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Abstract: The recent comment on our previously pub-
lished article questioned the novelty and computa-
tional efficiency of our work. Here we respond by re-
stating the novelty and scientific value of our work as
well as showing why the specific alternative methods
stated in the comment are unlikely to outperform the
methods we compare for metasurface applications in-
volving high refractive index particles near high refrac-
tive index substrates.
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We appreciate the interest taken in our article by
Dr. Chaumet, and here respond to his comment [1] on
our recently published manuscript [2].

We begin by noting that in our original article, we
did not claim the discovery of a fundamentally novel
method, but instead, that the value of our publica-
tion is in the speed-performance tradeoff comparison
of several methods, in particular for the case of high
refractive index particles and/or high refractive index
substrates. We are also well aware of the large body
of work in the last few decades on the discrete dipole
approximation (DDA), and cited 48 references in our
paper, including some work by Dr. Chaumet and some
of the references cited in his comment. The scientific
value of our paper was clearly stated in the second-to-
last paragraph of our introduction [2]:

...we compare the accuracy and computation speed between
two-dimensional (2D) and one-dimensional (1D) methods of
computing the Sommerfeld integrals for multiple dipoles.
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Our approach takes advantage of parallel processing for
faster calculations and outputs both the transmitted and
reflected fields, which, to the best of our knowledge, is not
done in other existing simulation tools. We also evaluate the
speed and accuracy of four different polarizability models:
the simple Clausius—Mossotti relation, the radiation reac-
tion correction, the lattice dispersion relation, and the dig-
itized Green’s function. Using our 1D integration method
and the radiation reaction correction dipole model, we find
highly accurate and rapid near-field and scattered field cal-
culation for light incident on elliptical cylinder (“pillbox”)
shaped nanoparticles that are sitting on a substrate. This
holds true for metallic and high-index dielectric particles
and/or substrates.

For the methods we compare, although the underly-
ing algorithms are not novel, the implementation is
our own (except for FDTD), and created from scratch.
This ensured fair comparisons among methods, and
there are several technical details related to our im-
plementation that differ from previous works, as noted
by Dr. Chaumet. However, as we elaborate below, in
contrast to Dr. Chaumet’s comment, our implementa-
tion of these technical details is not inferior to previous
implementations.

In his comment, Dr. Chaumet suggests that, when
calculating the Green’s function for a dipole in close
proximity to a substrate, the poles in the Sommerfeld
integral can be removed by a change of variables. He
cites that this change of variables has been performed
in [3]-[5]. However, closer inspection reveals that there
is no substrate considered in [3], and therefore no poles
in even the initial problem. In [4], there is a substrate,
but the change of variables is only used to calculate
the total radiated power, which is a simpler calcula-
tion than that of the full Green’s function. Ref. [5] does
indeed suggest the use of the change of variables to re-
move the poles of the Green’s function in the presence
of a substrate, but no derivation is provided in that
paper, only a reference to [6].
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In [6], instead of integrating over radial spatial fre-
quencies, k,, the integration variable is changed to:

ko, = \/kE — k2, (1)

where kg is the wavenumber in medium 0. In addition
to this change of variables, the path of integration is
split into two paths:

Veko oo
G; = (— / +/)f4(k02)dk02~ (2)
0 0

The intersection of these two paths at kg, = 0 cor-
responds to one of the poles of the original integrand,
which occurred at k, = kg. Placing poles at the bound-
aries between integration intervals is something that
we do in our manuscript too, using the Gauss-Kronrod
(GK) method, but with a more straightforward, direct
integration path along the real axis for the radial spa-
tial frequency. We also note that even after the change
of variables, poles potentially remain within the inte-
grand. For example, in Eq. (24) of [6], the denominator
of the integrand is A1 Ay — e~ 2tko=d where Ap1 and
Apo are Fresnel reflection coefficients and d is a layer
thickness. For some parameter combinations, this de-
nominator can equal zero, resulting in poles in the in-
tegrand.

Dr. Chaumet mentions that there is an even more
efficient way to compute the Green’s tensor, which was
presented by Paulus, Gay-Balmaz, and Martin [7]. As
with the most efficient method in our paper, Paulus’s
approach begins by writing the Sommerfeld integral in
cylindrical coordinates, where the challenging integral
runs from k, = 0 to k, = co. As stated in Eq. (17) of
Ref. [7], a typical integrand has the form:

Gkpir,x') = g(kpr,x')J,(kpp) [Alky, 2") exp(ikiz2)
+B(k,,z") exp(—iki.z)], (3)
where k;, = «/le - kg and k; is the wavenumber of

medium /. Then, in contrast to our approach, [7] uses
the residue theorem to select a new integration contour
to avoid the poles and reduce oscillation in the Som-
merfeld integrand. An elliptical contour in the fourth
quadrant of the complex plane is used to avoid the
poles, while the contour from the end of the ellipti-
cal part to oo is evaluated parallel to the imaginary
axis. The elliptical contour is a clever idea, which pro-
vides the benefit of avoiding poles at the cost of added
complexity in the geometrical definition of the contour.
In our paper, we show that the GK approach, placing
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interval boundaries at the pole locations, is also a suffi-
cient approach. Our approach is simpler in that no de-
cisions are required about the size of the elliptical con-
tour. A systematic comparison of the speed-accuracy
tradeoff between the two approaches would be an in-
teresting idea for a future study; it is currently unclear
to us which would perform better.

