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Abstract

Addressing global environmental crises such as anthropogenic climate change requires the
consistent adoption of proenvironmental behavior by a large part of a population. Here, we
develop a mathematical model of a simple behavior-environment feedback loop to ask how
the individual assessment of the environmental state combines with social interactions to
influence the consistent adoption of proenvironmental behavior, and how this feeds back to
the perceived environmental state. In this stochastic individual-based model, individuals can
switch between two behaviors, ‘active’ (or actively proenvironmental) and ‘baseline’, differ-
ing in their perceived cost (higher for the active behavior) and environmental impact (lower
for the active behavior). We show that the deterministic dynamics and the stochastic fluctua-
tions of the system can be approximated by ordinary differential equations and a Ornstein-
Uhlenbeck type process. By definition, the proenvironmental behavior is adopted consis-
tently when, at population stationary state, its frequency is high and random fluctuations in
frequency are small. We find that the combination of social and environmental feedbacks
can promote the spread of costly proenvironmental behavior when neither, operating in iso-
lation, would. To be adopted consistently, strong social pressure for proenvironmental
action is necessary but not sufficient—social interactions must occur on a faster timescale
compared to individual assessment, and the difference in environmental impact must be
small. This simple model suggests a scenario to achieve large reductions in environmental
impact, which involves incrementally more active and potentially more costly behavior being
consistently adopted under increasing social pressure for proenvironmentalism.

Author summary

Reducing global environmental degradation such as climate warming requires the adop-
tion of consistent proenvironmental behaviors. But we, as individuals, tend to act in
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response to alarming events, and relax when things seem to get better. Can this tendency
to behave inconsistently be countered by social interactions and social pressure? We
explore this question by developing a simple mathematical model. We find that social
interactions, in combination with our own individual perception of population’s environ-
mental impact, can indeed promote the consistent adoption of costly environmental
behavior, but only when the social pressure for proenvironmentalism is strong enough.
Our model suggests a possible path through ‘small steps’ from ‘business as usual’ behavior
to active behavior with large reduction of the environmental impact. In the small-steps
scenario, a gradual buildup of social pressure for proenvironmentalism can lead to a large
reduction in perceived environmental impact even if the active behaviors adopted by the
population become incrementally more costly. Thus, creating contexts that are conducive
to strong social pressure for proenvironmentalism, through communication and public
policy, appears both critical and powerful to achieve behavioral change that can make a
difference.

Introduction

Why don’t we all act more decisively in the face of global environmental crises such as climate
change or biodiversity loss? Achieving climate and biodiversity targets set by international
agreements (e.g. Paris accord, Aichi convention) ultimately requires consistent behavioral
changes within and across societies. At the level of individuals, limiting climate change or bio-
diversity loss requires consistent consumer choices with reduced net environmental impact.
As citizens, individuals must consistently promote governmental policies that favor proenvir-
onmental actions. Leaders and senior managers, as individuals, should make consistent deci-
sions to influence greenhouse gas emissions and natural resource use by large organizations
and industries.

For many individuals, adopting a proenvironmental behavior is not straightforward.
Indeed the decision amounts to accepting certain short-term costs and reductions in living
standards in order to mitigate against higher but uncertain losses that may be far in the future
[1]. Individual behavioral responses to this collective-risk social dilemma [2] are not all-or-
nothing, however. Between those who unconditionally accept or unconditionally deny the
need for action towards environmental sustainability, the vast majority of people do not
engage consistently in either way. Rather, non-ideologically polarized individuals tend to show
inconsistent behavior as they change opinion, revise their intention, or switch behavior during
their lifetime [3], possibly on very short timescales [4].

Such a behavioral inconsistency can be due to various mechanisms. Individuals who engage
in some kind of proenvironmental action may lose motivation to “take the next step”. In this
case, action limits intention for more, a pattern called tokenism [1]. In the same vein, the
rebound effect occurs when some mitigating effort is diminished or erased by the individual’s
subsequent actions [5]. For example, after acquiring a more fuel-efficient vehicle (an active
mitigating behavior), owners tend to drive them farther, in effect reverting to their baseline
environmental impact [6]. Other patterns of inconsistent behavior involve responses to
extreme climatic events. Exposure to a climate-related hazard such as wildfires increases sup-
port for costly, pro-climate ballot measures in subsequent local elections [7]; but the degree of
personal concern about climate change is related to the temperature anomaly only over a few
months in the past [8]. Thus, outside of the most politically polarized groups, the influence of
environmental anomalies can be strong, but it decays rapidly [9].
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Mathematical modeling of human-environment dynamics can help identify pathways
toward proenvironmental behavior consistency. Game-theoretic models with environmental
feedbacks, or eco-evolutionary games, have been developed to study coupled environmental
and behavior dynamics [10-14]. Specific examples address the use of a natural resource such
as farmland [15], water [16] or forest [17]. A key aspect of these behavior-environment models
[12, 18, 19] based on ‘imitation dynamics’ [20] is that individuals’ behavioral decisions are
only made in the context of their interaction with others. Yet factors that are not tied to social
encounters, such as the individual’s own experience and perception of the environmental
state, may play a key role in environmental decisions. This is core to the conceptual framework
that Schill et al. (2019) [21] recently put forth, building on behavioral economics and cognitive
psychology, for understanding human behavior in the face of sustainability challenges. In this
framework, individuals create social and environmental contexts that change dynamically
with continuous feedback to their behavior. Following Schill et al. (2019) [21] we hypothesize
that the dynamics of environmental behavior are shaped both by social context and the indi-
viduals’ private environmental experience.

