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Abstract— Hyperproperties are system properties that
require quantification over multiple execution traces of
a system. Hyperproperties can express several specifi-
cations of interest for cyber-physical systems—such as
opacity, robustness, and noninterference—which cannot
be expressed using linear time properties. This paper
presents for the first time a discretization-free approach for
the formal verification of discrete-time dynamical systems
against hyperproperties. The proposed approach involves
the decomposition of complex hyperproperties into several
verification conditions by exploiting the automata-based
structures corresponding to the complements of the orig-
inal specifications. These verification conditions are then
discharged by synthesizing so-called augmented barrier
certificates, which provide certain safety guarantees for
the underlying system. For systems with polynomial-type
dynamics, we present a sound procedure to synthesize
polynomial-type augmented barrier certificates by reducing
the problem to sum-of-squares optimizations. We demon-
strate the effectiveness of our proposed approaches on two
physical case studies against two important hyperproper-
ties: initial-state opacity and initial-state robustness.

[. INTRODUCTION

Classical control theory provides theory, techniques, and
tools to analyze complex dynamical systems against simple
objectives such as stability. Traditional formal methods, on the
other hand, tend to focus on developing approaches to verify
software/hardware systems with simpler discrete dynamics
against structurally rich logic-based specifications concerning
safety and liveness. Cyber-physical systems (CPS)—systems
characterized by structured software systems interacting with
equally complex physical systems—blur this traditional de-
marcation between control systems and software systems.
The critical role of CPS in modern society in safety- and
security-critical applications has spurred interest in developing
approaches to provide rigorous guarantees for such systems.
As a result, in the last two decades, formal verification of CPS
with complex continuous state-space dynamics against logic-
based specifications has received considerable attention [1],
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Verification of CPS has been typically performed against
temporal logic specifications, notably linear temporal logic
(LTL), signal temporal logic (STL) [3], and computation tree
logic (CTL) [4], expressing properties of a set of desirable
system executions. While these logics can describe a large
number of specifications of interest that consider individual
execution traces of CPS, many important information-flow
properties and planning objectives involve relating multiple
execution traces. These properties cannot be expressed by
classical temporal logic specifications equipped to express
properties of individual traces. To fill this gap, Clarkson and
Schneider [5] introduced the notion of hyperproperties as
properties of collective behavior relating multiple execution
traces.

As an example of a hyperproperty, consider a security
property in a CPS prone to intrusion attacks. Suppose that this
system requires that secret information is never revealed, i.e.,
observations from the outside remain indistinguishable from
each other, despite the secret. This specification, known as
opacity [6], requires us to relate and quantify two observation
traces simultaneously. Similarly, an optimality objective [7]
for a robotic system would require the existence of a trace
that is more favorable than all the other traces of the system,
again quantifying multiple execution traces at a time. Other
examples for hyperproperties include noninterference [8] and
observational determinism [9]. In order to formally specify
hyperproperties, the hyper-temporal logic HyperLTL was in-
troduced in [10]. HyperLTL, developed as an extension to LTL,
uses trace variables to denote individual execution traces and
utilizes universal (V) and existential (3) quantifiers before a
quantifier-free formula over atomic propositions to specify on
which traces the atomic propositions must hold.

Formal verification of hyperproperties has been studied in
the context of finite-state systems. However, the techniques
used for finite systems are not applicable to real-world CPS
which evolve on continuous (or even hybrid) state spaces.

Contributions. We aim at bridging this gap by presenting a
discretization-free, systematic, and sound verification proce-
dure based on a notion of barrier certificates for discrete-time
dynamical systems against hyperproperties. In particular, we
consider those specifications that can be expressed by Hyper-
LTL formulae [10]. The verification procedure is achieved by
decomposing the given specification into simpler safety tasks,
so-called conditional invariance, by constructing an implicitly
quantified Biichi automaton corresponding to the complement
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of the specification. We introduce augmented barrier certifi-
cates (ABCs), defined over an augmented system obtained by
taking the product of the original system with itself (self-
composition), which provide us with sufficient conditions
ensuring the satisfaction of those conditional invariances.

Inspired by the results in [11], we propose an automata-
theoretic approach to extend the applicability of ABCs be-
yond conditional invariance to HyperLTL specifications by
finding barrier certificates ensuring the possibility of avoiding
accepting traces of corresponding automata by disallowing
certain transitions on different lassos (simple path followed
by a simple accepting cycle). To do so, “existential” player
is required to select a trace before knowing the choices
of the “universal” player. This necessitates the need for a
common ABC for some transitions of all lassos, which may
be hard to ensure in practice. On the other hand, when the
HyperLTL property belongs to V*3*-fragment [10], we can
exploit a similar approach as in [11] to use separate ABCs to
provide the necessary guarantees by leveraging the structure of
the automata corresponding to the negation of specifications.
For systems with polynomial-type dynamics, we present a
sum-of-squares (SOS) approach to compute polynomial-type
ABCs for the individual conditional invariance. Finally, we
demonstrate the effectiveness of our proposed approach by
verifying two physical case studies with respect to initial-
state opacity and initial-state robustness, respectively, which
both can be described by HyperLTL formulae. Proofs of all
statements are provided in the Appendix.

Related Literature. There have been several results in the
literature for the verification and synthesis of CPS against
temporal logic specifications. Many earlier results have uti-
lized abstraction-based techniques based on state-space dis-
cretization. Examples include abstraction-based framework for
linear systems [12], for nonlinear systems [13], synthesiz-
ing feedback strategies for piece-wise affine systems [14],
and counterexample-guided abstraction refinement (CEGAR)
for nonlinear systems [15] to name a few. More recently,
automata-theoretic, discretization-free approaches via barrier
certificates [16] have been utilized for the verification of LTL
specifications in the context of nonlinear systems [11], hybrid
systems [17], as well as stochastic systems [18], [19]. We
should add that barrier certificates have also been used to
verify STL specifications [20], [21].

Unfortunately, most of the existing results pertaining to hy-
perproperties are tailored to finite-state transition systems. For
example, the results in [22] present a practical verification ap-
proach for finite-state systems with respect to alternation-free
fragments of HyperLTL formulae. The proposed approaches
in [10] present a model-checker for HyperLTL specifications
with alternation depth of at most one. The results in [23]
propose a new model checking algorithm based on model-
counting for quantitative hyperproperties. A bounded model
checking algorithm for hyperproperties is proposed in [24].
Verification of other types of hyperproperties such as k-safety
hyperproperties and hyperliveness properties have also been
studied in [25] and [26], respectively. Checking satisfiability
of certain fragments of HyperLTL specifications, such as the

“V*3*” fragment, are undecidable in general [27]. Formal
verification of continuous state-space CPS against general
hyperproperties remains largely unexplored. Hyperproperties
have been studied for CPS in [28] as well as [29], but in the
context of falsification and statistical model checking, respec-
tively. These results are empirical and rely on experimental
simulations, and therefore do not provide sound guarantees.
Finally, we would like to mention that an extended abstract of
this work was presented in [30].

Il. PROBLEM DEFINITION

We write R and N to denote the set of real and non-
negative integers, respectively. Appropriate subscripts are used
to restrict the sets, e.g., R~g = {z € R > 0} denotes the set of
positive reals. We write R™ to denote n-dimensional Euclidean
space equipped with Euclidean norm ||z||. For a finite set A,
the cardinality of A is denoted by |A].

For a family z; € R™ 2o € R™,...;zxy € R"™ of
N vectors, we write (21,%2,...,2y5) to denote the cor-
responding vector of dimension ). n;. For a set A, we
write A" for the n-ary Cartesian power of A, ie. A" =
{(a1,a9,...,a,) | a; € Aforall 1 <i<n}. Foratuplet=
(a1,a2,...,a;) and 1 < i < k we write t(¢) for its i-th
element and ¢<; for the tuple (a1, as2,...,q;). Similarly, for
a mapping f : A — B, we define its n-ary Cartesian power
fre A" — B™ as (a1,...,aq) = (f(ar),. .., f(an)).

An alphabet ¥ is a finite set of letters. An w-sequence o =
WoW1 ... is an infinite concatenation of letters, i.e. for all
1 > 0 we have W; € 2. A finite sequence is such a sequence
but with a finite length. We write ¥* and X“ for the set of
finite and w-sequences over %, and we let X*° = ¥*UX*. For
a sequence o = WoWj ... € X¥, let o[i] be the i-th element
w; of o and o[i, o] for the w-sequence W;W; ;... € X% of
o starting from i-th position.

We let zip : (X¥)P — (XP)“ denote a function that maps a
p-tuple of sequences to a sequence of p-tuples, i.e.

