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Many clinical procedures and biomedical research workflows rely on microscopy, including diagnosis of cancer, genetic disorders, au-
toimmune diseases, infections, and quantification of cell culture. Despite its widespread use, traditional image acquisition and review
by trained microscopists is often lengthy and expensive, limited to large hospitals or laboratories, precluding use in point-of-care set-
tings. In contrast, lensless or lensfree holographic microscopy (LHM) is inexpensive and widely deployable because it can achieve
performance comparable to expensive and bulky objective-based benchtop microscopes while relying on components that cost only a
few hundred dollars or less. Lab-on-a-chip integration is practical and enables LHM to be combined with single-cell isolation, sample
mixing, and in-incubator imaging. Additionally, many manual tasks in conventional microscopy are instead computational in LHM,
including image focusing, stitching, and classification. Furthermore, LHM offers a field of view hundreds of times greater than that
of conventional microscopy without sacrificing resolution. Here, we summarize the basic LHM principles as well as recent advances in
artificial intelligence integration and enhanced resolution. We discuss in detail how LHM has been applied to the above clinical and
biomedical applications. Finally, we identify emerging clinical applications, high-impact areas for future research, and some current
challenges facing widespread adoption.

1 Introduction

Many clinical diagnostic procedures and biomedical research workflows rely on microscopic images of
specimens. For instance, hematology and cytometry rely on images of individual cells and can be used
to diagnose infections and diseases including malaria and cancer, as well as genetic disorders like heredi-
tary anemias [1, 2]. Cancer researchers and pharmacological scientists rely on cell culture imaging to de-
termine cell growth and viability [3]. Pathologists use stained and sectioned tissues to diagnose a variety
of cancers, genetic disorders, and autoimmune diseases [4]. The use of microscopy is truly ubiquitous in
clinical medicine and biomedical research and underpins our current understanding of the human body
and medical treatments. Despite its widespread use, traditional image acquisition and review by trained
microscopists is often lengthy and expensive, and limited to large hospitals or laboratories, precluding
use in point-of-care (POC) or low-resource settings [5].
On the other hand, lensless or lensfree holographic microscopy (LHM)is an inexpensive and widely de-
ployable technology because it can achieve performance comparable to expensive and bulky objective-
based benchtop microscopes while relying on components that cost only a few hundred dollars or less [6].
LHM is a variant of digital holographic microscopy (DHM), which in turn is a type of quantitative phase
imaging technology. DHM generally refers to imaging which utilizes platforms based on a Michelson or
Mach-Zehnder interferometer configuration, where the sample is placed in one of the arms of the inter-
ferometer [7]. Lensless holographic imaging techniques eliminate the need for two light paths and beam
splitters, producing holograms in an in-line configurations. Throughout the remainder of this review,
LHM will be used to refer to techniques which use a light source that meets coherence requirements for
hologram production (i.e. non-fluorescent imaging), similar to DHM. In the literature, other abbrevia-
tions for LHM have been used, including lensfree holographic microscopy (LFHM), lensless digital holo-
graphic microscopy (LDHM), lensless digital holography (LDH), and lensless in-line holographic microscopy
(LIHM), all of which refer to the same technology. Due to the size and simplicity of the hardware, lab-
on-a-chip integration is practical and enables LHM to be combined with single-cell isolation, sample mix-
ing, and in-incubator imaging. Additionally, many tasks that are performed manually in conventional
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microscopy are instead computational in LHM, including image focusing, image stitching, and feature
identification and classification. Furthermore, LHM offers a field of view (FOV) hundreds of times greater
than that of conventional microscopy without sacrificing resolution, a combination quantified as space-
bandwidth product. For images, the space-bandwidth product is defined as the total image area divided
by the square of the system resolution [8].
To date, several reviews of LHM techniques have been written. Other reviews on LHM have provided
excellent overviews of technological advances in LHM, including basic LHM theory and reconstruction
methodologies [6, 9, 10], novel resolution enhancement techniques [11, 12], and more advanced image pro-
cessing and backpropagation algorithms [13, 14], but these reviews have missed some key recent develop-
ments. Primarily, no review published to date has made its focus to enumerate biomedical applications
of LHM in adequate depth so as to fully convey the current state of LHM prevalence and impact on any
given biomedical application. Reviews that have addressed biomedically relevant applications have done
so sparingly and often at the end of a technical section, where applications are given as examples rather
than as the driving factor behind particular technological advances best suited for the particular applica-
tion. Furthermore, advances in LHM directed at biomedical applications that have occurred in the last
five years are largely absent. Due to the rapidly evolving nature of the field, many high-impact LHM ad-
vances have indeed occurred in the last five years and often their development has been driven by the
need to address a specific imaging problem presented by a clinical and biomedical application, including
pathology, cellular cytometry, infectious disease, biosensing, live cell and cell culture analysis, pharmaco-
logical testing, and basic biological science.
In this review, we give a brief summary of basic principles shared across many LHM systems as well as
some recent technological advances such as artificial intelligence integration and enhanced resolution tech-
niques, and discuss in detail the ways in which these systems have been applied to the areas mentioned
above. In each section, we discuss LHM systems that have been developed for use in a specific clinical
medicine or biomedical research application, and we provide a commentary on the aspects of LHM that
make it advantageous or disadvantageous for each application as well as design principles that are nec-
essary or are shared by most LHM systems for success in each application. In providing this additional
information, we hope to aid in the identification of effective strategies for targeted technological advance-
ment of LHM and LHM translation in these fields. Finally, we identify emerging areas or applications
of LHM in clinical diagnostic medicine and biomedical research, interesting advances in LHM technol-
ogy that have not yet seen use in clinical or biomedical applications to date or that remain not fully ex-
plored, and the current challenges in the widespread adoption of LHM in clinical and biomedical fields.

2 Compelling and versatile aspects of lensless holographic microscopy

2.1 Typical LHM system design

Holography was coined to reflect that Gabor’s work [15] captured both the amplitude and phase field in-
formation. The design Gabor used is often called in-line holography since both the reference wave (light
passing through the transparent sample unperturbed) and the object wave (light scattered by objects
that are being imaged) have the same optical axis.
A typical LHM system is illustrated in Figure 1. Key components includes a light source, which can be
a laser diode (LD) [16], a light-emitting diode (LED) [17], or an array of LDs or LEDs [18]; a charge-
coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) image sensor to capture
holographic images digitally; spectral filters and/or pinholes/conical optical fiber ends to meet optical
coherence requirements specific to each design; and holders or microfluidic chips for sample delivery [19–
22].
The distance between the sample plane at zs and the light source is denoted as z1, which typically ranges
from 5–30 cm. Therefore light at zs can be approximated as plane waves, since the light source is ap-
proximately a point source. The separation between the image sensor plane zi and zs is denoted as z2 =
|zs − zi|, typically on the order of 10 µm to 1 mm. Separation distances at the lower end of this range
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2 COMPELLING AND VERSATILE ASPECTS OF LENSLESS HOLOGRAPHIC MICROSCOPY

Figure 1: Basic in-line LHM schematic based on Gabor’s initial in-line design with a light source, a sample (depicted here
as red blood cells in a microfluidic channel, but this varies depending on the application), and an image sensor, a configu-
ration shared across nearly all LHM devices.

may require professional removal of the protective cover glass found on many commercial image sensors.
Several companies exist that can perform this service for a fee. Since z2 ≪ z1, the FOV in a LHM sys-
tem is equal to the active area of the image sensor, rather than limited by a lens field number. Commer-
cially available modern CCD or CMOS image sensors have active areas ranging from a few square mil-
limeters to > 100 mm2.
Unlike in lens-based microscopy, where FOV is sacrificed to improve optical resolution, in LHM, reso-
lution is mainly limited by image sensor pixel size and the optical coherence. In order to record a holo-
gram digitally at the image sensor with strong fringe contrast, a LHM system must meet the coherence
requirements, which are stated in Section 3.1 from [6]. Bandpass filters and pinholes are commonly uti-
lized to improve temporal and spatial coherence respectively. In LHM systems with pixel size limited
optical resolution, pixel super-resolution techniques [18] can be used to computationally meld multiple
partially redundant sample images with subpixel shifts, achieving optical resolution finer than the image
sensor pixel size. In lens-based microscopes, numerical aperture (NA) is commonly used to characterize
optical resolution:

R ≈ λ

2 NA
=

λ

2n sin θmax

, (1)
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2.2 LHM reconstruction

where λ is wavelength, n represents refractive index, and, in the case of LHM, θmax denotes the greatest
angle where the reference and object waves meets temporal and spatial coherence requirements to ex-
hibit interference effects at the image sensor plane zi [6].

