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The safety of urban populations sensitive to extreme heat is under increasing threat.
Few studies examine the potential benefits of deploying IoT environmental sensors
in the urban context and their integration with large-scale human activity data. This
paper examines the deployment of IoT sensors in high-resolution extreme heat risk
assessment in the case of Seoul, South Korea. This study conducted spatiotemporal
analysis on heat exposure with IoT sensors, compared it with an existing land
surface temperature map for validation, combined it with human activity data for
risk assessment, and finally discussed the benefits of IoTs in detecting abnormal
weather events. The results show that extreme heat risks and characteristics vary by
age group, and socio-demographic nature overlaps with contextual factors
concerning climate risk. This paper discussed possible policy implications to better
deal with recurring climate hazards using loT sensors.
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1. Introduction

The growing frequency and intensity of extreme heat caused by climate change is a
serious public concern threatening the living environment in Seoul, South Korea.
Extreme weather events require long-term efforts to overcome challenging issues asso-
ciated with the recovery process (Sima, Thomas, and Lowrie 2017). Repeated extreme
summer heatwaves can have a fatal impact on an individual’s daily life which is now
considered the “New Normal” that calls for consistent attention (Sima, Thomas, and
Lowrie 2017; Perkins-Kirkpatrick and Gibson 2017). In line with concerns associated
with recurring climate calamities, there is growing awareness about the public health
concerns of vulnerable populations — including the elderly, children, the disabled popu-
lation, households below the poverty line, and racial minorities — who may be suscep-
tible to extreme weather events (Aubrecht ef al. 2013; Depietri, Welle, and Renaud
2013; Wilson and Chakraborty 2019; Nayak et al. 2018). Extreme heat disproportion-
ally burdens the historically disadvantaged population such as communities of color
and low-income neighborhoods (Chakraborty et al. 2022). Thus, it is critical to address
the occurrence pattern of extreme weather events and identify spatiotemporal expo-
sures to the risks among vulnerable populations to mitigate the potential climate risks.
Utilizing new technologies in the context of smart cities improves, expediting gov-
ernance, economic, social, and environmental decision-making, and service delivery,
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all for the public benefit (Nica 2021). Accordingly, the Seoul Metropolitan Government
has installed S-DoTs (Smart Seoul Data of Things) throughout the city since 2020 to
collect microscopic real-time climate data to detect, diagnose, and prevent extreme wea-
ther events.

This paper aims to explore the deployment of Internet of Things (IoT) environmen-
tal sensors as a tool to estimate heat risks in the case of Seoul, South Korea. First, this
study addresses how high-resolution IoT sensors can improve the identification of heat
exposure patterns through spatiotemporal analysis, compared to the existing tool using
satellite images. Second, the study examines extreme heat risk assessment by age
groups with human dynamics data. And finally, this study will discuss the benefit of
IoTs in identifying abnormal weather events using machine learning and how it can be
used for environmental planning and management.

2. Extreme heat and IoT environmental sensors

Extreme heat refers to periods of extreme warmth that directly affect human health
(Smith, Zaitchik, and Gohlke 2013). Prolonged exposure to high temperatures is a risk
factor for heat-related disorders, including heat cramps, heat syncope, heat exhaustion,
heatstroke, and mortality (Kim et al. 2014, 2016; Lee et al. 2016). Despite its severity,
heat-related illnesses and mortality occur unequally. Socioeconomically vulnerable
groups are generally more at risk because of their lack of capability to deal with high-
temperature exposure (Kim and An 2017; Wilson and Chakraborty 2019). Age is a sig-
nificant factor that increases heat exposure sensitivity. For instance, the elderly’s chronic
diseases or incapability to control increasing temperature (Basu and Ostro 2008), infants,
children, and adolescents’ sensitive metabolic activities, create higher heat and lower car-
diac output than adults (Bytomski and Squire 2003; Krous et al. 2001). In addition,
working populations in poverty or living alone in Korea face a higher vulnerability to
extreme heat events. Those in poverty often work as day laborers in outdoor environ-
ments, where they face inadequate protection against heat and may lack air conditioning.
As of 2022, the number of households in Seoul receiving basic living subsidies is
308,484, accounting for 8% of the total households (Seoul Metropolitan Government
2022). In Seoul, 44.9% of the households in poverty, with an income less than 50% of
the median income, are non-economically active, and even those who are economically
active are mostly day laborers (Kim and Dong Yeol 2015). There are no guidelines
established for heatwave preparedness in day laborers in outdoor environments (Korea
Institute for Health and Social Affairs 2020). Heatwave-related deaths of working groups
aged 2064 years are mainly outdoor workers (Kim et al. 2017). Korea Institute for
Health and Social Affairs (2020) conducted surveys and interviews to develop measures
to minimize health damage during heatwaves. Among the surveyed 375 respondents in
poverty, they lacked air conditioning the most by 14.1% while only 2.5% of the other
1,125 respondents not in poverty lacked air conditioning. Even with air conditioning
available, 68.6% of the respondents in poverty reported that they refrained from using it
due to financial burdens. Similarly, individuals living alone might not have immediate
access to assistance or medical aid in the event of heat-induced illnesses (Kim and An
2017; Kwon, Lee, and Kwon 2020).