(01,02,...,0p) =
(61[0], 02[0], ..., 0p[0))(o1[1], 02[1], ..., 0p[1]),- ..,

and unzip : (XP)“ — (£¢)P denotes the inverse of zip, i.e.

o =((e[0][(We(1](1)...),..., (e0](p)e[ll(p).-.)),

where oi](j) refers to the the 5™ element of the i p-tuple in
the infinite sequence o.

A. Discrete-Time Dynamical Systems

We consider a discrete-time dynamical system (or simply,
system) defined by a tuple & = (X, W, f), where X C R"
and W C R™ are the (potentially uncountable) state and
exogenous input sets, and f : X x W — X is the transition
function that characterizes the state evolution. The evolution
or run of the system & for a given initial state 9 € X and
exogenous input sequence v : N — W, denoted by X (4., is
given by sequence x : N— X, where

ift=0

1I.1
otherwise. LD

_ J%o
* = {f(X(t 1)t — 1)
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For a system &, we define its p-fold self-composition as
p-fold augmented system &P = (XP, WP fP) where X? and
WP are p-ary Cartesian powers of X, and W, respectively,
and fP: XP x WP — XP is equivalent to the p-ary Cartesian
power of f, ie. fP : (X x W)P — XP by using the
zip function. We use these two types interchangeably. We
use £ and w to denote the state and exogenous input of
the augmented system GP, respectively. Similarly, we write
X(#o,p) for the run of &P starting from an initial state T9 € X?
and under exogenous input sequence v : N — WP,

B. Barrier Certificates

A function B : X — R is a barrier certificate for a system
S = (X, W, f) from the set A C X to the set B C X, if:

B(z) <0, for all z € A, (I1.2)
B(z) >0, for all z € B, (IL.3)

and for all x € X and for all w € W:
B(f(z,w)) — B(x) < 0. (IL4)

The existence of a barrier certificate is a sufficient condition to
guarantee that if the system & ever visits a state from the set
A, it will never visit a state from the set B in the future. If the
set A characterizes initial states and the set B characterizes the
set of bad or undesirable states, then the existence of barrier
certificates from A to B can guarantee safety, see [16].

C. LTL Specifications

Consider a set of atomic propositions AP relevant to the
underlying system and the alphabet ¥ = 2AP characterized
by the subsets of these propositions. We refer to an infinite
sequence (w-sequence) of letters from X as an infinite trace.
We write 2 for the set of all infinite traces over X.
Syntax. An LTL formula over AP can be built from the
following production rules:

von=a | [ YVY | Xy | U,

where a € AP, X and U are the next and until operators, re-
spectively. Other popular temporal operators such as globally
(G), eventually (F) and release (R) can be derived from these
minimal ones in a standard manner.

Semantics. Given an infinite trace o and an LTL formula 1,
the formula ¢ is valid for o, i.e. o = ¥, if:

e p=a and a € 0(0),
¢ =) and o |~ ¢,
Y =11V and o =1 or o = 1)y,
¥ =X and o1, 00| E 9,
¥ =11 Ut)e and oi,00] = 9o for some ¢ > 0 and for
all 0 < j < 4, we have that o[j, 00] = 1.
We refer the interested readers to [4] for more details on syntax
and semantics of LTL properties. The LTL specifications can
only express trace properties, i.e., properties of individual
execution traces. However, they cannot specify properties over
sets of execution traces, which is essential for many relevant
security specifications.

D. HyperLTL Specifications

HyperLTL, unlike LTL which implicitly considers only a
single trace at a time, can relate multiple traces simultaneously
through the use of existential and universal quantifiers.

Syntax. We consider HyperLTL with syntax:

¢ == Imp | Vmo | ¢
You=ar | | VY | Xy | YU

The key distinction over LTL formulae is the introduction of
trace quantifiers 3 and V. The quantifier 37 stands for “for
some trace 7 while the quantifier V7 stands for “for all
traces 77, respectively. The variable ) generates standard LTL
formulae with the exception that atomic propositions can refer
to distinct trace variables. Hence, for every proposition a € AP
and trace variable 7, we use a, to express that proposition
a is referring to the trace m. A trace variable occurs free
in a HyperLTL formula, if it is not bounded by any trace
quantifier, i.e., if the trace variable is quantified by neither 3
nor V quantifiers. A HyperLTL formula with no free variable
is called closed.

Semantics. Since HyperLTL formulae express the properties
of multiple trace variables, one requires to assign these trace
variables to specific traces for reasoning about the satisfaction
of the formula. Let V = {m,m2,...} be an infinite set of
trace variables. The semantics of a HyperLTL formula v is
defined over a set T' of traces and a trace valuation function
II: YV — X¢ that maps all the free trace variables occurring
in the formula 1 to traces in the set . We use II[r — o]
to express the trace valuation function IT’ that agrees with IT
for all trace variables except m and IT'(w) = o. We define the
trace valuation suffix II[¢, co] as 7 — II(7)[i, 00], i.e. II[4, o0
maps 7 to the ¢-suffix of the trace mapped to 7 by II.

We say that a HyperLTL formula ¢ is satisfiable over a
given set T" of traces and trace valuation function IT : V — ¢,
and we write IT =7 ¢ if one of the following holds:

e ¢ = 3Im.¢p and there is o € T such that |7 — o] 1 ¥,

e ¢ =V7m.1p and for all o € T, we have |1 — o] =1 ¥,

e ¢ =a, and a € II(7)(0),

e ¢ =—¢ and II [ o,

. (Z):wl\/¢2 andH':T¢1 OI'H):T’IZJQ,
¢ = X1 and TI[1, 00| =7 9,

e ¢ =11 Ut)y and there is ¢ > 0 such that II[i, oo] =71 9

and for all 0 < j < 4, we have that II[j, o] =1 1.
A closed HyperLTL formula ¢ is considered to be valid for
a set of traces T, and we write T |= ¢ if the empty trace
assignment satisfies the formula, ie., § =7 ¢. We refer
interested readers to [10] for more details on syntax and
semantics of HyperLTL properties.

Remark 2.1: It might be of interest to the readers to know
the differences between computational tree logic (CTL) as
well as HyperLTL specifications, due to the use of quantifiers
also in the former. It must be noted that while CTL does
indeed have explicit trace quantifiers, it cannot directly express
hyperproperties since the atomic propositions do not refer to
specific traces. More details on the comparison can be found
in [5].
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E. Blichi Automata

A Biichi automaton is a tuple A = (X, Q, qo, A, F'), where
3 is a finite set of alphabet, () is a finite set of states, g € Q)
is the initial state, A C Q X ¥ x @ is the transition relation
and F' C @ is the set of accepting states. We say that a
Biichi automaton is deterministic if A can be represented as
a function that maps a state and alphabet pair to exactly one
state, i.e., A : QXX — (@, and nondeterministic otherwise. We
abbreviate deterministic and nondeterministic Biichi automata
as DBA and NBA respectively. A run r of A on W € ¥¢ is an
infinite sequence roWoriWi ... € (Q x X)¥ such that ro = qo
and, for ¢ > 0, (r;—1,W;—1,7;) € A. We write inf(r) for the
set of states that appear infinitely often in the run r. We say
that a trace W is accepted by \A, if, for the corresponding run
r, we have inf(r)NF # (). We call this run r the accepting run
of A. The language, L 4, of any automaton A (or, recognized
by A) is the subset of traces in X“ that have accepting runs
in A. A language is w-regular if it is accepted by an NBA.

It is well known that for any LTL specification, one
may compile a corresponding NBA [31] by using LTL to
Biichi construction techniques [32]. However, in the case
of HyperLTL, the presence of quantification of traces in
the specification prevents an immediate compilation to an
automaton. Nevertheless, given a HyperLTL specification ¢ =
1T - . . ppptp defined over a set of atomic propositions AP,
where for all 1 < i < p, u; € {3,V}, one may construct an
NBA A, corresponding to the quantifier-free LTL formula ¢
over the alphabet XP.

In order to accommodate for the presence of quantification
in the HyperLTL formula, a trace for this automaton is a p-
tuple of individual traces, denoted by & = (o4, ..., op), ie.,
unzip(e) € L4, if (71 = o1,...,m, = 0}) is accepted by
Ay

F. HyperLTL Verification Problem

Let & = (X,W,f) be a system and L : X — X be a
measurable function labeling states of system & with letters
of the alphabet. We can extend the labeling function from
states to runs of & in a straightforward fashion: for every
infinite state run x = (x(0),x(1),...) of &, the function L(x)
defines the corresponding trace of the system (o9, 01,...) €
¢, where 0; = L(x(i)), for all i € N. Let T(S, L) be the set
of all traces of G. We now define the key problem of interest.

