
1

Verification of Hyperproperties for Dynamical
Systems via Barrier Certificates

Mahathi Anand, Member, IEEE , Vishnu Murali, Student Member, IEEE , Ashutosh Trivedi, and Majid

Zamani, Senior Member, IEEE

AbstractÐ Hyperproperties are system properties that
require quantification over multiple execution traces of
a system. Hyperproperties can express several specifi-
cations of interest for cyber-physical systemsÐsuch as
opacity, robustness, and noninterferenceÐwhich cannot
be expressed using linear time properties. This paper
presents for the first time a discretization-free approach for
the formal verification of discrete-time dynamical systems
against hyperproperties. The proposed approach involves
the decomposition of complex hyperproperties into several
verification conditions by exploiting the automata-based
structures corresponding to the complements of the orig-
inal specifications. These verification conditions are then
discharged by synthesizing so-called augmented barrier
certificates, which provide certain safety guarantees for
the underlying system. For systems with polynomial-type
dynamics, we present a sound procedure to synthesize
polynomial-type augmented barrier certificates by reducing
the problem to sum-of-squares optimizations. We demon-
strate the effectiveness of our proposed approaches on two
physical case studies against two important hyperproper-
ties: initial-state opacity and initial-state robustness.

I. INTRODUCTION

Classical control theory provides theory, techniques, and

tools to analyze complex dynamical systems against simple

objectives such as stability. Traditional formal methods, on the

other hand, tend to focus on developing approaches to verify

software/hardware systems with simpler discrete dynamics

against structurally rich logic-based specifications concerning

safety and liveness. Cyber-physical systems (CPS)Ðsystems

characterized by structured software systems interacting with

equally complex physical systemsÐblur this traditional de-

marcation between control systems and software systems.

The critical role of CPS in modern society in safety- and

security-critical applications has spurred interest in developing

approaches to provide rigorous guarantees for such systems.

As a result, in the last two decades, formal verification of CPS

with complex continuous state-space dynamics against logic-

based specifications has received considerable attention [1],

[2].

This work was supported in part by the German Research Foundation
(DFG) through the Research Training Group 2428 and the NSF under
grant ECCS-2015403.

M. Anand is with the Institute of Systems Theory and
Automatic Control, University of Stuttgart, Germany. V. Murali,
A. Trivedi, and M. Zamani are with the Computer Science
Department, University of Colorado Boulder, USA. M. Zamani
is also with the Computer Science Department, LMU Munich,
Germany. Emails: mahathi.anand@ist.uni-stuttgart.de,

vishnu.murali@colorado.edu, ashutosh.trivedi@colorado.edu,
majid.zamani@colorado.edu.

Verification of CPS has been typically performed against

temporal logic specifications, notably linear temporal logic

(LTL), signal temporal logic (STL) [3], and computation tree

logic (CTL) [4], expressing properties of a set of desirable

system executions. While these logics can describe a large

number of specifications of interest that consider individual

execution traces of CPS, many important information-flow

properties and planning objectives involve relating multiple

execution traces. These properties cannot be expressed by

classical temporal logic specifications equipped to express

properties of individual traces. To fill this gap, Clarkson and

Schneider [5] introduced the notion of hyperproperties as

properties of collective behavior relating multiple execution

traces.

As an example of a hyperproperty, consider a security

property in a CPS prone to intrusion attacks. Suppose that this

system requires that secret information is never revealed, i.e.,

observations from the outside remain indistinguishable from

each other, despite the secret. This specification, known as

opacity [6], requires us to relate and quantify two observation

traces simultaneously. Similarly, an optimality objective [7]

for a robotic system would require the existence of a trace

that is more favorable than all the other traces of the system,

again quantifying multiple execution traces at a time. Other

examples for hyperproperties include noninterference [8] and

observational determinism [9]. In order to formally specify

hyperproperties, the hyper-temporal logic HyperLTL was in-

troduced in [10]. HyperLTL, developed as an extension to LTL,

uses trace variables to denote individual execution traces and

utilizes universal (∀) and existential (∃) quantifiers before a

quantifier-free formula over atomic propositions to specify on

which traces the atomic propositions must hold.

Formal verification of hyperproperties has been studied in

the context of finite-state systems. However, the techniques

used for finite systems are not applicable to real-world CPS

which evolve on continuous (or even hybrid) state spaces.

Contributions. We aim at bridging this gap by presenting a

discretization-free, systematic, and sound verification proce-

dure based on a notion of barrier certificates for discrete-time

dynamical systems against hyperproperties. In particular, we

consider those specifications that can be expressed by Hyper-

LTL formulae [10]. The verification procedure is achieved by

decomposing the given specification into simpler safety tasks,

so-called conditional invariance, by constructing an implicitly

quantified BÈuchi automaton corresponding to the complement

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

2

of the specification. We introduce augmented barrier certifi-

cates (ABCs), defined over an augmented system obtained by

taking the product of the original system with itself (self-

composition), which provide us with sufficient conditions

ensuring the satisfaction of those conditional invariances.

Inspired by the results in [11], we propose an automata-

theoretic approach to extend the applicability of ABCs be-

yond conditional invariance to HyperLTL specifications by

finding barrier certificates ensuring the possibility of avoiding

accepting traces of corresponding automata by disallowing

certain transitions on different lassos (simple path followed

by a simple accepting cycle). To do so, ªexistentialº player

is required to select a trace before knowing the choices

of the ªuniversalº player. This necessitates the need for a

common ABC for some transitions of all lassos, which may

be hard to ensure in practice. On the other hand, when the

HyperLTL property belongs to ∀∗∃∗-fragment [10], we can

exploit a similar approach as in [11] to use separate ABCs to

provide the necessary guarantees by leveraging the structure of

the automata corresponding to the negation of specifications.

For systems with polynomial-type dynamics, we present a

sum-of-squares (SOS) approach to compute polynomial-type

ABCs for the individual conditional invariance. Finally, we

demonstrate the effectiveness of our proposed approach by

verifying two physical case studies with respect to initial-

state opacity and initial-state robustness, respectively, which

both can be described by HyperLTL formulae. Proofs of all

statements are provided in the Appendix.

Related Literature. There have been several results in the

literature for the verification and synthesis of CPS against

temporal logic specifications. Many earlier results have uti-

lized abstraction-based techniques based on state-space dis-

cretization. Examples include abstraction-based framework for

linear systems [12], for nonlinear systems [13], synthesiz-

ing feedback strategies for piece-wise affine systems [14],

and counterexample-guided abstraction refinement (CEGAR)

for nonlinear systems [15] to name a few. More recently,

automata-theoretic, discretization-free approaches via barrier

certificates [16] have been utilized for the verification of LTL

specifications in the context of nonlinear systems [11], hybrid

systems [17], as well as stochastic systems [18], [19]. We

should add that barrier certificates have also been used to

verify STL specifications [20], [21].

Unfortunately, most of the existing results pertaining to hy-

perproperties are tailored to finite-state transition systems. For

example, the results in [22] present a practical verification ap-

proach for finite-state systems with respect to alternation-free

fragments of HyperLTL formulae. The proposed approaches

in [10] present a model-checker for HyperLTL specifications

with alternation depth of at most one. The results in [23]

propose a new model checking algorithm based on model-

counting for quantitative hyperproperties. A bounded model

checking algorithm for hyperproperties is proposed in [24].

Verification of other types of hyperproperties such as k-safety

hyperproperties and hyperliveness properties have also been

studied in [25] and [26], respectively. Checking satisfiability

of certain fragments of HyperLTL specifications, such as the

ª∀∗∃∗º fragment, are undecidable in general [27]. Formal

verification of continuous state-space CPS against general

hyperproperties remains largely unexplored. Hyperproperties

have been studied for CPS in [28] as well as [29], but in the

context of falsification and statistical model checking, respec-

tively. These results are empirical and rely on experimental

simulations, and therefore do not provide sound guarantees.

Finally, we would like to mention that an extended abstract of

this work was presented in [30].

II. PROBLEM DEFINITION

We write R and N to denote the set of real and non-

negative integers, respectively. Appropriate subscripts are used

to restrict the sets, e.g., R>0 = {x ∈ R > 0} denotes the set of

positive reals. We write R
n to denote n-dimensional Euclidean

space equipped with Euclidean norm ∥x∥. For a finite set A,

the cardinality of A is denoted by |A|.
For a family x1 ∈ R

n1 , x2 ∈ R
n2 , . . . , xN ∈ R

nN of

N vectors, we write (x1, x2, . . . , xN) to denote the cor-

responding vector of dimension
∑

i ni. For a set A, we

write An for the n-ary Cartesian power of A, i.e. An =
{(a1, a2, . . . , an) | ai ∈ A for all 1 ≤ i ≤ n}. For a tuple t =
(a1, a2, . . . , ak) and 1 ≤ i ≤ k we write t(i) for its i-th

element and t≤i for the tuple (a1, a2, . . . , ai). Similarly, for

a mapping f : A → B, we define its n-ary Cartesian power

fn : An → Bn, as (a1, . . . , an) 7→ (f(a1), . . . , f(an)).
An alphabet Σ is a finite set of letters. An ω-sequence σ =

W0W1 . . . is an infinite concatenation of letters, i.e. for all

i ≥ 0 we have Wi ∈ Σ. A finite sequence is such a sequence

but with a finite length. We write Σ∗ and Σω for the set of

finite and ω-sequences over Σ, and we let Σ∞ = Σ∗∪Σω . For

a sequence σ = W0W1 . . . ∈ Σω , let σ[i] be the i-th element

Wi of σ and σ[i,∞] for the ω-sequence WiWi+1 . . . ∈ Σω of

σ starting from i-th position.

We let zip : (Σω)p → (Σp)ω denote a function that maps a

p-tuple of sequences to a sequence of p-tuples, i.e.

(σ1,σ2, . . . ,σp)→

(σ1[0],σ2[0], . . . ,σp[0])(σ1[1],σ2[1], . . . ,σp[1]), . . . ,

and unzip : (Σp)ω → (Σω)p denotes the inverse of zip, i.e.

σ →((σ[0](1)σ1 . . .), . . . , (σ[0](p)σ[1](p) . . .)),

where σ[i](j) refers to the the jth element of the ith p-tuple in

the infinite sequence σ.

A. Discrete-Time Dynamical Systems

We consider a discrete-time dynamical system (or simply,

system) defined by a tuple S = (X,W, f), where X ⊆ R
n

and W ⊆ R
m are the (potentially uncountable) state and

exogenous input sets, and f : X ×W → X is the transition

function that characterizes the state evolution. The evolution

or run of the system S for a given initial state x0 ∈ X and

exogenous input sequence ν : N→W , denoted by x(x0,ν), is

given by sequence x : N→X , where

x(t) =

{

x0 if t = 0

f(x(t− 1), ν(t− 1)) otherwise.
(II.1)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

3

For a system S, we define its p-fold self-composition as

p-fold augmented system Sp = (Xp,W p, fp) where Xp and

W p are p-ary Cartesian powers of X , and W , respectively,

and fp : Xp×W p → Xp is equivalent to the p-ary Cartesian

power of f , i.e. fp : (X × W)p → Xp by using the

zip function. We use these two types interchangeably. We

use x̃ and w̃ to denote the state and exogenous input of

the augmented system Sp, respectively. Similarly, we write

x̃(x̃0,ν̃) for the run of Sp starting from an initial state x̃0 ∈ X
p

and under exogenous input sequence ν̃ : N→W p.