Heat risk analysis requires spatial and temporal observations (Voogt 2007). The
most popular technique for collecting temperature data for heat exposure analysis
includes estimating temperature using remote sensing images, measuring by mobile
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transect observation, and utilizing fixed weather station equipment data (Sun et al.
2014). Each of these has limitations in spatial and temporal observations. First, collect-
ing temperature data from satellite images has poor data continuity due to the satel-
lite’s orbital period and cloud cover (Sobrino and Raissouni 2000). Especially in the
summertime when heat risk study is critical; it is even worse due to the higher cloud
coverage ratio in the rainy season, restricting temporal data accessibility (US
Geological Survey 2018). Another constraint is that the temperature might somewhat
differ from the real temperature since it is an anticipated value based on surface radi-
ation energy rather than a measured one (Kim and An 2017). The second method of
obtaining temperature data directly with mobile transect observation is also difficult to
gather data over a large territory, given that it requires a well-planned measurement
route, appropriate type of transportation, careful control of measurement timing or data
time correction, and the regular speed of the mobile platform (Sun et al. 2014).
Finally, weather observation equipment, such as Automatic Weather System (AWS),
are widely apart for spatial interpolation; thus the projected values may range greatly
from the real temperature (Kim and An 2017; Ku 2014).

Based on the existing limitations, deploying urban sensors for temperature collec-
tion has been newly attempted. IoT is defined as universally connected devices that
exchange information and communicate using internet-based protocols (Patel, Patel,
and Scholar 2016). Researchers argue that heat risk analysis using high-density IoT
sensors is useful for implementing and evaluating efforts to alleviate the technical
issues with current means of measurement, eventually leading to mitigating urban cli-
mate problems with heterogeneous and diverse characteristics (Muller et al. 2013;
Smoliak et al. 2015). Exclusively relying on a single source to measure potential
environmental harm could result in biases (Chakraborty ef al. 2022). Given that, utiliz-
ing IoT devices is a vital component of smart city planning efforts for climate resili-
ence (Sehrawat and Gill 2019; Rathore, Ahmad, and Paul 2016).

Generally, IoT sensors enable a more precise delineation of the urban heat land-
scape and aid in identifying the temporal and spatial patterns of populations at height-
ened risk from extreme heat events. The delineation can range from minute-level to
hourly data, which allows for a detailed analysis of heat exposure risks at different
times of the day. The importance of utilizing higher resolution data lies in its ability to
capture the fluctuations in temperature throughout the day in Seoul. The annual mean
air temperature in Seoul is 12.5°C, reaching its highest in summer (June-August) at
24.3°C (Zheng, Yu et al. 2020). This period is also when Tropical Nights (TN) with
temperatures greater than 25°C become severe in Seoul. On TN days, the hourly air
temperature ranges from 26 °C at 6 am to over 30°C at 12pm and on non-TN days,
the hourly temperature varies from around 20 °C at 5-6 am, peaking at 30 °C at 3 pm
in July and August (Ha and Yun 2012). Addressing temperature variability is crucial
for assessing health risks, as the impact of heat on health can be immediate or delayed,
with potential lag effects (Watson, Gardiner, and Singleton et al. 2020). Response of
heat-related emergency medical services are temporally and spatially affected with
most delayed responses in the morning and the evening hours (Seong, Jiao, and
Mandalapu 2023).

Although previous studies have attempted to use spatiotemporal information derived
from IoTs to examine the distribution of heatwaves (Fauzandi ef al. 2021; Husni ef al.
2022; Yu, Shen, and Cervone 2022), limited research has addressed the benefits of IoT
sensors surpassing existing means of temperature measurement and its validation, the
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integration with other data sources (i.e. meteorological data from weather stations, satel-
lite imagery, geospatial data, and even social media data for crowd-sourced weather
observations), and the detection of extreme weather events due to the short installation
and operation period of IoT sensors in many cities. Hence, this study will provide evi-
dence of the potential benefits of 0T sensors in extreme heat detection and management
and suggest how it can be utilized for environmental research.

3. Materials & methods
3.1. Study area & S-DoT distribution

This study chose Seoul as a study area for two reasons. First, Seoul has the highest
density of IoT environmental sensors than any other city in the world. As of 15 June
2021, 1,060 Smart Seoul Data of Things (S-DoTs) are operating in Seoul, and Seoul
Metropolitan Government aims to install up to 2,500 S-DoTs by 2022 as a part of
Seoul’s smart city vision plan (Figure 1). S-DoTs can measure weather variables, such
as particulate matter, temperature, illuminance, noise, vibration, wind speed, and wind
direction in the atmosphere. The data collected by S-DoTs is openly accessible through
the Open Data Portal operated by the Seoul Metropolitan Government. The time unit
of the provided data is hourly. It is evenly distributed throughout Seoul’s administra-
tive boundaries, which provides a perfect case for urban IoT sensor studies. Second,
the mismatch between the registered population and actual human activity in Seoul
offers a good example of how human dynamics data could be used for de facto risk
exposure. Specifically, Seoul used to have a registered population of 10 million; how-
ever, it fell below for the first time in 2021. Despite its smaller size than other global
megacities, Seoul’s population density is 16,751 people per square kilometer,