Here we implement this hypothesis by constructing a simple mathematical stochastic
model based on individual-level rules. Each individual has a negative impact on their environ-
ment that depends on their behavior—the impact of an active, proenvironmental behavior
being less than the impact of the baseline behavior. Individuals can change their behavior in
response to both social interactions and their own perception of environmental degradation.
The environmental state and the individuals’ behavior are modeled as continuous and discrete
variables, respectively, and the different processes affecting the state of the behavior-environ-
ment system play out on different time scales. We use the model to investigate the determi-
nants of proenvironmental behavior consistency. We say that a behavior is adopted
consistently when its frequency at stationary state is high and the stochastic fluctuations in fre-
quency are small. Our model analysis addresses how the individual assessment of environmen-
tal degradation combines with social interactions to determine the consistent adoption of
proenvironmental behavior, and how this feeds back to the perceived environmental state. In
particular, we ask whether larger costs of, or weak social pressure on, proenvironmental behav-
ior make the consistent adoption of proenvironmental behavior less likely; and whether a
slower pace of change in the perceived environmental state can promote consistency.

Results
Model overview

We consider a population of N agents that interact among themselves and perceive the state of
the environment (more or less degraded) through a single environmental variable, e. Individ-
ual behavior and their environmental impact are modeled on a short enough timescale so that
N remains constant. The e variable measures the perceived environmental state on a continu-
ous scale, with larger e corresponding to an environment perceived as more degraded. The e
variable can be seen as an indicator or summary statistics of the perceived level of environmen-
tal degradation, whose variation is driven by the population level of environmental action,
intention, or awareness, such as the spread of renewable energy, the adoption of plant-based
diets, the reduced consumption of non-essential goods, or the prominence of pro-environ-
mental demonstrations and other public calls for proenvironmental action. At any time f each
individual can express one of two behaviors: baseline (denoted by B) or active (denoted by A).
When expressing behavior A, an agent actively seeks to reduce their negative environmental
impact compared to the baseline impact of behavior B. This is modeled by assuming that an
agent in state A increases the perceived environmental impact of the population by an amount
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I4, which is less than the environmental impact, I3, of behavior B (per capita). We also assume
that I, is positive meaning that the population influences the environment by its own exis-
tence. Agents can switch between behaviors A and B.

In the Methods we expound the mathematical derivation of a model for the joint dynamics
of the frequency of behavior A and the perceived environmental degradation. Notations are
listed in Table 1. We assume that the dynamics of the perceived environnemental state follows
a deterministic continuous process. We define parameter £ as representing the timescale at
which individuals’ behavior affects the perceived environmental state: the higher ¢, the faster
the perceived environmental state changes due to individuals’ behavior. In a population where
all agents express behavior A (B, respectively), the rate of change of the environment perceived
as minimally (maximally) degraded is proportional to I, (I) and the stationary value of the
perceived environmental state is [4 (Iz). In a population where both behaviors are expressed,
the perceived environmental state varies between I, and Ip.

Any agent may switch at any time between behaviors A and B as a result of encounters with
other agents (modeling social interactions). We define « as a scaling parameter controlling the
rate of switching behavior via social interactions (modeled as encounters with other agents).
The rate at which an agent changes its behavior upon encountering another agent depends on
the attractiveness of the alternate behavior, which is determined by the perceived payoff differ-
ential between the two behaviors, and the social pressure. We use parameters y;, i = A or B, the
payoff from adopting behavior i, and J;, the social pressure for behavior i. We denote the pay-
off difference between behaviors A and B, or payoff differential, by 8 = y, — y5. We say that the
active behavior A is costly when the payoff differential, 3, is negative. The payoff differential
may be positive if, for example, the active behavior A is actually incentivized through public
policy.

Any agent may also switch behavior at any time based on their assessment of the environ-
mental state. Agents tend to adopt the alternate behavior when they perceive the

Table 1. Parameter definitions and default values.

Notation | Parameter description Default
value
A, B Active vs. Baseline behaviors
N Size of the population
NAN NBN | Number of individuals expressing behavior A or B at time ¢
XY EY Frequency of individuals with behavior A; perceived environmental state at time ¢
(dimensionless)
X5 Deterministic frequency of individuals with behavior A; deterministic perceived
environmental state at time ¢ (dimensionless)
K Encounter rate (inverse of unit time) 1
T Individual sensitivity to the environment (inverse of unit time)
14 Environmental reactivity (inverse of unit time)
¥a (resp. Payoff of behavior A (resp. B) (dimensionless) yp=1
7B)
64 (resp. Social pressure of behavior A (resp. B) (dimensionless) 85=0.5
)
I (resp. I) | Individual environmental impact of behavior A (resp. B) (dimensionless) Iz=1

B=va—ys | Payoff differential (dimensionless)

: ‘*f), Social norm threshold (SNT) (dimensionless)
oA 10

Ig—1I4 Environmental impact differential (dimensionless)

https://doi.org/10.1371/journal.pcbi.1011429.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011429  September 18, 2023 4/22


https://doi.org/10.1371/journal.pcbi.1011429.t001
https://doi.org/10.1371/journal.pcbi.1011429

PLOS COMPUTATIONAL BIOLOGY Human-environment feedback and the consistency of proenvironmental behavior

environmental impact of their current behavior as relatively large compared to the alternate
behavior. We use parameter 7 to set the timescale of behavioral switch based on individual
assessment.

The dynamics of the coupled behavior-environment process are stochastic, driven by the
probabilistic events of behavior switch between A and B, under the joint effects of encounters
among agents and individual assessment, and the deterministic response of the perceived envi-
ronmental state. The mathematical model we obtain is a Piecewise Deterministic Markov Pro-
cess where the population state (frequencies of behaviors) probabilistically jumps at each
change in individual behavior while the environmental state deterministically and continu-
ously changes between jumps. Note that the model assumes that the perceived environmental
state and social context are the same for all individuals, and individuals do not differ in person-
ality, in the sense that all individuals have the same intrinsic propensity to change their behav-
ior (or not) across time.