B. Barrier Certificates

A function B : X → R is a barrier certificate for a system

S = (X,W, f) from the set A ⊆ X to the set B ⊆ X , if:

B(x) ≤ 0, for all x ∈ A, (II.2)

B(x) > 0, for all x ∈ B, (II.3)

and for all x ∈ X and for all w ∈W :

B(f(x,w))− B(x) ≤ 0. (II.4)

The existence of a barrier certificate is a sufficient condition to

guarantee that if the system S ever visits a state from the set

A, it will never visit a state from the set B in the future. If the

set A characterizes initial states and the set B characterizes the

set of bad or undesirable states, then the existence of barrier

certificates from A to B can guarantee safety, see [16].

C. LTL Specifications

Consider a set of atomic propositions AP relevant to the

underlying system and the alphabet Σ = 2AP characterized

by the subsets of these propositions. We refer to an infinite

sequence (ω-sequence) of letters from Σ as an infinite trace.

We write Σω for the set of all infinite traces over Σ.

Syntax. An LTL formula over AP can be built from the

following production rules:

ψ ::= a | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where a ∈ AP, X and U are the next and until operators, re-

spectively. Other popular temporal operators such as globally

(G), eventually (F) and release (R) can be derived from these

minimal ones in a standard manner.

Semantics. Given an infinite trace σ and an LTL formula ψ,

the formula ψ is valid for σ, i.e. σ |= ψ, if:

• ψ = a and a ∈ σ(0),
• ψ = ¬ψ and σ ̸|= ψ,

• ψ = ψ1 ∨ ψ2 and σ |= ψ1 or σ |= ψ2,

• ψ = Xψ and σ[1,∞] |= ψ,

• ψ = ψ1 Uψ2 and σ[i,∞] |= ψ2 for some i ≥ 0 and for

all 0 ≤ j < i, we have that σ[j,∞] |= ψ1.

We refer the interested readers to [4] for more details on syntax

and semantics of LTL properties. The LTL specifications can

only express trace properties, i.e., properties of individual

execution traces. However, they cannot specify properties over

sets of execution traces, which is essential for many relevant

security specifications.

D. HyperLTL Specifications

HyperLTL, unlike LTL which implicitly considers only a

single trace at a time, can relate multiple traces simultaneously

through the use of existential and universal quantifiers.

Syntax. We consider HyperLTL with syntax:

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ.

The key distinction over LTL formulae is the introduction of

trace quantifiers ∃ and ∀. The quantifier ∃π stands for ªfor

some trace πº while the quantifier ∀π stands for ªfor all

traces πº, respectively. The variable ψ generates standard LTL

formulae with the exception that atomic propositions can refer

to distinct trace variables. Hence, for every proposition a ∈ AP

and trace variable π, we use aπ to express that proposition

a is referring to the trace π. A trace variable occurs free

in a HyperLTL formula, if it is not bounded by any trace

quantifier, i.e., if the trace variable is quantified by neither ∃
nor ∀ quantifiers. A HyperLTL formula with no free variable

is called closed.

Semantics. Since HyperLTL formulae express the properties

of multiple trace variables, one requires to assign these trace

variables to specific traces for reasoning about the satisfaction

of the formula. Let V = {π1, π2, . . .} be an infinite set of

trace variables. The semantics of a HyperLTL formula ψ is

defined over a set T of traces and a trace valuation function

Π : V → Σω that maps all the free trace variables occurring

in the formula ψ to traces in the set Σω . We use Π[π → σ]
to express the trace valuation function Π′ that agrees with Π
for all trace variables except π and Π′(π) = σ. We define the

trace valuation suffix Π[i,∞] as π 7→ Π(π)[i,∞], i.e. Π[i,∞]
maps π to the i-suffix of the trace mapped to π by Π.

We say that a HyperLTL formula ψ is satisfiable over a

given set T of traces and trace valuation function Π : V → Σω ,

and we write Π |=T ϕ if one of the following holds:

• ϕ = ∃π.ψ and there is σ ∈ T such that Π[π → σ] |=T ψ,

• ϕ = ∀π.ψ and for all σ ∈ T , we have Π[π → σ] |=T ψ,

• ϕ = aπ and a ∈ Π(π)(0),
• ϕ = ¬ϕ and Π ̸|=T ϕ,

• ϕ = ψ1 ∨ ψ2 and Π |=T ψ1 or Π |=T ψ2,

• ϕ = Xψ and Π[1,∞] |=T ψ,

• ϕ = ψ1 Uψ2 and there is i ≥ 0 such that Π[i,∞] |=T ψ2

and for all 0 ≤ j < i, we have that Π[j,∞] |=T ψ1.

A closed HyperLTL formula ϕ is considered to be valid for

a set of traces T , and we write T |= ϕ if the empty trace

assignment satisfies the formula, i.e., ∅ |=T ϕ. We refer

interested readers to [10] for more details on syntax and

semantics of HyperLTL properties.

Remark 2.1: It might be of interest to the readers to know

the differences between computational tree logic (CTL) as

well as HyperLTL specifications, due to the use of quantifiers

also in the former. It must be noted that while CTL does

indeed have explicit trace quantifiers, it cannot directly express

hyperproperties since the atomic propositions do not refer to

specific traces. More details on the comparison can be found

in [5].

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

4

E. BÈuchi Automata

A BÈuchi automaton is a tuple A = (Σ, Q, q0,∆, F), where

Σ is a finite set of alphabet, Q is a finite set of states, q0 ∈ Q
is the initial state, ∆ ⊆ Q × Σ × Q is the transition relation

and F ⊆ Q is the set of accepting states. We say that a

BÈuchi automaton is deterministic if ∆ can be represented as

a function that maps a state and alphabet pair to exactly one

state, i.e., ∆ : Q×Σ→ Q, and nondeterministic otherwise. We

abbreviate deterministic and nondeterministic BÈuchi automata

as DBA and NBA respectively. A run r of A on W ∈ Σω is an

infinite sequence r0W0r1W1 . . . ∈ (Q×Σ)ω such that r0 = q0
and, for i > 0, (ri−1,Wi−1, ri) ∈ ∆. We write inf(r) for the

set of states that appear infinitely often in the run r. We say

that a trace W is accepted by A, if, for the corresponding run

r, we have inf(r)∩F ̸= ∅. We call this run r the accepting run

of A. The language, LA, of any automaton A (or, recognized

by A) is the subset of traces in Σω that have accepting runs

in A. A language is ω-regular if it is accepted by an NBA.

It is well known that for any LTL specification, one

may compile a corresponding NBA [31] by using LTL to

BÈuchi construction techniques [32]. However, in the case

of HyperLTL, the presence of quantification of traces in

the specification prevents an immediate compilation to an

automaton. Nevertheless, given a HyperLTL specification ϕ =
µ1π1 . . . µpπpψ defined over a set of atomic propositions AP,

where for all 1 ≤ i ≤ p, µi ∈ {∃, ∀}, one may construct an

NBA Aψ corresponding to the quantifier-free LTL formula ψ

over the alphabet Σp.

In order to accommodate for the presence of quantification

in the HyperLTL formula, a trace for this automaton is a p-

tuple of individual traces, denoted by σ̃ = (σ1, . . . ,σp), i.e.,

unzip(σ̃) ∈ LAψ if (π1 7→ σ1, . . . , πp 7→ σp) is accepted by

Aψ .

F. HyperLTL Verification Problem

Let S = (X,W, f) be a system and L : X → Σ be a

measurable function labeling states of system S with letters

of the alphabet. We can extend the labeling function from

states to runs of S in a straightforward fashion: for every

infinite state run x = (x(0),x(1), . . .) of S, the function L(x)
defines the corresponding trace of the system (σ0, σ1, . . .) ∈
Σω , where σi = L(x(i)), for all i ∈ N. Let T (S, L) be the set

of all traces of S. We now define the key problem of interest.

Problem 2.2 (HyperLTL Verification): Given a discrete-

time dynamical system S = (X,W, f), a labeling function

L : X → Σ, and a HyperLTL specification ϕ, the HyperLTL

verification problem P = (S, L, ϕ) is to decide whether

T (S, L) |= ϕ.

While model checking of finite-state systems against Hyper-

LTL specifications is decidable [22], the verification problem

stated above is in general undecidable for continuous state-

space systems considered in this paper. It follows readily from

the fact that even simple reachability is undecidable for simple

continuous state-space dynamical systems [33]. Our approach

provides a sound procedure for Problem 2.2. Moreover, to

better illustrate our approach, we use the following case study

as a running example that we use throughout the article.

Example 2.3: Here, we consider the discrete-time evolution

of the temperature T (·) in a room in the presence of a safety

controller (as designed in [34]) given by

S : T (k + 1) = T (k) + τsαe(Te − T (k))

+ τsαh(Th − T (k))(c1T (k) + c2), (II.5)

where parameters αe = 0.008 and αh = 0.0036 are heat

exchange coefficients, Te = 15◦C is the ambient temperature,

Th = 55◦C is the heater temperature, c1 = −0.0024 and c2 =
0.5357 are controller parameters, and τs = 5 minutes is the

sampling time. We want to verify the initial-state robustness

property, which requires that if a state run starting from a given

initial condition remains safe, then all the state runs starting

from δ-close initial conditions must also remain safe. Such a

specification is especially useful when there are uncertainties

arising from not knowing the exact initial state. Note that

robustness is a commonly studied property in the classical

control theory [35]. However, we provide here an alternative

method to verify robustness by formulating it as a HyperLTL

formula.

To describe our specification as a HyperLTL formula, we

consider the state set X = [20, 35]. We further introduce the

safe set as X1 = [20, 25] and the unsafe set as X2 = [25, 35].
For the system S, the predefined initial state is given by X3 =
{21}. We also define the set X4 = [20.5, 21.5] to capture δ-

close states with respect to the initial state, where δ = 0.5.

The set of atomic propositions is AP = {a1, a2, a3, a4},
where L(x ∈ Xi) = ai, for all i ∈ {1, 2, 3, 4}. The

HyperLTL formula for initial-state robustness specification is

ϕ = ∀π1∀π2(a3π1
∧ a4π2

)→ G(a1π1
∧ a1π2

).

III. AUGMENTED BARRIER CERTIFICATES (ABCS)

Verification of HyperLTL formulae in the context of finite

systems has been well studied [10], [22]. The verification pro-

cedure is based on automata-theoretic model-checking, where

quantifier-free fragments of the desired HyperLTL formulae

are compiled into ω-automata, and trace quantification is

handled by appropriately composing these automata with the

underlying Kripke Structure. The interleavings of automata

and Kripke products lead to an automata whose language

emptiness decides the satisfaction of the specification. Unfor-

tunately, this approach cannot be extended to continuous state-

space systems by simply using abstraction-based techniques as

system relations (e.g., simulation relations) may not preserve

hyperproperties [36].