S-DoT
Administrative Boundary ("Dong")

Green Belt: Development Restrized Zone

| IR

River
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Figure 1. Study area.
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approximately 2.4 times more than NYC, ranging from 310 to 54,847 people per
square kilometer among 424 administrative boundaries (Lee, Jiao, and Choi 2021).
Considering the population movement who spend their daily routines in Seoul for
work, school, or visit for leisure purposes, the number surpasses the registered popula-
tion. In brief, the high density of IoT environmental sensors and the increase in human
activity than registered population makes Seoul a perfect case area for this study.

3.2. Data collection
3.2.1. S§-DoT data analysis and curation

The study period is from 1 June 2020 to 31 August 2020. This study collected S-DoT
data during the date with extreme heat advisory alerts in effect. We focused on atmos-
pheric temperature data read by deployed S-DoTs. According to Korea Meteorological
Administration, seventeen extreme heat advisory alerts were announced in Seoul dur-
ing the study period. Advisory alerts in effect during the study period are summarized
in Appendix 1.

The integration of S-DoT data into meteorological condition evaluations offers sev-
eral benefits. Park and Baek (2023) note that the horizontal operational network of S-
DoTs (0.75km) surpasses that of Automated Weather Systems (AWS) and the
Automated Synoptic Observing System (ASOS). The S-DoTs are evenly installed
across administrative boundaries within Seoul (Park and Kim 2020; Park and Baek
2023). The highly resolute temperature enables a more accurate meteorological assess-
ment (Kim and Kang 2022; Park and Baek 2023).

The data pre-processing went through the following steps. First, we imported the
coordinates of individual S-DoTs into ArcMap, and using the spatial join operation, we
then associated each S-DoT with its respective spatial location information, using the
WGS84 coordinate system (EPSG: 4326). Second, the 17 days of records obtained were
imported in Python. Numpy (Harris et al. 2020) and Pandas (Reback et al. 2022) mod-
ules were used. The joined spatial information was merged into the original records
based on the unique serial code of S-DoT. Third, the joined data frame was grouped by
an added geographic unit: administrative boundary and DateTime to gather the hourly
average atmospheric temperature for all 424 administrative boundaries in Seoul. Ideally,
there should be 10,176 records (424 administrative boundaries x 24h). However, 608
records were missing, accounting for approximately 5.9% of the total observations.
Although this magnitude is small, we performed mean substitution on these missing
observations to utilize the complete dataset. Rather than using the incomplete data frame,
our study generated a new one, a combination of 424 administrative boundaries and
24h. We merged the incomplete data frame with the complete one and conducted mean
substitution based on the hourly average atmospheric temperature.

3.2.2.  Human dynamics data

Due to the advancement of telecommunication technology, mobile phone devices are
widely used in our daily routines. The real-time data collected by these devices can
represent a de facto human activity, as most people carry phones all the time. Instead
of using static census data, human activity data represent real-time de facto population
movement and travel patterns (Song et al. 2010). Recently, the use of human activity
data has increased in urban research, including studies examining travel behaviors and
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patterns (Lee, Choi, and Jiao 2021; Song et al. 2010; Chen and Yeh 2022), optimiza-
tion for small businesses (Cho and Lee 2022), demands for urban facilities (Baz-
Lomba et al. 2019), and neighborhood vitality (Kang 2020; Barbour et al. 2019).

Seoul Metropolitan Government publicizes mobile phone signal-based human
dynamics data. The spatiotemporal characteristics of human dynamics data have been
well documented by Lee, Jiao, and Choi (2021), who utilized the data as a proxy to
measure real-time spatiotemporal transportation service demand.

In human dynamics data, human activity is classified into gender (male/female)
and different age groups. It is provided across all administrative boundaries in Seoul.
We collected human dynamics data during the same period when heat advisory alerts
were in effect during the study period and selected the time period of 3 pm, when the
temperature typically reaches its peak. This study defined three age groups which are
youth (age under 15), elders (age over 64), and working population (age older than 15
and younger than 64, inclusive). Then, human dynamics data were subset summed for
the corresponding age group.

3.3. Methods
3.3.1. Spatiotemporal analysis

This study used urban climate sensor data and human dynamics data (Table 1) to address
extreme heat spatiotemporal analysis in Seoul, South Korea. The research went into two
phases. First, the hourly average atmospheric temperature of extreme heat during advisory
alerts was analyzed in time series. Second, the total hourly average temperature, derived
from the hourly averaged data during the advisory alerts, was subjected to descriptive
spatial analysis. We conducted a hot spot analysis tool in ArcMap to perform a Getis-
Ord Gi analysis, enabling us to identify the spatially significant clusters of hot and cold
spots (ESRI 2023). We established peak hours based on a temporal analysis of the aver-
age hourly temperatures collected during advisory alerts. In this context, the term “peak
hours” specifically refers to the timeframe from 12 pm to 6 pm, which was determined to
be the period that consistently exhibited the highest temperatures.