2.2 LHM reconstruction

As illustrated in Figure 1, a hologram I(x, y, zi) is recorded digitally at the image sensor since sensors
can only record intensity information. Our goal is to computationally reconstruct the object wave EO(x, y, zs)
at the sample plane with both amplitude and phase information.
The recorded intensity image can be expressed as:

I(x, y, zi) = |E(x, y, zi)|2

= |ER(x, y, zi) + EO(x, y, zi)|2

= |ER(x, y, zi)|2 + E∗
R(x, y, zi)EO(x, y, zi)

+ ER(x, y, zi)E
∗
O(x, y, zi) + |EO(x, y, zi)|2

= B2
R +BRe

−ikz2Pz2

{
EO(x, y, zs)

}
+BRe

ikz2
[
Pz2

{
EO(x, y, zs)

}]∗
+ |Pz2

{
EO(x, y, zs)

}
|2

(2)

where ∗ is the complex conjugate operator, k = 2πn
λ

is the wavenumber, BR is a constant, the reference

wave ER(x, y, zi) = BRe
ikz2 is a plane wave, and Pz is an operator denoting the forward propagation of

light over a distance z, where E(x, y, z) ≡ Pz

{
E(x, y, 0)

}
can be calculated using the angular spectrum

method [23] as:
E(x, y, z) = F−1

{
F
{
E(x, y, 0)

}
H(ξ, η, z)

}
, (3)

with the transfer function in terms of spatial frequencies ξ and η defined as,

H(ξ, η, z) =

{
0, for ξ2 + η2 ≥ n2

λ2

e2πiz
√

n2

λ2
−ξ2−η2 , otherwise.

(4)

Figure 2: (a) PSR holographic reconstruction with cardinal neighbor regularization. The ring shape features around 5-µm
microspheres are from the twin-image term. (b) PSR holographic reconstruction with sparse reconstruction regularization,
where twin-image term is suppressed. Figure reproduced with permission from [18].
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2 COMPELLING AND VERSATILE ASPECTS OF LENSLESS HOLOGRAPHIC MICROSCOPY

When the object wave is weak compared to the reference wave, which is generally valid except for dense
or thick samples, |Pz2

{
EO(x, y, zs)

}
|2 in Equation 2 can be neglected. To reconstruct an object image

from the captured hologram, one can then back-propagate the recorded intensity image I(x, y, zi) over a
distance of z2 to the sample plane:

P−z2

{
I(x, y, zi)

}
= B2

Re
−ikz2

+BRe
−ikz2EO(x, y, zs)

+BRe
ikz2P−z2

{[
Pz2

{
EO(x, y, zs)

}]∗}
≡ Erec(x, y, zs).

(5)

Since P−z

{
Pz

{
E
}}

= E, therefore Equation 5 can be simplified as:

Erec(x, y, zs) = B2
Re

−ikz2 +BRe
−ikz2EO(x, y, zs)

+BRe
ikz2P−2z2

{
E∗

O(x, y, zs)
}
.

(6)

By back-propagating the recorded hologram, we are able to obtain the reconstructed field Erec(x, y, zs)
that contains our goal EO(x, y, zs) along with a twin-image term. The twin-image term in Equation 6
can be thought of as the diffraction pattern from a “twin object” located also at a distance z2 away from
the image sensor, but on the opposite side of the sample. Various approaches towards eliminating arti-
facts from twin-image term are discussed in Section 2.4.
Equation 6 provides a way to compute EO(x, y, zs) from a recorded hologram I(x, y, zi). In practice, fast
Fourier transforms (FFTs) and inverse FFTs are used to efficiently implement Equation 3. Typically, re-
constructions can be completed in ∼1 s with a typical consumer laptop [6]. In addition, graphics pro-
cessing units (GPUs) can be used to significantly reduce computation time since FFTs can be imple-
mented more efficiently on GPUs [24]. Over the years, the cost of computation has continued to decline
rapidly [25], which benefits LHM both in performance and accessibility.

2.3 Pixel super-resolution

Pixel super-resolution (PSR) techniques have been frequently deployed to improve optical resolution be-
yond image sensor pixel size and to also improve the signal-to-noise ratio (SNR) of reconstructed im-
ages [18, 26, 27]. Note that because PSR techniques are performed on raw holographic images, the final
reconstructed image will show improvements in both resolution and SNR. Multiple frames of the same
scene with slight shifts between the frames are captured, providing a denser sampling of the electric field
than image sensor pixel size.
In PSR, an LED array can be used as the light source, where each LED is turned on and off sequen-
tially, illuminating the sample from slightly different angles. Multiple images of the same scene are cap-
tured, providing partially redundant information about the scene. Though PSR assumes a static scene,
it was successfully used to image microspheres undergoing Brownian motion in solution [19].
Computationally, the process of synthesizing a high-resolution (HR) hologram from multiple low-resolution
(LR) partially redundant holograms is an optimization problem. Denoting the HR hologram estimate as

Î, then:

Î =
arg min

I
C(I), (7)

where C(I) is the cost function:
C(I) = e{HR,LR}+ κCreg. (8)

e{HR,LR} denotes the error term between the HR hologram estimate and measured LR holograms. Since
this optimization is an ill-posed problem, typically a regularization term Creg is added to stabilize the
PSR algorithm, with κ being the regularization weight. Various regularization methods are compared
and a guide on choosing proper regularization methods is provided in [18].
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2.4 Approaching the twin-image term and noise

Cardinal neighbor regularization and sparse reconstruction regularization methods are pertinent to most
applications, as most samples are naturally smooth and/or sparse. Cardinal neighbor regularization pe-
nalizes nearest neighbor fluctuations in the HR hologram, while sparse reconstruction regularization pro-
motes sparsity in the sample plane. PSR holographic reconstruction of 5-µm microspheres using cardinal
neighbor and sparse reconstruction regularization methods are shown in Figure 2(a) and (b) respectively.
The best demonstrated resolution in LHM systems used a synthetic aperture reconstruction approach
to achieve a smallest resolvable feature size of approximately λ/2.8, or 250 nm, equivalent to the resolu-
tion of a 1.4 NA objective lens [28]. Future improvements to resolution may be possible by more accu-
rately considering the light-matter interaction at the nanoscale [29]. Additionally, other PSR algorithms
include those that operate in the frequency domain [30], and a sparsity-based fast-converging method
termed accelerated Wirtinger flow for PSR phase retrieval [31].

2.4 Approaching the twin-image term and noise

Equation 6 states that the reconstructed field contains both the object term and the twin-image term.
In off-axis holographic microscopy [32], the twin-image is spatially separated from the diffraction from
the object and can be digitally removed with relative simplicity; however, for an in-line setup such as
that shown in Figure 1, the twin image overlaps with the object image that one wishes to recover, mak-
ing twin-image elimination more challenging.
In these in-line geometries, the twin-image term can be numerically suppressed using iterative algorithms [17].
If the hologram is naively reconstructed to the sample plane at z = zs = zi − z2, as shown in Figure 2,
then the twin image is apparent in the ring-shaped features around the 5-µm microspheres. If instead,
the hologram was reconstructed to the z = zi + z2 plane, then the twin-image term would become in
focus while the object term in Equation 6 would spreads out in a wider ring around the object. By spa-
tially filtering out the in focus twin-image terms, and then propagating the spatially-filtered field a dis-
tance of 2z2 back to the original object plane, the twin-image term can be greatly suppressed without
significantly corrupting the object term. This process can be improved further with multiple propaga-
tions back and forth between the object and twin image planes, enforcing the spatial filter at the twin
image plane each time. For this approach to be successful, the objects must be relatively sparse such
that the twin image from one object does not significantly overlap with the image of another nearby ob-
ject.
Another approach to suppress the twin-image term for sparse samples is shown in Figure 2(b), where
PSR with sparse reconstruction regularization demonstrates ability to suppress the twin-image term [18].
Compared to the iterative filtering algorithm, the sparse reconstruction regularization method is more
computationally intensive. However, for larger objects, the iterative filtering algorithm could corrupt
the object term, resulting in poorer performance compared to the sparse reconstruction regularization
method.
When the sample is not sparse, twin image artifacts can be removed by phase recovery techniques that
rely on multiple raw frames, either with different z2 distances [33] where two holograms captured at two
different distances are used to iteratively retrieve phase information, or with different wavelengths [34],
where wavelength scanning enables pixel super-resolution along with phase recovery. Recently, a physics-
driven deep learning based technique was used to suppress the twin-image term in lensless holographic
microscopy as well [35].
Besides twin image noise, there are other works on noise minimization in lensless holographic microscopy.
For example, fractional Fourier processing is used to remove intensity reconstruction background noise
[36]. Other methods of dealing with Gaussian noise have also been recently described, including approaches
that use a Wirtinger gradient descent optimization, a common solver used in ptychographic methods [37].
For low-contrast biological samples, one method using an optical phase mask in the light path enabled
improved resolution of holographic reconstructions [38]. Neural networks to address image denoising have
also been implemented and showed success [39].
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2 COMPELLING AND VERSATILE ASPECTS OF LENSLESS HOLOGRAPHIC MICROSCOPY