To verify the specification ϕ against system S, we compile

the negation of the HyperLTL formula into an implicitly quan-

tified BÈuchi automata, and discharge the unsatisfiability of the

specification to synthesizing appropriate barrier certificates.

Our verification procedure is depicted in Figure 1. Here, given

a HyperLTL specification ϕ and system S, we construct the

p-fold augmented system Sp, and the NBA for ¬ψ. We then

find an augmented barrier certificate (ABC) that acts as a proof

certificate of conditional invariance (cf. Definition 3.2) for

some transitions along every lasso. This acts as a ªscissorº

and allows us to conclude that the system S satisfies the

specification ϕ. We note that our approach is not complete

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

5

φ = µ1π1 . . . µpπpψ

HyperLTL Specification

System

S
p

p-fold
Augmented System

NBA for ¬ψ

ABC

ABC

T (S, L) |= φ

Inconclusive

ABC Implying Conditional
Invariance

ABC

ABC

At least
one ABC
exists for
every lasso

Otherwise

S

Fig. 1: A schematic block diagram illustrating the verification procedure.

in that if it cannot find an ABC for at least one transition

along every lasso then we cannot conclude that the system

does not satisfy ϕ. The rest of the section introduces the idea

of augmented barrier certificates and provides an automata-

theoretic sound verification approach for Problem 2.2.

A. HyperLTL Evaluation Game Semantics

We provide a game semantics to the HyperLTL verifica-

tion problem P = (S, L, ϕ) as a two-player stage-based

evaluation game played between two players, Eloise (∃) and

Abelard (∀), where Eloise takes the role of a verifier and

her goal is to prove that T (S, L) |= ϕ, while the goal

of Abelard (the spoiler) is the opposite. Given a HyperLTL

formula µ1π1 . . . µpπpψ, we say that Eloise controls the

quantifier µi if µi = ∃, otherwise we say that Abelard

controls the quantifier. The game continues in stages. In

the first stage, the game begins with a token in the initial

position (µ1π1µ2π2 . . . µpπpψ,Π = ∅) [37] and the player

controlling the left-most quantifier µ1 chooses a trace σ1

from T (S, L) and moves the token to the next position

(µ2π2 . . . µpπpψ,Π = {π1 → σ1}). The game from the next

position continues in a similar fashion until we reach a

position with a quantifier-free HyperLTL formula. We call

such positions terminal. We say that a terminal position

(ψ,Π = {π1 → σ1, . . . , πp → σp}) is winning for Eloise if

zip(σ1, . . . ,σp) |= ψ with the standard LTL semantics for the

formula ψ. We say that Eloise wins the multi-stage evaluation

game if she has a way to choose her moves such that no matter

how Abelard chooses his moves the game ends in a winning

position for Eloise; otherwise Abelard wins the game. Notice

that at every step, both players have access to complete infinite

traces that have been chosen by players in earlier positions as

a part of position description. It is trivial to see that Eloise

wins the evaluation game if and only if Π |=T ϕ.

We consider another version of evaluation games that we

dub turn-based evaluation games. These games are played on

the p-fold self-composition Sp = (Xp,W p, fp) of the system

S. These games start with a token in some initial configuration

(x01, x
0
2, . . . , x

0
p) ∈ Xp and at every round first the player

controlling µ1 chooses an action w1 ∈ W , followed by the

player controlling µ2, and so on. In this way, the players form

a set of joint actions (w1, w2, . . . , wp) ∈W
p and the token is

moved to a state fp((x01, x
0
2, . . . , x

0
p), (w1, w2, . . . , wp)). The

game continues in this fashion indefinitely and the players

thus form an infinite run x̃ of Sp = (Xp,W p, fp). To relate

the augmented system Sp with letters in Σp, we extend the

definition of the labeling function to the augmented system

domain by using Lp : Xp → Σp to map the states in the

augmented state set to the alphabet Σp. We say that the trace

x̃ is winning for Eloise if Lp(x̃) |= ψ. We say that Eloise

has a winning strategy in the turn-based evaluation game for

P = (S, L, ϕ) if she can select her moves in such a way that

no matter how Abelard chooses his moves (including using an

arbitrary look-ahead), the resulting trace is winning for Eloise.

Moreover, we say that Eloise has a positional winning strategy

if to select actions in a given round her choice depends only

on the current states and choices resolved before her turn for

the other quantifiers in the current round.

Lemma 3.1: If Eloise has a positional winning strategy in

a turn-based evaluation game for P then she has a winning

strategy in the stage-based evaluation game.

It can readily be verified that the above statement is true, since

turn-based evaluation game is more restrictive than a stage-

based evaluation game. However, for the sake of completeness,

we provide the proof of Lemma 3.1 in the Appendix.

B. Augmented Barrier Certificates

We reduce the search for a positional strategy for Eloise in a

turn-based evaluation game to the search for barrier-functions

like certificates that we call augmented barrier certificates

(ABCs). Just like barrier certificates provide a proof that

separates two sets over X for arbitrary traces of the system,

ABCs provide a proof that separate two sets over Xp for

appropriately chosen traces by players. To tie in the notion of

ABCs with HyperLTL properties, we present a special class of

properties that we call conditional invariance properties that

generalize the notion of invariance.

Definition 3.2 (Conditional Invariance (CI)): We say that a

HyperLTL formula χ=µ1π1 . . . µpπpξ is a conditional invari-

ance (CI) if ξ is of the form G(sA → G(¬sB)) where sA, sB
are Boolean combination of atomic propositions.

Definition 3.3 (Augmented Barrier Certificates (ABCs)):

Consider a CI χ = µ1π1 . . . µpπp G(sA → G(¬sB)) and the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

6

sets Lp−1(sA) = A ⊆ Xp and Lp−1(sB) = B ⊆ Xp. We

say that B : Xp → R is an augmented barrier certificate

(ABC) for a system S = (X,W, f) and property χ from the

set A ⊆ Xp to set B ⊆ Xp if

B(x̃) ≤ 0, for all x̃ ∈ A, (III.1)

B(x̃) > 0, for all x̃ ∈ B, (III.2)

and ∀x1 ∈ X, µ1w1 ∈ W, ∀x2 ∈ X, µ2w2 ∈ W, . . . , ∀xp ∈
X, µpwp ∈W one has:

B(fp(x̃, w̃))− B(x̃) ≤ 0, (III.3)

where x̃ = (x1, . . . , xp) and w̃ = (w1, . . . , wp).
Remark 3.4: Note that all the states’ components xi of

the augmented system Sp in condition (III.3) are quantified

universally, while their corresponding exogenous inputs’ com-

ponents wi are quantified according to µi. The components xi
cannot be quantified according to µi as it may result in the state

runs of the augmented system Sp reaching the unsafe region

B. To see this, consider a component xi(t) at some time step

t ∈ N which is quantified by µi = ∃. For that component, one

may be able to pick a corresponding input component wi(t)
such that the augmented barrier certificate is non-increasing

according to condition (III.3). However, since xi is quantified

only existentially, one may fail to ensure the existence of

input wi(t + 1) for xi(t + 1) at the next time step such that

the augmented barrier certificate is still non-increasing. Due

to this, one would fail to ensure that the augmented barrier

certificate remains non-increasing at every time step, possibly

resulting in safety violations. Note that such quantification of

the states is without loss of generality and does not restrict

the class of HyperLTL specifications considered in this paper.

Remark 3.5: For a CI χ = µ1π1 . . . µpπp G(sA→G(¬sB)),
if the set Lp−1(sA)∩L

p−1(sB) is non-empty, then there exists

no ABC satisfying conditions (III.1)-(III.3). This is due to the

conflict in the satisfaction of conditions (III.1) and (III.2).

Lemma 3.6: The existence of an ABC for a conditional

invariance χ implies that T (S, L) |= χ.

The proof of Lemma 3.6 is similar to proving safety using

standard barrier certificates, and is provided in the Appendix.

C. ABCs as ªscissorsº

To extend CI guarantees obtained via ABCs to arbitrary

HyperLTL specifications, we first construct an NBA A¬ψ =
(Σp, Q, q0,∆, F) corresponding to ¬ψ. Then, we employ

ABCs as scissors disallowing transitions to the accepting states

of A¬ψ . To do so, we first present the following lemmas to

guarantee disjunction or conjunction over a set of CIs.

Lemma 3.7 (ABCs for disjunction of CIs): Given a set of

CIs {χ1, . . . , χk}, the existence of an ABC Bj for some CI χj ,

where χj = µ1π1 . . . µpπp G(sAj → G(¬sBj)) for 1 ≤ j ≤ k,

implies that T (S, L) |= χ, where

χ = µ1π1 . . . µpπp
∨

1≤j≤k

G(sAj → G(¬sBj)).

We say that a function B is a common ABC for a set of

CIs {χ1, . . . , χk} if B is an ABC for all of the CIs.

Lemma 3.8 (ABCs for conjunction): The existence of a

common ABC for a set of CIs {χ1, χ2, . . . , χk}, where χi =

Algorithm 1 Algorithm for verification of HyperLTL formulae

Input: S, ϕ = µ1π1 . . . µpπpψ,L

Construct NBA A¬ψ for ¬ψ
Identify lassos R = {r1, r2, . . . , rk} of A¬ψ

for i← 1 to k do

Identify consecutive transition pairs

SA¬ψ
= {(sAi,1 , sBi,1), . . . , (sAi,vi , sBi,vi)}

for j ← 1 to vi do

χi,j ← µ1π1 . . . µpπp G(sAi,j → G(¬sBi,j))

Construct augmented system Sp

Find common ABC B for χi,j for all i ∈ {1, . . . , k} and

some j ∈ {1, . . . , vi}
if B exists then

return T (S, L) |= ϕ

else

return Inconclusive

µ1π1 . . . µpπp G(sAi → G(¬sBi)), for 1 ≤ i ≤ k, implies that

T (S, L) |= χ, where

χ = µ1π1 . . . µpπp
∧

1≤i≤k

G(sAi → G(¬sBi)).

Lemma 3.9 (ABCs for conjunctive normal forms): Given a

set of sets of conditional invariances

{{χ1,1, . . . , χ1,v1}, {χ2,1, . . . , χ2,v2}, . . . {χk,1, . . . , χk,vk}},

where χi,j = µ1π1 . . . µpπp G(sAi,j → G(¬sBi,j)), the exis-

tence of a common ABC for χi,j for every 1 ≤ i ≤ k and

some 1 ≤ j ≤ vi implies that T (S, L) |= χ, where

χ = µ1π1 . . . µpπp
∧

(1≤i≤k)

∨

(1≤j≤vi)

G(sAi,j → G(¬sBi,j)).

Proofs of Lemmas 3.7-3.9 can be found in the Appendix.

To find the solution to Problem 2.2, we consider the NBA

A¬ψ corresponding to ¬ψ, obtained from the HyperLTL

specification ϕ = µ1π1 . . . µpπpψ. Then, we decompose A¬ψ

to consecutive transition pairs along its accepting lassos, or

simply lassos (see Appendix for more details.) Such a lasso

consists of a simple path from the initial state to some

accepting state, followed by a simple cycle on the accepting

state. Note that the number of lassos in A¬ψ is finite since

the NBA has finitely many edges that lead to finitely many

simple paths to an accepting state and simple cycles over

the accepting state. Any two consecutive edges along these

lassos constitute a transition pair that corresponds to a CI

specification. Utilizing Lemma 3.9, the following theorem

characterizes a condition to solve Problem 2.2.