3.3.2.  Kriging interpolation and correlation analysis

We conducted universal kriging using ArcMap to expand the point observation to
cover the entire study area. Previous studies on ambient temperature have predomin-
antly utilized Universal Kriging (Caballero, Giraldo, and Mateu 2013; Hudson and
Wackernagel 1994; Roznik et al. 2019). Hourly mean temperature during the study
period was employed. 3pm was chosen to represent the extreme heat risk in peak
hours. To determine the land surface temperature (LST), this study utilized Landsat 8
satellite image on 23 June 2017, which was the most recent date available based on
both land cloud coverage (< 20%) and the date corresponding to the specific day des-
ignated as an extreme heat advisory alert." The LST was calculated through methods
in previous studies (Avdan and Jovanovska 2016). Finally, a fishnet (50x50) was cre-
ated to collect observations across locations. And the LST values from the Landsat8
image and the S-DOT average air temperature data were normalized to a common
baseline to account for the temporal and spatial differences between the datasets. We
employed min-max normalization, which scales the data from 0 to 1. Points outside
the study area were removed prior to correlation analysis between two datasets.
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3.3.3. Risk assessment

This study calculated the Z-score of the average temperature and human dynamics dur-
ing the peak hour periods throughout periods of extreme heat alerts. Peak hour periods
were determined after temporal analysis using total hourly average temperature,
derived from the hourly averaged data during the advisory alerts. Peak hours were
identified through a temporal analysis, where the average hourly temperature was cal-
culated using data collected during advisory alerts. This analysis defined the peak
hours as the period from 12pm to 6 pm, which encompasses the three hours before
and after the hottest time of the day. We also gathered data on human dynamics
throughout this same period. Additionally, the average was taken from two distinct
sources within the administrative boundaries of Seoul. The Z-score was calculated by
subtracting each scale from the average and dividing it by the standard deviation. It
tells how far each observation is above or below average (Lee, Jiao, and Choi 2021).
The (+) positive value means that the observation is greater than the mean, whereas
the (—) negative value indicates that the observed data is lower than the average.
Several previous studies employed the z-score approach to map heat-related risks
(Christenson et al. 2017; Zheng, Zhang et al. 2020). After calculating two Z-scores —
one from the average temperature and the other from human dynamics during peak
hours — we computed the mean of these two Z-scores. The averaged Z-score used for
the assessment was broken down into ten quantile breaks (10%) in ArcMap. This cal-
culation involves addressing the relativity of risk during extreme heat events. The final
average Z-score calculation goes through the flowing equation:

Z — Score of Risk Assessment, = AVG (Z — Score, + Z — Score,)

(p: Temperature; o: Human dynamics of heat advisory alert days for each p)

Fourth, this study conducted an independent T-test to address how Seoul’s socioe-
conomic characteristics and planning implications relevant to the lowest and highest
risk areas are statistically different. The variables collected for the independent T-test
are openly accessible from the Open Data Portal provided by the Seoul Metropolitan
Government, which include socio-demographic, urban greenness and heat infrastructure
factors shown in Appendix 2. In addition, we carried out a T-test to compare the mean
proportions of human dynamics across various age groups during peak hours. The
independent T-test uses the following equation:

Xn =X

t=— =
SE)&_&

(1)

where Xy : Average of the Highest Risk; X : Average of the Lowest Risk;
SEy, — X : Standard Error of the Highest Risk & the Lowest Risk.

“We used Python, ArcMap 10.8, Stata 11, and Tableau Desktop for technical sup-
port. Appendix 2 summarizes a descriptive statistic for variables used in the independ-

ent T-Test analysis.

3.3.4. Isolation forest for anomaly detection

After identifying spatiotemporal exposure to extreme heat in Seoul, we conducted
anomaly detection using an Isolation Forest (IForest). To address the worst-case scen-
ario, we examined zones previously believed to house a significant number of low-
income seniors. We aimed to determine whether there were any unusual instances of
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excessive heat exposure in these vulnerable areas. [Forest is an unsupervised machine-
learning algorithm that identifies anomalies by constructing trees. In [Forest, anomalies
refer to the observation that depicts dissimilar characteristics to the normal instances,
which occur in only a few instances (Liu, Ting, and Zhou 2008). The anomaly score is
calculated as follows:

—E(h(x))

S(x,n) =27 )
where, S :anomarly score of instance x; A(x) is a path length of instance x;E(h(x))
is a mean of A(x) from all trees; the denominator c(n): is a mean tree depth of an
unsuccessful search calculation which is calculated as follows:

2H(n—1) - (M) 3)

n

where 7 is the total number of data points; H(i) is a harmonic number calculated by
an Euler’s constant (In (i) + 0.5772156649).