2.5 Sample delivery in LHM

As shown in Fig. 1, samples are placed in between the image sensor and light source. Samples can either
be stained, labelled, or label-free. In biomedical research and clinical pathology, staining is done by us-
ing a dye which stains certain components of a tissue or cells. Clinical pathologists use this method ex-
tensively to look at cell morphology, but the staining procedure often uses chemicals and may take some
time to perform, delaying procedures like margin analysis during surgical tumor resections. Labelling of
tissues or cells typically refers to antibody-mediated labelling, where only a single protein of interest is
labelled, typically with a antibody-congugated fluorescent molecule or molecule that can eventually be
stained for brightfield visualization. This enables identification of specific cell subtypes in samples, but
can be expensive and relies on antibody binding affinities and dynamics to function properly. Label-free
refers to a tissue that has been neither stained nor labelled. This type of tissue is translucent in conven-
tional microscopes, but phase imaging still produces useful information about the sample, making LHM
one of the few imaging techniques that can effectively use label-free tissues and cells. However, LHM can
also be used to image stained and labelled (but non-fluorescent) samples, making this technique quite
versatile when imaging biological samples.
Depending on the form of the sample that must be imaged in LHM, different methods can be used to
deliver the sample into the light path for amplitude and phase imaging. At its simplest, microscope slides
can be used to prepare static or dried unlabelled, labelled, or stained samples [40, 41]. For samples which
involve cells dynamically moving in suspension, simple microfluidic chips are utilized for sample deliv-
ery [19], on-chip cytometry [20], and automated cell counting [22]. These on-chip methods can also per-
form 4D (space and time) object tracking [42–44], including tracking of micro-swimmers [21]. In both
slide-based and on-chip delivery methods, phase and amplitude reconstructions can be obtained with the
appropriate hologram capture protocols.
Other considerations that may affect the hologram include scattering, absorption, and polarization caused
by sample-reference interaction. The transparent nature of the slide or chip means that light scatter-
ing is caused only by the sample, rather than the delivery method. Absorption typically begins to be
a problem only in thick samples, where excessive scattering and high absorption due to the density of
the sample work together to degrade information contained in a hologram. For these cases, tissue clear-
ing, where opaque and highly absorptive components of the tissue are chemically removed, or additional
hologram capture angles have been shown to enable 3D tissue reconstruction [45–47].

2.6 Deep learning and machine learning approaches

In recent years, deep learning and machine learning algorithms have been coupled with LHM techniques
with increasing frequency and in an increasing number of ways. Nearly all of these approaches use a type
of network called a convolutional neural network or CNN to perform image processing. This type of net-
work performs convolution operations across input images. Like all neural networks, as data passes through
it, the network self optimizes to reproduce a training dataset assembled by a human operator. CNNs
have been used in LHM for focus prediction and autofocus [50–56] and image classification [57,58], among
other uses.
One particularly useful network architecture, depicted in Figure 3, is the U-net, which enables the net-
work to output images from either an input image or a set of input images [48, 49]. This has been used
for PSR reconstructions of holograms [59], phase reconstructions of holograms [52], virtual staining [60],
and more. The advantage of using this approach is that it significantly reduces the computational cost
and processing time compared with conventional approaches, and it can be more robust when used for a
variety of sample types.
Simple, non-CNN networks and machine learning have also been used with LHM, generally preceeded by
some form of image processing to produce a one-dimensional vector of input data containing object im-
age characteristics, similar to principal component analysis. This has been applied to LHM for cell imag-
ing [61] and for nanoparticle agglutination [62].
Complete image processing pipelines have been developed using a combination of neural networks to

7



2.7 Advantages of LHM

Figure 3: (a) U-net architecture commonly used in LHM image processing applications. Blue “conv” arrows denote convo-
lutional layers, which perform a convolution operation using 3 × 3 kernels or filters followed by a ReLU or rectified linear
unit activation layer. Red “max pool” arrows denote a max pooling operation which reduces data size. Green “up-conv”
arrows denote “up-convolutions” where the data is up-sampled using a sparse transposed kernel matrix. Copy and drop
arrows indicate skip connections where information from the contracting or down-sampling side of the network is pre-
served and passed to the expansive or up-sampling side via concatenation after a center crop. This is necessary for effective
network training. (b) Image segmentation results of original U-Net architecture. Differential interference contrast (DIC)
images of HeLa cells (left) and ground truth segmentation (left center) with U-Net produced segmentation mask (right
center and pixel-wise loss (right). Figure reproduced with permission from [48,49].

perform phase unwrapping, reconstruction, and cell metric estimation for cell analysis, showing that deep
learning approaches can be applied at each step of an LHM imaging workflow with great success [63].
Many more examples of deep learning in LHM have been demonstrated and will be discussed in the con-
text of the relevant clinical or biomedical application to provide a better sense of the problems these ap-
proaches solve and their impact.

2.7 Advantages of LHM

LHM has various advantages over lens-based systems. First, the elimination of objective lenses in LHM
decouples resolution from FOV, resulting in large space-bandwidth product. This enables LHM to offer
equivalent resolution over hundreds or even thousands times larger FOVs compared to benchtop micro-
scopes [18, 26]. Second, LHM consists of low-cost components that are often either commercial off-the-
shelf or fabricated at low cost by 3D printing and laser cutting [19, 62]. Therefore a typical LHM can be
built with a few hundred dollars in lab settings. LHMs can be even more cost-effective when manufac-
tured at high volume. Third, unlike typical benchtop microscopes which are bulky and heavy, LHM can
be compact and lightweight, making it a suitable solution for field applications [64,65].
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3 CLINICAL APPLICATIONS OF LENSLESS HOLOGRAPHIC MICROSCOPY

With these advantages, LHM systems have many applications in clinical applications, especially point-of-
care and low-resource settings. As a whole, the above advantages empower LHM as a great platform for
various applications.

3 Clinical applications of lensless holographic microscopy

LHM has been successfully applied to many clinical applications in recent years. The unique character-
istics of LHM enable this technology to be deployed in more locations, including at the point-of-care, at
a lower cost than conventional microscopy. LHM also offers additional functionality, and in some ways
improves on conventional microscopy. In this section, recent applications of LHM to clinical medicine are
explored.

3.1 Pathological analysis of tissues and fluids

For clinical medicine, perhaps no field is more reliant on microscopy than pathology. In recent years,
LHM-based devices and techniques have been successfully applied to the imaging of pathological sam-
ples for disease diagnosis, including stained and unstained sectioned tissue, thick tissue sections or bulk
tissue, cell aspirates, synovial fluid, and cerebrospinal fluid, as described below.

Figure 4: (a) Visualization of 3D refractive index reconstructions of salivary gland tumor organoids from a LHM system.
(b) Volume calculations from 71 analyzed organoids. (c) 3D visualization of single organoid and (d-e) longitudinal sections
of this organoid. (f) Cross sections of organoids at various z heights, and (g) corresponding bright-field microscope images.
Figure reproduced with permission from [46].