Problem 2.2 (HyperLTL Verification): Given a discrete-
time dynamical system & = (X, W, f), a labeling function
L : X — 3, and a HyperLTL specification ¢, the HyperLTL
verification problem P = (&,L,¢) is to decide whether
T(6,L) = ¢.

While model checking of finite-state systems against Hyper-
LTL specifications is decidable [22], the verification problem
stated above is in general undecidable for continuous state-
space systems considered in this paper. It follows readily from
the fact that even simple reachability is undecidable for simple
continuous state-space dynamical systems [33]. Our approach
provides a sound procedure for Problem 2.2. Moreover, to
better illustrate our approach, we use the following case study
as a running example that we use throughout the article.

Example 2.3: Here, we consider the discrete-time evolution
of the temperature 7'(-) in a room in the presence of a safety
controller (as designed in [34]) given by

& T(k+1) = T(k) + recre(Ts — T(k))

+ Teon (T — T(R) (1T (k) + ¢2), (IL5)

where parameters o, = 0.008 and ajp = 0.0036 are heat
exchange coefficients, T, = 15°C is the ambient temperature,
Ty, = 55°C is the heater temperature, ¢c; = —0.0024 and ¢y =
0.5357 are controller parameters, and 75 = 5 minutes is the
sampling time. We want to verify the initial-state robustness
property, which requires that if a state run starting from a given
initial condition remains safe, then all the state runs starting
from J-close initial conditions must also remain safe. Such a
specification is especially useful when there are uncertainties
arising from not knowing the exact initial state. Note that
robustness is a commonly studied property in the classical
control theory [35]. However, we provide here an alternative
method to verify robustness by formulating it as a HyperLTL
formula.

To describe our specification as a HyperLTL formula, we
consider the state set X = [20, 35]. We further introduce the
safe set as X7 = [20, 25] and the unsafe set as X» = [25, 35].
For the system G, the predefined initial state is given by X3 =
{21}. We also define the set X, = [20.5,21.5] to capture ¢-
close states with respect to the initial state, where § = 0.5.
The set of atomic propositions is AP = {aj,as,as,a4},
where L(x € X;) = a;, for all i € {1,2,3,4}. The
HyperLTL formula for initial-state robustness specification is
Qb = V7T1V772(a37r1 A CL4-,|-2) — G(alﬂl A a17r2).

[1l. AUGMENTED BARRIER CERTIFICATES (ABCS)

Verification of HyperLTL formulae in the context of finite
systems has been well studied [10], [22]. The verification pro-
cedure is based on automata-theoretic model-checking, where
quantifier-free fragments of the desired HyperLTL formulae
are compiled into w-automata, and trace quantification is
handled by appropriately composing these automata with the
underlying Kripke Structure. The interleavings of automata
and Kripke products lead to an automata whose language
emptiness decides the satisfaction of the specification. Unfor-
tunately, this approach cannot be extended to continuous state-
space systems by simply using abstraction-based techniques as
system relations (e.g., simulation relations) may not preserve
hyperproperties [36].

To verify the specification ¢ against system &, we compile
the negation of the HyperLTL formula into an implicitly quan-
tified Biichi automata, and discharge the unsatisfiability of the
specification to synthesizing appropriate barrier certificates.
Our verification procedure is depicted in Figure 1. Here, given
a HyperLTL specification ¢ and system &, we construct the
p-fold augmented system &GP, and the NBA for —). We then
find an augmented barrier certificate (ABC) that acts as a proof
certificate of conditional invariance (cf. Definition 3.2) for
some transitions along every lasso. This acts as a “scissor”
and allows us to conclude that the system & satisfies the
specification ¢. We note that our approach is not complete
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nvariance one ABC
exists for
every lasso
T(6,L) F ¢
Otherwise Inconclusive

Fig. 1: A schematic block diagram illustrating the verification procedure.

in that if it cannot find an ABC for at least one transition
along every lasso then we cannot conclude that the system
does not satisfy ¢. The rest of the section introduces the idea
of augmented barrier certificates and provides an automata-
theoretic sound verification approach for Problem 2.2.

A. HyperLTL Evaluation Game Semantics

We provide a game semantics to the HyperLTL verifica-
tion problem B = (&,L,¢) as a two-player stage-based
evaluation game played between two players, Eloise (3) and
Abelard (V), where Eloise takes the role of a verifier and
her goal is to prove that T(S,L) | ¢, while the goal
of Abelard (the spoiler) is the opposite. Given a HyperLTL
formula pymy ... pupmpep, we say that Eloise controls the
quantifier p,; if pu; = d, otherwise we say that Abelard
controls the quantifier. The game continues in stages. In
the first stage, the game begins with a token in the initial
position (f1171poms . .. prpmpep, II = () [37] and the player
controlling the left-most quantifier p; chooses a trace o4
from 7'(S,L) and moves the token to the next position
(pomy ... ppmpp, II = {m — o1}). The game from the next
position continues in a similar fashion until we reach a
position with a quantifier-free HyperLTL formula. We call
such positions terminal. We say that a terminal position
(W, 11 = {m — o1,...,m = 0p}) is winning for Eloise if
zip(o1, ..., 0p) | 9 with the standard LTL semantics for the
formula 1. We say that Eloise wins the multi-stage evaluation
game if she has a way to choose her moves such that no matter
how Abelard chooses his moves the game ends in a winning
position for Eloise; otherwise Abelard wins the game. Notice
that at every step, both players have access to complete infinite
traces that have been chosen by players in earlier positions as
a part of position description. It is trivial to see that Eloise
wins the evaluation game if and only if II =1 ¢.

We consider another version of evaluation games that we
dub turn-based evaluation games. These games are played on
the p-fold self-composition G? = (XP, WP, fP) of the system
G. These games start with a token in some initial configuration
(x(l),xg,...,mg) € XP? and at every round first the player
controlling p; chooses an action w; € W, followed by the
player controlling 19, and so on. In this way, the players form

a set of joint actions (w1, ws, ..., w,) € WP and the token is
moved to a state fP((x9,29,...,20), (w1, ws,...,wp)). The
game continues in this fashion indefinitely and the players
thus form an infinite run X of &2 = (XP?, WP, fP). To relate
the augmented system &GP with letters in 3P, we extend the
definition of the labeling function to the augmented system
domain by using LP : X? — XP to map the states in the
augmented state set to the alphabet >XP. We say that the trace
% is winning for Eloise if LP(X) |= 1. We say that Eloise
has a winning strategy in the turn-based evaluation game for
B = (6, L, ¢) if she can select her moves in such a way that
no matter how Abelard chooses his moves (including using an
arbitrary look-ahead), the resulting trace is winning for Eloise.
Moreover, we say that Eloise has a positional winning strategy
if to select actions in a given round her choice depends only
on the current states and choices resolved before her turn for
the other quantifiers in the current round.

Lemma 3.1: If Eloise has a positional winning strategy in
a turn-based evaluation game for B then she has a winning
strategy in the stage-based evaluation game.
It can readily be verified that the above statement is true, since
turn-based evaluation game is more restrictive than a stage-
based evaluation game. However, for the sake of completeness,
we provide the proof of Lemma 3.1 in the Appendix.

B. Augmented Barrier Certificates

We reduce the search for a positional strategy for Eloise in a
turn-based evaluation game to the search for barrier-functions
like certificates that we call augmented barrier certificates
(ABCs). Just like barrier certificates provide a proof that
separates two sets over X for arbitrary traces of the system,
ABCs provide a proof that separate two sets over XP? for
appropriately chosen traces by players. To tie in the notion of
ABCs with HyperLTL properties, we present a special class of
properties that we call conditional invariance properties that
generalize the notion of invariance.

Definition 3.2 (Conditional Invariance (CI)): We say that a
HyperLTL formula x=pm ... pu,mp€ is a conditional invari-
ance (CI) if ¢ is of the form G(s4 — G(—sp)) where s4, sp
are Boolean combination of atomic propositions.

Definition 3.3 (Augmented Barrier Certificates (ABCs)):
Consider a CI x = p171 ... pp7p G(sa — G(—sp)) and the
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sets LP " !(s4) = A C XP and L? '(sp) = B C XP. We
say that B : X? — R is an augmented barrier certificate
(ABC) for a system & = (X, W, f) and property x from the
set A C XP to set B C XP if

B(z) <0,
B(z) > 0,
and Vo1 € X, pywy € W, Vo € X, powo € W, ..., Vo, €

X, ppwp € W one has:
B(f*(&,w)) — B(¥) <0,

forall z € A,
for all z € B,

(1L 1)
(IIL.2)

(I11.3)

where T = (z1,...,2p) and @ = (w1,...,wp).