Deterministic approximation of the dynamics and stochastic fluctuations

When the population size N is very large and under assumptions on the rates stated below, the
behavior-environment dynamics can be approximated (in a sense made rigorous in the Meth-
ods and S1 Appendix) by the unique solution of the following system of ordinary differential
equations for the active behavior frequency, x, and perceived environmental state, e,

dx,

E = p(‘x[? et) = th(l - xt)O"A ('xt) - }LB(xt)) + TA(et)(]- - xt) - rB(e,)x[

(1)
de,

E = h(xtv ez) = get(let + lB(l - xl) - ef)

with initial conditions (xo, o) in [0, 1] X [L4, Ig]. The first equation governs the frequency x of
the active behavior, A. In the right hand side of p(x, e), the first term measures behavior switch-
ing due to encounters (social interactions), with B switching to A at rate A 4(x) and A switching
to B at rate Ap(x), given by

hy(x) =7, +0,x
(2)
Ay(x) =y + 65(1 — x)

(following from Eqs (10), (11) and (8), see Methods). The second term measures behavior
switching due to individual assessement of the environmental state. The corresponding rates
of switching from B to A and from A to B respectively are

TA(e) = T(e - lA)

15(e) =(l; —e)

(3)

(following from Eq (13) in the Methods). The second equation in System (1) drives the dynam-
ics of the perceived environmental state, e. An equilibrium point (x*, e*) is a (x, €) pair that
nullifies both functions p(x, e) and h(x, e).

Even though the rates of behavior switching are deterministic functions, the individual
switching events occur probabilistically. As a consequence, given that the population size is
finite, the actual frequency of the behaviors fluctuates randomly, even asymptotically around
the equilibrium values predicted by the deterministic model. In the Methods and S1 Appendix,
we show that the variance of the random fluctuations in frequency is equal to the total rate of
behavior switching between A and B, elicited by social interactions and individual assessment
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of the environmental state. This total rate, denoted by Q, is equal to
Q(x, e) = rx(1 = x) (A, (x) + Ay(x)) + 7,()(1 = x) + 75(e)x (4)

given the values of the A frequency, x, and perceived environmental state, e. The total rate Q
measures the intensity of switching between behaviors across the population. Thus, the higher
Q, the larger the probability that some agent switches behavior. We characterize A as being
consistently adopted when the A equilibrium frequency, x*, is high (close to one) and the cor-
responding total rate of behavior switching, Q(x*, e*), is low (close to zero).

In the following subsections we first describe the deterministic dynamics of the large-popu-
lation model in the absence of environmental feedback (7= 01in Eq (1)). When the environ-
mental feedback is included, we investigate the effect of all parameters to identify those that
control the value and stability of equilibria: payoff differential, §, social norm threshold,

V= 5A6+Br33’ individual environmental impacts and environmental impact differential, Iz — 4,
individual sensitivity to the environmental state, 7, and reactivity of the environment, £. We
then identify conditions for the spread and consistent adoption of the A behavior. Finally, we
qualitatively discuss how incremental variation in the proenvironmental behavior could affect
the behavior-environment system dynamics and lead to a robust reduction of the individuals’
perceived environmental impact.

Behavior dynamics without environmental feedback

In the absence of environmental feedback (i.e. no individual assessment, 7 = 0), agents may
switch behavior only upon encountering other agents, i.e. through social interactions. Eq (1)
then reduces to the standard imitation dynamics (or replicator) equation

dx,
E = th(l - xt)[ﬁ + 5Axt - 53(1 - xt)] :po(xt)’
(5)
de
d_t[ - h(x“ e,) = get(let + lB(1 - xf) - e’)

Assuming /4 > 0 and e, between I and I, the only possible equilibrium value for the envi-
ronmental state is e* = [,x* + I5(1 — x*). The model admits three equilibria, x; = 0, x; = 1 and

X = % If x* < 0 (resp. x* > 1), then x7 = 1 (resp. x; = 0) is globally stable. If 0 < x* < 1,
then the system is bistable; convergence to x; = 1 occurs if the initial frequency of the active
behavior is higher than x* (Fig 1). Note that when the payoff differential § is null, the outcome

is entirely determined by social pressures and in this case, the frequency threshold x* is equal
e

At stable equilibrium (xj = 0 or x; = 1) the total rate of behavior switching, Q (Eq (4)), is
always equal to zero, which means that the prevailing behavior, A or B, is adopted consistently.
Thus, if the active behavior A spreads, it will necessarily be adopted consistently; but the spread
of A from low frequency requires A to be perceived as sufficiently rewarding compared to B

(i.e.}/A >vypt+ 53)

to the social norm threshold, v =

Effect of environmental feedback on active behavior frequency

As expected, the environmental feedback alone can prevent the active behavior from spreading
to high frequency. By taking 7 > 0 and « = 0 in Eq (1), individual behavior is influenced by the
perceived environmental state and not by social interactions. In this case, Eq (1) possesses only

1 Ity

one stable equilibrium, (x*,e*) = (5 5 ) With no social interactions (x = 0) the payoffs y,
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and y have no influence on the equilibrium frequency of the active behavior, since the payoffs
only play a role in the behavior dynamics when agents can compare them, which requires
contact.

By setting both 7> 0 and x > 0 in Eq (1), the effect of environmental feedback combines
with the effect of social interactions. As in the case without environmental feedback (cf.
previous subsection), the model predicts up to three internal equilibria (i.e. 0 < x* < 1, see
Methods). The stability analysis shows that the product of individual sensitivity to the envi-
ronment, 7, and environmental impact differential, Iz — 4, is a key determinant of the sys-
tem dynamics. When 7(lp — 1) is small enough, there is one (globally stable) or three (two
stable, one unstable) equilibria, depending on the payoftf differential, §, and social norm
threshold, v (Fig 2A-2C). The stable equilibrium is always close to x* = 0 or x* = 1 while
the two stable equilibria are close to x* = 0 and x* = 1, respectively. When the product 7(lp
— 1) is large enough, there is only one equilibrium. For a given payoff differential, 8, and
social norm threshold, v, this equilibrium can be stable or unstable (here necessarily a limit
cycle) depending on environmental reactivity, £ (Fig 2D-2F). Thus, parameter ¢, the envi-
ronmental reactivity, does not affect the number of equilibria but it affects their stability
(Fig 2D-2F).

