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ABSTRACT: We have synthesized inherently chiral cesium lead halide perovskite magic-
sized clusters (PMSCs) and ligand-assisted metal halide molecular clusters (MHMCs) using
the achiral ligands octanoic acid (OCA) and octylamine (OCAm). UV—vis electronic
absorption was used to confirm characteristic absorption bands while circular dichroism (CD)
spectroscopy was utilized to determine their chiroptical activity in the 412—419 and 395—405
nm regions, respectively. In contrast, the larger sized counterpart of PMSCs, namely,
perovskite quantum dots (PQDs), do not show chirality. The inherent chirality of the clusters
is tentatively attributed to a twisted chiral layered structure, defect-induced chiral structure, or

twisted Pb—Br octahedra.

hiral nanostructures have been of interest for various

applications including spin-filtering for spin selectivity
and spin light-emitting diodes.”>" For instance, chiral organic
molecules on the surface of nanoclusters have been shown to
act as electron spin filters at room temperature, resulting in
chirality-induced spin selectivity (CISS).”> Perovskite magic-
sized clusters (PMSCs) are ultrasmall crystallites of semi-
conductors that are stabilized with appropriate ligands."” They
are smaller than typical quantum dots (QDs) and thus exhibit
a stronger quantum size confinement effect and larger surface-
to-volume (S/V) ratio. Fluorescent chiral nanoparticles have
been employed as chiral optical probes for determining
enantiomeric excess and identifying chiral molecules, attracting
increasing research interest.”” Most of the work done to date
has focused on bulk crystals with chiral building blocks™”***'
or QDs with chirality induced by using chiral ligands.”*>"~"*
Similar to QDs,” PMSCs and MHMCs could potentially
acquire chirality through passivation using chiral ligands.
However, it would be more interesting and desired if the
clusters could possess intrinsic chirality'” without the need to
use chiral ligands to induce extrinsic chirality.

In this work, we report, for the first time, inherently chiral
CsPbBr; perovskite PMSCs and MHMCs using a pair of
achiral ligands: octanoic acid (OCA) and octylamine
(OCAm). The ligands serve to passivate the clusters for
stability and possess no chirality. Circular dichroism (CD)
spectroscopy was employed to confirm the chirality of both the
PMSCs and MHMC:s with strong CD bands peaked at 413 nm
for the PMSCs and 395 nm for the MHMCs. These CD
minima match well the electronic absorption bands of the
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clusters measured using UV—Vis electronic absorlption spec-
troscopy and established in our previous studies."”>**

In a typical synthesis of PMSCs using a modified ligand-
assisted reprecipitation method, 5.00 mL of toluene was added
to a 7.00 mL borosilicate vial with a small stir bar and secured
to a mixer set to the maximum setting of 1150 rpm. In a
second vial, the precursor was prepared using 8.51 mg of CsBr
(0.040 mmol) and 14.68 mg of PbBr, (0.040 mmol), in 400
uL of DMF. The resulting solution was then shaken/stirred/
sonicated at room temperature until everything was mostly
dissolved. Next, 1.00 mmol of acid (158 uL of OCA) and 1.00
mmol of amine (162 uL of OCAm) was added to the vial. This
solution was gently swirled (not sonicated) at room temper-
ature until everything was dissolved to create the final
precursor solution. Next, 50—100 uL of precursor solution
was rapidly injected into 5.00 mL of toluene under vigorous
stirring. The resulting formation was slow, forming some
particles a minute or so after injection, but needing 5 min to
finish reacting. The particles fluoresced a deep blue under
ultraviolet light, and this can be used to track the progress of
the reaction. If pure MHMCs were desired, CsBr was removed
from the synthesis. Further stabilization of MHMCs can be
achieved using an alternative ligand pair, valeric acid/
butylamine, in a similar ratio. Following their synthesis,
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samples were immediately moved to storage in a fridge at ~2—
4 °C to preserve the short-lived luminescent particles. Once
clear samples are obtained, UV—vis and CD data can be
collected. These finalized OCA/OCAm passivated CsPbBr;
nanocluster samples will be termed OC-NCs from now
onward.

Figure 1 shows a representative UV-—vis electronic
absorption spectrum for the OCA/OCAm passivated nano-
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Figure 1. UV—vis electronic absorption of CsPbBr; with key bands at
413 nm (PMSCs) and 395 nm (MHMCs).

clusters, OC-NCs, taken at 2 °C. Here, the PMSCs and
MHMCs showed key absorption bands at 413 and 39S nm,
respectively. Based on our previous studies,”'”** the 413 nm
band is attributed to PMSCs while the 395 band is attributed
to MHMCs. The 355 nm band could be due to formation of
smaller clusters, and its origin will require further study in the
future.

Figure 2 shows the average CD spectrum for OC-NC at 2
°C that shows bands peaked at 415 and 395 nm with an mdeg
of approximately —4.0 and —3.3, respectively.
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Figure 2. Average CD spectra of CsPbBr;, compiled using OC-PMSC
data from 12 baseline subtracted scans collected sequentially. Toluene
was used for background subtraction. Key absorbance wavelengths are
located at 412 nm for PMSCs and 395 nm for MHMCs. Smaller,
broad bands are visible at 324 and 356 nm.

Two blue-shifted bands at 355 and 324 nm were also
observed, indicating that either smaller particles also have
chirality or higher-energy electronic transitions associated with
the PMSCs or MHMCs also have the chiral property. A
reduced temperature of 2 °C was utilized to help stabilize the
particles for extended characterization. These data were taken
simultaneously with the UV—vis data used as an independent
measure of sample stability. The observed inherent negative
CD signals indicate that the clusters favor absorption of right
circularly polarized light.