Remark 3.4: Note that all the states’ components x; of
the augmented system GP in condition (II1.3) are quantified
universally, while their corresponding exogenous inputs’ com-
ponents w; are quantified according to ;. The components x;
cannot be quantified according to u; as it may result in the state
runs of the augmented system GP reaching the unsafe region
B. To see this, consider a component z;(t) at some time step
t € N which is quantified by p; = 3. For that component, one
may be able to pick a corresponding input component w;(t)
such that the augmented barrier certificate is non-increasing
according to condition (III.3). However, since z; is quantified
only existentially, one may fail to ensure the existence of
input w; (¢t + 1) for x;(t + 1) at the next time step such that
the augmented barrier certificate is still non-increasing. Due
to this, one would fail to ensure that the augmented barrier
certificate remains non-increasing at every time step, possibly
resulting in safety violations. Note that such quantification of
the states is without loss of generality and does not restrict
the class of HyperLTL specifications considered in this paper.

Remark 3.5: ForaCI x = p1my ... upmp G(sa— G(—sp)),
if the set LP ' (s4)NLP ! (sp) is non-empty, then there exists
no ABC satisfying conditions (III.1)-(II1.3). This is due to the
conflict in the satisfaction of conditions (III.1) and (II1.2).

Lemma 3.6: The existence of an ABC for a conditional
invariance y implies that T(S, L) = .

The proof of Lemma 3.6 is similar to proving safety using
standard barrier certificates, and is provided in the Appendix.

C. ABCs as “scissors”

To extend CI guarantees obtained via ABCs to arbitrary
HyperLTL specifications, we first construct an NBA A, =
(XP,Q,qo0, A, F) corresponding to —). Then, we employ
ABC:s as scissors disallowing transitions to the accepting states
of A-y. To do so, we first present the following lemmas to
guarantee disjunction or conjunction over a set of ClIs.

Lemma 3.7 (ABCs for disjunction of Cls): Given a set of
CIs {x1,-- -, X&} the existence of an ABC B; for some CI x,
where x; = p171 ... ppm, G(sa;, — G(—sp,)) for 1 < j <k,
implies that T'(&, L) = x, where

X = AT - .. UpTp \/ G(sa; — G(—sB,))-
1<j<k
We say that a function B is a common ABC for a set of
CIs {x1,...,xx} if B is an ABC for all of the ClIs.
Lemma 3.8 (ABCs for conjunction): The existence of a
common ABC for a set of CIs {x1, x2,.-., Xk} Where x; =

Algorithm 1 Algorithm for verification of HyperLTL formulae
Input: S,¢ = ... ppmp, L
Construct NBA A_,; for
Identify lassos R = {ry,ra,..
for i < 1 to k do
Identify consecutive transition pairs
S-Am/; = {(SA«;,USBi,l)a R (sAi,vi ) SBi v, )}
for j < 1 to v; do
Xiyj < paT1 .. pipTp G(54, ; — G(=sB, ;)
Construct augmented system G?
Find common ABC B for x; ; for all i € {1,...,k} and
some j € {1,...,v;}
if B exists then
return 7(6,L) = ¢
else
return Inconclusive

It of Ay

AT - T G(s4, — G(=sp,)), for 1 <4 < k, implies that
T(6,L) E x, where

X = [T ... LpTp /\ G(sa, = G(—sg,)).
1<i<k

Lemma 3.9 (ABCs for conjunctive normal forms): Given a
set of sets of conditional invariances

{{Xl,la s

where x;j = pimy ... pupmp G(sa, ; = G(—sp, ;). the exis-
tence of a common ABC for y; ; for every 1 < ¢ < k and
some 1 < j < v; implies that T'(S, L) |= x, where

X = AT ... fpTp /\ \/ G(sa,, = G(=sB,;))-

(1<i<k)(1<j<v;)

aXl,v1}7 {X?,lv e 7X2,v2}a cee {Xk,b cey Xk,vk}}a

Proofs of Lemmas 3.7-3.9 can be found in the Appendix.
To find the solution to Problem 2.2, we consider the NBA
A-, corresponding to —), obtained from the HyperLTL
specification ¢ = p1my ... upmptp. Then, we decompose Ay,
to consecutive transition pairs along its accepting lassos, or
simply lassos (see Appendix for more details.) Such a lasso
consists of a simple path from the initial state to some
accepting state, followed by a simple cycle on the accepting
state. Note that the number of lassos in A-, is finite since
the NBA has finitely many edges that lead to finitely many
simple paths to an accepting state and simple cycles over
the accepting state. Any two consecutive edges along these
lassos constitute a transition pair that corresponds to a CI
specification. Utilizing Lemma 3.9, the following theorem
characterizes a condition to solve Problem 2.2.

Theorem 3.10: Given a HyperLTL specification ¢ =
HATL ... fpTptp, the existence of a common ABC B for
some consecutive transition pair along every lasso of Ay
guarantees that T'(S, L) |= ¢.

The proof of Theorem 3.10 can be obtained by considering
the decomposition of A, into several conditional invariance
specifications by considering the lassos in A, and conse-
quently applying Lemma 3.9. This is described in detail in
the Appendix. To decompose the NBA A-, into consecutive
transition pairs (s4,sg), one can view A, as a graph and
utilize variants of depth-first search algorithms [38]. This
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decomposition of the NBA into a collection of transition pairs
was presented in [11], [18] but in the context of verification
for LTL specifications. Algorithm 1 demonstrates a sound
verification procedure used in this paper. We refer the in-
terested readers to [18, Section 4] for more details on the
decomposition procedure.

Example 2.3 (continued): For the room temperature reg-
ulation system & described in (IL.5), we first construct the
augmented system & = G x &. Then, for the HyperLTL
specification ¢ = VmiVma(asr, A aar,) = G(O1a; A G1ny)s
we construct the NBA A, corresponding to —). This is
obtained as shown in Figure 2. Then, we decompose A-
into consecutive transition pairs as explained in this section.
We notice that there is one lasso for Ay, resulting in one
transition pair ((ag,as), =(a1,a1)). Computing an ABC for
this transition pair allows determining whether T(&, L) = ¢.

()

(a37a4)

—(a1,a1)

T

G

Fig. 2: NBA A, corresponding to —)

Remark 3.11: We note that the problem of finding the
collection of consecutive transition pairs (thus conditional
invariances), one from each lasso, which admit a common
ABC is intractable. To show this, we first assume that we
are given an oracle that determines whether a collection of
consecutive transition pairs admits a common ABC. We then
consider a relaxed version of this problem as follows. We
assume that for any state r in A, with some incoming edge
labeled s4 and outgoing edges spg,,...,sp,, if there exists
an ABC B for the pair (sa,sp;) for some 1 < j < r,
then the function B acts as an ABC for every pair (s4, 5B,)
for all 1 < j < r. Then, the problem of finding a suitable
collection of transition pairs is reduced to finding a collection
of edges such that their removal causes the accepting states
to not be reachable from the initial state. This corresponds to
a cut [39] that partitions the accepting states from the initial
state. To determine whether a cut allows for a common ABC,
we must make use of the oracle, and in the worst case, we
need to enumerate all possible cuts in A-,. Since, the number
of possible cuts is exponential in the number of edges of
Ay [39], the problem is clearly intractable.

The requirement of a common ABC for a collection of
consecutive transition pairs is necessary to provide guar-
antees via Theorem 3.10. This is due to the fact that, in
condition (IIL.3) of Definition 3.3, existential quantifiers may
precede the universal quantifiers depending on the HyperLTL
specification. In such cases, Eloise does not have access to
the full-state information of the augmented system and the

choices made by Abelard in the turn-based game. However,
Abelard has access to the states as well as Eloise’s choices.
Then, different ABCs for different transition pairs would imply
that for each transition pair, Eloise picks a different strategy.
This may lead to conflicts. For example, let us assume that
the HyperLTL formula is of the form ¢ = ImVmae), and
consider two conditional invariances corresponding to pairs
(sa,,$B,) and (sa,,sp,). The first component of the state
of the augmented system is controlled by Eloise, and the
second one by Abelard. Due to a lack of full-state information
of the augmented system for Eloise, she is only able to
observe the label of the first component, and therefore may
be unable to differentiate between s4, and s4,. Thus, having
two different strategies corresponding to each of these pairs
may result in ambiguity for Eloise. Moreover, picking the
first strategy corresponding to (sa,,Sp,) at state s4, could
lead to Abelard choosing an input that violates the second
conditional invariance corresponding to (sa,,sp,), and vice-
versa as Abelard selects a trace after Eloise selects her
trace. This results in violation of the original specification.
Unfortunately, even though a common ABC is necessary to
provide verification guarantees, its existence may be difficult
to find.