The environmental feedback thus has two main consequences for the spread of the
active behavior A from low frequency. On the one hand, under the condition that the
product t(lg — I) is small enough (Fig 2A-2C), the increase of A frequency from very low
to an equilibrium close to 1 becomes possible even if A is costly (8 < 0) or at least low-
incentivized (small § > 0), provided that the environmental feedback be combined with
strong social pressure for the active behavior (low v due to large 84, Fig 2A-2C to be com-
pared with Fig 1). On the other hand, for large values of the product 7(I3 — 14), the environ-
mental feedback dominates the effect of social conformism for the active behavior. As a
consequence, most active behaviors can reach a frequency close to 0.5 irrespective of their
cost and the intensity of social pressure (Fig 2G-2I). High frequency (close to one) can be
reached but only under very strong social pressure, even for active behavior that are
strongly beneficial (large 8 > 0).

10 1.0 10

0.8 0.8
0.6

0.6

0.4 0.4

Equilibrium value

Social norm threshold, v
Saocial norm threshold, v
Saocial norm threshold, v

0.2 0.2

0.0 00

3 0.0 0.0
-1.0

—-0.5 0.0 0.5 1.0 .—i.O -0.5 0.0 0.5 10 —1.0 -0.5 0.0 0.5 1.0
Payoff differential, 8 Payoff differential, 8 Payoff differential, 8

(a) (b) ()

Fig 1. Frequency of active behavior at equilibrium in the absence of environmental feedback (Eq (5)), with respect to the payoff differential ()
and social norm threshold (v = (;A‘iféﬂ). (a) Bistability occurs in the black filled area (depending on the initial conditions, the equilibrium is either x* = 0
or x* = 1). (b) The upper equilibrium value (x* = 1) is plotted across the bistability area (reachable for initial frequency x, > v). (c) The lower
equilibrium value (x* = 0) is plotted across the bistability area (reachable for initial frequency x, < v). Environmental sensitivity is £ = 0.1 and other

parameters are set to their default values (Table 1).
https://doi.org/10.1371/journal.pcbi.1011429.g001
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areas. The environmental impact differential is fixed (I3 = 1, I4 = 0.7). Other parameters (x, 5p) are set to their default values
(Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.g002

The spread from low to high frequency of a costly active behavior (8 < 0) cannot occur in
the absence of environmental feedback. The effect of the environmental feedback can be
explained as follows. In a population where the active behavior is rarely expressed (x close to
zero initially), the perceived environmental state is essentially set by the baseline behavior B.
Thus, the environment is perceived as strongly degraded, the environmental feedback pro-
motes the behavioral switch from B to A, hence the frequency of A rises. If the social pressure
of individuals expressing behavior A is strong enough (i.e., if d, is sufficiently larger than 6g)
the initial pull of the A frequency by the environmental feedback will be sufficient to drive it
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above the social norm threshold, v. Once the A frequency exceeds the v tipping point, social
interactions pick up and drive A toward its equilibrium frequency, close to 1.

Simulations of trajectories in the case of the active behavior rising from low to high fre-
quency allow us to constrain the model unit time (Fig E in S1 Appendix). Our approach
assumes a timeline over which the global environmental state or trend of global environmental
degradation (e.g. climate warming) is essentially unaltered by individual behaviors. The time-
scale over which individuals interact, perceive the environmental state, and change their
behavior is set by parameters «, 7, and I. With x = 1 (i.e. one social interaction about the envi-
ronmental concern expected on average per unit time), the characteristic time for the fre-
quency of proenvironmental behavior to rise from near zero to near one is of the order of 1-50
unit time (Fig E in S1 Appendix). Thus, environment-related social encounters that happen on
average once a week or once a month would be consistent with the typical dynamics of the
model. With a one-week time unit, the individual assessment of the environment would occur
on average every three months with 7= 0.1, or roughly every day with 7 = 10. With a one-
month time unit, individual assessment of the environment would occur, on average, roughly
every year with 7= 0.1, and every three days with 7 = 10. Over such timescales, convergence to
the stationary state occurs well before the actual physical environment or environmental trend
(e.g. speed of warming) might change as a consequence of the population consistently adopt-
ing proenvironmental behaviors.

Spread and consistent adoption of a costly active behavior

The consistent adoption of a costly active behavior requires the equilibrium frequency, x*, to
be close to one and the total switching rate, Q (Eq (4)), to be close to zero. Figs 2 and 3 illustrate
conditions under which this is the case. According to the previous subsection, a general condi-
tion for a costly (or low-incentivized) active behavior to spread from low to high frequency (x*
close to 1) is that the social pressure for A be strong enough (large d4 hence small v, Fig 2).
When that is the case, the product (I3 — 1) fully determines consistency, since for x* close to
1, the total rate of behavior switching is approximated by

QL) =1l —1,). (6)

Thus, with a relatively weak sensitivity to the environment (i.e. 7low) and a small environ-
mental impact differential (i.e. [4 close to I), costly active behaviors can spread from low to
high frequency provided the social pressure for active behavior is strong enough (Fig 2A-2C),
and consistent adoption is expected (Fig 3A). In contrast, if the individual sensitivity to the
environment is strong (large 7) and/or the environmental impact differential is large (large Ig
—14), behavioral inconsistency is expected, with agents frequently switching between active
and baseline behaviors (Fig 3B and 3C), even if the predicted equilibrium frequency of the
active behavior is high (see lower (yellow) regions in Fig 2D-21, where the social pressure for
A, 84, is high hence the social normal threshold, v, is low).