Color imaging in pathology is key for sectioned and stained tissue analysis, and there are numerous re-
cent examples of color LHM. Systems incorporating a single-wavelength partially coherent source (sim-
ilar to what is shown in Fig. 1) and pseudocoloration post-processing are able to generate color images
of stained tissue [66]. Recently, multiple wavelength LHM systems that operate in red, green, and blue
domains have shown promise in the reconstruction of color images from stained tissue. Additional wave-
lengths can be used to reduce color error, but three are sufficient to produce accurate images of stained
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3.1 Pathological analysis of tissues and fluids

pathology slides since human eyes also rely on three types of color sensors [67]. Novel computational de-
noising algorithms have helped to significantly improve reconstructed image quality and color accuracy
of bone marrow smear samples with this type of LHM configuration [68]. Deep learning methods have
also been developed to produce color pathological images from LHM systems. One method combined a
three-wavelength LHM configuration with deep learning to reduce phase artifacts and balance and com-
bine color into a final image [69]. In one study, pseudocolored images were generated with deep learn-
ing from phase reconstructions of LHM holograms that closely mimic a number of stains including H&E
stain, Jones’ stain, and Masson’s trichrome for unstained skin, kidney, and liver tissue respectively [60].
Another deep learning coloration method used simple greyscale images from a single green 550 nm wave-
length to generate color images of H&E stained samples [70].
Several algorithmic approaches have been developed to aid in data volume reduction and LHM image
processing and hologram reconstruction. For example, a phase retrieval algorithm that enables recon-
structions with only two z-height holograms has been demonstrated for stained and unstained samples [71].
This simplifies the data acquisition process usually required for other multi-height phase retrieval meth-
ods. Image quality and resolution of kidney and intestine pathological slides can be improved signifi-
cantly by background noise removal, image registration of multi-height and sample scanning holograms,
and twin image elimination through multi-height phase retrieval and a quasi-3D reconstruction tech-
nique [72]. Novel PSR algorithms have been shown to reduce data volume and even achieve 780 nm res-
olution in intestine pathological slides [73]. Other computational approaches perform autofocusing for
amplitude and phase reconstructions of holograms, either by algorithmic approaches [74] or deep learn-
ing approaches [51, 52] which have enabled fast autofocusing for Papanicolaou smear, stained lung tissue,
and breast tissue. These deep learning approaches can also produce phase images from holograms since
they used phase information from a multi-height phase recovery approach to train the deep learning al-
gorithm, similar to dedicated phase recovery neural networks [75]. A novel deep learning network termed
a Fourier Imager Network incorporates Fourier transforms and has been shown to reconstruct phase and
amplitude holograms with superior generalization for pathological tissue reconstructions of tissue out-
side of the training dataset of lung tissue (prostate, salivary gland, and pap smear samples) [76]. Finally,
deep learning has shown the capability to produce superresolution images from low-resolution hologram
reconstructions to improve pap smear and lung tissue section image resolution without extensive com-
putational costs [77]. Faster data processing times enabled by algorithms such as these can enable im-
mediate diagnostic results. When paired with the POC-nature of lensfree imaging hardware, fast com-
putational processing can lead to significantly better patient outcomes in time-sensitive situations, such
as for sepsis diagnosis, during surgery, or for screening in a rural clinic, where patient followup visits are
burdensome due to long travel distances.
One of the most compelling applications of LHM in this field is in the 3D imaging of bulk tissue, with-
out the need for staining or sectioning. Since the 3D information of a sample is preserved by LHM holo-
grams, LHM can fully reconstruct 3D samples and provides a significant improvement on conventional
microscopy, enabling the imaging of tumors or tissue without the distortions or time and labor cost cre-
ated by sectioning and staining. Figure 4 shows a 3D reconstruction of a salivary gland tumor organoid
made possible by LHM [46]. This technique collects 61 holograms using on-axis and off-axis LED sources
such that the light field propagates at a variety of axial and rotational angles towards the sample. Using
a modified 3D form of the angular spectrum method described in section 2.2 and the Fourier diffraction
theorem, researchers were able to reconstruct the 3D refractive index of the object in a method not dis-
similar from tomography. While this does not enable imaging of microstructures or individual cells and
cell assemblies, it nevertheless shows that 3D information can be obtained from unprocessed bulk tis-
sue, which would be helpful for clinicians wishing to understand tumor morphology to differentiate vari-
ous tumor types and staging in different cancers, even during surgery. A similar technique used to image
prostatic RWPE1 organoids achieved mesoscopic resolution with the ability to resolve single cells if they
are separated from the larger organoid structures [47]. True cellular-level resolution in 3D LHM imaging
has been achieved for thick samples (200 µm) of mouse brain [45]. These samples had to be cleared with
the CLARITY method and underwent DAB staining to visualize neurons, but 2D reconstructions using
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a single LED source and multi-height holograms could be produced at any plane in the tissue.
The 3D imaging capability of LHM makes it especially suitable for the imaging of fluids or aspirates of
cells collected in clinical settings. LHM configurations have been successfully applied to suspensions of
cells in solution [78]. The insertion of a polarization generator or filter between the light source and sam-
ple and a polarization state analyzer or second filter between the sample and image sensor of a LHM
setup enables the microscope to image polarization-state sensitive samples. The most clinically relevant
use of this setup is to image synovial fluid for detection of gout, whose crystals exhibit negative birefrin-
gence under conventional polarization microscopy imaging conditions. The polarization-specific charac-
teristics of needle-shaped monosodium urate (MSU) crystals from gout and oxaloacetate crystals found
in urine have been successfully imaged by LHM using a linearly polarized source [79] and circularly po-
larized source [80] with psuedocoloring to produce a recognizable color image. Additionally, MSU crys-
tals imaged with left-hand circularly polarized light produced holograms that have been colored using
a deep learning algorithm so as to quantify polarization state changes in these samples [81]. Urinaly-
sis has been performed using a single-source LHM system to detect and track Trichomonas vaginalis
in urine [82]. A novel reconstruction method termed adaptive sparse reconstruction, which estimates a
point spread function directly from data to perform hologram reconstruction, was shown to image urine
with blood cells, crystals, and casts [83]. A recent translational study of LHM in urinalysis with urine
phantoms showed that it was sensitive to hematuria and pyuria, correlating strongly to hemocytome-
ter measurements of the same samples by detecting blood cells, bacteria, crystals, and casts [84]. Cere-
brospinal fluid analysis using LHM for diagnosis of meningitis has been successfully demonstrated as
well, with an LHM configuration that imaged erythrocytes and leukocytes in 215 samples [85]. This de-
vice also implemented automated cell counting, which enabled it to achieve 100% sensitivity and 86%
specificity compared to confirmed diagnostics, which can help eliminate human error in meningitis diag-
nosis.
A unique application of LHM in pathology is the ex-vivo analysis of tissues for anatomical research. One
LHM system paired acoustic and electromagnetic waves into a single imaging experiment, where a pulsed
laser source captured holograms at specific points on a sound wave as it passed through an ex-vivo tym-
panic ring and tympanic membrane [86]. Two wavelengths were used to map the surface height of the
sample interferometrically. This application is unlikely to be performed in a clinical setting as an inter-
vention or used as a treatment, but is nonetheless relevant to pathological biomedical research so is in-
cluded here.
For pathological imaging, LHM has already shown extensive results replicating and even improving on
images achieved with conventional microscopy. The large space bandwidth product enables LHM to func-
tion particularly well when looking for disease pathology which may only be present in a small portion
of a very large tissue section, as is sometimes the case in cancer pathology. LHM is generally incompati-
ble with fluorescence microscopy, which is also used in biomedical research, due to the incoherent nature
of fluorescent imaging. However, other labels such as nanoparticles are often just as effective, and serve
as coherent scattering labels [20]. Recently, lensfree (non-holographic) fluorescent microscopy has been
demonstrated using a similar in-line system to what is used in other LHM methods but that typically
has lower resolution than its holographic counterparts (8.77 µm) [87], due to the lack of interference be-
tween the excitation and emitted object waves, which prevents high-resolution reconstruction. However,
research is underway to improve this and this could enable lensless fluorescent imaging in the future.
LHM emerges as a superior technique for pathology in the imaging of 3D samples. While 3D reconstruc-
tions of thick, unprocessed tissue with cellular-level resolution have not yet been achieved, various LHM
imaging techniques have achieved either bulk, unprocessed tissue reconstruction or cellular resolution
of processed tissues separately. This is due to a current limitation in LHM where phase modulations to
the incident field created by tissues composed of cells, fluids, and extracellular matrix generate too much
interference or too little light penetration to effectively reconstruct images from bulk tissues. However,
LHM has achieved cellular resolution of 3D samples when cells are dispersed in a 3D medium, as we dis-
cuss in the following section, showing that LHM may be on the cusp of achieving high-resolution 3D un-
processed tissue imaging in the near future.
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3.2 Cytometric analysis of cells and blood

Cytometry and hemocytometry applications of LHM have been quite common in recent years. For cells
floating in fluid such as blood, no other imaging technique can retain information at any focal plane in
3D as efficiently as LHM, making this application an obvious choice for researchers to investigate. Ad-
ditionally, hematological samples are highly relevant to clinical medicine through hematology, oncology,
infectious disease, and immunological biomedical research. These are convenient samples for benchmark-
ing studies of novel LHM configurations due to their availability to researchers. As a result, many recent
technological advances in LHM include some form of hematological analysis. For image processing and
hologram reconstruction, hematological samples or cell suspensions satisfy a sparsity assumption that
can be leveraged to computationally remove twin-image artifacts [18]. Alternatively, some novel methods
have been able to remove twin image artifacts through novel hardware configurations that include two
light sources, one of which is off axis [88].