Theorem 3.10: Given a HyperLTL specification ϕ =
µ1π1 . . . µpπpψ, the existence of a common ABC B for

some consecutive transition pair along every lasso of A¬ψ

guarantees that T (S, L) |= ϕ.

The proof of Theorem 3.10 can be obtained by considering

the decomposition of A¬ψ into several conditional invariance

specifications by considering the lassos in A¬ψ , and conse-

quently applying Lemma 3.9. This is described in detail in

the Appendix. To decompose the NBA A¬ψ into consecutive

transition pairs (sA, sB), one can view A¬ψ as a graph and

utilize variants of depth-first search algorithms [38]. This

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

7

decomposition of the NBA into a collection of transition pairs

was presented in [11], [18] but in the context of verification

for LTL specifications. Algorithm 1 demonstrates a sound

verification procedure used in this paper. We refer the in-

terested readers to [18, Section 4] for more details on the

decomposition procedure.

Example 2.3 (continued): For the room temperature reg-

ulation system S described in (II.5), we first construct the

augmented system S = S × S. Then, for the HyperLTL

specification ϕ = ∀π1∀π2(a3π1
∧ a4π2

) → G(a1π1
∧ a1π2

),
we construct the NBA A¬ψ corresponding to ¬ψ. This is

obtained as shown in Figure 2. Then, we decompose A¬ψ

into consecutive transition pairs as explained in this section.

We notice that there is one lasso for Aψ , resulting in one

transition pair ((a2, a3),¬(a1, a1)). Computing an ABC for

this transition pair allows determining whether T (S, L) |= ϕ.

q0

q1

q2

(a3, a4)

¬(a1, a1)

⊤

Fig. 2: NBA A¬ψ corresponding to ¬ψ

Remark 3.11: We note that the problem of finding the

collection of consecutive transition pairs (thus conditional

invariances), one from each lasso, which admit a common

ABC is intractable. To show this, we first assume that we

are given an oracle that determines whether a collection of

consecutive transition pairs admits a common ABC. We then

consider a relaxed version of this problem as follows. We

assume that for any state r in A¬ψ with some incoming edge

labeled sA and outgoing edges sB1
, . . . , sBr , if there exists

an ABC B for the pair (sA, sBj) for some 1 ≤ j ≤ r,

then the function B acts as an ABC for every pair (sA, sBj)
for all 1 ≤ j ≤ r. Then, the problem of finding a suitable

collection of transition pairs is reduced to finding a collection

of edges such that their removal causes the accepting states

to not be reachable from the initial state. This corresponds to

a cut [39] that partitions the accepting states from the initial

state. To determine whether a cut allows for a common ABC,

we must make use of the oracle, and in the worst case, we

need to enumerate all possible cuts in A¬ψ . Since, the number

of possible cuts is exponential in the number of edges of

A¬ψ [39], the problem is clearly intractable.

The requirement of a common ABC for a collection of

consecutive transition pairs is necessary to provide guar-

antees via Theorem 3.10. This is due to the fact that, in

condition (III.3) of Definition 3.3, existential quantifiers may

precede the universal quantifiers depending on the HyperLTL

specification. In such cases, Eloise does not have access to

the full-state information of the augmented system and the

choices made by Abelard in the turn-based game. However,

Abelard has access to the states as well as Eloise’s choices.

Then, different ABCs for different transition pairs would imply

that for each transition pair, Eloise picks a different strategy.

This may lead to conflicts. For example, let us assume that

the HyperLTL formula is of the form ϕ = ∃π1∀π2ψ, and

consider two conditional invariances corresponding to pairs

(sA1
, sB1

) and (sA2
, sB2

). The first component of the state

of the augmented system is controlled by Eloise, and the

second one by Abelard. Due to a lack of full-state information

of the augmented system for Eloise, she is only able to

observe the label of the first component, and therefore may

be unable to differentiate between sA1
and sA2

. Thus, having

two different strategies corresponding to each of these pairs

may result in ambiguity for Eloise. Moreover, picking the

first strategy corresponding to (sA1
, sB1

) at state sA2
could

lead to Abelard choosing an input that violates the second

conditional invariance corresponding to (sA2
, sB2

), and vice-

versa as Abelard selects a trace after Eloise selects her

trace. This results in violation of the original specification.

Unfortunately, even though a common ABC is necessary to

provide verification guarantees, its existence may be difficult

to find.

However, in specifications where Eloise has access to full

state information and all of Abelard’s choices, the requirement

of a common ABC may be relaxed. This is especially true for

specifications in the ∀∗∃∗ fragment, where all the universal

quantifiers precede the existential ones. In fact, the ∀∗∃∗

fragment holds great importance as it comprises of many

relevant security properties. For example, a variant of the

noninterference property [40] requires that, for all traces,

the low-security variables should not see any difference in

observation when high-security variables are changed and

replaced by dummy variables. This can be expressed by the

HyperLTL specification

∀π1∃π2(Ghπ2
) ∧

∧

l∈LS

lπ1
↔ lπ2

,

where hπ2
implies that the high security variables in π2 are all

set to a dummy variable h that is always true , and LS ∈ AP

denotes the set of low security variables. Similarly, initial-state

opacity specification [36] is also in the ∀∗∃∗ fragment (cf. case

study). Considering the importance of this fragment, we now

provide a separate algorithm to allow for multiple ABCs for

different lassos under some conditions.

D. Algorithm for ∀∗∃∗-fragment of HyperLTL

From the above discussion, it can be understood that specifi-

cations in the ∀∗∃∗ fragment enable the relaxation of common

ABC requirement and allow for different ABCs in different

lassos. In particular, Eloise can take advantage of the full

state information of the augmented system available to her

as well as the knowledge of Abelard’s choices to use different

ABCs for different consecutive transition pairs in every lasso.

However, to do so, one must take the structure of the automata

A¬ψ into consideration, as in the presence of states with

two or more outgoing edges, there may be an ambiguity for

Eloise in selecting strategies. Moreover, in the presence of

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

8

nondeterminism in the automaton, Eloise may fail to select

strategies due to lack of information on the history of visited

states. These challenges are demonstrated in the following

examples.

Example 3.12 (States with a fork): In this example, we

show the issue of utilizing multiple ABCs in the presence of

a state with multiple outgoing edges. Consider the NBA A¬ψ

shown in Figure 3 constructed from a set of atomic propo-

sitions AP = {a, b, c, d} corresponding to some HyperLTL

specification ϕ = ∀π1 . . . ∀πl∃πl+1 . . . ∃πpψ.

q0 q1 q5

q2 q3

q4

(a, b)

(c, d)

(c, d)

(c, d)

(d, c)

(a, b)

(b, a)

⊤

Fig. 3: NBA A¬ψ for Example 3.12

From A¬ψ , we can identify k = 3 lassos as

R = {r1 = (q0, q1, q5, q5), r2 = (q0, q2, q3, q5, q5),

r3 = (q0, q2, q4, q5, q5)}.

For every r ∈ R, we obtain the consecutive transition pairs as

S(r1) = {((a, b), (c, d)), ((c, d),⊤)},

S(r2) = {((c, d), (d, c)), ((d, c), (c, d)), ((c, d),⊤)},

S(r3) = {((c, d), (a, b)), ((a, b), (b, a)), ((b, a),⊤)}.

Naturally, it is preferable to obtain different ABCs for at

least one transition pair in every lasso to guarantee the satisfac-

tion of the specification. However, this might cause problems

for lassos r2 and r3, where there are two outgoing edges from

a single state q2. This leads to two different transition pairs

((c, d), (d, c)) and ((c, d), (a, b)). Having different ABCs for

these pairs would result in different winning strategies for

Eloise to avoid the sets corresponding to (d, c) and (a, b),
from the set corresponding to (c, d), respectively. Choosing

the first ABC and its corresponding strategy could lead to the

violation of condition (III.3) for the second ABC and vice

versa. However, the existence of a common ABC for both the

pairs guarantees that Eloise has a winning strategy to avoid

both (d, c) and (a, b) if she encounters a state corresponding

to (c, d). Therefore, for this specification, one would require

to obtain a common ABC for the pairs ((c, d), (d, c)) and

((c, d), (a, b)) from lassos r2 and r3, respectively, and a

different ABC may be obtained for the pair ((a, b), (c, d))
from the lasso r1. However, if such a common ABC cannot

be found, one can consider other transition pairs in r2 and r3,

and in that case, different ABCs may be used.

Example 3.13 (Nondeterminism): In this example, we show

the issue of using multiple ABCs in the presence of nondeter-

minism in the automaton. Consider the NBA A¬ψ shown in

Figure 4 constructed from a set of atomic propositions AP =
{a, b, c, d} corresponding to some HyperLTL specification ϕ =
∀π1 . . . ∀πl∃πl+1 . . . ∃πpψ.

q0 q3 q4 q5

q1 q2

(a, b)

(a, b)

(b, a)

(a, c)

(b, a)

(c, d)

(d, c)
⊤

Fig. 4: NBA A¬ψ for Example 3.13

From A¬ψ , we can identify k = 3 lassos as

R = {r1 = (q0, q1, q2, q5, q5), r2 = (q0, q3, q4, q5, q5)

r3 = (q0, q3, q4, q2, q5, q5)}.

For every r ∈ R, we obtain the consecutive transition pairs as

S(r1) = {((a, b), (b, a)), ((b, a), (a, c)), ((a, c),⊤)},

S(r2) = {((a, b), (b, a)), ((b, a), (d, c)), ((d, c),⊤)},

S(r2) = {((a, b), (b, a)), ((b, a), (c, d)), ((c, d), (a, c)),

((a, c),⊤)}.

Consider lassos r1, r2 and r3, where there is a nondeter-

ministic transition from the initial state q0 to the states q1
and q3 under the label (a, b). Ideally, a single ABC for the

pair ((a, b), (b, a)) would effectively disallow the transitions

in all the lassos r1, r2 and r3. However, the problem arises

when such an ABC cannot be found. In order to guarantee

the satisfaction of the specification, other transition pairs in

the lassos must be disallowed. Now, in r1, there is a transition

from (b, a) to (a, c), while in r2 and r3, there are two

transitions from (b, a) to (d, c) and (c, d), respectively. At any

point in time, Eloise cannot uniquely determine the history of

the states visited in A¬ψ . As a result, after a nondeterministic

transition from (a, b) to (b, a), Eloise has no way of knowing

whether to block further transitions from (b, a) to (a, c), or

from (b, a) to (d, c) and (c, d). Therefore, the approach of

using different ABCs fails in the presence of nondeterminism.

Unfortunately, problems arising due to nondeterminism can-

not be directly resolved. Therefore, to circumvent this issue,

we instead consider the automaton A¬ψ to be deterministic.

In particular, for our exposition we focus on the case where

A¬ψ is a deterministic BÈuchi automaton (DBA).