For intermediate values of 7(I3 — 14), low environmental reactivity, £, may be an additional
cause of behavior inconsistency. In this case, decreasing environmental reactivity can destabi-
lize the unique positive equilibrium and turn it into a limit cycle (Fig 2D-2F). Individuals will
thus switch behavior at a total rate that is itself changing over a slower timescale set by the envi-
ronmental reactivity. The slow timescale of environmental reactivity creates a time lag between
the perceived environmental state and individuals’ behavior, generating periodic oscillations
in the switching rates.
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https://doi.org/10.1371/journal.pcbi.1011429.9003

Robust environmental impact reduction through incremental behavior
change

Starting from an environment perceived as strongly degraded, can an active behavior with
much smaller environmental impact than the baseline behavior (i.e. large Iy — I4) drive a robust
improvement of the environmental state (from high to low e at stationary state)? Such an active
behavior could rise to high frequency provided the social pressure for proenvironmentalism is
very strong (Fig 4A), with a concommitent drop in environmental impact (Fig 4D). But sto-
chastic fluctuations in this case are large (Fig 4G), indicating that the active behavior may not
be adopted consistently.

In contrast, environmental impacts and feedback such that 7(Iz — I) is small allow for the
unconditional spread and consistent adoption of low-incentivized or even costly active behav-
ior (i.e., B close to 0 or even negative) (Fig 4B and 4H). Even though the effect of such behav-
ioral change on the environmental state is small (Fig 4E), this sets the stage for a scenario of
incremental behavioral change towards robust environmental impact reduction (Fig 4B and
4H) whereby increasingly more active behaviors would spread and be adopted consistently,
each behavioral change imparting a small reduction of environmental impact. Once behavior
A is established, it becomes the common baseline behavior where individuals may start
expressing a new active behavior A’, with lower environmental impact, and potentially a larger
cost. In the latter case, a stronger social pressure (higher 64 hence lower v) may compensate
for the larger cost and ensure that the active behavior A’ spreads and becomes adopted consis-
tently, in lieu of A. Thus, in a system where social conformism for active behavior can increase
(increasing 6, hence decreasing v) in relation with more effective active behavior (lower /,)
and/or the perception of reduced environmental impact (lower €*), a substitution sequence of
gradually more active (lower /) and more costly (more negative ) behaviors can take place,
driving a potentially substantial decrease in the perceived environmental impact (e* decreasing
to arbitrarily low levels).

We hypothesize that such an incremental scenario might be triggered even for active behav-
iors that are initially costly, and with weak social pressure for them (small 64 hence high v)—as
long as their cost is not too large so that bistability remains possible (upper areas of black
regions in Fig 4B). In this case, random fluctuations in behavior frequency may cause the
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set to their default values (Table 1).

https://doi.org/10.1371/journal.pcbi.1011429.9004

system to switch from the low-frequency to the high-frequency A equilibrium (Fig 5), where it
may reside long enough for some new behavior A’ more active than A to spread and take over.
The study of such dynamics, involving the effect of individual stochasticity on alternate equi-
libria, is beyond the scope of this model and warrants further mathematical investigation.

Discussion

We developed a simple mathematical model to study how social and environmental feedbacks
jointly influence the consistent adoption of proenvironmental behavior. The treatment of indi-
vidual assessment of the perceived environment and social interactions as two separate factors
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https://doi.org/10.1371/journal.pcbi.1011429.9005

of individual decisions differentiate our model from evolutionary games with environmental
feedbacks, in which the influence of the environment is mediated by the payoffs of the strategic
interactions [10-14] and even possibly by the game type varying in response to the agents’
actions [22, 23]. Here we assume that the payoffs are constant and that the perception of envi-
ronmental degradation can influence an individual’s behavioral choice independently of their
interactions with others—a similar assumption is made in models of environmental behavioral
choice based on experiential learning [24]. This structure allows us to separate the behavioral
effect of individual assessment of the perceived environmental state from the effect of social
interactions. Our model thus aligns with the conceptual framework of Schill et al. (2019) [21]
for connecting environmental behavior with both social and perceived biophysical contexts.

The importance of timescales for behavioral consistency

The assumed invariance of the payoff difference (unaffected by variation in the environmental
state variable) is rooted in the short timescale involved in the behavior-environment dynamics.
Because the environmental state variable captures perceived information, shaped by behavioral
intentions or actions, it is plausible that the timescale of environment-behavior change be
short relative to the timescale over which the true state of the physical environment changes.
Under this timescale separation, the payoff difference remains constant as the perceived envi-
ronmental information changes, without precluding change in payoffs that could occur over
the slower timescale of a changing physical environment.

When the timescale of individual assessment is fast relative to social interactions, the envi-
ronmental feedback dominates the system dynamics, leading to inconsistent behavior. The rel-
atively fast individual assessment timescale may originate from individuals having more
confidence in their own evaluation of costs and benefits than in others’ influence. This is
known to occur, for instance, when the decision to be made carries a lot of personal weight
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[25, 26] or when individuals have grown up in a very favorable environment [27]. When indi-
vidual assessment is slow compared to social interactions, the social feedback dominates. This
raises the question, whether, in practice, social influence could be stronger among individuals
who engage in proenvironmental behavior than among individuals who do not. One can spec-
ulate that this could be the case if the active behavior is individually costly and perceived as a
moral duty. In this case, the active individuals behave as cooperators whose efforts (measured
in terms of opportunity cost) are influenced the most by the observation of the others’ efforts
[28, 29].

Overall, the timescale of perceived environmental change has little effect on the behav-
ior-environment dynamics. Thus, whether individuals assume that their actions are
environmentally meaningful in the short term (high environmental reactivity, £) or the long
term (low environmental reactivity, £) generally has no significant effect on behavior consis-
tency. The case of social interactions and individual assessment occurring on similar time-
scales is special, however. In this case, low environmental reactivity, ¢, creates a time lag
between behavioral and perceived environmental changes, causing behavior-environment
cycles when the proenvironmental behavior is costly and levels of conformism are not too
different between behaviors. A similar effect of slow environmental reactivity relative to
social interactions promoting oscillations was also detected by [30] in their model of forest
growth and conservation opinion dynamics. Contrasted environmental impacts of behav-
iors A and B (i.e. large I — 14) favor the limit cycle regime over bistability which is reminis-
cent of previous findings of behavior-environment cycles replacing bistability when the
human influence on the environment is strong [31].