Figure 5: Schematic of an on-chip LHM cytometer with an example of a fluorescent signal and a hologram measured from
a single cell as it flows through the chip. This system uses fluorescent signal detection to trigger hologram acquisition and
it uses cell characteristics extracted from holographic reconstructions as inputs to a machine learning algorithm to classify
immune cells into three leukocyte types: granulocytes, monocytes, and lymphocytes. Figure reproduced with permission
from [89].

Portable LHM configurations have become more robust and powerful in recent years. 3D printed designs
enable cost-effective, point-of-care (POC) implementation in sizes as small as 55 mm × 55 mm × 40.5
mm (W × L × H) [90] to image buccal swabs and blood smears [91]. The replacement of a pinhole fil-
ter with a cone-shaped optical fiber tip has been shown to be viable in portable and non-portable LHM
configurations for imaging blood smear samples, improving device stability and robustness compared to
a pinhole filter [92, 93]. A benchtop holographic point-source configuration has been described for buc-
cal swab and blood smear imaging which also achieves improved device stability (and therefore improved
portability) by using off-axis light to illuminate a photopolymer holographic film that encodes a trans-
mission hologram of a point source [94].
Computational techniques, like PSR, have been applied to cytometric samples as well. PSR has been de-
mostrated in a portable LHM setup for platelet imaging with 1.55 µm lateral resolution through a sta-
tionary light source and shifting pinhole [95]. Other pixel super resolution techniques have been effec-
tively implemented to improve single-cell resolution in benchtop setups. Arrays of diodes have been un-
derstood for over a decade to be effective for this task [96], and additional processing using algorithms
for motion estimation have recently enabled pixel super resolution to be performed on free-floating sam-
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ples undergoing Brownian motion [97]. Gradient-descent phase retrieval methods have been shown to re-
solve twin-image artifacts and achieve a depth resolution of 50 nm in red blood cell images with a sin-
gle illumination source [98], while additional registration steps have been tested to determine precise z-
positions of holograms for more effective phase retrieval [99].
LHM’s ability to image cells in suspension due to its resolution, FOV, and 3D imaging characteristics
enables it to perform superior motility analyses of sperm cells compared to conventional methods. Early
methods using multi-illumination and multi-wavelength conditions tracked sperm in 3D using on-chip in-
tegration and revealed sperm cells travelling in helical trajectories [21]. However, a simple single-illumination
and single-wavelength LHM can also perform 3D imaging of sperm cells by employing more standard re-
construction and focusing techniques [78, 95]. A technique called MISHELF (multi-illumination single-
holographic-exposure lensless Fresnel) microscopy, which uses three distinct wavelengths that are com-
bined before sample illumination and a novel fast converging algorithm for image reconstruction, simi-
larly tracked sperm in 2D and 3D for motility and morphological analysis [100–102].
Cytometric samples can be easily integrated into LHM systems with on-chip processes to further ex-
pand device functionality. As in conventional flow cytometers, cell sorting and counting algorithms are
typically part of these modern LHM systems. Simple configurations with a single illumination source
have captured intensity reconstructions of diluted cells flowing through an S-channel microfluidic chip
and have used a thresholding-based image segmentation approach to count cells with reasonable suc-
cess [103]. A Fourier domain-based classification algorithm has recently been shown in a similar on-chip
LHM setup with a straight channel for classifying white blood cells into three subtypes using a raw holo-
gram without image reconstruction [104]. Other methods use deep learning algorithms to count, clas-
sify, and even distinguish different cell populations [105, 106]. This approach has been translated into a
3D printed device [107]. These counting methods have shown success when working with multi-height
phase reconstructions and with intensity reconstructions. Moving closer to the functionality of modern
flow cytometers, one LHM-based method used nanoparticles bound to target cells to increase scatter-
ing and enhance LHM imaging performance [20]. The specific plasmon resonance characteristics of the
particles allowed for the classification of immune cell populations based on the cell’s CD4 and CD8 ex-
pression. Magnetic beads functionalized for specific cell detection have been used on-chip to detect tar-
get cells in blood on-chip by applying a periodic magnetic field which enables a simple LHM system to
distinguish rare cells in blood [108]. This is relevant for diagnosis of leukemia and other cancers. One
particularly sophisticated method combines on-chip microfluidic cell separation, automated cell count-
ing, and fluorescence detection in a single platform to distinguish 3 different types of leukocytes [89, 109].
Figure 5 shows a schematic of this method, in which cells flow through a microfluidic chip where a first
fluorescence signal is detected and recorded, then used to trigger acquisition of a hologram after the cell
has moved into the holographic imaging region of the chip [89]. This pairs high-resolution imaging of a
cell with its fluorescence signature for every cell that passes through the microfluidic chip, a new feature
found in expensive modern flow cytometers, but replicated here in a low cost, compact, and portable
platform.
LHM has several advantages over conventional methods of cytometric analysis involving conventional
microscopy and even flow cytometry. Firstly, LHM can easily achieve the same resolution and repro-
duce the same images for these samples as conventional microscopy. This enables LHM to be used in
low-resource, POC, and large hospital settings where hemotological analysis would be instrumental to
clinical decision making. LHM also preserves the 3D information in a sample, allowing a technician to
perform fewer sample processing steps and track cells in real-time for clinical information. However, this
does come at the cost of some training on the particular LHM system. Additionally, LHM systems are
more sensitive to dust and impurities in the sample in question, which can place additional burden on
a trained technician in the sample processing steps. On-chip functionality also enables LHM to replace
other techniques like flow cytometry for cell expression analysis and cell counting in a low cost and portable
device. One LHM system, NaviCell, has reached the commercial stage and has shown high accuracy when
compared with conventional, dye-based hemocytometers, and can even perform cell viability testing func-
tions (see Section 4.2) [110]. Another commercial system, Cellytics, has shown effective cell sorting of
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blood cells and cancer cells when images produced with this system are passed through a deep learning
classification algorithm [58]. These devices successfully combine on-chip functionality, cell counting and
sorting algorithms, and the inherent 3D imaging characteristics of LHM. The advances of LHM devices
in pathology demonstrated in recent years illuminates LHM as a compelling emerging technology in clin-
ical cytometric analysis which requires more clinical study.

3.3 Infectious disease monitoring and diagnosis

LHM techniques have a wide variety of configurations and coupled methodologies when applied to infec-
tious disease monitoring and diagnosis. Typically, traditional infectious disease diagnosis involves micro-
scopic visualization of individual infectious particles such as malaria or parasites, visualization of colony-
forming units (CFUs) or plaque-forming units (PFUs) in bacterial or viral culture, measurement of vi-
ral or bacterial load like what is done in lateral flow assays (LFAs) or polymerase chain reaction (PCR)
analysis, or a combination of these techniques depending on the specific disease. LHM has been tested
successfully for each of these detection methodologies.

Figure 6: Workflow for a LHM-based system to quantify viral plaques. (a) Sample preparation for plaque assay, with a
traditional plaque assay shown at the end. (b-f) LHM imaging and live viral plaque quantification workflow that is per-
formed before the traditional quantification assay. (b) Whole-well holograms are captured for different time points. (c)
A DenseNet-based [111] neural network is used to create (d) a probability map for plaque-forming units (PFUs) for each
hologram by scanning across the hologram spatially and temporally. (e) PFU detection performed through application of a
threshold of 0.5 to the probability map. (f) Result of processing of whole 6-well plate. This method yielded an assay with
a 10-fold higher dynamic range with reduced incubation times than conventional approaches without the need for staining.
Figure reproduced with permission from [112].