The general verification procedure for determining whether

Eloise has a strategy to ensure that the acceptance condi-

tion of A¬ψ is violated for specifications in the ∀∗∃∗ frag-

ment is provided in Algorithms 2 and 3. Having a DBA

A¬ψ = (Σp, Q, q0,∆, F), we first identify all the lassos

R = {r1, . . . , rk} that reach and cycle on some state in F . We

then pruneA¬ψ and remove any states that are not in the lassos

and all transitions to and from such states. Then, beginning

from the initial state, for any label sA, we identify the state

that is reachable via sA. Let the outgoing transitions from this

state be sB1
, . . . , sBn . Let S = {(sA, sB1

), . . . , (sA, sBn)}. A

suitable common ABC is searched for all the transition pairs in

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

9

Algorithm 2 Algorithm for verification of ∀∗∃∗ fragment of

HyperLTL

Input: S, ϕ = ∀π1 . . . ∀πl∃πl+1 . . . ∃πpψ,L
Construct DBA A¬ψ for ¬ψ
Identify lassos R := {r1, r2, . . . , rk} of A¬ψ

Rd ← ∅
A′

¬ψ := (Σp, Q′, q0,∆
′, F ′)← Prune(A¬ψ)

visited← [0, . . . 0] ▷ Array of size |Q′|
V ← {q0}
visited[q0]← 1
while V ̸= ∅ do

for each r ∈ V do

Rd ← Rd ∪ABC FIND(A′
¬ψ, r)

Rm ← R \Rd
if Rm = ∅ then

return T (S, L) |= ϕ

for each sA ∈ Σp do

r′ ← ∆′(r, sA)
G← {r ∈ Rm | (r, r

′) ∈ r}
if G ̸= ∅ and visited[r′] < 1 then

V ← V ∪ {r′}
visited[r′]← visited[r′] + 1

V ← V \ {r}

return Inconclusive

a set Sa ⊆ S. For every pair (sA, sBj) ∈ Sa, for all 0 ≤ j ≤ n,

we also have that (sA, sBj) ∈ S(ri) for some 0 ≤ i ≤ k.

If such a common ABC exists, then such lassos ri can be

discarded from further consideration as existence of ABCs

disallows the transitions in those lassos and are collected in

the set Rd. Note that, unfortunately, there is no systematic

way to obtain the set Sa ⊆ S consisting of all transition pairs

that admit a common ABC. Sa is first picked in a trial-and-

error fashion and then an oracle (c.f Remark 3.11) is used to

determine if the transition pairs in Sa admit a common ABC.

This procedure is then repeated for every transition label at

the initial state, and the discarded lassos are iteratively added

to Rd. Once all the outgoing transition labels are covered, we

move on to the next state reachable from the initial state and

repeat the procedure to find ABCs for only those pairs that

belong to S(ri) such that ri ∈ R\Rd. This continues in a

breadth-first search fashion until all the lassos are discarded,

i.e., Rd = R, in which case we can conclude that T (S, L) |=
ϕ, or all the states of A¬ψ have been considered. If Rd ⊂ R,

it means that there are lassos for which no ABC could be

found, rendering the verification procedure inconclusive.

IV. ABCS VIA SUM-OF-SQUARES PROGRAMMING

In the previous sections, we showed that existence of an

ABC satisfying conditions (III.1)-(III.3) for a transition pair

(sA, sB) is vital to verify that a system S satisfies a desired

HyperLTL specification ϕ. In general, synthesizing such ABCs

is a difficult problem. However, under some assumptions on

the type of ABCs considered, the dynamics of the systems,

and the geometry of the state sets, one can efficiently compute

ABCs that can sufficiently prove the satisfaction of conditional

invariance guarantees. This can in turn be utilized to verify

the satisfaction of HyperLTL specifications. Specifically, we

Algorithm 3 Function ABC FIND

Input: A′
¬ψ := (Σp, Q′, q0,∆

′, F ′), r
Rd ← ∅
for each sA ∈ Σp do

S ← ∅
r′ ← ∆′(r, sA)
for each sB ∈ Σp do

if ∆′(r′, sB) ̸= ∅ then S ← S ∪ {(sA, sB)}

Find a common ABC for a set Sa ⊆ S.

for each (sA, sB) ∈ Sa do

r′ ← ∆′(r, sA)
r′′ ← ∆′(r′, sB)
Rd ← Rd ∪ {r ∈ R | (r, r

′, r′′) ∈ r}

return Rd

see that when the dynamics of the systems are restricted to

polynomial functions and the state set X , exogenous input

set W as well as the safe and unsafe sets obtained from

(sA, sB) are semi-algebraic sets [41], one can utilize sum-

of-squares (SOS) programming techniques [42] to compute

polynomial ABCs of predefined degrees. We now formally

state the following assumption.

Assumption 4.1: The system S has a continuous state set

X ⊆ R
n and continuous exogenous input set W ∈ R

m, and its

transition function f : X ×W → X is a polynomial function

of the state x and input w.

Under Assumption 4.1, one can readily observe that the

state and input sets of augmented system Sp (i.e. Xp and

W p, respectively) are also continuous, and the function fp :
Xp×W p → Xp is a p-tuple of polynomial functions. Having

this, one can then reformulate conditions (III.1)-(III.3) as an

SOS optimization problem (cf. next lemma) to search for a

polynomial ABC for augmented system Sp. In order to present

the result below, we assume that the number of quantifiers ª∃º
in ϕ = µ1π1 . . . µpπpψ is equal to k and define I∃ = {i | µi =
∃, 1 ≤ i ≤ p}.

Lemma 4.2: Suppose Assumption 4.1 holds and sets Xp,

A, B, and W p are defined as Xp = {x̃ ∈ R
np | g(x̃) ≥ 0},

A = {x̃ ∈ R
np | g0(x̃) ≥ 0}, B = {x̃ ∈ R

np | gu(x̃) ≥ 0},
and W p = {w̃ ∈ R

mp | gin(w̃) ≥ 0}, where the inequalities

are considered component-wise and functions g, g0, gu, and

gin are polynomials. Suppose there exist a polynomial B(x̃)
and k polynomials hij(x̂i, ŵi), i ∈ I∃, corresponding to the

jth entry of wi = (wi1 , . . . , wim) ∈ W ⊆ R
m, where x̂i

refers to those components of the state with indices less than

i and ŵi denotes the inputs associated with ª∀º quantifiers

with indices less than i. In addition, suppose there exist sum-

of-squares polynomials λ(x̃, w̃), λ0(x̃), λu(x̃), and λin(x̃, w̃)
of appropriate dimensions, such that the following expressions

are sum-of-square polynomials:

−B(x̃)− λ0(x̃)g
T
0 (x̃), (IV.1)

B(x̃)− λu(x̃)g
T
u (x̃)− ε, (IV.2)

−B(fp(x̃, w̃)) + B(x̃)− λ(x̃, w̃)gT (x̃)− λin(x̃, w̃)g
T
in(w̃)

−
∑

i∈I∃

m
∑

j=1

(wij − h
i
j(x̂i, ŵi)), (IV.3)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

10

0 20 40 60 80 100

Time step

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

Fig. 5

Fig. 6: State runs of the system S starting from initial set X3.

where ε is a small positive number. Then, B(x̃) is an ABC

from set A to set B satisfying conditions (III.1)-(III.3).

Note that a small tolerance ε is needed in (IV.2) to ensure

strict positivity of ABC as required in (III.2). The proof

of Lemma 4.2 relies on the fact that if conditions (IV.1)-

(IV.3) are rendered SOS by polynomials B(x̃) and hij(x̂i, ŵi),
then conditions (II.2)-(II.4) are satisfied. More details on the

proof can be found in the Appendix. Existing tools such

as SOSTools [43] can be used in conjunction with semi-

definite programming solvers such as SeDuMi [44] to compute

polynomial ABCs satisfying (IV.1)-(IV.3).

Remark 4.3: Note that the SOS approach for computing

barrier certificates is restricted to systems with polynomial-

type dynamics. One can also utilize different computational

techniques when dynamics are not necessarily polynomial.

For example, conditions (III.1)-(III.3) can be reformulated as

a satisfiability problem and SMT solvers such as Z3 [45]

and dReal [46] can be utilized to search for suitable barrier

certificates using counterexample-guided inductive synthesis

framework [47]. One can also train suitable barrier certificates

using neural networks e.g. [48], [49].

Remark 4.4: The complexity analysis of our approach is

described as follows. Suppose there exists a common ABC of

degree 2d that verifies a system S against a HyperLTL formula

ϕ = µ1, π1 . . . , µp, πpψ, consisting of p trace quantifiers. To

find this ABC, one requires to consider all the consecutive

transition pairs of the NBA A¬ψ corresponding to the spec-

ification, and then select suitable consecutive pairs in every

lasso such that they admit a common ABC. Let the number

of states of A¬ψ be |Q|. There are O(2|Q|2) possible subsets

of consecutive transition pairs for A¬ψ . Then, for each such

subset, the common ABC needs to be computed over the p-fold

augmented system with dimension pn via SOS programming,

resulting in a complexity given by O
((

pn+d
d

)2)
[42], where 2d

is the degree of the ABC. Therefore, the final complexity of

our approach is polynomial in O
(

2|Q|2
(

pn+d
d

)2)
. One observes

that this complexity depends not just on the dimension of the

original system n, but also on the number of quantifiers in the

HyperLTL formula p. Even in the case of two quantifiers, this

leads to a doubling in dimension. As the state dimension n and

number of quantifiers p grow, we typically need to search for

barrier certificates of higher degree (thus the value 2d needs

to also grow). As a result, the value
(

pn+d
d

)2
grows at a rate

that is worse than polynomial in the state dimension n. Thus,

our approach is not particularly scalable to high-dimensional

systems. As future work we plan to investigate the use of

compositional approaches such as in [34] to tackle this issue.

Example 2.3 (Continued): We now utilize SOS

programming to compute ABC for the transition pair

((a2, a3),¬(a1, a1)) obtained from Figure 2. We use the tools

SOSTOOLS [43] and SeDuMi [44] on MATLAB to compute

a polynomial ABC of degree 2 as B(T1, T2) = 1.2454T 2
1 −

1.6722T1T2−18.5791T1+1.1656T 2
2 −14.9555T2+377.4684

with a tolerance of ε = 0.001. The existence of the ABC

proves that the safety controller designed for the system S, is

indeed robust with respect to initial-state uncertainty with a

robustness measure of δ = 0.5. Figure 5 shows that the state

runs obtained for S remains in the safe set X1 = [20, 25]
when starting from the initial set X3 = [20.5, 21.5] which

captures uncertainties in the initial state. We performed these

computations on a machine running Linux Ubuntu OS (Intel

i7-8665U CPU with 32GB RAM) and it took around 19
seconds for the computation of ABC.

In the following, we present another case study to demon-

strate the effectiveness of our approach.