Consistent adoption of incrementally more active behavior

A question of interest is how the consistent adoption of an active behavior depends on the
magnitude of environmental impact reduction associated with that behavior. The model
shows that for active behaviors causing only a small environmental impact reduction, the bis-
table regime is favored, which leads to consistent behavior adoption (of A or B). In fact, a small
environmental impact reduction by the active behavior has the same effect on the system
dynamics as a slow timescale of individual assessment. Once a ‘small-step’ active behavior is
adopted consistently, the perceived level of environmental degradation is only decreased by a
small amount; but if more behavioral options were available, the socio-environmental context
would be set to promote individuals engaging consistently in ‘the next small step’. If the pro-
cess were repeated, leading to the consistent adoption of active behaviors of gradually smaller
environmental impact, we would expect the perceived level of environmental degradation to
decrease. Interestingly, this might happen even if the relative cost of active behavior was
increasing, provided the social pressure for active behavior increased concommitently.

Our consideration of gradual behavioral change through a sequence of ‘small steps’ raises
the empirical question of whether the perceived change in environmental state could in turn
affect the repertoire of individual behaviors, and in particular motivate behaviors more active
than A. In practice, the existence and direction of such an additional feedback may depend on
whether each small step is individually beneficial and thus considered by people as a self-serv-
ing decision, or individually costly and considered as a form of cooperation. In the first case,
there is no obvious reason for the perceived change in environmental state to affect individual
decisions, so it is unlikely that such feedback would exist. In the second case, however, the
question relates to the rich empirical literature on the influence of the perceived environmental
state on cooperation. The majority of studies in this field, and in particular the highest pow-
ered studies, report a positive relationship between the quality of the environment experienced

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011429  September 18, 2023 13/22


https://doi.org/10.1371/journal.pcbi.1011429

PLOS COMPUTATIONAL BIOLOGY Human-environment feedback and the consistency of proenvironmental behavior

by individuals and their level of investment in cooperation [32-39]; although some studies
report opposite effects [40-42] or no effect at all [43, 44]. We may thus hypothesize the exis-
tence of the additional positive feedback whereby the perception of an improved environmen-
tal state would enlarge the behavioral repertoire and motivate more active behaviors. The
improvement or, on the contrary, the deterioration of the perceived environment could lead
individuals to invest more, or, on the contrary, less in proenvironmental behavior, thus gener-
ating the kind of behavioral sequence that we envisioned in this analysis.

Limits and perspectives

Our work builds on the fundamental distinction between the individual’s stable characteristics
and the subset of situational characteristics which capture the social and environmental situat-
edness of behavior [45]. In the model, all parameters, except the rate of environmental reactiv-
ity, ¢, are set as individual characteristics. A key assumption is that all individuals are identical
in their stable characteristics. Our framework could be extended to relax this assumption and
investigate the consequences of heterogeneity in individual social status or personalities [46,
47]. For example, the same objective cost of the active behavior (e.g. buying or maintaing an
electric car) may be perceived very differently depending on the individual’s wealth [48, 49].
Likewise, individuals of different social status may vary in their experience of social pressure
from individuals expressing the active vs. baseline behavior; this in the model would manifest
through inter-individual variation of 6,4 and 85 [27].

Given the predicted importance of the individual sensitivity to the environment, 7, and
environmental impact differential, I — I, the outcome (consistent adoption of the active
behavior) is likely to be influenced by inter-individual heterogeneity in these two parame-
ters. It is known that individuals can differ greatly in their perception and assessment of
the state of degradation of their environment, due to differences in social origin, educa-
tion, or information [49, 50]; and in their potential proenvironmental response to per-
ceived environmental degradation [50]. This heterogeneity could result in wide variation
of both 7 and Iy — [, among individuals, with contrasted personalities such as being little
responsive and acting weakly (small 7 and Iz — I), or responding fast and strongly (large 7
and Iz — 1y).

In previous models of coupled human behavior and natural environment dynamics, the
environment typically is measured by a variable such as the abundance of a renewable resource
(e.g. forests [17], fisheries [51]), or a physical variable such as atmospheric greenhouse gases
concentration or temperature [52]. In these models, the environmental dynamics are driven
by their own endogenous processes and impacted by human activities (gas emissions, harvest-
ing. ..). These models ask how human behavioral feedbacks alter the stability properties of the
perturbed (polluted, exploited. . .) ecosystem. An important difference between our approach
and previous human-environment system models lies in our definition of the environmental
state in terms of perceived degradation or vulnerability, rather than actual physical compo-
nents (atmospheric CO, level, abundance of a natural resource. . .) of the environment. This
information changes under the influence of individuals’ intentions or behaviors; the physical
environment (or physical environmental trend, as with global climate warming or biodiversity
loss) may also change as a consequence, but we assume that the change would occur on a
much slower timescale and therefore has no influence on the individual decisions that the
model describes. For example, in the case of global climate change, our approach assumes that
our world is already locked into warming: even if we stopped emitting greenhouse gases today,
it would take several decades before we observe curbing in the rise of global temperature.
None-the-less, rapid change in individual behavior may occur, including the spread of pro-
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climate action or intention, concomitantly with the perception that the level of environmental
degradation or vulnerability decreases.