Direct visualization of individual bacteria with LHM imaging has been achieved in a variety of configu-
rations and contexts. The simplest LHM systems are capable of imaging disperse samples of microorgan-
isms. However, because of their simplicity, these systems can suffer from poor resolution limits, which
makes visualizing organisms any smaller than large bacteria challenging [113]. Fundamentally, LHM res-
olution, under optimal configurations based on the sensor, wavelength of light used, and source-sample-
sensor distances, is limited by the sensor’s pixel size [114]. Under optimal configurations, Schistosoma
haematobium eggs, parasitic eggs present in stool and urine of infected individuals, and t. vaginalis par-
asites have be imaged [82]. 3D motility of t. vaginalis has been used as an endogenous biomarker for au-
tomated biosensing of this parasite in dense blood or cerebrospinal fluid with an LHM system that scans
across a capillary tube containing 3.2 mL of fluid [115]. A three-wavelength LHM configuration has been
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shown to provide micrometer resolution to image Giardia duodenalis cysts in contaminated water [116].
Tightly tuned LHM configurations enable detection of parasites or even large bacteria, but typically not
smaller pathogens. Several techniques have attempted to split the reference and sample waves to achieve
higher resolution, a technique which produces global interference fringes similar to Michelson interferometer-
like digital holographic microscope configurations. One LHM which used two small GRIN lenses to do
this still had difficulty resolving bacteria like Bacilis subtilis [117]. This reference and sample wave split-
ting has also been achieved by collecting holograms from a reflected field created by a step-down chip
design [118], and by passing the source wave through a prism with two diffraction gratings which direct
a single diffraction order each towards the image sensor, with one beam passing through the sample and
the other reference beam propagating unaffected [119].
PSR techniques, which computationally reduce pixel size, are therefore often necessary to achieve the
resolution required to visualize pathogens directly. One configuration used an LED array to achieve PSR-
based imaging of malaria (Plasmodium falciparum) parasites in an LHM system [96]. A similar PSR
technique coupled with on-chip immune-based immobilization of HSV-1 and HSV-2 viruses enabled the
visualization and sizing of these small viral particles directly [120]. A simplification of typical LHM sys-
tems through the substitution of a cone-shaped optical fiber tip instead of a pinhole filter in a single-
source LHM setup also enabled direct visualization of microorganisms in pond water [93].
Other, even more creative (although potentially difficult to implement translationally) methods have
been explored to improve LHM imaging for pathogens. The deposition of polyethylene glycol onto im-
mobilized adenovirus and influenza A virus created small nanolenses which enabled visualization of the
virus [121]. Ultrasonic wave propagation has been shown to similarly produce nanolenses around nanopar-
ticles, rendering them detectable in solution through LHM, which could theoretically be possible with
small pathogens [122].
When performing bacterial or viral culture for diagnosis of infectious disease, often time is the main cost.
LHM presents some compelling methods that reduce the time it takes to process these types of samples,
and even reduces the sample processing complexity. Since effective imaging of bacterial and viral cul-
ture involves quantification of colonies or plaques rather than single microbes, high resolution techniques
do not need to be used. This allows for the use of simple LHM imaging configurations that permit use
within incubators, or the incorporation of additional sample handling and environmental control com-
ponents within the LHM microscope itself. Recent examples of LHM used for this application include
bacterial culture imaging, where a moving stage and heating plate are introduced into the microscope to
take scanning images of an entire bacterial culture plate [123]. Stitched images were paired with a deep
learning algorithm so that bacterial growth was detectable in only 3 hours, and classification among 3
different disease-causing bacterial strains was reliable within 7–12 hours. Viral plaques have also been
quantified using a very similar setup (Figure 6), which combines a simple LHM imaging configuration
with in-microscope temperature control and deep learning to quantify plaque-forming units (PFUs) for
viral cultures of VSV, HSV-1, and EMCV more rapidly than conventional approaches and without the
need for staining [112]. LHM has also been used to visualize and quantify Staphylococcus aureus phage
plaque growth in nearly half the time of conventional assays, which is important for the development of
novel antibacterial targeted phage therapeutics [124].
LHM has also been applied as a component of immunoassays for sensing of pathogens. These systems
generally image infectious particles indirectly through a sandwich assay, where one antibody is used to
fix the target to a surface, and a second antibody is conjugated to some reporter molecule or microparti-
cle. Immunoassays have been coupled with LHM in several ways. One unique method immobilized Staphy-
lococcus aureus bacteria onto a contact lens surface, using 5 µm polystyrene microspheres to visualize
bound bacteria, and accounted for surface topology with computational techniques to achieve a detec-
tion limit of 16.3 colony-forming units (cfu) / µL [125]. Agglutination assays, discussed in more detail
in Section 3.4, have also been shown to detect infectious diseases indirectly. Using a single illumination
source, 2 µm polystyrene spheres can be resolved [53]. Tracking the agglutination of these particles in
response to HSV-1 with LHM enabled a limit of detection of 5 HSV-1 viral copies/µL to be achieved.
In this method, a deep learning algorithm was used to perform autofocusing and phase recovery of par-
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ticle clusters. Deep learning and particle agglutination have been combined in a LHM-based portable
COVID-19 assay as well, enabling detection of SARS-CoV-2 virus at concentrations as low as 1.27·103
copies/mL while using deep learning to accommodate cellular debris in LHM reconstructions [57]. This
limit of detection is similar to that in polymerase chain reaction (PCR) tests, but is simpler and faster
to perform than PCR.
Culture and PFU analysis is the most commonly used method to determine the appropriate antibiotic
to use for treatment in an inpatient clinical scenario. Some diseases are diagnosed through a patient’s
history or physical exam findings, but sometimes empirical antibiotic treatment is started without fully
knowing which bacteria is present due to the time it takes for a culture to grow. This delay can be a
contributing factor for the development of antibiotic-resistant bacteria. A better approach could be pro-
vided through LHM, since these methods can detect and quantify infectious diseases much faster than
traditional methods, without the need for sample processing, and in POC settings. The FOV, high res-
olution, and component simplicity of LHM enables this method to be used effectively for clinical infec-
tious disease diagnosis. Some of the typical limitations of LHM continue to be disadvantageous in this
application, including sensitivity to dust and debris, and computational load, but several of the above
referenced studies have shown that computational techniques and deep learning methods are starting to
resolve these limitations and make LHM a compelling approach in this field.

3.4 Molecular diagnosis and biosensing

As modern medicine advances, biomarkers for disease are becoming important areas of research. Current
widespread methods of performing molecular biosensing are the enzyme-linked immunosorbent assay
(ELISA), LFAs, PCR, and others. Each of these approaches has their own advantages and drawbacks—
for example, PCR and ELISA are both known to be sensitive tests with very low limits of detection,
but they require technician training to perform and often are unavailable in POC settings due to sys-
tem bulk and infrastructure requirements. LFAs are ubiquitous, as they can be utilized in virtually any
environment and are inexpensive to manufacture, however they are not very sensitive, requiring a high
target concentration to yield a positive test, and are not quantitative. LHM-based techniques have re-
cently attempted to combine a very low limit of detection with POC utilization in a number of ways to
detect biomolecules.

Figure 7: Quantification results from a LHM biosensor used to image an agglutination assay for the detection of SARS-
CoV-2 pseudovirus. (a-b) Analysis of pixel super-resolved hologram reconstructions of agglutinated microparticles mixed
with viral particles and cell debris using either (a) a thresholding-based image segmentation approach or (b) a residual
CNN-based feature classification approach. Vesicular stomatitis virus G (VSV-G) served as a negative control and three
times the standard deviation of variation of the zero-concentration point was used to calculate a limit-of-detection thresh-
old (red dashed lines) (c) The CNN performed better on feature classification than the thresholding approach as it was
able to distinguish debris in the sample from agglutinated particles. This enabled the detection and quantification of viral
particles at a concentration as low as 1.27·103 copies/mL. Figure reproduced with permission from [57].

As mentioned in Section 3.3, agglutination assays present a powerful sensing methodology when com-
bined with LHM. In an agglutination assay, microparticles or nanoparticles are functionalized with an
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antibody or capture molecule to detect a specific target biomolecule or cellular surface marker. In the
presence of this target, the particles will sandwich the target, resulting in agglutination of particles. At
high enough concentrations, particle aggregates can even become visible with the naked eye. So long as
a system exists to quantify this agglutination, the particles can be functionalized to detect virtually any
biomolecule. LHM’s large FOV and high resolution enables it to detect very subtle changes in particle
agglutination as target concentration increases, enabling a much more sensitive readout of particle agglu-
tination assays. Figure 7 shows results from an agglutination based biosensor for SARS-CoV-2 virus [57].
In this configuration, also discussed in Section 3.3, PSR was performed using a high-speed LED array
to limit blur from Brownian motion, and deep learning was implemented to quantify agglutination while
accounting for debris in the large FOV. This enabled a limit of detection on the same order as PCR. Ad-
ditionally, this method was portable and achieved a readout of results in less than 3 hrs in POC settings,
showing effective combination of the sensitivity of PCR and portability. This same PSR LHM system
has also been used to detect biomolecules like interferon-γ, a pro-inflammatory molecule present in sep-
sis [19]. In non-PSR LHM configurations, a detection method for HSV-1 has already been discussed in
Section 3.3, but the deep learning-based autofocus and phase reconstruction can easily be translated to
any biomolecule assay by changing particle functionalization [53]. Another LHM agglutination assay was
unable to resolve individual nanoparticles, but could detect the agglutination of large enough particle
clusters which, when coupled with a deep learning quantification algorithm, enabled c-reactive protein
(CRP) concentrations as low as 0.5 µg/mL and as high as 500 µg/mL to be detected, relevant for heart
failure and inflammation [62]. DNA molecules have also been sensed with magnetic particles, albeit not
through agglutination, but rather a sandwich assay where magnetic particles acted as reporters to visu-
alize target DNA linkage using LHM [126]. This resulted in the detection of DNA concentrations down
to 10 pM.
LHM biosensors are an emerging field that has the potential to have a high impact on the way clinical
tests are performed. The portability and imaging characteristics of LHM systems enable a single system
to be effectively coupled with microparticles and nanoparticles to indirectly sense the presence of impor-
tant biomolecules for many diseases. However, these LHM systems still present a typical cost of around
$200, and users would need training and access to moderate computational resources. Fortunately, once
LHM platform access has been established, individual tests for these systems tend to be on the order of
a few cents per test, and deep learning algorithms have been shown to lighten computational load, re-
ducing the cost over time and making LHM an active area of research for novel biosensor platforms. As
biomarkers become more important in the diagnosis of neurodegenerative disorders, cancer, and in the
development of personalized medicine, LHM technologies can help meet the clinical demand.

