time series occur. Such changes can be gradual or abrupt, subtle or obvious. However, 
when noise levels are high or data are unevenly spaced and require the usage of imputation methods, the method 
can produce a high rate of false positives. Additionally, because the creation of the recurrence matrix relies on a 
minimum density, it is inherently relative. This means that if there are no dominant changes in time series char-
acters present in a series, this method will still report transitions between dynamical regimes. It follows that this 
method is best applied to sets of records so that synchronicity between records can act to establish robustness to 
noise and sampling issues. It may also be useful in modern applications when used for tipping point analysis as a 
dynamically motivated changepoint detection algorithm. We leave this application for future work.

Data Availability Statement
v0.0.8 of the Ammonyte Python package (James, 2023a) was used to generate all the examples in this study 
and the supporting Jupyter Notebooks. Ammonyte is available via a GPL-3.0 license and developed openly 
at https://github.com/alexkjames/Ammonyte. v0.4.0 of the accompanying Jupyter Notebooks (James,  2023b) 
that provide examples of how each of the figures in this study were produced and additional tests referred 
to in the text is available via an MIT license and developed openly at https://github.com/alexkjames/
Detecting_Paleoclimate_Transitions_with_LERM.
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