This representation of the environment allowed us to make the assumption that the payoff
difference is insensitive to the environmental state variable. Note, however, that a feedback of
the environment to the payoff difference can be seen as implicit in our scenario for the consis-
tent adoption of incrementally more active behavior. This could be due to institutional inter-
vention responding—on a slow timescale—to change in the environmental stationary state, as
defined here, and altering the payoff difference through incentives (reducing the payoft differ-
ence) or by promoting more effective behaviors that would also be more costly (increasing the
payoff difference). Another significant difference with most previous human-environment
models is that here the environment, being purely informational, does not have its own intrin-
sic dynamics. A similar assumption was made by Weitz et al. (2016) [12] in a game-theoretic
model where the environmental feedback was positive and governed by a tipping point. Future
work could address the effect of a positive feedback in our model, to capture positive reinforce-
ment (improved environmental state encourages to do more [49, 53]) and “giving up” (an
environment assessed as degraded leads to less effort, rather than more [49, 53]).

Concluding remarks

In this minimal model of behavior-environment feedback, individuals intend proenvironmen-
tal action when they perceive their environment as strongly degraded or vulnerable, and relax
their effort as they perceive amelioration of the environmental state. This negative environ-
mental feedback, by itself, opposes the consistent adoption of costly proenvironmental behav-
ior, but opens the possibility for such behavior to rise from very low frequency and reach a
tipping point at which social interactions and conformism will pick up and drive its consistent
adoption. This suggests a scenario to achieve large reductions in environmental impact, which
involves the consistent adoption of incrementally more active and potentially more costly
behavior. The theoretical conditions for this to occur (social interactions timescale faster than
individual assessment timescale, strong social pressure for proenvironmental action) raise
empirical questions regarding why individuals” environmental intentions would rely more on
others’ influence than on their own assessment of the environmental state, and what factors
(individual or collective) can make the social pressure of conformism stronger for
proenvironmentalism.

Methods

In a population of finite size N, at any time ¢, the perceived environmental state and the num-
bers of individuals who are performing A or B are denoted by EY, N*" and N?¥, respectively.
Since the population size is constant we have N*¥ = N — NN, Hereafter we derive a stochas-
AN
tic model for the joint dynamics of the frequency of behavior A in the population, X} = N’T,
and the perceived environmental state, E)'. The list of parameters and their default values is

given in Table 1.

Environment dynamics

We assume that the dynamics of the perceived environnemental state E} follows a determin-
istic continuous process. Each individual in the population has the same perception of the
environment. The dynamics of E is driven by the ordinary differential equation

EY = h(X}, EY),
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where h captures the environmental impact of the two behaviors given their frequency, accord-
ing to

h(x,e) = le(l,x + 1,(1 — x) —e) (7)

for any (x, e) in [0, 1] x [La, Ig].

The function k is chosen such that in a population where all individuals express behavior A
(B, respectively), the rate of change of the environment perceived as minimally (maximally)
degraded is proportional to I4 (I5) and the stationary value of the perceived environmental
state is [ (Ip).

Behavior dynamics

Two factors influence the decision process of modeled agents: frequency of encounters with
other modeled agents, and the value of the state variable representing some environmental
factor.

Social interactions. We further assume

&(XY) =x¥
X" —1-X"
An agent with behavior i switches to behavior j via social interactions at rate

N NY _ N2 N N\ N (N
A (XY) = N2reg (XV)g (XM)A(XY), (9)
where ?»f’ (x) is the individual attractiveness of behavior i, N*xg;(X"’ )gj(XN ) is the number of
potential encounters. Note that the number of potential encounters is symmetrical, g;(X™)
gj(XN ) = XN(1 = XV). The difference between behavior i’s and s rate rely on the individual
attractiveness of behavior. The individual attractiveness of behavior i is taken of the form

W) = (7 8,6(6). (10)

As a result, the individual rate of behavioral switch from i to j is

AL (XY) = NeX¥ (1= XV)(3; + 6, (X)) (11)

The term ¢; gj(XN ) reflects that social influence is a coercive mechanism which encourages
conformism.

Individual assessment. Behavior switching based on the assessment of the state of the
environment occurs at the individual rate

'EN

i—j

(XY, EY) = Ng,(X™)7,(EY), (12)

where gA(XN )= XN and gB(XN ) =1 - XY (as above) and the environmental perception of indi-
vidual i is measured by Tj(EN ), which captures the difference between the environmental state,
e, and the contribution of behavior j to the degradation of the environmental state.

The simplest form then is

T (BY) = 2(BY ~ 1,)

(13)
t,(EY) = (I, — EV).
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Thus, the larger the difference between the perceived environmental state, E", and the indi-
vidual environmental impact of behavior i, [;, the faster an agent expressing j behavior switches
to i behavior.

Dynamics of the behavior-environment stochastic process

The dynamics of the coupled behavior-environment process (X, EY') are stochastic, driven by
the probabilistic events of agents switching between the baseline (B) and active (A) behaviors,
under the joint effects of encounters and individual assessment, and the deterministic response
of the perceived environmental state. Mathematically, the effects of all possible events (agents’
behavior switches, change in perceived environment) on the state of the Markovian system

(X¥, EY),., are captured by the infinitesimal generator L" of the stochastic process (X", EY).