4 Use of lens-free holographic microscopy in biomedical research

LHM-based methods have seen increased use in the last five years in the context of biomedical research,
impacting clinical medicine and our understanding of disease, treatment, and fundamental biology and
medicine. LHM presents a unique and potentially transformative technique that in recent years has en-
abled researchers to make observations and to answer questions in novel workflows that would otherwise
be impossible without LHM. LHM has also been shown to be an alternative to conventional imaging
for several applications in biomedical research, and has been implemented into existing workflows seam-
lessly. In this section, we discuss LHM within the context of biomedical research, focusing on basic sci-
ence uses of LHM and how LHM can enable these types of research endeavors.

4.1 Live-cell imaging and cell culture analysis

Within the context of biomedical research, perhaps no application is more suited to LHM than live-cell
imaging. This type of imaging is widely used for research involving cell growth and cultures, including
cancer research, developmental biology, and stem cell biology. The absence of objective lenses in LHM
systems means that these systems can operate in a variety of conditions, including high humidity and
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warm temperature environments like those inside incubators used to grow and maintain cell cultures.
Figure 8 shows results from one particular system that captured multi-angle holograms to retrieve 3D
information from cells as they grew in culture inside an incubator [127, 128]. The frequently captured
timecourse reconstructions enabled researchers to discover novel cell-to-matrix and cell-to-cell interac-
tion and migration phenomena, without disturbing or removing cells from the incubator. Simple single-
source LHM configurations have tracked and quantified cell growth and cell motility as well, including
analysis of neuroblastoma cells in culture [129]. A novel 4-hour ultradian rhythm was discovered through
single-source LHM imaging of the dry mass of thousands of cells in culture, which, when coupled with
pharmacological interventions to probe different points of the cell cycle, revealed that the rhythm rep-
resents a massive degredation and re-synthesis of protein during the cell cycle [130]. Cell cycle tracking
of individual cells has been achieved with single-source LHM cofigurations, and the inhibitory effect of
actinomysin D on the cell cycle has been observed [131].
To aid in and automate the reconstruction and quantification of LHM holograms, parfocal autofocusing
methods have been created, where wave propagation properties and image intensity distribution are used
to establish a continuous autofocus condition, similar to a parfocal lens. This approach can continuously
monitor growing cells and track the motility of neuroblastoma cells and bacteria [132]. Cell tracking has
been automated computationally in another simple LHM configuration, which enabled researchers to
compare cell motility for NIH 3T3 cells on substrates of fibronectin and type IV collagen [133]. Deep
learning methods have also been used to analyze LHM images of live cell culture, where they perform
everything from phase unwrapping for phase retrival to estimation of cell metrics for analysis, processing
over 25,000 cells per second [63].
Some samples of cell culture can be quite dense, creating problems for hologram reconstruction. To im-
prove reconstruction under these conditions, several methods have been explored. One multiwavelength
LHM system used red, green, and blue LED illumination sources to collect holograms from dense cell
cultures [134]. This enables phase retrieval and resolves the twin-image artifact without relying on a spar-
sity assumption, which allowed researchers to track cell confluence as growth and proliferation occurred.
A similar configuration imaged and tracked individual cells as they progressed through the cell cycle
and divided, yielding over 2× 106 measurements [135]. Another compressive sensing approach showed
promise as an alternate method to remove this twin-image artifact and was tested for images of cells in
culture [14].
LHM can also be used in situations where light must be kept to a minimum to prevent disturbing or
harming cell growth. In one such low photon budget application, live glial progenitor cells were imaged
successfully in-incubator using as little as 7 µW of illumination power in a simple single-source LHM
system [136]. This method was also effective for imaging stained sections of ex-vivo rodent neural tissue.
The main advantage of using LHM to monitor and quantify growing cells in culture is its ability to do
so in-incubator with minimal sample interference. The compactness, FOV, resolution, and absence of
lenses in LHM systems enables them to function well even within this challenging environment. Fur-
thermore, imaging protocols can be automated to continuously monitor samples without sample alter-
ation. The performance of LHM under low photon budget constraints further reduces cell damage that
can occur with extensive sample manipulation and conventional imaging. Drawbacks of using LHM such
as the density of samples affecting the image quality are being addressed. These factors, combined with
the novel workflows developed and the discoveries that have been made using LHM, make LHM a com-
pelling choice for future biomedical research involving live cell culture.

4.2 Pharmacological testing

Biomedical research on pharmaceutical development is important for drug discovery and the initial stages
of drug testing before clinical trials. Pharmacological testing, particularly of chemotherapeutic drugs for
cancer treatment, has recently begun to benefit from LHM-based imaging and analysis methods. Utiliz-
ing the same in-incubator approaches that make LHM ideal for live-cell imaging in culture, LHM also
presents an ideal platform for cell viability analysis. This has been accomplished with a single-source
LHM setup used to image cultured cells exposed to methyl mercury in a 96-well plate [137]. Other sim-
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Figure 8: (a-b) In-incubator compact LHM device used to reconstruct 3D information from prostatic RWPE-1 cells in
culture over time. (c) 1 of 31 raw holograms captured with this device and used to perform the 3D reconstruction. (d)
3D orthogonal average intensity projection for the reconstructed sample volume where color denotes object depth relative
to the plane shown: blue being high, red being low. (e-h) Average intensity projections at the data processing iteration
shown in the bottom right of each image. Each iteration fills in additional information according to a cost function (shown
in i). This device was used to discover a new phenomenon regarding cell-to-matrix and cell-to-cell interactions and migra-
tions of growing tumor cell cultures. Figure reproduced with permisssion from [127].

ilar LHM configurations have been used to perform cell viability testing for scraped and suspended cells
in solution, enabling viability analysis to be performed on triple negative breast cancer cells exposed to
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apoptotic and necrotic drugs with the incorporation of a deep learning algorithm for live/dead cell clas-
sification [138]. This bypasses the need for flow cytometry in this type of research. Cell cycle arrest has
also been observed through LHM imaging of cells treated with doses of several inhibitory drugs [139].
Another method used fractal geometries of suspended cells with machine learning to classify live and
dead MCF-7 cancer cells stained with tryptan blue [61].
Several on-chip methods have also been developed for LHM-based viability analysis. One method simply
characterized cells into live and dead populations based on their diameter and refractive index as cells
flowed through a microfluidic chip without the need for staining or additional processing [140]. Another
on-chip method first placed cells in a paramagnetic medium before applying a magnetic field across a
microfluidic chip [141]. Under these conditions, cells will levitate towards the center of the chip, with
live cells, being denser than dead ones, moving towards the center more quickly. In-depth image process-
ing was used to detect mouse bone marrow cells and breast cancer cells and determine whether popula-
tions of these cells were alive or dead via apoptosis. The previously described commercial LHM cytome-
ter (Section 3.2) is also capable of performing cell viability analysis [110].
Research into the use of LHM for cell viability analysis has resulted in the development of multiple method-
ologies to assess the effects of novel therapeutics on cells. This has been shown in on-plate, on-chip, and
in-suspension analysis methods, which have used stained, or labelled, and unlabelled samples. For this
application, superresolution techniques are unnecessary since mammalian cell lines, which are most com-
monly used for viability analysis, are on the order of tens of microns, making them easily resolvable by
most LHM systems. Additionally, LHM is well suited for this application because cells can be analyzed
on-plate over time after drug exposure without disturbance.