However, in specifications where Eloise has access to full
state information and all of Abelard’s choices, the requirement
of a common ABC may be relaxed. This is especially true for
specifications in the V*3* fragment, where all the universal
quantifiers precede the existential ones. In fact, the V*3*
fragment holds great importance as it comprises of many
relevant security properties. For example, a variant of the
noninterference property [40] requires that, for all traces,
the low-security variables should not see any difference in
observation when high-security variables are changed and
replaced by dummy variables. This can be expressed by the
HyperLTL specification

Vm3m2(Ghay) A\ lny 4 Lo,
leLS

where h,, implies that the high security variables in 7y are all
set to a dummy variable h that is always true , and LS € AP
denotes the set of low security variables. Similarly, initial-state
opacity specification [36] is also in the V*3* fragment (cf. case
study). Considering the importance of this fragment, we now
provide a separate algorithm to allow for multiple ABCs for
different lassos under some conditions.

D. Algorithm for V*3*-fragment of HyperLTL

From the above discussion, it can be understood that specifi-
cations in the V*3* fragment enable the relaxation of common
ABC requirement and allow for different ABCs in different
lassos. In particular, Eloise can take advantage of the full
state information of the augmented system available to her
as well as the knowledge of Abelard’s choices to use different
ABC:s for different consecutive transition pairs in every lasso.
However, to do so, one must take the structure of the automata
A_, into consideration, as in the presence of states with
two or more outgoing edges, there may be an ambiguity for
Eloise in selecting strategies. Moreover, in the presence of
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nondeterminism in the automaton, Eloise may fail to select
strategies due to lack of information on the history of visited
states. These challenges are demonstrated in the following
examples.

Example 3.12 (States with a fork): In this example, we
show the issue of utilizing multiple ABCs in the presence of
a state with multiple outgoing edges. Consider the NBA A-,,
shown in Figure 3 constructed from a set of atomic propo-
sitions AP = {a,b,c,d} corresponding to some HyperLTL
specification ¢ = Vmy ... Vm3myy ... Imp.

(C, d) (07 d)
o0

(a,b)

Fig. 3: NBA A_,, for Example 3.12

(0,a)

From A-, we can identify £ = 3 lassos as

R ={r1 = (90,q1,95,95),r2 = (90, G2, 43,45, G5),
r3 = ((JO,CI27Q4,(]57(I5)}-

For every r € R, we obtain the consecutive transition pairs as

S(rl) = {((a7 b), (C7 d))v ((07 d)a T)}a
S(rz) ={((c,d), (d, ), ((d, ), (¢c,d)), ((c;d), T)},
S(r3) = {((c,d), (a,b)), ((a,b), (b,a)), ((b;a), T)}.

Naturally, it is preferable to obtain different ABCs for at
least one transition pair in every lasso to guarantee the satisfac-
tion of the specification. However, this might cause problems
for lassos ry and r3, where there are two outgoing edges from
a single state go. This leads to two different transition pairs
((¢,d), (d,c)) and ((c,d), (a,b)). Having different ABCs for
these pairs would result in different winning strategies for
Eloise to avoid the sets corresponding to (d,c) and (a,b),
from the set corresponding to (c,d), respectively. Choosing
the first ABC and its corresponding strategy could lead to the
violation of condition (III.3) for the second ABC and vice
versa. However, the existence of a common ABC for both the
pairs guarantees that Eloise has a winning strategy to avoid
both (d,c) and (a,b) if she encounters a state corresponding
to (¢, d). Therefore, for this specification, one would require
to obtain a common ABC for the pairs ((c,d),(d,c)) and
((¢,d), (a,b)) from lassos ro and rs3, respectively, and a
different ABC may be obtained for the pair ((a,b), (c,d))
from the lasso r;. However, if such a common ABC cannot
be found, one can consider other transition pairs in rs and rs,
and in that case, different ABCs may be used.

Example 3.13 (Nondeterminism): In this example, we show
the issue of using multiple ABCs in the presence of nondeter-
minism in the automaton. Consider the NBA A, shown in

Figure 4 constructed from a set of atomic propositions AP =
{a, b, ¢, d} corresponding to some HyperLTL specification ¢ =
V.. V3w .. 3.

()

(c,d)

Fig. 4: NBA A-, for Example 3.13

(a,b) (a,c)

From A, we can identify k£ = 3 lassos as

R ={r1=(9,91,92:95,95),r2 = (g0, 43, 94,45, q5)
r3 = (qO,Q37Q4,(I27Q5,CI5)}~

For every r € 'R, we obtain the consecutive transition pairs as

S(r1) = {((a, ), (b, a)), (b, a), (a,¢)), ((a,¢), T)},

S(r2) = {((a, ), (b, a)), (b, a), (d, ¢)), ((d; ), T)},

S(rz) = {((a,0), (b, a)), ((b,a), (¢, d)), ((¢,d), (a, ),
(( )

Consider lassos ri, ro and r3, where there is a nondeter-
ministic transition from the initial state ¢y to the states ¢
and g3 under the label (a,b). Ideally, a single ABC for the
pair ((a,b), (b,a)) would effectively disallow the transitions
in all the lassos ry, ro and rs3. However, the problem arises
when such an ABC cannot be found. In order to guarantee
the satisfaction of the specification, other transition pairs in
the lassos must be disallowed. Now, in ry, there is a transition
from (b,a) to (a,c), while in ro and r3, there are two
transitions from (b, a) to (d, ¢) and (c, d), respectively. At any
point in time, Eloise cannot uniquely determine the history of
the states visited in A_,;,. As a result, after a nondeterministic
transition from (a, b) to (b, a), Eloise has no way of knowing
whether to block further transitions from (b,a) to (a,c), or
from (b,a) to (d,c) and (c,d). Therefore, the approach of
using different ABCs fails in the presence of nondeterminism.

Unfortunately, problems arising due to nondeterminism can-
not be directly resolved. Therefore, to circumvent this issue,
we instead consider the automaton .A-, to be deterministic.
In particular, for our exposition we focus on the case where
A_y is a deterministic Biichi automaton (DBA).

The general verification procedure for determining whether
Eloise has a strategy to ensure that the acceptance condi-
tion of A, is violated for specifications in the V*3* frag-
ment is provided in Algorithms 2 and 3. Having a DBA
Ay = (EP,Q,q0, A, F), we first identify all the lassos
R = {ri,...,r;} that reach and cycle on some state in F. We
then prune A-,, and remove any states that are not in the lassos
and all transitions to and from such states. Then, beginning
from the initial state, for any label s4, we identify the state
that is reachable via s 4. Let the outgoing transitions from this
state be sp,,...,sp,. Let S = {(sa,58,),-.-,(54,58,)} A
suitable common ABC is searched for all the transition pairs in
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Algorithm 2 Algorithm for verification of V*3* fragment of
HyperLTL
Input: &,¢ =Vm ... Vm3Imyy ... 3mpyp, L
Construct DBA A_; for )
Identify lassos R := {ry,ro,..
Ry + 0
AL, = (2P,Q, g0, A", F') = Prune(A-y)
visited < [0, ... 0] > Array of size |Q’'|
V< {qo}
visited[qo] + 1
while V # () do
for each » € V do
Raqg+ RqU ABC,FIND( /_ﬂb,T)
Rm — R \ Rd
if R, = 0 then
return T(6,L) E ¢
for each s4 € X7 do
' A'(r,s4)
G+ {reRn| () er}
if G # () and visited[r'] < 1 then
V< Vu{r}
visited[r'] « visited[r'] + 1
V+«V\{r}
return Inconclusive

. ,I‘k} of Aﬁw

aset S, C S.Forevery pair (sa,5p;) € S, forall 0 < j <n,
we also have that (s4,sp;) € S(r;) for some 0 < i < k.
If such a common ABC exists, then such lassos r; can be
discarded from further consideration as existence of ABCs
disallows the transitions in those lassos and are collected in
the set R4. Note that, unfortunately, there is no systematic
way to obtain the set S, C S consisting of all transition pairs
that admit a common ABC. S, is first picked in a trial-and-
error fashion and then an oracle (c.f Remark 3.11) is used to
determine if the transition pairs in S, admit a common ABC.
This procedure is then repeated for every transition label at
the initial state, and the discarded lassos are iteratively added
to R4. Once all the outgoing transition labels are covered, we
move on to the next state reachable from the initial state and
repeat the procedure to find ABCs for only those pairs that
belong to S(r;) such that r; € R\R,4. This continues in a
breadth-first search fashion until all the lassos are discarded,
i.e., Rg = R, in which case we can conclude that (S, L) =
¢, or all the states of A, have been considered. If R4 C R,
it means that there are lassos for which no ABC could be
found, rendering the verification procedure inconclusive.