V. CASE STUDY

In this example, we consider the discrete-time, two-

dimensional model of an autonomous vehicle on a single-lane

road, with state variables as x = [s, v], where s denotes the

absolute position of the vehicle and v denotes the absolute

velocity. The dynamics of the system are borrowed from [50]

and governed by:

S :

{

s(t+ 1) = s(t) + ∆τv(t) + ∆τ2

2 w(t),

v(t+ 1) = v(t) + ∆τw(t),
(V.1)

where w is the exogenous input, i.e., acceleration, and ∆τ = 1
is the sampling time. Here, we verify the δ-approximate initial

state opacity property [50] for this system. The specification

requires that, for any state run of the system that begins from

a secret state, there must exist another state run that begins

from a non-secret state such that both state runs render δ-

close observations from the observer’s (or intruder’s) point of

view. The significance of the specification can be motivated

with the help of a simple example. Consider a scenario where

the vehicle is assigned for a cash transit from a high-security

bank to an ATM machine, and the initial locations of the

vehicle must be kept secret. It is assumed that a malicious

intruder is observing the velocity of the vehicle remotely and

intends to gain access to the secret information and perform an

attack. Therefore, it is critical to ensure that the secret states

of the system are never revealed to the intruder. This security

specification can be modeled as a δ-approximate initial-state

opacity problem, where δ ≥ 0 captures the measurement

precision of the intruder.

To express δ-approximate initial-state opacity as a Hyper-

LTL specification, consider system (V.1) with state set X =
[0, 8] × [0, 0.6] and exogenous input set W = [−0.04, 0.04].
The secret set is defined by X1 = [0, 1] × [0, 0.6] and the

non-secret set is consequently given by X2 = X\X1. Here,

we assume that the intruder can only observe the velocity of

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

11

q0

q1

q2
(a1, a1)

(a1, a2) ∧ (a3, a3) (a4, a4)

(a3, a3)

⊤

(a) (b)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

(c)

Fig. 7: (a) NBA A¬ψ corresponding to ¬ψ (b) State runs of S2 projected over the velocity coordinate. Region in blue indicates

the unsafe set (c) The initial conditions of the state runs projected over the position coordinate marked by * which show that

the first initial condition (i.e. x1) is secret and the other one (i.e. x2) is non-secret.

the car with a precision of δ, i.e, observations of two states

x1 = [s1, v1] ∈ X and x2 = [s2, v2] ∈ X appear identical to

the intruder if ∥v1−v2∥ ≤ δ. We now construct atomic propo-

sitions as AP = {a1, a2, a3, a4} where a1 and a2 are such that

L(x ∈ Xz) = az for z = {1, 2}. The atomic propositions a3
and a4 are constructed over the augmented state set such that

we have (a3, a3) := {(L(x1=[s1, v1] ∈ X), L(x2=[s2, v2] ∈
X)) | ∥v1 − v2∥

2 ≤ δ2} and (a4, a4) := {(L(x1=[s1, v1] ∈
X), L(x2=s2, v2] ∈ X)) | ∥v1 − v2∥

2 ≥ δ2 + ϵ}, where

ϵ is a small positive number introduced to certify positivity

using SOS programming. Note that atomic propositions for

HyperLTL specifications are usually defined over the single

system rather than the augmented one. On the other hand, the

δ-approximate initial state opacity specification requires the

atomic propositions to capture the δ-closeness between any

two states of the augmented system. In a finite-state system,

one could quantify δ-closeness by using finite conjuncts of

atomic propositions defined over the original system, but in the

infinite-state case such as ours, that is not possible. Therefore,

to handle this non-trivial case, we modify atomic propositions

slightly and define them over the augmented state set. Such

modifications can be made without any loss of generality

in our approach. Now, one can formulate the δ-approximate

initial-state opacity specification as a HyperLTL formula given

by ϕ = ∀π1∃π2ψ, where ψ = a1π1
→ (a2π2

∧G(a3π1
∧a3π2

)).

Consider the system S2=S × S with states

(x1=[s1, v1], x2=[s2, v2]) ∈ X2 and input (w1, w2) ∈ W 2,

and the NBA A¬ψ corresponding to ¬ψ that is obtained

as shown in Figure 7a. We decompose A¬ψ to obtain

transition pairs for all lassos. This is obtained as

((a1, a2) ∧ (a3, a3), (a4, a4)), ((a1, a1),⊤) and ((a4, a4),⊤).
The latter two do not admit ABC following Remark 3.5,

and the transition pair ((a1, a1),⊤) is ignored by assuming

that the augmented system S2 never starts from an initial

condition corresponding to ã1 = (a1, a1). Note that this

assumption is only on the virtual copy of the system S and

does not restrict the initial states of the original system S

directly. For the transition pair ((a1, a2) ∧ (a3, a3), (a4, a4)),
we compute a suitable ABC by considering δ = 0.15. Using

SOSTOOLS and SeDuMi tools on MATLAB, and with

tolerance parameters ϵ = 0.01 and ε = 0.015, we obtain ABC

as follows.

B((s1, v1), (s2, v2)) = 85.03v21 − 170.3v1v2 + 0.0048v1s1

− 0.0065v1s2 + 0.0413v1 + 85.24v22 − 0.004784v2s1

+ 0.0063v2s2 − 0.0121v2 + 0.0059s21 − 0.0119s1s2

+ 0.0241s1 + 0.0061s22 − 0.0825s2 − 2.076,

and the corresponding ∃ quantifier on the input is fulfilled by

w2(s1, v1, s2, v2, w1)=0.983v1 −v2+w1. Therefore, we con-

clude that the system S satisfies the HyperLTL specification ϕ

representing δ-approximate initial-state opacity problem with

δ = 0.15. Figure 7b shows the projection of a few state runs on

the velocity coordinate of the augmented system S, with initial

conditions in A = Lp−1((a1, a2)∧ (a3, a3)). Figure 7c shows

the initial conditions projected on the position coordinate. It

follows that the state runs avoid reaching the unsafe regions,

indicating that the original system is δ-approximate initial-

state opacity. We should add that the computation of ABCs us-

ing the mentioned tools on MATLAB takes roughly 35 seconds

on a machine running with Linux Ubuntu OS (Intel i7-8665U

CPU with a 32 GB of RAM). The codes for our experiments

may be found on our public repository: https://github.com/

mahathi-anand/CPS-Verification-against-HyperLTL.git.

VI. DISCUSSION AND CONCLUSION

A. HyperLTL Synthesis

An interesting problem that follows HyperLTL verification

for dynamical systems is the synthesis of controllers ensuring

the satisfaction of HyperLTL specifications. In this case, for a

system S = (X,U, f) and a HyperLTL specification ϕ, one

would view ν in (II.1) as control signal rather than exogenous

one and design ν such that the corresponding traces T of

S satisfy ϕ. Unfortunately, there are major challenges in

synthesizing controllers even when the HyperLTL specification

is a simple conditional invariance (CI). Let us consider a CI

χ, and a controller G : X → U such that ν(t) := G(x(t)).
Then, condition (III.3) of the barrier certificate for CI χ

in the context of synthesis can be reformulated as: for any

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

12

x̃ = (x1, x2, . . . , xp) ∈ X
p,

B(f(x1,G(x1)), f(x2,G(x2)), . . . , f(xp,G(xp)))− B(x̃) ≤ 0.
(VI.1)

The above formulation ensures that the selection of the control

input at any given state x ∈ X according to map G is

independent of the previous traces selected by the players.

However, to satisfy this condition, one must simultane-

ously search for suitable functions B and G. This makes

the above inequality non-convex in these unknown functions

and unfortunately, one cannot leverage convex programming

and correspondingly SOS and semi-definite programming to

determine these functions even when they are assumed to be

polynomials. However, given a map G, one could search for

a function B such that condition (VI.1) is satisfied, which

is technically a verification problem and not a synthesis one

anymore. In general, even though one can verify whether a

HyperLTL specification ϕ is realizable over a system, it is

not possible to synthesize the control map G that ensures the

satisfaction of ϕ. In other words, it is not possible to find a

solution to the HyperLTL synthesis problem.

This is due to the fact that the inputs obtained satisfying

condition (III.3) in the case of verification may depend on

the previously quantified traces, which is not possible when

considering controller synthesis. Remark that the problem

of HyperLTL verification coincides with HyperLTL synthesis

when the specification is of the form ϕ = ∃π1∀π2 . . . ∀πpψ.

To verify such specifications, it is sufficient to synthesize

a controller for the first trace. Since the remaining traces

are controlled by Abelard, ABCs satisfying condition (III.3)

implies the satisfaction of condition (VI.1) with the controller

G being the one synthesized for the first trace. We leave any

further investigations for the synthesis problem as future work.

B. Conclusion

We proposed a discretization-free scheme for the verifi-

cation of discrete-time uncertain dynamical systems against

hyperproperties. Focusing on hyperproperties expressible as

HyperLTL formulae, we presented an implicit automata-

theoretic approach. In our approach the specifications are

reduced to a collection of conditional invariance properties by

utilizing an implicitly quantified BÈuchi automata correspond-

ing to the complements of the specifications. Working with

an augmented system, we were able to devise a notion of

augmented barrier certificates over the self-composition of the

original system as a certificate of conditional invariance. The

existence of ABCs is a sufficient proof that the conditional

invariance holds, this provides a verification guarantee over

the satisfaction of the hyperproperty. For a general HyperLTL

specification, we showed that a common ABC for at least one

conditional invariance in every lasso is required to provide

verification guarantees. However, for a HyperLTL specification

in the ∀∗∃∗ fragment, we provided a systematic algorithmic

procedure that leverages the structure of the automata to allow

for different ABCs for different lassos. We exploited a sum-

of-squares approach to efficiently compute suitable ABCs. As

future work, we plan on investigating approaches that allow

for multiple ABCs to guarantee the satisfaction of general

HyperLTL specifications. We would also investigate verifica-

tion problems for stochastic systems and synthesis problems

against hyperproperties for continuous-state control systems.

Moreover, we would also utilize compositionality approaches

[34] to tackle scalability issues in computing ABCs for large-

scale systems.

REFERENCES

[1] P. Tabuada, Verification and control of hybrid systems: a symbolic

approach. Springer Science & Business Media, 2009.
[2] C. Belta, B. Yordanov, and E. GÈol, Formal methods for discrete-time

dynamical systems. Studies in Systems, Decision and Control, Springer,
2017.

[3] K. Bae and J. Lee, ªBounded model checking of signal temporal
logic properties using syntactic separation,º Proc. ACM Program. Lang.,
vol. 3, 2019.

[4] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[5] M. R. Clarkson and F. B. Schneider, ªHyperproperties,º Journal of

Computer Security, vol. 18, no. 6, pp. 1157±1210, 2010.
[6] L. MazarÂe, ªUsing unification for opacity properties,º in Proceedings of

the Workshop on Issues In The Theory of Security, pp. 165±176, 2004.
[7] Y. Wang, S. Nalluri, and M. Pajic, ªHyperproperties for robotics:

Planning via hyperltl,º in IEEE International Conference on Robotics

and Automation (ICRA), pp. 8462±8468, 2020.
[8] J. A. Goguen and J. Meseguer, ªSecurity policies and security models,º

in IEEE Symposium on Security and Privacy, p. 11, 1982.
[9] A. W. Roscoe, ªCSP and determinism in security modelling,º in Pro-

ceedings 1995 IEEE Symposium on Security and Privacy, pp. 114±127,
1995.