4.3 Basic biological science

This final category of LHM application is the furthest removed from the clinic, however it is nonetheless
important to cover as the dissemination of basic biological discoveries often has transformative effects on
translational research and patient treatment in the clinic. To this end, LHM has been used to investi-
gate various basic biological science questions. PSR techniques in LHM have enabled the investigation
of microorganisms like Caenoharbditis elegans with resolution comparable to a 40× microscope objec-
tive [26]. At this resolution, organelles and internal structures of C. elegans are visible. PSR in LHM
has also been shown to enable reconstruction of multilayer samples by leveraging the 3D information
preserved in the holograms [142]. More advanced PSR algorithms have been demonstrated that virtually
rotate the pixel layout of a color image sensor to achieve amplitude and phase reconstructions with 350
nm lateral resolution and gigapixel images of C. elegans [143]. Additionally, tomographic or 3D recon-
structions have been obtained using this LHM setup by capturing angled holograms. Another approach
to enhancing LHM resolution for basic biological research involved laterally shifting a sample and cap-
turing multiple holograms, which enhanced the FOV of the image and, through a unique PSR algorithm,
resulted in higher resolution in the center of the image and lower resolution around the outer edges with
reduced data volume [144]. This approach was used to image the leg of a fly. Other methods of LHM
image quality improvement have also been applied to biologically relevant samples. An algorithmic ap-
proach with a parameterized sharpening step was able to significantly improve the contrast of LHM im-
ages of the head section of a Drosophila melanogaster fly [145].
To address drawbacks of conventional biological imaging, several LHM techniques have been developed
and tested. For samples where light could impact growing or sensitive samples, imaging must use a low-
photon schema. One LHM system managed to produce images of ex-vivo rat neural tissue and live glial
progenitor cells with illumination intensity as low as 7 µW (also discusssed in Section 4.1) [136]. Autofo-
cusing methods, whereby an LHM hologram reconstruction distance is selected by scanning through sev-
eral reconstruction distances and a distance with a local minimum pixel value is selected, enabled effec-
tive resolution of paramecium floating in solution and of section of a D. melanogaster fly [146]. Finally,
to address the computational load that phase retrieval can have on LHM, a subsampled pixel approach
has been developed, enabling a 5.5× improvement in video framerate and order of magnitude fewer pixel
measurements in the phase imaging of paranema microorganisms [147].

20



5 CONCLUSIONS AND OUTLOOK

LHM configurations in basic biological applications tend to be fairly simple in their design, consisting
of a single illumination source or otherwise employing an array of sources or a moving sample stage to
acquire images for PSR. For these applications, high-resolution imaging tends to be the most desirable,
and so algorithms that either improve resolution like PSR, aid in focusing like autofocusing algorithms,
or improve image quality like contrast enhancement are indispensable. LHM can easily be tuned to oper-
ate within the constraints imposed by biological samples, such as low-light conditions, or even (multi-
layer) cell growth conditions. Additionally, fluorescent imaging, which is generally incompatible with
LHM due to its incoherent nature, has been demonstrated which could enable lensless imaging of fluores-
cently labelled samples using the same in-line configuration used for lensless holographic imaging tech-
niques, albeit with significantly reduced resolution (8.77 µm) [87]. One recently developed lensless imag-
ing method used calcium fluorescence imaging in in-vivo mouse brains and a optical phase mask to track
neural activity during running [38].

5 Conclusions and Outlook

In this review, we have discussed a number of key innovations for LHM that enabled its application to
many high-impact regimes in clinical medicine and biomedical research. In clinical pathology, LHM ben-
efits from being compact and POC, and can become transformative in this field through 3D imaging of
bulk tissues. On-chip functionality is key for LHM’s success in cytometric applications. High-resolution
LHM configurations are very useful for infectious disease monitoring and for biosensors utilizing micro or
nanoscale particles. In biomedical research, LHM enables unique and compelling new workflows through
in-incubator continuous monitoring of cell culture and cell viability analyses. Finally in basic biological
research, high-resolution LHM and the customizabity of LHM systems is particularly beneficial. Overall,
the breadth of computational and deep learning approaches for image processing and quantification have
played a major role in LHM’s success in these fields.
Several key aspects of imminent LHM research will likely lead to transformative clinical and biological
impact. One clear example is to extend the work done with 3D sample imaging, especially for treatment
and excision of cancers, which could significantly improve surgical outcomes in cancer patients. Another
is the in-incubator approaches for LHM cell culture monitoring. Refining and translating these systems
could enable quite novel workflows in biomedical research to answer questions relating the stem cell re-
search and regenerative medicine, as well as infectious disease and pharmacology. The translation of tech-
nology into this field is still nascent, with great future potential. The absence of many commercial LHM-
based systems in clinics and in laboratories indicates the need for more work in this area.
Other areas of future research will be directed at addressing the common drawbacks of LHM in clini-
cal and biomedical applications, such as LHM’s sensitivity to dust or debris in a given sample, the dif-
ficulty of reconstructing dense samples without artifacts, and the computational load of LHM, which
presents the main barrier for effective POC implementation. Deep learning in particlular seems to be an
ever-growing method in LHM applications and can pose some significant advantages for data process-
ing and visualization, as well as some risks. Traditional LHM image reconstruction and quantification is
based on physical properties of either light or of the sample. As such, traditional image reconstruction
is a physics-based method that can produce accurate images of unexpected outcomes, perhaps of tissue
that was not stained correctly but tells us something new or unique cell growth characteristics never ob-
served before. Deep learning, on the other hand, can be unreliable in processing data that is dissimilar
from what it was trained on. This is because it optimizes its performance from a limited training set and
is unconstrained by physics. The training dataset, therefore, should ideally encompass examples of all
possible outcomes. This is nearly impossible to do, so each network will need to generalize to unfamiliar
inputs occasionally, in which case it could “hallucinate” and generate reconstructions that are not truly
present in the sample. This could be a massive problem in clinical application, so caution is essential.
Some interesting research has been performed on lens-based holographic systems (often referred to as
digital holography) that could easily be converted into LHM systems. These systems often place a lens
between the sample and the sensor, using the lens to magnify a hologram before recording it. This im-
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proves the resolution of the system, but reduces the field of view. Placing the sensor at the focal plane
of the objective, along with some PSR and other image improvement techniques would convert these
systems to operate lens-free, reducing cost, improving portability, and enabling them to function in a
wide range of environmental conditions. Systems like this have been applied to some of the same ap-
plications already discussed, such as on-chip leukemia detection [148], red blood cell imaging for ane-
mia diagnosis [149], and malaria diagnosis [150]. Others have explored novel applications like observa-
tion of neuronal network activity [151], observation and characterization of protein and colloidal aggre-
gates [152–156], investigation of Streptococcus mutans biofilm microrheology [157], investigation of cell
adhesion gaps in various cancer cells [158], and sensing bone cell morphogenesis under shear stress [159].
Each of these applications presents a potential area of investigation for LHM system development, and
would expand the range of applications for LHM.
LHM presents a compelling technique for many clinical and biomedical applications. Its unique charac-
teristics enable it to simultaneously replace conventional microscopic imaging techniques in many ways
while also enabling novel imaging and treatment workflows. Future research in LHM would be best di-
rected towards improving its transformative aspects, such as on-chip functionality, in-incubator approaches,
3D reconstructions, novel deep learning approaches, and translational studies to drive LHM adoption in
the clinic and biomedical research.
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ports 2022, 12.

[43] F. Nette, A. C. G. de Souza, T. Laskay, M. Ohms, D. Dömer, D. Drömann, D. H. Rapoport, PLoS
ONE 2022, 17.

[44] C. Tai, A. Ahmadzadegan, A. M. Ardekani, V. Narsimhan, Soft matter 2022.

[45] Y. Zhang, Y. Shin, K. Sung, S. Yang, H. Chen, H. Wang, D. Teng, Y. Rivenson, R. P. Kulkarni,
A. Ozcan, Science Advances 2017, 3, 8 e1700553.

[46] W. Zheng, J. Wang, Y. Zhou, Q. Zeng, C. Zhang, L. Liu, H. Yu, Y. Yang, Optics Letters 2023, 48,
3 771.

[47] F. Momey, A. Berdeu, T. Bordy, J.-M. Dinten, F. K. Marcel, N. Picollet-D’hahan, X. Gidrol,
C. Allier, Biomedical Optics Express 2016, 7, 3 949.

[48] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Seg-
mentation, 2015, ArXiv:1505.04597 [cs].

[49] N. Navab, J. Hornegger, W. M. Wells, A. F. Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III, volume 9351 of Lecture Notes in Computer Sci-
ence, Springer International Publishing, Cham, 2015.
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