IV. ABCsS VIA SUM-OF-SQUARES PROGRAMMING

In the previous sections, we showed that existence of an
ABC satisfying conditions (III.1)-(IIL.3) for a transition pair
(sa,sp) is vital to verify that a system & satisfies a desired
HyperLTL specification ¢. In general, synthesizing such ABCs
is a difficult problem. However, under some assumptions on
the type of ABCs considered, the dynamics of the systems,
and the geometry of the state sets, one can efficiently compute
ABC:s that can sufficiently prove the satisfaction of conditional
invariance guarantees. This can in turn be utilized to verify
the satisfaction of HyperLTL specifications. Specifically, we

Algorithm 3 Function ABC_FIND

Input: A" = (3P,Q’",q0, A", F'),7
Ry + 0
for each s4 € P do
S+ 0
' — A(r,s4)
for each s € ¥P do
if A'(r',sp) # () then S < SU{(sa,s5)}
Find a common ABC for a set S, C S.
for each (s4,sp) € S, do
' A(r,s4)
" «— A(r', sp)
Ra+ RaU{reR| (r,r,7") er}
return R

see that when the dynamics of the systems are restricted to
polynomial functions and the state set X, exogenous input
set W as well as the safe and unsafe sets obtained from
(sa,sp) are semi-algebraic sets [41], one can utilize sum-
of-squares (SOS) programming techniques [42] to compute
polynomial ABCs of predefined degrees. We now formally
state the following assumption.

Assumption 4.1: The system & has a continuous state set
X C R™ and continuous exogenous input set W € R™, and its
transition function f : X x W — X is a polynomial function
of the state x and input w.

Under Assumption 4.1, one can readily observe that the
state and input sets of augmented system &P (i.e. XP and
WP, respectively) are also continuous, and the function f? :
XP x WP — XP is a p-tuple of polynomial functions. Having
this, one can then reformulate conditions (III.1)-(III.3) as an
SOS optimization problem (cf. next lemma) to search for a
polynomial ABC for augmented system G?. In order to present
the result below, we assume that the number of quantifiers “3”
in¢ = pim ... w1 is equal to k and define Is = {i | pu; =
3,1<i<p}.

Lemma 4.2: Suppose Assumption 4.1 holds and sets X7,
A, B, and WP are defined as X? = {Z € R" | g(z) > 0},
A={x e R" | go(z) = 0}, B={z € R" | g,(Z) > 0},
and WP = {0 € R™P | g;, () > 0}, where the inequalities
are considered component-wise and functions g, go, g, and
gin are polynomials. Suppose there exist a polynomial B(Z)
and k polynomials h§(£i7wi), 1 € I3, corresponding to the
gt entry of w; = (wi,,...,w;,,) € W C R™, where 3;
refers to those components of the state with indices less than
1 and w; denotes the inputs associated with “V”’ quantifiers
with indices less than ¢. In addition, suppose there exist sum-
of-squares polynomials A(Z,w), A\o(Z), Au(Z), and Ay, (Z, )
of appropriate dimensions, such that the following expressions
are sum-of-square polynomials:

—B(&) — Xo(@)gd (%), (IV.1)
B(z) — M\ (2)gT(2) — ¢, (Iv.2)
—B(fP(&,@)) + B(&) — A&, @)g" (&) — Xin(&,0) g, (@)
=0 (wi, — Ri(@,10)), (IV.3)
i€lg j=1
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Fig. 5
Fig. 6: State runs of the system G starting from initial set X3.

where ¢ is a small positive number. Then, B(Z) is an ABC
from set A to set B satisfying conditions (III.1)-(IIL.3).

Note that a small tolerance ¢ is needed in (IV.2) to ensure
strict positivity of ABC as required in (IIL.2). The proof
of Lemma 4.2 relies on the fact that if conditions (IV.1)-
(IV.3) are rendered SOS by polynomials B(Z) and h’ (&, w;),
then conditions (II.2)-(I1.4) are satisfied. More details on the
proof can be found in the Appendix. Existing tools such
as SOSTools [43] can be used in conjunction with semi-
definite programming solvers such as SeDuMi [44] to compute
polynomial ABCs satisfying (IV.1)-(IV.3).

Remark 4.3: Note that the SOS approach for computing
barrier certificates is restricted to systems with polynomial-
type dynamics. One can also utilize different computational
techniques when dynamics are not necessarily polynomial.
For example, conditions (III.1)-(III.3) can be reformulated as
a satisfiability problem and SMT solvers such as Z3 [45]
and dReal [46] can be utilized to search for suitable barrier
certificates using counterexample-guided inductive synthesis
framework [47]. One can also train suitable barrier certificates
using neural networks e.g. [48], [49].

Remark 4.4: The complexity analysis of our approach is
described as follows. Suppose there exists a common ABC of
degree 2d that verifies a system & against a HyperLTL formula
¢ = H1,T1 ..., [y, Tp1, consisting of p trace quantifiers. To
find this ABC, one requires to consider all the consecutive
transition pairs of the NBA A_,,, corresponding to the spec-
ification, and then select suitable consecutive pairs in every
lasso such that they admit a common ABC. Let the number
of states of .A_,, be |Q|. There are 0(2191%) possible subsets
of consecutive transition pairs for A-,. Then, for each such
subset, the common ABC needs to be computed over the p-fold
augmented system with dimension pn via SOS programming,
resulting in a complexity given by O ((” "jd)2) [42], where 2d
is the degree of the ABC. Therefore, the final complexity of
our approach is polynomial in O(2|Q|2 (p ";'d)2). One observes
that this complexity depends not just on the dimension of the
original system n, but also on the number of quantifiers in the
HyperLTL formula p. Even in the case of two quantifiers, this
leads to a doubling in dimension. As the state dimension n and
number of quantifiers p grow, we typically need to search for
barrier certificates of higher degree (thus the value 2d needs

2
to also grow). As a result, the value (”"%)” grows at a rate
that is worse than polynomial in the state dimension n. Thus,

our approach is not particularly scalable to high-dimensional
systems. As future work we plan to investigate the use of
compositional approaches such as in [34] to tackle this issue.

Example 2.3 (Continued): We now utilize SOS
programming to compute ABC for the transition pair
((az2,as), (a1, a1)) obtained from Figure 2. We use the tools
SOSTOOLS [43] and SeDuMi [44] on MATLAB to compute
a polynomial ABC of degree 2 as B(Ty,Tz) = 1.2454T¢ —
1.6722T1T» — 18.5791Ty + 1.1656T5 — 14.9555T5 + 377.4684
with a tolerance of ¢ = 0.001. The existence of the ABC
proves that the safety controller designed for the system &, is
indeed robust with respect to initial-state uncertainty with a
robustness measure of 6 = 0.5. Figure 5 shows that the state
runs obtained for & remains in the safe set X; = [20,25]
when starting from the initial set X3 = [20.5,21.5] which
captures uncertainties in the initial state. We performed these
computations on a machine running Linux Ubuntu OS (Intel
17-8665U CPU with 32GB RAM) and it took around 19
seconds for the computation of ABC.

In the following, we present another case study to demon-
strate the effectiveness of our approach.

V. CASE STUDY

In this example, we consider the discrete-time, two-
dimensional model of an autonomous vehicle on a single-lane
road, with state variables as x = [s,v], where s denotes the
absolute position of the vehicle and v denotes the absolute
velocity. The dynamics of the system are borrowed from [50]
and governed by:

 s(t+1) = s(t) + ATo(t) + A w(t),
) v(t+1) = v(t) + Atw(t),

(V.1)

where w is the exogenous input, i.e., acceleration, and A7 = 1
is the sampling time. Here, we verify the J-approximate initial
state opacity property [50] for this system. The specification
requires that, for any state run of the system that begins from
a secret state, there must exist another state run that begins
from a non-secret state such that both state runs render J-
close observations from the observer’s (or intruder’s) point of
view. The significance of the specification can be motivated
with the help of a simple example. Consider a scenario where
the vehicle is assigned for a cash transit from a high-security
bank to an ATM machine, and the initial locations of the
vehicle must be kept secret. It is assumed that a malicious
intruder is observing the velocity of the vehicle remotely and
intends to gain access to the secret information and perform an
attack. Therefore, it is critical to ensure that the secret states
of the system are never revealed to the intruder. This security
specification can be modeled as a J-approximate initial-state
opacity problem, where § > 0 captures the measurement
precision of the intruder.