IForest necessitates the setting of constant hyperparameters, often referred to as
contamination. This term can also be synonymous with biases. Our study adopted the
approach by Hasan et al. (2019), which outlines the typical sensor malfunction fre-
quency rate of 2.76%. We used this rate as the malfunction rate for S-DoTs was not
clear. In addition, for other hyperparameters, 70% of the data were used for training,
and the number of base estimators was set to 200. A random seed number of 1 was
used to repeat the sequence. Our study evaluated the anomaly detection in two instan-
ces; (1) where the instance is greater than the mean temperature in peak hours in
Seoul (higher than 33.33 °C), and (2) where the instance is greater than the standard of
initiating extreme heat alert (higher than 35.00°C). IForest was imported from the
Scikit-learn module (Pedregosa ef al. 2011) using Python.

4. Results
4.1. Spatiotemporal analysis of extreme heat through S-DOT

Figure 2 illustrates the average temperature during the heat advisory alerts by adminis-
trative boundaries. Despite its existing variation, administrative boundaries in Seoul
shared a similar hourly pattern in average temperature. The average temperature would
go up after 7 am, hit its peak in the afternoon (3 pm), and start declining. The lowest
observed point was 6 am with an average of 26.10°C, ranging from 22 °C to 27°C,
while the highest averaged observation was 33.33 °C at 3 pm, ranging from 31.0°C to
35.0°C. We defined the hour periods from 12pm to 6 pm as peak hour periods for
extreme heat.

Figure 3 shows the descriptive spatial analysis of the total hourly average tempera-
ture measured by S-DoTs. For clarification, the total hourly average employed for the
spatial analysis encompasses all records collected during the hours when the advisory
alerts were in effect. The temperature is relatively high in the central business district
(CBD) and the Eastern part of Seoul. The hot spot analysis result reveals clear cluster-
ing and dispersion patterns with statistical significance. Clusters of hot spots relevant
to temperature are figured in Seoul’s Eastern, Central, North-western, and South-
eastern sides. The occurrence patterns and characteristics of different temperatures
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Figure 2. Hourly average temperature during extreme heat alerts in each administration
boundaries in Seoul, South Korea.
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Figure 3. Average temperature and hot spot analysis during extreme heat alerts by
administration boundaries in Seoul, South Korea.

depending on time zones and administrative dongs mean that the deviation of extreme
heat risk is spatiotemporally different.

The results of the temporal hot spot analysis for temperature during peak and off-
peak hours are presented in Figure 4. It is based on the average hourly temperature
recorded during advisory alerts. The peak hours are defined as the period from 12 pm
to 6 pm, and the off-peak hours encompass all other times. During peak hours, clusters
of hot spots were identified in the Eastern part of Seoul. During off-peak hours, the
most prominent hot spots were observed in Seoul’s East-central and Southwestern
regions.

4.2. Validation of S-DoT: temperature comparison between S-DoT and LST

Figure 5 depicts an LST map computed from a satellite image and a temperature map
determined for each S-DoT created by spatial interpolation. In data collection, due to
the low continuity in the orbital cycle (16 days) of the mid-resolution Landsat 8 and
the higher cloud ratio in the summertime during the rainy season (from June to July)
in Korea, we found that it is not easy to obtain the recent satellite images that meas-
ured the temperature of each region. The LST and the S-DoT temperature map show a
similar pattern, with higher values in the northeast and southeast area, while the north-
central area, mainly hills and mountains, show lower values. In addition, some areas
without S-DoT sensors represent lower temperatures when interpolating, having
higher values in the LST map. Significantly, this disparity appears in the part of the
western area.
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Figure 5. Temperature comparison between land surface temperature (LST) and S-DoT sensors.

Correlation analysis was performed using fishnet points to identify the similarity in the
LST and the S-DoT temperature map (Figure 6).> The Pearson’s correlation coefficient is
0.3369, indicating a moderate positive relationship between the two maps (p < 0.000).

4.3. Heat risk assessment

The Z-score analysis by the averaged administrative dong used in the heat risk analysis
shows differences in heat exposure by age (Figure 7). For each of the youth, working, and
elderly groups, there are 43 low-risk and 42 high-risk regions, respectively. The working
group is relatively exposed in downtown Seoul (CBD) compared to the youth and the eld-
erly group, showing a lower heat exposure on the outskirts of the city. The exposure of
the elderly group to heatwaves is relatively high in the northern part of Seoul. Meanwhile,
the heat exposure of the youth group shows a scattered pattern throughout the residential
areas in Seoul, with relatively low exposure in the downtown area. The results suggest an
apparent geographical disparity in heat exposure by age group.

This study conducted an independent T-Test to examine the statistical difference
between the lowest and highest heat-exposed area by age group. We primarily focused
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Figure 6. (a) Pre-processing LST and kriging result before correlation analysis, (b) the result
of Pearson’s correlation.

on variables closely related to the capability to withstand extreme heat. Notably, the
urban greenness factor considers the number of parks, park area per person, city park
area per person, and walkable park area per person across administrative boundaries in
Seoul. In addition, the number of public heat shelters to evade extreme heat per person
was considered. The Seoul Metropolitan Government provides a list of officially desig-
nated public heat shelters, which are open for public access to help citizens escape
extreme heat and stay cool. This data is publicly available.