[10] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. SÂanchez, ªTemporal logics for hyperproperties,º in Principles of

Security and Trust, LNCS, pp. 265±284, 2014.
[11] T. Wongpiromsarn, U. Topcu, and A. Lamperski, ªAutomata theory

meets barrier certificates: Temporal logic verification of nonlinear
systems,º IEEE Transactions on Automatic Control, vol. 61, no. 11,
pp. 3344±3355, 2016.

[12] P. Tabuada and G. J. Pappas, ªLinear time logic control of discrete-
time linear systems,º IEEE Transactions on Automatic Control, vol. 51,
no. 12, pp. 1862±1877, 2006.

[13] M. Zamani, G. Pola, M. M. Jr., and P. Tabuada, ªSymbolic models
for nonlinear control systems without stability assumptions,º IEEE

Transaction on Automatic Control, vol. 57, pp. 1804±1809, July 2012.
[14] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, ªTemporal

logic control of discrete-time piecewise affine systems,º IEEE Transac-

tions on Automatic Control, vol. 57, no. 6, pp. 1491±1504, 2012.
[15] E. M. Wolff, U. Topcu, and R. M. Murray, ªAutomaton-guided controller

synthesis for nonlinear systems with temporal logic,º in IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 4332±
4339, 2013.

[16] S. Prajna and A. Jadbabaie, ªSafety verification of hybrid systems
using barrier certificates,º in Hybrid Systems: Computation and Control,
Lecture Notes in Computer Science, pp. 477±492, 2004.

[17] A. Bisoffi and D. V. Dimarogonas, ªA hybrid barrier certificate approach
to satisfy linear temporal logic specifications,º in Annual ACC, pp. 634±
639, 2018.

[18] P. Jagtap, S. Soudjani, and M. Zamani, ªTemporal logic verification of
stochastic systems using barrier certificates,º in Automated Technology

for Verification and Analysis, Lecture Notes in Computer Science,
pp. 177±193, 2018.

[19] M. Anand, P. Jagtap, and M. Zamani, ªVerification of switched stochastic
systems via barrier certificates,º in IEEE 58th CDC, pp. 4373±4378,
2019.

[20] L. Lindemann and D. V. Dimarogonas, ªControl barrier functions for
signal temporal logic tasks,º IEEE Control Systems Letters, vol. 3, no. 1,
pp. 96±101, 2019.

[21] G. Yang, C. Belta, and R. Tron, ªContinuous-time signal temporal logic
planning with control barrier functions,º in 2020 American Control

Conference (ACC), pp. 4612±4618, 2020.
[22] B. Finkbeiner, M. N. Rabe, and C. SÂanchez, ªAlgorithms for model

checking HyperLTL and HyperCTL∗,º in Computer Aided Verification,
2015.

[23] B. Finkbeiner, C. Hahn, and H. Torfah, ªModel checking quantitative
hyperproperties,º in Computer Aided Verification, pp. 144±163, 2018.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

13

[24] T.-H. Hsu, C. Sanchez, and B. Bonakdarpour, ªBounded model checking
for hyperproperties,º 2020. arXiv: 2009.08907.

[25] B. Finkbeiner, L. Haas, and H. Torfah, ªCanonical representations of k-
safety hyperproperties,º in IEEE 32nd Computer Security Foundations

Symposium, pp. 17±1714, 2019.

[26] N. Coenen, B. Finkbeiner, C. SÂanchez, and L. Tentrup, ªVerifying
hyperliveness,º in Computer Aided Verification, pp. 121±139, 2019.

[27] B. Finkbeiner and C. Hahn, ªDeciding hyperproperties,º in 27th In-

ternational Conference on Concurrency Theory, vol. 59 of Leibniz

International Proceedings in Informatics, pp. 13:1±13:14, 2016.

[28] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson,
ªHyperproperties of real-valued signals,º in 15th ACM-IEEE Interna-

tional Conference on Formal Methods and Models for System Design,
p. 104±113, ACM, 2017.

[29] Y. Wang, M. Zarei, B. Bonakdarpour, and M. Pajic, ªStatistical Veri-
fication of Hyperproperties for Cyber-Physical Systems,º ACM Trans.

Embed. Comput. Syst., vol. 18, no. 5s, 2019.

[30] M. Anand, V. Murali, A. Trivedi, and M. Zamani, ªFormal verification
of hyperproperties for control systems,º in Proceedings of the Workshop

on Computation-Aware Algorithmic Design for Cyber-Physical Systems,
Association for Computing Machinery, 2021.

[31] M. Y. Vardi and P. Wolper, ªAn automata-theoretic approach to automatic
program verification,º in Proceedings of the First Symposium on Logic

in Computer Science, pp. 332±344, IEEE Computer Society, 1986.

[32] M. Y. Vardi, An Automata-Theoretic Approach to Linear Temporal Logic.
Springer Berlin Heidelberg, 1996.

[33] E. Asarin, O. Maler, and A. Pnueli, ªReachability analysis of dynamical
systems having piecewise-constant derivatives,º Theoretical Computer

Science, vol. 138, no. 1, pp. 35±65, 1995.

[34] P. Jagtap, A. Swikir, and M. Zamani, ªCompositional construction
of control barrier functions for interconnected control systems,º in
Proceedings of the 23rd International Conference on Hybrid Systems:

Computation and Control, HSCC ’20, (New York, NY, USA), pp. 1±11,
Association for Computing Machinery, 2020.

[35] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice-Hall,
1998.

[36] K. Zhang, X. Yin, and M. Zamani, ªOpacity of nondeterministic tran-
sition systems: A (bi)simulation relation approach,º IEEE Transactions

on Automatic Control, vol. 64, no. 12, pp. 5116±5123, 2019.

[37] V. Goranko, A. Kuusisto, and R. RÈonnholm, ªGame-theoretic semantics
for alternating-time temporal logic,º in International Conference on

Autonomous Agents & Multiagent Systems, p. 671±679, 2016.

[38] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, Dec. 2009.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, third edition. The MIT Press, 3rd edition ed., 2009.

[40] J. McLean, ªA general theory of composition for trace sets closed under
selective interleaving functions,º in Proceedings of 1994 IEEE Computer

Society Symposium on Research in Security and Privacy, pp. 79±93,
1994.

[41] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry.
Springer, 1998.

[42] P. A. Parrilo, ªSemidefinite programming relaxations for semialgebraic
problems,º Mathematical Programming, vol. 96, no. 2, pp. 293±320,
2003.

[43] S. Prajna, A. Papachristodoulou, and P. Parrilo, ªIntroducing SOS-
TOOLS: A general purpose sum of squares programming solver,º in
Proceedings of the 41st IEEE Conference on Decision and Control,
vol. 1, pp. 741±746, 2002.

[44] J. F. Sturm, ªUsing sedumi 1.02, a MATLAB toolbox for optimization
over symmetric cones,º Optimization methods and software, vol. 11,
no. 1-4, pp. 625±653, 1999.

[45] L. De Moura and N. Bjùrner, ªZ3: An efficient SMT solver,º in
Proceedings of the International conference on Tools and Algorithms

for the Construction and Analysis of Systems, pp. 337±340, 2008.

[46] S. Gao, J. Avigad, and E. M. Clarke, ªδ-complete decision procedures for
satisfiability over the reals,º in Automated Reasoning, LNCS, pp. 286±
300, 2012.

[47] P. Jagtap, S. Soudjani, and M. Zamani, ªFormal synthesis of stochastic
systems via control barrier certificates,º IEEE Transactions on Automatic

Control, 2020.

[48] A. Peruffo, D. Ahmed, and A. Abate, ªAutomated and formal synthesis
of neural barrier certificates for dynamical models,º 2020.

[49] H. Zhao, X. Zeng, T. Chen, and Z. Liu, ªSynthesizing barrier certifi-
cates using neural networks,º in Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control, 2020.

[50] S. Liu and M. Zamani, ªVerification of approximate opacity via barrier
certificates,º IEEE Control Systems Letters, vol. 5, no. 4, pp. 1369±1374,
2021.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

14

APPENDIX

A. Proof of Lemma 3.1

If Eloise has a positional winning strategy in the turn-based

evaluation game, then she can use the same strategy to choose

traces in the stage-based evaluation game such that each index

depends only on the states and actions at the current index in

the traces quantified so far. Then, against an arbitrary policy

chosen by Abelard, the resulting p-tuple of of the traces satisfy

the LTL specification ψ.

B. Proof of Lemma 3.6

We prove this by contradiction. Suppose an ABC exists for

χ, but χ is not valid. Then, regardless of Eloise’s strategy,

Abelard always has a strategy that allows him to win. Let the

set of traces selected by the players be T = {σ1, . . .σp}.
For Abelard to win, he must ensure that for some j ∈ N,

Π[j,∞] |=T sA and for some k > j, Π[k,∞] |=T sB (from

the existence of an ABC and Remark 3.5 we can conclude

that k ̸= j) to falsify G(sA → G(¬sB)). We consider the case

where the strategy of Eloise is to select inputs according to

condition (III.3). We note that selecting such a strategy leads

to a non-increase in the value of the barrier certificate for the

corresponding state in the augmented system, regardless of

Abelard’s strategy. Let the set of traces at positions j and k

correspond to states x̃ and x̃′ in the augmented system and let

the corresponding input sequence that takes us from x̃ to x̃′ be

ν̃. From conditions (III.1) and (III.2), we have B(x̃) ≤ 0 and

B(x̃′) > 0. For any l ≥ 0, let w̃ = ν̃(l), and x̃l = x(l), then we

have B(fp(x̃l, w̃)) ≤ B(x̃l) from condition (III.3) regardless

of Abelard’s strategy. By induction on this condition, we can

infer that B(x̃′) ≤ 0. This is a contradiction to condition

(III.2). So, we infer that χ is valid in the turn-based game

setting. Therefore, χ is also valid in the stage-based game

setting according to Lemma 3.1.

C. Proof of Lemma 3.7

From Lemma 3.6, for a conditional invariance χj =
µ1π1 . . . µpπp G(sAj → G(¬sBj)), existence of an ABC Bj
implies that Eloise has a winning strategy to ensure that

T (S, L) |= χj . Therefore, for a set of conditional invariances

χ1, . . . , χk, Eloise may choose the same winning strategy cor-

responding to χj to ensure that at least one of the conditional

invariances in the set holds. Therefore, we get T (S, L) |= χ,

where χ = µ1π1 . . . µpπp
∨

1≤j≤k

G(sAj → G(¬sBj)).

D. Proof of Lemma 3.8

The proof once again follows from Lemma 3.6. The exis-

tence of a common ABC B guarantees that condition (III.3)

is satisfied for all conditional invariances χi, 1 ≤ i ≤ k.