To express J-approximate initial-state opacity as a Hyper-
LTL specification, consider system (V.1) with state set X =
[0,8] x [0,0.6] and exogenous input set W = [—0.04,0.04].
The secret set is defined by X; = [0,1] x [0,0.6] and the
non-secret set is consequently given by Xo = X\ X;. Here,
we assume that the intruder can only observe the velocity of
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Fig. 7: (a) NBA A_,, corresponding to = (b) State runs of G2 projected over the velocity coordinate. Region in blue indicates
the unsafe set (c) The initial conditions of the state runs projected over the position coordinate marked by * which show that
the first initial condition (i.e. x1) is secret and the other one (i.e. x3) iS non-secret.

the car with a precision of §, i.e, observations of two states
x1 = [s1,v1] € X and zo = [so,v2] € X appear identical to
the intruder if ||v; —v2|] < 0. We now construct atomic propo-
sitions as AP = {a1, as, ag, as} where a; and as are such that
L(z € X,) = a, for z = {1,2}. The atomic propositions a3
and a4 are constructed over the augmented state set such that
we have (as,as) := {(L(z1=[s1,v1] € X), L(z2=[s2,v2] €
X)) | oy = vafl? < 62} and (as,as) := {(L(z1=[s1,v] €
X), L(za=s2,v3] € X)) | |lv1 — v2||* > 6% + €}, where
€ is a small positive number introduced to certify positivity
using SOS programming. Note that atomic propositions for
HyperLTL specifications are usually defined over the single
system rather than the augmented one. On the other hand, the
d-approximate initial state opacity specification requires the
atomic propositions to capture the d-closeness between any
two states of the augmented system. In a finite-state system,
one could quantify J-closeness by using finite conjuncts of
atomic propositions defined over the original system, but in the
infinite-state case such as ours, that is not possible. Therefore,
to handle this non-trivial case, we modify atomic propositions
slightly and define them over the augmented state set. Such
modifications can be made without any loss of generality
in our approach. Now, one can formulate the §-approximate
initial-state opacity specification as a HyperLTL formula given
by ¢ = V7r1§|7r21/), where 1[) =Qir, — (a2ﬂ—2 /\G(a3ﬂ—1 /\a3ﬂ—2)).

Consider the system G&2=6 x & with states
(r1=[s1,v1],m2=[52,v2]) € X? and input (wy,ws) € W2,
and the NBA A-, corresponding to —) that is obtained
as shown in Figure 7a. We decompose .A_, to obtain
transition pairs for all lassos. This is obtained as
((Cll, ag) A (ag, ag), (Cl4, a4)), ((Cll, a1), T) and ((a4, a4), T)
The latter two do not admit ABC following Remark 3.5,
and the transition pair ((aq1,a1), T) is ignored by assuming
that the augmented system &2 never starts from an initial
condition corresponding to @; = (aj,a;). Note that this
assumption is only on the virfual copy of the system & and
does not restrict the initial states of the original system &
directly. For the transition pair ((a1,a2) A (as,as), (a4, as)),
we compute a suitable ABC by considering 6 = 0.15. Using
SOSTOOLS and SeDuMi tools on MATLAB, and with

tolerance parameters € = 0.01 and € = 0.015, we obtain ABC
as follows.

B((s1,v1), (52,v2)) = 85.030v7 — 170.3v1v5 + 0.0048v, 5,
— 0.0065v1 59 + 0.0413v; + 85.24v3 — 0.004784vy5,

+ 0.0063v9s9 — 0.0121v5 + 0.0059sf —0.0119s1 52
+0.0241s; + 0.0061s3 — 0.0825s5 — 2.076,

and the corresponding 3 quantifier on the input is fulfilled by
wa (81, v1, S2, V2, wy ) =0.983v1 —vy +w;. Therefore, we con-
clude that the system & satisfies the HyperLTL specification ¢
representing d-approximate initial-state opacity problem with
0 = 0.15. Figure 7b shows the projection of a few state runs on
the velocity coordinate of the augmented system &, with initial
conditions in A = L?~*((a1, az) A (a3, a3)). Figure 7c shows
the initial conditions projected on the position coordinate. It
follows that the state runs avoid reaching the unsafe regions,
indicating that the original system is J-approximate initial-
state opacity. We should add that the computation of ABCs us-
ing the mentioned tools on MATLAB takes roughly 35 seconds
on a machine running with Linux Ubuntu OS (Intel i7-8665U
CPU with a 32 GB of RAM). The codes for our experiments
may be found on our public repository: https://github.com/
mahathi-anand/CPS- Verification-against-HyperLTL.git.

VI. DISCUSSION AND CONCLUSION
A. HyperLTL Synthesis

An interesting problem that follows HyperLTL verification
for dynamical systems is the synthesis of controllers ensuring
the satisfaction of HyperLTL specifications. In this case, for a
system & = (X, U, f) and a HyperLTL specification ¢, one
would view v in (II.1) as control signal rather than exogenous
one and design v such that the corresponding traces 7' of
G satisfy ¢. Unfortunately, there are major challenges in
synthesizing controllers even when the HyperLTL specification
is a simple conditional invariance (CI). Let us consider a CI
X, and a controller G : X — U such that v(t) := G(z(t)).
Then, condition (III.3) of the barrier certificate for CI y
in the context of synthesis can be reformulated as: for any
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12
z = (z1,22,...,2p) € XP,
B(f(z1,G(21)), f(x2,G(22)), ..., [(xp,G(xp))) — B(z) < 0.

(VL1)

The above formulation ensures that the selection of the control
input at any given state x € X according to map G is
independent of the previous traces selected by the players.

However, to satisfy this condition, one must simultane-
ously search for suitable functions B and G. This makes
the above inequality non-convex in these unknown functions
and unfortunately, one cannot leverage convex programming
and correspondingly SOS and semi-definite programming to
determine these functions even when they are assumed to be
polynomials. However, given a map G, one could search for
a function B such that condition (VI.1) is satisfied, which
is technically a verification problem and not a synthesis one
anymore. In general, even though one can verify whether a
HyperLTL specification ¢ is realizable over a system, it is
not possible to synthesize the control map G that ensures the
satisfaction of ¢. In other words, it is not possible to find a
solution to the HyperLTL synthesis problem.

This is due to the fact that the inputs obtained satisfying
condition (III.3) in the case of verification may depend on
the previously quantified traces, which is not possible when
considering controller synthesis. Remark that the problem
of HyperLTL verification coincides with HyperLTL synthesis
when the specification is of the form ¢ = ImVmy ... Vmp.
To verify such specifications, it is sufficient to synthesize
a controller for the first trace. Since the remaining traces
are controlled by Abelard, ABCs satisfying condition (III.3)
implies the satisfaction of condition (VI.1) with the controller
G being the one synthesized for the first trace. We leave any
further investigations for the synthesis problem as future work.

B. Conclusion

We proposed a discretization-free scheme for the verifi-
cation of discrete-time uncertain dynamical systems against
hyperproperties. Focusing on hyperproperties expressible as
HyperLTL formulae, we presented an implicit automata-
theoretic approach. In our approach the specifications are
reduced to a collection of conditional invariance properties by
utilizing an implicitly quantified Biichi automata correspond-
ing to the complements of the specifications. Working with
an augmented system, we were able to devise a notion of
augmented barrier certificates over the self-composition of the
original system as a certificate of conditional invariance. The
existence of ABCs is a sufficient proof that the conditional
invariance holds, this provides a verification guarantee over
the satisfaction of the hyperproperty. For a general HyperLTL
specification, we showed that a common ABC for at least one
conditional invariance in every lasso is required to provide
verification guarantees. However, for a HyperLTL specification
in the V*3* fragment, we provided a systematic algorithmic
procedure that leverages the structure of the automata to allow
for different ABCs for different lassos. We exploited a sum-
of-squares approach to efficiently compute suitable ABCs. As
future work, we plan on investigating approaches that allow

for multiple ABCs to guarantee the satisfaction of general
HyperLTL specifications. We would also investigate verifica-
tion problems for stochastic systems and synthesis problems
against hyperproperties for continuous-state control systems.
Moreover, we would also utilize compositionality approaches
[34] to tackle scalability issues in computing ABCs for large-
scale systems.
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APPENDIX
A. Proof of Lemma 3.1

If Eloise has a positional winning strategy in the turn-based
evaluation game, then she can use the same strategy to choose
traces in the stage-based evaluation game such that each index
depends only on the states and actions at the current index in
the traces quantified so far. Then, against an arbitrary policy
chosen by Abelard, the resulting p-tuple of of the traces satisfy
the LTL specification 1.