The T-Test result (Table 2) shows the overall significant difference between the
lowest and highest risk areas in age groups relevant to human dynamics data. The
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Figure 7. Heat risk assessment by age group.

Table 1. Descriptive statistics.

Variables Count Mean Std Min Median Max
S-DoT (Seoul Climate factors Average 10,176 29.29 2.65 22.40 28.88 35.23
Metropolitan temperature
Government O
2021b)
Human During extreme Youth 10,176 0.10 0.04 0.01 0.10  0.26
dynamics heat advisory  population
(Seoul alerts (%)
Metropolitan Elderly 10,176 0.16 0.03 0.06 0.16 029
Government population
2021a) (%)
Working 10,176 0.74 0.06 0.60 0.73  0.93
population
(%)

highest risk areas demonstrated a larger proportion of respective age groups. For
example, regions with the highest risk for the youth group had a significantly higher
proportion of youth human dynamics than those regions at the lowest risk. A similar
pattern was observed in the working and elderly groups. Regarding vulnerable popula-
tions, the number of elderly people living alone, registered people with disabilities,
low-income voucher recipients, and people with severe medical conditions is statistic-
ally higher in areas where the elderly population are at risk of heat. The number of
people with disabilities is also higher in the areas with higher risk to the youth group.

The areas with the highest risk in the working group have a significant number of
temporal workers who primarily work in the outdoor construction field than the lowest
heat risk areas. These results indicate that vulnerable groups share similar burdens con-
cerning significant heat risks.

Regarding urban greenness, the regions with the highest heat risk comprised fewer
number and areas of parks, areas of city parks, and walkable parks per person than the
lowest heat risk regions in the youth population group (p <0.01). The results were
found in the areas with highest heat risk for the elderly group except the per person
park area. Meanwhile, the result suggests that the number of parks is limited in high-
risk areas for the working group (t=-2.149, p < 0.05).

In addition, there is no statistical difference between the highest and lowest heat
exposed areas in all age groups regarding the number of public heat shelters to evade
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extreme heat. While only the highest risk areas for the working group statistically have fewer
public heat shelters, the youth and elderly groups, who are also more exposed to extreme heat,
tend to have comparatively less access to these public facilities designed for heat relief.®

Our results suggest that heat vulnerability could be enhanced when combined with
numerous socioeconomic elements and urban environmental factors, calling for cus-
tomized policies and mitigation strategies for the risk of overburdened populations.

4.4. Application of IoT sensors: case study on anomaly detection

We explored a pilot case study of one of the administrative boundaries, Changsin-
Dong, to better understand the various roles IoT sensors may play in regard to extreme
heat events. Changsin-Dong is where low-income elderly have been historically
densely located (known as “Jjok-Bang” in local terms) over the years. There are three
administrative boundaries in Chansin-Dong. It has not been widely introduced in inter-
national studies. The residents live in a single room of less than 71sqft packed
together in multi-dwelling units in poorly managed, old facilities. The shared bathroom
and dilapidated housing conditions comprise insanitary conditions, aggravating their
risk of extreme heat exposure. Figure 8 shows that the residents in Changsin-Dong are
exposed to relatively higher LST and temperatures in peak hour periods.

As our study found that extreme heat occasionally occurs in August, and the fact
that Changsin-Dong is relatively exposed to higher LST and meteorological tempera-
ture, we conducted anomaly detection in this area, using temperatures observed by S-
DoTs in August. Our IForest defined anomal instances of extreme heat that exist in
Changsin-Dong. Specifically, if we define the outlier of temperature as the mean tem-
perature in peak hours in Seoul, the model reported 32% accuracy. However, if we
define the outlier of temperature greater than the standard of initiating extreme heat
alert, the model reported 100% accuracy. Figure 9 illustrates the hourly stamp of iden-
tified anomalies greater than the threshold value of the standard in Changsin-Dong.
The extreme heat anomalies occurred on 25 and 26 August, centered at 3 pm. These
periods were authentically the case when the extreme heat advisory alert was initiated
and the temperature was primarily extreme (see Appendix 1 and Figure 2).

In addition, three administrative boundaries in Chansin-Dong reported having only
one park, respectively, while the average number of parks in Seoul’s administrative

@ e | LST
- in 5-Quantile Break
I under 20%

Kriging Result

in 5-Quantile Break

[ under 20%

[ 20-40%

1 40-60% [ 1 40-60%
60 -80% 383 2] 60 - 80%
Bl over 80% N ) B over80%

0 5 10 Kiometers Land Surface Temperature (LST) Universal Kriging Result (S-DoT)

Figure 8. Land surface temperature (LST) and S-DoT temperature comparison in Case area
(Changsin-Dong).
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Figure 9. Extreme heat anomaly detention using S-DoTs in Changsin-Dong, Seoul, South Korea.

boundaries is seven. Their mean area of the park (0.77m?), city park (0.43m?), and
walkable park (0.21 m?) per person were also below the average for all geographic
units (see Appendix 2). The average number of public centers in Chansin-Dong (0)
was below the city’s average (4).