The observation of the CD signal of the PMSCs and
MHMCs was not based on any prior theoretical prediction but
arose from a control experiment we were conducting to study
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chiral ligand induced chiral clusters. To explain the observed
CD signal, we propose two possible explanations. The first is
structural chirality”''™'*** as a result of broken mirror
symmetry, while the second is magnetism-induced chirality****
via a weak magnetic field inherent to the clusters.

Figure 3 schematically shows three possible models we use
to explain the observed intrinsic chirality of the PMSCs and
MHMCs.

Figure 3. Proposed structures for the origin of chirality in the OCA/
OCAm capped CsPbBry PMSCs: (A) twisted chiral layered structure,
(B) defect chiral structure (red balls with the yellow line for
visualization), and (C) chirality induced by distorted octahedron.
Similar mechanisms may apply to MCs. Cs* terminated Pb—Br,
octahedra form the core structure, with alternating negative and
positively charged OCA/OCAm ligands through OCA™ to Cs* and
OCAm" to Br~ coordination, respectively.

One possible explanation, as shown in Figure 3a, is that the
clusters are intrinsically chiral due to the twisting of layered
structures. Layered structure of the clusters has been suggested
in our previous work""'>** and by others.'>'”"” As the clusters
are very small, they may be distorted or strained, resulting in a
twisted structure that happens to be chiral. Another possible
explanation is defect-induced chirality, as illustrated in Figure
3b and found in previous studies of QDs. Previous studies have
found optical anisotropy within nanoplatelets and nanorods
resulting from inherent defects during formation.'"'®"?
CsPbBr; perovskite nanoparticles were found to aggregate
along a helical scaffold formed from either silica or
polymers.' "'

The third possibility is chirality resulting from distortion of
building block octahedra of the clusters due to ligand-related
strain from the small size and large S/V ratio and thereby
significant contribution of the ligands to the structure.'® Size
differences between the B-site Pb** and Cs* A-site cations may
result in broken mirror symmetry within nanoparticles, leading
to inherent chirality.'* While this effect has been found in
QDs, it may be stronger within smaller sized particles like
PMSCs and MHMCs due to higher surface tension or strain as
well as involvement of more ligands used for passivation.'® A
similar effect has been previously observed and noted in the
literature as a commonality within perovskites with large A-site
cations.'”"* The increased strain could result in structures that
turned out to be chiral. Further experimental and theoretical
studies are needed to determine the structural origin of the CD
signal or the chirality observed in this work. These studies
would most likely involve both HAADE-STEM and small-/
wide-angle X-ray scattering, similar to the work of Zhang et al.,
where these measurements were used to determine a more
exact structure for similar nanoparticles.'> Using these
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methods, we would be able to determine which of the above
structures is present or a combination of the three.

If the nanoclusters are chiral, then the interesting question is
why only one chiral enantiomer was produced. A possible
explanation is that the magnetic field from the magnetic
stirring system during the synthesis induced the handedness of
the nanoclusters. Previous literature has shown that magnetic
fields used during synthesis can impact the structure of
produced nanoparticles and impart chiroptical activity upon
the clusters.””*" For example, magnetic alignment was utilized
to create cobalt nanoparticle templates for gold nanoclusters to
adhere to, which formed necklace structures due to the
external field from magnetic stirring.”> More recent work
demonstrated that applying an external magnetic field to
dispersed magnetic nanoparticles results in chiral structures
that retain the chirality of the field.”* This was done via a chiral
quadrupole field generated via permanent magnets that
reversibly assembled achiral Fe;O,/Au nanorods into diverse
chiral superstructures. Using CD, chirality was confirmed
following the application of the external field during growth
phases, where parallel alignment of the magnets resulted in
chiral superstructures and antiparallel alignment yielded a
disappearance of CD signal. These results confirm that magnet
polarity and alignment (repelling vs attracting) can be used to
tune chirality, where reduced field gradients also reduce CD
signal strength.

In our synthesis of MHMCs and PMSCs, a magnetic stir bar
was used to disperse the antisolvent prior to and during
nanoparticle formation. Thus, the entire reaction was
conducted in the presence of a magnetic field from the stir
plate. Previous work has demonstrated that stirring can
compete with chiral selection within nanoscale aggregates,
where molecules are locally tilted parallel to the domain
boundary either clockwise or counterclockwise depending on
the chiral handedness of the particles.”> Therefore, it may be
possible that the CD observed in our nanoclusters is due to
chirality induced by the applied external field. Preliminary data
comparing the CD signals of new samples made with magnetic
or mechanical stirring in Figure S2 of the Supporting
Information seem to support this hypothesis. However, further
work is needed to clarify the true mechanism behind these
observations in the future.

To summarize, OCA/OCAm passivated CsPbBr; PMSCs
and MHMCs have been synthesized at room temperature
using a modified ligand-assisted reprecipitation synthesis. Their
optical properties were measured using UV—vis electronic
absorption spectroscopy, and the PMSCs and MHMCs absorb
around 412—419 and 395—405 nm, respectively. Both the
CsPbBr; PMSCs and PbBr, MHMC:s exhibit chirality based on
CD measurement. This is important, especially considering
that the ligands used for passivation are achiral. It is also
interesting that the corresponding QDs are not chiral. This is a
good demonstration that size matters fundamentally to the
properties of nanostructures. The chiral nature of these clusters
may find important applications in areas involving chiral
induced spin activities and chiral catalysis, such as for spin-
light-emitting-diodes and spin filtering. ">
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