For (x,¢) € [0, 1, -, 1] x R and a test function f € C\([0,,---,1] x R',R), we have
D0 = Ns(l 80| f (x4 e) )
Nt = 0| (- ) Sl
N =05y 6) | (x5 ) —fle)| (19
Nt £ (x5 ~ el

Of (x,e)
Oe

+h(x,e)

Agents switch behavior at a given time ¢ for a given state of the system (X, E,) with a proba-
bility given by Eq (14). In this expression, the first and second rows account for individual
behavior switches due to encounters (from B to A or A to B, respectively). For instance, the
rate at which a B — A switch occurs because of encounters (first row) is proportional to N(1 —
x), the number of agents adopting behavior B; k¥ Nx, the encounter rate between a single agent
adopting B and agents adopting A; and A, (x), the social attractiveness of a single agent adopt-
ing A. The third and fourth rows account for switches because of individual assessment of the
perceived environment state. For instance, the rate at which a B — A switch occurs because of
the environmental state variable (third row) is proportional to N(1 — x), the number of agents
adopting B; and 15 _, 4(x, e), the rate at which an agent in state B adopts the alternate behavior
A after assessing the impact of its behavior on the perceived state of the environment. Finally,
the last row accounts for changes in the perceived environmental state depending on the fre-
quency. By taking f(x, e) = x and f(x, €) = e, we obtain the deterministic part in Eq. (S51.2) in S1
Appendix [54] while f(x, e) = x” gives the quadratic variation in Eq. (S1.4) in S1 Appendix. The
process whose law is characterized by Eq (14) is a Piecewise Deterministic Markov Process
where the population state (frequencies of behaviors) probabilistically jumps at each change in
agent behavior while the environmental state deterministically and continuously changes
between jumps.

Dynamical system approximation for large populations

In Section 2 in S1 Appendix [54], we explain that, assuming the population size N very large
and under Assumptions (10-15), the sequence of stochastic processes (X", E) . converges
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in distribution to the unique solution of the system Eq (1). By plugging Eqs (2) and (3) into Eq
(1), we obtain Eq (15)

dx
dtt :p(xmet) = th(l - xt)[ﬁ + 5A-xt - 53(1 - xt)] + T[et - lA(l - xt) - leJ
(15)
de,
dt = h(xﬁ et) = Eet(let + lB(l - xt) - et)

with initial conditions x, between 0 and 1 and ey between I, and I. The first equation governs
the frequency x of the active behavior, A. The second equation drives the dynamics of the per-
ceived environmental state variable, e.

The model predicts up to three equilibria given by the zeros of

plx, Lix + (1 — x)) = po(x) + t(l, — 1,)(1 — 2x), (16)

(po defined in Eq (6)), that are nonegative and less than (or equal to) one. By setting both 7> 0
and k > 01in Eq (15), the effect of the environmental feedback on its own can be highlighted
by comparing Eq (15) at its stable equilibria with the value of Eq (16) at the same state (i.e. x* =
0 or x* = 1). Since p(0, Ig) = 7(lz — 14) > 0 and p(1, I4) = —p(0, Iz) < 0, the environmental feed-
back moves the equilibria of the system away from 0 and 1 (Fig 2). The roots of Eq (16) also

show that the number of equilibria is likely influenced by the encounter rate, , the payoff dif-
o

4 f(SB’

ual sensitivity to the environment, 7, and the differential environmental impact, I — [,.

ferential, 3, the social norm threshold, v = and the combination (product) of the individ-

Quantifying the effect of individual stochasticity

To analyse the fluctuations of the stochastic model around the deterministic limit, we general-

ize the central limit theorem to the convergence of the stochastic process (X", E}') ., 1, to the

deterministic solution of Eq (1). We therefore introduce

(1) = (1Y) oy = (VN(XY =, BY — €)1 where ((x, ), t < T) is the deter-
ministic solution of Eq (1) and (X", EV) is the stochastic process. Assuming that 7 converges
in law to 17, when N — oo, the process ('), ; converges in law to a Ornstein-Uhlenbeck

type process (1) o) = (7' 11; )10,y and we have

— A (1
(X[aE[)—(x”et)‘i‘\/N(?]t,nt)—l— <\/N>

For all ¢in [0, T], the process (1,),c(o.1 = (7' 117) 0.1 Satisfies

t
M= / (61— 2) (7 — 75 — 05 + (85 + 65)x) — Ly — L)) + 7n)ds
0
t
+/ o(x,e)dW,, (17)
0

77? = ’75 +/ E[(IA - lB)esn? + (les + lB(l - xs) - Qes)nf]ds
0

where

o(x,e) = \/Kx(l — x)(hy(x) + Ag(x)) + 1,4(e) (1 — x) + 15(e)x, (18)
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and W is a standard Brownian motion (see Section 4 in S1 Appendix [54] for mathematical
detail).

Note that the drift and variance are functions of the solution of the deterministic system
(1). The stochastic part of the fluctuation process given by Eq (18) is the square root of the
total rate Q (see Eq (4)) of behavior switching in the population. According to Eq (17), it only
affects the fluctuations in behavior frequency (not in the perceived environmental state).

Simulations and numerical analysis

For the stochastic process, the dynamics of agent behaviors’ frequency (by stochastic jumps) is
jointly simulated with the dynamics of the perceived environment (by deterministic changes,
continuously in time between the stochastic population jumps). Random times are for any N
drawn according to an exponential distribution of parameters ", where

FENsup (k00 + A (0) + 1e) + 5y(e)). (19)

(x,)€[0,1]x[l4,Ip]

At each of these times, we update our variables of interest. There are three possible cases:
either no agent changes their behavior in the population, or one agent switches from B to A, or
one agent switches from A to B. The perceived environment is changed using a Euler scheme
between two events in the population.

Without loss of generality, parameters & and Iy are fixed to 1 (default values for parameters
used in numerical analyses are reviewed in Table 1). We analyse the properties of the stochastic
and deterministic models for values of §, and ¥4 spanning the whole range of possible values
while keeping d5 and yp constant. Parameters are varied across a discrete grid. We search for
fixed points by computing the zeros of the polynomial given by Eq (16). Local stability is tested
by computing the Jacobian matrix of the system. We use the Poincaré-Bendixson theorem to
check the absence of limit cycle (Th.1.8.1 in [55], see also Section 3.2 in S1 Appendix [54]).
When the existence of a stable limit cycle in addition to an attractive fixed point cannot be
excluded, we simulate the dynamical system for different initial conditions. Would there be a
limit cycle crossing the trajectory of the simulations, the trajectory would be trapped around
the limit cycle and not converge to its stable fixed point. Otherwise, all trajectories converge to
the equilibrium, thus excluding the existence of a limit cycle.
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