5. Discussion

This study investigates the enhanced use of IoT sensors in assessing the risk of
extreme heat events. By combining telecommunication human dynamics data to com-
pute heat exposure by age group, this study analyzed spatiotemporal risks relevant to
extreme heat. Also, our study integrated a machine learning toolkit to address whether
anomalous instances of extreme heat occur in Seoul.

First, this study revealed the necessity for tailored, localized responses to extreme
heat, focusing on interventions that specifically cater to the unique spatiotemporal risk
patterns observed among different age groups in urban settings (e.g. green spaces for
the elderly or cool roofing materials for young adults working peak daytime hours), to
effectively mitigate the impacts of these events. Our results corroborate the previous
studies on urban heat intensity, addressing that urban areas exhibit their regional fea-
tures, despite an outstanding diurnal cycle (a period of one day) (Kim and Baik 2004;
Runnalls and Oke 2000). Thus, it is crucial for policymakers to develop strategies that
focus on addressing particular risks, suggesting extreme heat mitigation actions in spe-
cific regions spatially to reduce influencing factors while focusing on peak hours of
vulnerable populations temporally.

Second, [oT sensors offer potential benefits when used in conjunction with existing
temperature data. Satellite images are regarded as reliable sources, having been man-
aged and verified over many years. While they allow for the evaluation of historical
temperature changes through long-term accumulated data, they do face issues with
data continuity. IoT sensors, in contrast, are embedded in living environments to cap-
ture changes in urban areas, providing high-resolution data. However, they present
challenges in handling outliers or missing data because its formats are close to raw
data stored without verification. Furthermore, the limitation exists on analysis that can
be employed owing to its short deployment period. In this manner, we suggest
researchers understand the pros and cons of each data collection means and choose
which data to use depending on the objective of the research, with consideration of
potential approaches including data fusion, data interpolation, or model training. The
effectiveness of these methods would be dependent on the availability and quality of
the IoT sensor data and other data sources. However, we envision that the integration
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of 10T sensors would not only bolster our current temperature data but also provide a
more comprehensive, dynamic representation of urban thermal patterns. This novel
combination of high spatial resolution from LST data and high temporal resolution
from IoT sensors, while challenging, holds great promise in refining our understanding
of urban heat phenomena and informing targeted mitigation strategies.

In considering the implementation of IoT systems in economically constrained
environments, particularly in the Global South, definitive conclusions on feasibility
remain elusive due to variations in cost and infrastructure needs. However, initiating
pilot projects in areas of critical need could provide a valuable investigation into the
environmental benefits of such systems. Concurrently, it allows us to tackle cost-
related challenges and explore solutions suitable for these environments. This nuanced
approach encourages adaptability, offering the potential to tailor smart solutions to
meet unique regional needs and constraints.

Third, our results show that cold spots of heat risk are geographically identified
around the outskirts of Seoul. Most of them are designated as development-restricted
zones and compose relatively higher greenness than urban centers. The result is in
accordance with previous studies arguing that urban greenness (i.e. parks, vegetation,
green roofs) reduces damage associated with extreme climate events (Paoletti et al.
2011) and contributes to beneficial impacts on mitigating extreme heat events (Van
Ryswyk et al. 2019). Despite its positive impact on increasing climate adaptive cap-
acity, our risk assessment demonstrated that the highest heat-exposed regions for youth
and the elderly groups have fewer parks. Hazard mitigation policies often purposely or
unintentionally favor specific communities, disproportionately providing resources and
services (Seong, Losey, and Gu 2022). Our results call for actions toward equitable
landscape design and ecological solutions regarding urban greenness.

Fourth, our findings suggest that human activity is not evenly distributed in heat-
exposed areas only by age group but may contextually coexist with other climate-
vulnerable groups. This suggests the need for urgent measures and efforts in such areas.
However, it is crucial to note that this data does not provide explicit information on the
nature of the stay (indoors or outdoors) of this population in these areas, which is a limi-
tation of our study. Our results corroborate previous studies addressing that social isola-
tion, poverty, and disabilities — possibly due to pre-existing morbidity and reduced
mobility conditions — are significant factors that increase elderly vulnerability to extreme
heat (Nayak et al. 2018). In addition, our results indicate elevated risks among outdoor
workers (primarily temporal workers in South Korea) in high-risk areas for working
groups. This conclusion is primarily based on demographic data and the common indus-
tries in these high-risk regions. However, we acknowledge the occupational diversity
within human activity, including a significant proportion that could be involved in the
service sector and other industries. Therefore, the conclusions drawn are not intended to
oversimplify this diversity. Policymakers should be aware of those socio-demographic
overlaps as contextual factors related to higher climate risks. Also, programs and initia-
tives should focus on socio-ecological solutions for disadvantaged populations in highly
heat-exposed areas. More precise risk assessments would benefit from more granular data
on the occupations and specific human activities, which is an area for future research.