The rationale for making the second part of the
contour, the path from the end of the ellipse to com-
plex oo, parallel to the imaginary axis was that Bessel
and Hankel functions do not exhibit oscillations when
evaluated parallel to the imaginary axis. Although inte-
grating parallel to the imaginary axis removes the oscil-
lations from the Bessel and Hankel functions, it intro-
duces high-frequency oscillations into another part of
the integrand: the terms e***1=* in Eq. 3. For large real
k,, ki is imaginary and these terms in Eq. 3 would de-
cay evanescently. However, for integration along imag-
inary directions, these terms become oscillatory rather
than evanescent. In other words, by switiching from in-
tegration along the real axis to integration in the imag-
inary direction, the oscillatory terms in the integrand
have not been removed, but instead just switched from
the Bessel (or Hankel) function term to the exponential
term.

In Paulus’s article [7], the validation and speed-
performance tradeoff data is limited: they only show
one validation figure (Figure 6), where the test case in-
volved 4 material layers, all with identical optical prop-
erties, which means that there are no reflections from
interfaces, and it is difficult to draw conclusions on
the performance of such an approach in more complex
cases, such as the ones we analyze in our recent paper
[2]. We found that the oscillatory behavior of the inte-
grand is particularly difficult to handle when either the
dipoles are very close to the substrate and/or the sub-
strate has high refractive index, because the evanescent
damping is weaker in those cases. On the other hand,
Paulus’s test case of index-matched substrates with a
dipole relatively far from an interface is a less stringent
test than what we show in our paper, see, for example
Figure 3c of [2].

In his comment, Chaumet recommended employ-
ing the Gauss-Kronrod-Patterson (GKP) method as
opposed to our GK method because the nested quadra-
ture rule of the GKP method supposedly increases con-
vergence. We would like to note that in contradiction
to Chaumet’s comment, Matlab’s quadgk implementa-
tion does indeed use a nested algorithm, which can be
confirmed by looking at the Matlab source code for
quadgk [8]. Perhaps Chaumet may have confused the
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definitions of Gaussian quadrature and Gauss-Kronrod
quadrature, because the usual Gaussian quadrature
would require recomputation of all abscissas at each
iteration. Regrettably, we cannot delve into a more de-
tailed comparison here because Chaumet writes that
he published the GKP implementation in 2020, but in-
cluded an incorrect reference to a different paper from
2017.

Dr. Chaumet also writes that he proposed inter-
polating a cylindrical Green’s tensor to Cartesian co-
ordinates in 2020, but again cites a 2017 paper [9]. In
our paper [2], we interpolate the Green’s tensor used
for field calculations, rather than the Green’s tensor
used for building up the dipole coupling matrix. Al-
though there is nothing revolutionary about the con-
cept of interpolating from one coordinate system to
another, performing the interpolation only during the
final field calculation permits dipoles to be placed at ar-
bitrary locations that need not correspond to a Carte-
sian grid. In metamaterial applications, there can be a
substantial number of (z, z’) pairs, where z is the ele-
vation of the observation plane, and 2’ is the elevation
of a dipole. In cases with many such pairs, interpola-
tion of the coupling matrix leads to computational in-
efficiency, particularly without any parallel computing
techniques. In contrast, our implementation remains
efficient for larger numbers of (z,z’) pairs. Further-
more, our electric field interpolation approaches are
entirely independent of the discretization factor of the
object, as many applications may require only a very
sparse electric field calculation at the monitor plane.

The ability to place dipoles at arbitrary locations
together with the challenge of appropriately handling
poles are also the reasons we avoided using solutions
based on fast Fourier transforms (FFTs). While FFT-
based solutions can be computationally efficient in
some cases, they require the dipoles to be placed on
a regular rectangular grid. For future work by our lab
and other researchers, we are particularly interested in
sparse, irregular arrangements of nanoparticles, such as
those fabricated via optical tweezers [10], [11], where
particles are not necessarily placed on a regular grid.
For such problems, it is important to have efficient
solvers that do not rely on a rectangular grid.

Dr. Chaumet also compares the computational
speed of the Paulus approach to the approaches we
compare in our paper [2]|, without ensuring that the
level of accuracy remains the same. Any numerical
technique can be arbitrarily fast if one sacrifices ac-
curacy. It is especially challenging to ensure accu-
racy in the evanescent near-field of the nanostructures,
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which is highly relevant for metasurface applications
and something we examine in detail in our paper. The
near-field of a metasurface is particularly challenging
because there are many dipoles in near-contact with
the substrate, making the evanescent damping in the
Green’s tensor quite weak, as we mentioned above.
This is also a reason why the example Chaumet gives
of a 12 pm sphere sitting on a surface is not really a
proper comparison; almost all of the dipoles in that
sphere are very far away from the surface, leading to
large evanescent damping of the Green’s tensor and an
easier Sommerfeld integral that can be more accurately
calculated in shorter time.

Finally, we wish to reiterate the novelty of our

work: we evaluated the speed-accuracy tradeoff for sev-
eral DDA approaches and showed that they can be
effectively applied to near field calculations for low
and high index nanoparticles on low and high in-
dex substrates. Notably, we demonstrate that DDA
can achieve comparable accuracy to FDTD in signif-
icantly reduced computational time, particularly for
sub-micron objects. The ability for the approaches we
compare to handle irregular nanoparticle placement al-
lows these approaches to be used for applications that
may be unsuitable for the codes highlighted by Dr.
Chaumet. We hope that the results we presented will
be of interest and use to others involved in nanopho-
tonics.
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