This implies that Eloise may use the same strategy to disallow

all the transition pairs (sAi , sBi), 1 ≤ i ≤ k. Therefore, we

have T (S, L) |= χ, where χ = µ1π1 . . . µpπp
∧

1≤i≤k

G(sAi →

G(¬sBi))

E. Proof of Lemma 3.9

From Lemma 3.7, for the set of conditional

invariances {χi,1, . . . , χi,vi} for some 1 ≤ i ≤ k,

the existence of ABC B for some χi,j implies that

T (S, L) |= µ1π1 . . . µpπp
∨

1≤j≤vi

G(sAi,j → G(¬sBi,j)). For

each 1 ≤ i ≤ k, if there exists a common ABC B for

some χi,j , 1 ≤ j ≤ vi, then by Lemma 3.8, we have that

T (S, L) |= µ1π1 . . . µpπp
∧

1≤i≤k

G(sAi,j → G(¬sBi,j)). By

combining these two results, for a family of set of conditional

invariances {{χ1,1, . . . , χ1,v1}, . . . , {χk,1, . . . , χk,vk}},
one has T (S, L) |= χ, where χ =
µ1π1 . . . µpπp

∧

(1≤i≤k)

∨

(1≤j≤vi)

G(sAi,j → G(¬sBi,j)).

F. Proof of Theorem 3.10

Let the NBA A¬ψ corresponding to ¬ψ have k las-

sos, such that the ith lasso has vi pairs of con-

secutive transitions. Let the pair (sAi,j , sBi,j) corre-

spond to the jth pair of consecutive transitions along

the ith lasso. Let χi,j = µ1π1 . . . µpπp G(sAi,j →
G(¬sBi,j)) denote a conditional invariance specification

and let us consider the set of conditional invariances

{χ1,1, . . . , χ1,v1 , χ2,1 . . . χ2,v2 , . . . , χk,1, . . . χk,vk}. Then the

existence of a common ABC satisfying Lemma 3.9 implies

that if the augmented system lands on a state satisfying sAi,j ,

Eloise has a strategy to ensure that it never reaches a state

satisfying sBi,j for every 1 ≤ i ≤ k, and some 1 ≤ j ≤ vj .

However, to satisfy ¬ψ, Abelard must have a strategy that

allows him to visit a state satisfying some sAi,j and then later

visit a state satisfying sBi,j , for some 1 ≤ i ≤ k and every

1 ≤ j ≤ vi, to follow the transitions along the ith lasso. Since

this is not possible due to the existence of the ABC, we infer

that ϕ is satisfied.

G. Proof of Algorithms 2 and 3

Algorithm 2 is a sound way of obtaining suitable common

ABCs in the presence of two or more outgoing edges from any

state in DBA A¬ψ , and different ABCs otherwise. It calls on

function ABC FIND, presented in Algorithm 3, that takes

a state r in A¬ψ as input and returns a set of lassos that

pass through r and can be denied by means of a common

ABC. The correctness of Algorithm 3 can be established by

ensuring Eloise has a strategy to disallow all the lassos in

Rd. Initially, we have Rd = ∅ and therefore Eloise may use

any strategy. Now, at some iteration of the outermost loop, let

Rd consist of the lassos that have already been disallowed.

Furthermore, consider an outgoing label sA ∈ Σp from r to

r′. The first inner loop then identifies the labels sB such that

∆′(r′, sB) ̸= ∅, and constructs a set S that consists of all

such pairs (sA, sB). The algorithm then finds a common ABC

for the set Sa ⊆ S and, by Lemma 3.8, we can infer that

Eloise has a strategy of selecting inputs such that she can

always avoid those states that satisfy sB in the augmented

system after satisfying sA. Therefore, at any iteration of the

second inner loop, Eloise has a strategy to avoid the lassos

already present in Rd, or the lassos corresponding to the pairs

(sA, sB) ∈ Sa. Moreover, due to the specification being in the

∀∗∃∗ fragment and the determinism in the automata, Eloise can

uniquely determine the state of the augmented system as well

as the current state in the automaton. This allows Eloise to

select a unique strategy to avoid lassos r that pass through the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

15

states (r, r′, r′′) such that r′ = ∆′(r, sA) and r′′ = ∆′(r′, sB),
and add them toRd. Lastly, we note that if we can successfully

find common ABCs then the algorithm terminates as there are

finitely many labels in Σp.

We now prove the correctness of Algorithm 2 by using

the fact that Rd consists of all the lassos that can be denied

by Eloise. Initially, Rd is empty, and therefore, Eloise may

use any strategy. Now, at some iteration of the outermost

loop, consider a state r and the set Rd that consists of the

lassos that have already been denied. On calling the function

ABC FIND for a state r, we find a common ABC for those

lassos r ∈ R such that (r, r′, r′′) ∈ r, where ∆′(r, sA) = r′,

∆′(r′, sB) = r′ and (sA, sB) ∈ Sa. Then, from the proof

of Algorithm 3, we have that Eloise has a unique strategy

to deny those lassos. If Rm = ∅, then Rd = R. Thus all

lassos that pass through some state in F have been denied

and the states in F cannot be visited infinitely often. Then,

we can infer that Eloise has a strategy to never satisfy ¬ψ or

that T (S, L) |= ϕ. However, if we traverse all the states and

Rm ̸= ∅, the algorithm is inconclusive.

H. Proof of Lemma 4.2

Since λ0(x̃) is an SOS polynomial, we have that

λ0(x̃)g
T
0 (x̃) is non-negative over A. Therefore, if condition

(IV.1) is an SOS polynomial, and therefore non-negative, it

would directly imply condition (III.1). Similarly, the SOS

constraint (IV.2) implies condition (III.2). Now we show that

condition (IV.3) implies (III.3). By selecting inputs wij =
hij(x̂i, ŵ), the last term in (IV.3) vanishes. Since the expression

λ(x̃, w̃)gT (x̃) is non-negative over Xp and λin(x̃, w̃)g
T
in(w̃)

is non-negative over W p, we have that for all x̃ ∈ Xp,

−B(fp(x̃, w̃)) +B(x̃) ≥ 0. This implies that condition (III.3)

holds, thus concluding the proof.

I. Suspect-Pair Decomposition

Our verification approach relies on reducing the complex

HyperLTL specification into a collection of conditional in-

variance guarantees over consecutive transition pairs. This

was originally proposed in [47] but in the context of veri-

fication for LTL specifications. Consider the NBA A¬ψ =
(Q, q0,Σ

p,∆, F) compiling the negation of the desired spec-

ification. A lasso for the NBA A¬ψ is a pair (r̃, r̃′) such

that r̃ = (r0, r1, . . . , rn−1, rn) represents a simple path, and

r̃′ = (r′0, r
′
1, . . . , r

′
n′) represents a simple cycle, with rn =

r′0 = r′n′ .

We define the set R to be the set of all lasso runs that start

at the initial state and cycle on an accepting state, i.e.,

R := {rl = (r0, . . . , rn−1, r
′
0, . . . , r

′
n′) |

r0 = q0, r
′
0 = r′n′ ∈ F}.

For ã ∈ Σp, we define the set Rã as the subset of R starting

from ã, i.e.

Rã := {rl = (r0, r1, . . . , rn−1, r
′
0, . . . , r

′
n′) ∈ R |

(r0, ã, r1) ∈ ∆, ã ∈ Σp}.

For each lasso run rl = (r0, r1, . . . , rn+n′+1) ∈ Rã, we define

a set Pã(rl) consisting of runs of length 3 as

Pã(rl) := {(ri, ri+1, ri+2) ∈ rl | 0 ≤ i ≤ n+ n′ − 1}.

We correspondingly define the set Sã(rl) consisting of con-

secutive transition pairs sA, sB ∈ Σp such that

Sã(rl) = {(sA, sB) | (r, sA, r
′) ∈ ∆ and (r′, sB , r

′′) ∈ ∆,

(r, r′, r′′) ∈ Pã(rl)}.

We let the set SAb =
⋃

ã∈Σp
⋃

rl∈Rã
Sã(rl) be the set

of all such consecutive transition pairs obtained from NBA

A¬ψ . These transition pairs correspond to different conditional

invariance specifications for which a suitable ABC is synthe-

sized.

Mahathi Anand is a postdoctoral researcher at
the Institute of Systems Theory and Automatic
Control, University of Stuttgart, Germany since
August 2023. Previously, In 2023, she obtained
her doctoral degree in computer science from
LMU Munich, Germany, with the thesis titled
’Formal Analysis of Control Systems via Induc-
tive Approaches’. Prior to that, she graduated
with a Bachelors in Technology in Electrical
and Electronics Engineering from SRM Institute
of Science and Technology, India in 2016 and

completed her Masters of Technology in Electrical Engineering with
specialization in System and Control from Indian Institute of Technology
Roorkee, India in 2019. She also spent some time at the Hybrid Control
Systems Lab in Technical University of Munich to work on her Masters
thesis. Her research interests mainly include formal methods in control
with a focus in nonlinear, stochastic, and learning-enabled sytstems.

Vishnu Murali is a PhD Student in the Depart-
ment of Computer Science at the University of
Colorado Boulder, USA since January 2021. He
received a B.E. degree in Computer Science and
Engineering from Visvesvaraya Technological
University, India in 2019 and an M.S. degree in
Computer Science at the University of Colorado
Boulder, USA in 2023. His research interests are
mainly in formal methods with a focus on logic,
automata and cyber-physical systems.

Ashutosh Trivedi is an Associate Professor
of Computer Science at the University of Col-
orado Boulder, specializing in the development
of formal methods for safety-critical learning-
enabled systems. He obtained his doctoral de-
gree in computer science from the University of
Warwick, with a specialization in game theory
and optimization. Prior to his current position,
Ashutosh held the position of Assistant Profes-
sor at the IIT Bombay. Before that, he worked
as a Postdoctoral Research Associate at the

University of Pennsylvania and the University of Oxford.
Ashutosh is a recipient of the 2022 NSF CAREER award and a

Liverpool fellowship. His research interests lie at the intersection of
computer science, control theory, and machine learning, with a focus
on formal methods, reinforcement learning, and software security.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

16

Majid Zamani (M’12±SM’16) is an Associate
Professor in the Computer Science Department
at the University of Colorado Boulder, USA. He is
also a guest professor in the Computer Science
Department at the Ludwig Maximilian University
of Munich. He received a B.Sc. degree in Electri-
cal Engineering in 2005 from Isfahan University
of Technology, Iran, an M.Sc. degree in Electrical
Engineering in 2007 from Sharif University of
Technology, Iran, an MA degree in Mathematics
and a Ph.D. degree in Electrical Engineering

both in 2012 from University of California, Los Angeles, USA. Between
September 2012 and December 2013, he was a postdoctoral researcher
at the Delft Center for Systems and Control, Delft University of Technol-
ogy, Netherlands. From May 2014 to January 2019, he was an Assistant
Professor in the Department of Electrical and Computer Engineering at
the Technical University of Munich, Germany. From December 2013 to
April 2014, he was an Assistant Professor in the Design Engineering
Department, Delft University of Technology, Netherlands. He received
the George S. Axelby Outstanding Paper Award from the IEEE Control
Systems Society in 2023, the NSF Career award in 2022 and the ERC
Starting Grant and Proof of Concept Grant from the European Research
Council in 2018 and 2023, respectively.

His research interests include verification and control of hybrid sys-
tems, embedded control software synthesis, networked control systems,
and incremental properties of nonlinear control systems.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3384448

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 29,2024 at 22:45:08 UTC from IEEE Xplore. Restrictions apply.