Finally, our IForest model identified that anomalous instances of extreme heat do
occur in vulnerable regions in Seoul. Extreme anomalous cases were reported when
extreme heat alerts were initiated, and the temperature was relatively at the highest in
time periods. Given this fact, integrating the IoT sensors into environmental assessment
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contributes to helping monitor the degree of climate risk across the city concurrently.
Now that a significant quantity of sensors have been installed, policymakers and local
government agencies should move on to the phases that contemplate integrating the sen-
sors’ findings into their initiatives. One option is combining technical findings through
recent machine learning toolkits with local knowledge to build collaborative initiatives
and work with local grassroots organizations through bottom-up approaches. It may
allow local stakeholders to actively participate in the environmental issues based on
open data-driven evidence and suggest solutions considering their local context.

6. Conclusion

This study is the first to use exceptionally high-resolution data sources to uncover cli-
mate risks caused by extreme heat events and integrate them with human dynamics
data, considering risks as chronic pressures on urban populations. Our findings suggest
that the unequal distribution of climate exposure risks across age groups must be expli-
citly addressed for equitable urban resilience planning.

This article contributes to a growing literature on evaluating risks related to
extreme heat using innovative data sources and technologies. Given that we used pub-
licly available data (S-DoTs, mobile phone signal-based human dynamics data), our
approach is replicable to address other forms of climate vulnerability in other cities
deploying IoT sensors and real-time mobile data. Global smart city initiatives involve
the utilization of urban climate sensors (Ahn, Lee, and Hong 2022). Microsoft air qual-
ity sensors in Chicago and Miami, USA (Microsoft 2021), the Smart Nation Sensor
Platform in Singapore, and Google Street View vehicles from Google (Google 2022)
are excellent examples of how urban sensors may be used. Given that, our study could
provide a reference case of IoT applications for extreme weather events.

There are several limitations to note. First, S-DoT sensors may recall biased results
as their operation has not yet been fully validated. The likelihood of hardware failure,
overheating, and signal glitches should be further investigated. Second, the study draws
from human dynamics data sourced exclusively from one telecommunications com-
pany, potentially limiting its representation of the broader mobile phone user base.
Third, certain demographic groups, including the elderly, young children, and infants,
may not own mobile phones, suggesting that the mobile phone data could fail to accur-
ately mirror the demographic composition of the entire population within the study
area. To mitigate these limitations and enhance the accuracy of our analysis, our
human dynamics data was adjusted based on the census data, aiming to better reflect
the true demographic composition of the study area. Fourth, we used a standardized Z-
score to analyze heat risk exposure. However, it does not fully incorporate the spatial
mismatch and structural disparity issues. Fifth, the independent T-Test conducted only
reveals the statistical difference between the highest and lowest heat risk regions.
Additional studies should subsequently seek the correlations and impacts of determin-
ant factors on calculated vulnerability. We also leave deep dive into the analysis and
validation of S-DoT sensors as a task for future studies.
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Notes

1. We acknowledge the challenges encountered in finding satellite images that corresponded to
the desired period. These challenges include limitations in selecting multiple Landsat images
and creating a mosaic image during the same period. When selecting the Landsat 8 image,
we had two significant rationales: (1) Images with cloud coverage less than 20% to address
the potential errors introduced by clouds; (2) Dates corresponding to the specific day
designated as an extreme heat advisory alert by the Korea Meteorological Administration.
However, none of the Landsat images obtained during the study period coincided with these
designated days. We expanded our search and selected alternative images that aligned with
the specified rationales, focusing on the summer period, spanning from May to September,
between the years 2017 and 2023. Remarkably, we found that the Landsat 8 image acquired
on 23 June 2017 was the only image that fulfilled both rationales and aligned with the
requirements of this study. We recognize that limited availability of Landsat images on the
exact dates of interest can impact the representativeness and accuracy of the comparison. To
address the limitations, we implemented a data normalization approach. By normalizing the
LST values from the Landsat image and the S-DOT average air temperature data to a
common baseline, we account for the temporal and spatial differences between the datasets.

2. We aggregated the temperature data for each dong and the correlation coefficient between
LST and S-DoT aggregated was found to be 0.223, which was lower than the correlation
coefficient obtained using fishnet points. This difference in correlation strength can be
attributed to the loss of finer spatial variations in temperature when aggregating the data.
We found out the benefit of using fishnet points in capturing localized temperature
relationships that may be missed with aggregated data.

3. Public heat shelters, often known as cooling centers or cooling facilities, are establishments
that receive financial support from governments to cover air conditioning expenses and
operational costs. These centers are specifically designed to create a cool environment,
particularly for vulnerable populations such as senior citizens, children, and individuals at
higher risk, during the summer season.
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Alert Date in effect
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Administration) August 2020, 15 August 2020, 16 August 2020,

17 August 2020, 18 August 2020, 19 August
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August 2020, 25 August 2020, 26 August 2020
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