B. Proof of Lemma 3.6

We prove this by contradiction. Suppose an ABC exists for
X, but x is not valid. Then, regardless of Eloise’s strategy,
Abelard always has a strategy that allows him to win. Let the
set of traces selected by the players be T' = {o1,...0,}.
For Abelard to win, he must ensure that for some j € N,
I1[j, 0] =1 sa and for some k > j, II[k, o0] =1 sp (from
the existence of an ABC and Remark 3.5 we can conclude
that k # j) to falsify G(s4 — G(—sp)). We consider the case
where the strategy of Eloise is to select inputs according to
condition (II1.3). We note that selecting such a strategy leads
to a non-increase in the value of the barrier certificate for the
corresponding state in the augmented system, regardless of
Abelard’s strategy. Let the set of traces at positions j and k
correspond to states  and 2’ in the augmented system and let
the corresponding input sequence that takes us from Z to 7’ be
v. From conditions (III.1) and (IIL.2), we have B(Z) < 0 and
B(z") > 0.Forany ! > 0, let w = ©(l), and & = x(l), then we
have B(f?(#;,w)) < B(&;) from condition (IIL.3) regardless
of Abelard’s strategy. By induction on this condition, we can
infer that B(z’) < 0. This is a contradiction to condition
(II1.2). So, we infer that y is valid in the turn-based game
setting. Therefore, x is also valid in the stage-based game
setting according to Lemma 3.1.

C. Proofof Lemma 3.7

From Lemma 3.6, for a conditional invariance x; =
pam ... pp7p G(sa, — G(—sp;)), existence of an ABC B;
implies that Eloise has a winning strategy to ensure that
T(6, L) = x;. Therefore, for a set of conditional invariances
X1, - - -, Xk» Eloise may choose the same winning strategy cor-
responding to X; to ensure that at least one of the conditional
invariances in the set holds. Therefore, we get T'(S, L) = x.,
where x = pami ... ppm, Vo G(sa; — G(—sp;)).

1<j<k
D. Proof of Lemma 3.8

The proof once again follows from Lemma 3.6. The exis-
tence of a common ABC B guarantees that condition (IIL.3)
is satisfied for all conditional invariances x;, 1 < ¢ < k.
This implies that Eloise may use the same strategy to disallow
all the transition pairs (s4,,sp,), 1 < ¢ < k. Therefore, we
have T(S,L) = x, where x = p1m1 ... pupmp A\ G(sa, —

1<i<k
G(=sg,))
E. Proof of Lemma 3.9
From Lemma 3.7, for the set of conditional

invariances {x;1,...,Xiv;; for some 1 < ¢ < Kk,
the existence of ABC B for some x;; implies that

T(S,L) E pami...pupmp \ G(sa,; — G(=sp,,)). For
1<j<v;
each 1 < ¢ < k, if there exists a common ABC B for

some X;j, 1 < j < v;, then by Lemma 3.8, we have that

T(G7L) ': H1Tn - fpTrp /\ G(SAi,j - G(_'SBi,j))' By
1<i<k

combining these two results, for a family of set of conditional

invariances i s X1 by oo {XE1s - - o Xhwn } )

one has T(6,L) = X, where x =

HATY - T N V  G(sa,, = G(=sp,,)).
(1<i<k)(1<j<vi)

F. Proof of Theorem 3.10

Let the NBA A, corresponding to —1 have k las-
sos, such that the ¢t* lasso has w; pairs of con-
secutive transitions. Let the pair (sa,,,sp, ;) corre-
spond to the ;" pair of consecutive transitions along
the " lasso. Let x;; = pumi...ppmpG(sa,, —
G(—sp,,;)) denote a conditional invariance specification
and let us consider the set of conditional invariances
{Xl,h ey X1 X2,1 -0 - X209 - 09 Xy e - - Xk,vk}' Then the
existence of a common ABC satisfying Lemma 3.9 implies
that if the augmented system lands on a state satisfying s4, ;,
Eloise has a strategy to ensure that it never reaches a state
satisfying 5B, ; for every 1 < i < k, and some 1 < j < vj.
However, to satisfy —), Abelard must have a strategy that
allows him to visit a state satisfying some s4, ; and then later
visit a state satisfying SB; for some 1 < ¢ < k and every
1 < 5 < v, to follow the transitions along the it" lasso. Since
this is not possible due to the existence of the ABC, we infer
that ¢ is satisfied.

G. Proof of Algorithms 2 and 3

Algorithm 2 is a sound way of obtaining suitable common
ABC:s in the presence of two or more outgoing edges from any
state in DBA A-, and different ABCs otherwise. It calls on
function ABC_FIND, presented in Algorithm 3, that takes
a state r in A, as input and returns a set of lassos that
pass through r and can be denied by means of a common
ABC. The correctness of Algorithm 3 can be established by
ensuring Eloise has a strategy to disallow all the lassos in
Rg. Initially, we have R4y = () and therefore Eloise may use
any strategy. Now, at some iteration of the outermost loop, let
R4 consist of the lassos that have already been disallowed.
Furthermore, consider an outgoing label sy € XP from r to
r’. The first inner loop then identifies the labels sp such that
A'(r',sg) # 0, and constructs a set S that consists of all
such pairs (s4, sp). The algorithm then finds a common ABC
for the set S, C S and, by Lemma 3.8, we can infer that
Eloise has a strategy of selecting inputs such that she can
always avoid those states that satisfy sp in the augmented
system after satisfying s4. Therefore, at any iteration of the
second inner loop, Eloise has a strategy to avoid the lassos
already present in R4, or the lassos corresponding to the pairs
(sa,sB) € S,. Moreover, due to the specification being in the
v*3* fragment and the determinism in the automata, Eloise can
uniquely determine the state of the augmented system as well
as the current state in the automaton. This allows Eloise to
select a unique strategy to avoid lassos r that pass through the
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states (r,7/,r"") such that v’ = A’(r,s4) and v’/ = A'(r', sp),
and add them to R 4. Lastly, we note that if we can successfully
find common ABCs then the algorithm terminates as there are
finitely many labels in 3P.

We now prove the correctness of Algorithm 2 by using
the fact that R4 consists of all the lassos that can be denied
by Eloise. Initially, R4 is empty, and therefore, Eloise may
use any strategy. Now, at some iteration of the outermost
loop, consider a state r and the set R4 that consists of the
lassos that have already been denied. On calling the function
ABC_FIND for a state r, we find a common ABC for those
lassos r € R such that (r,7’,7"") € r, where A'(r,s4) =1/,
A'(r',sg) = 1’ and (sa,sp) € Sg. Then, from the proof
of Algorithm 3, we have that Eloise has a unique strategy
to deny those lassos. If R,, = (), then Ry = R. Thus all
lassos that pass through some state in F' have been denied
and the states in F' cannot be visited infinitely often. Then,
we can infer that Eloise has a strategy to never satisfy —) or
that T'(&, L) |= ¢. However, if we traverse all the states and
R,,, # 0, the algorithm is inconclusive.

H. Proof of Lemma 4.2

Since Ag(Z) is an SOS polynomial, we have that
Ao(%)gd (%) is non-negative over A. Therefore, if condition
(IV.1) is an SOS polynomial, and therefore non-negative, it
would directly imply condition (III.1). Similarly, the SOS
constraint (IV.2) implies condition (III.2). Now we show that
condition (IV.3) implies (IIL.3). By selecting inputs w;, =
R (&4, ), the last term in (IV.3) vanishes. Since the expression
A&, w)gT (%) is non-negative over X? and \;, (%, w)gl ()
is non-negative over WP, we have that for all £ € XP,
—B(f?(Z,w)) + B(Z) > 0. This implies that condition (III.3)
holds, thus concluding the proof.

I. Suspect-Pair Decomposition

Our verification approach relies on reducing the complex
HyperLTL specification into a collection of conditional in-
variance guarantees over consecutive transition pairs. This
was originally proposed in [47] but in the context of veri-
fication for LTL specifications. Consider the NBA A-, =
(Q, g0, %P, A, F) compiling the negation of the desired spec-
ification. A lasso for the NBA A, is a pair (7,7') such
that 7 = (rg,71,...,7n—1,7n) represents a simple path, and
7 = (ry,ry,..., 7)) represents a simple cycle, with r,, =
TH =T

We define the set R to be the set of all /lasso runs that start
at the initial state and cycle on an accepting state, i.e.,

R :={r; = (ro,..

Ty Tl ey o) |

To = qo,7y =T € F}.

For a € ¥P, we define the set R as the subset of R starting
from a, i.e.

Ra :={r1 = (10,71, s Tn-1,T0s---,Th) ER |

(’/’0,&,7‘1) EA,&GEP}.

For each lasso runr; = (1o, 71, ..., "nin+1) € Rg, we define
a set P;(r;) consisting of runs of length 3 as

Pa(ry) :={(ri,riz1,mi02) €r; |0 < i <n+n' —1}.

We correspondingly define the set S;(r;) consisting of con-
secutive transition pairs s4,sp € 2P such that

Sa(r)) = {(sa,58) | (r,s4,7") € A and (r',sp,r") € A,
(ry7",r") € Pa(ry)}.

We let the set Sa, = Uzesn Ur,er, Salri) be the set

of all such consecutive transition pairs obtained from NBA
A_;. These transition pairs correspond to different conditional
invariance specifications for which a suitable ABC is synthe-
sized.
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