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Data Center Environmental
Burden Reduction Through
On-Site Renewable Power
Generation
The energy demands from data centers contribute greatly to water scarcity footprint and
carbon emissions. Understanding the use of on-site renewable power generation is an
important step to gain insight into making data centers more sustainable. This novel
study examines the impact of on-site solar or wind energy on data center water scarcity
usage effectiveness (WSUE) and carbon usage effectiveness (CUE) at a U.S. county scale
for a given data center size, water consumption level, and energy efficiency. The analysis
uncovers combinations of specific metrics associated with grid-based carbon emissions
and water scarcity footprint that enable predictions of the improvements anticipated
when implementing on-site solar or wind energy. The implementation of on-site renewables
has the most benefit in reducing carbon footprint in areas with high existing grid-based
emissions such as the western side of the Appalachian Mountains (e.g., central and
eastern Kentucky). The largest benefit in reducing water scarcity footprint is generally
seen in counties with low water scarcity compared to adjacent areas (e.g., northern
California). [DOI: 10.1115/1.4065053]
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1 Introduction
The growth in the size and quantity of data centers has increased

concern about the sector’s energy consumption. In 2018, it was
reported that data centers consume up to 200 TW h of electricity
annually, accounting for 1% of the global energy demand [1].
More recent estimates have suggested that data centers consume
up to 500 TW h of electricity annually [2].
The large demand for electricity coming from data centers has

raised concerns about the environmental impacts of consuming
large quantities of energy. The utilization of renewable energy
resources, such as wind and solar power, has been proposed as a
potential solution to reduce a data center’s carbon footprint [3].
While most of these approaches involve using power purchase
agreements with renewable energy providers [4], some have used
on-site renewables such as installing solar panels on the roofs of
hyperscale facilities [5]. The significance of on-site renewables’
impact on carbon emissions can be quantified by tracking flows
through the electric grid [6–9], generally through economic
input–output theory. The resultant emission factors for electricity
consumption are based on accepted life cycle values for various
approaches to power generation [10,11].
While reducing carbon emissions is essential for a more sustain-

able data center, carbon emissions are just one factor that contrib-
utes to the sustainability of data centers. Hadian and Madani

suggested that to consider an energy system “green,” water and
land footprints should also be considered [12]. Therefore, it is
important to determine the total scope 1 and 2 water footprint asso-
ciated with data center operation, as indicated by The Green Grid
[13]. Furthermore, the amount of water consumption relative to
water availability should also be considered, so a scope 1 and 2
water scarcity footprint is an important quantity when considering
the holistic environmental burden of data center operation, even
though public pressure tends to focus on scope 1 (on-site) water
consumption [14].
The use of renewable energy for data centers has been proposed

by several investigators, with an emphasis on the power distribution
network in conjunction with workload allocation. Kumar et al. [15]
investigated the use of renewable energy in conjunction with server
virtualization and showed potential energy savings of 10–28%,
depending on the virtualization scheme. Li et al. [16] suggested
that the tuning of intermittent load fluctuations and available inter-
mittent renewable energy sources reduces the capability to utilize
renewable energy with increasing energy capacity, indicating a uti-
lization of 54% and 5% for low and high energy capacity systems,
respectively. Wang and Ye [17] proposed that using renewable
energy in a microgrid works best with a cluster of data centers, uti-
lizing the advantages of cluster-wide workload allocation. Their
optimized model for a test case with three data centers indicates
that renewable energy consumption exceeded grid energy consump-
tion most of the time among the three data centers. Wan et al. [18]
extend this concept to internet data centers with the goal of mini-
mizing carbon footprint, demonstrating a reduction in emissions
exceeding 80% for their test case. This approach may be more

1Corresponding author.
Manuscript received October 23, 2023; final manuscript received February 27,

2024; published online March 25, 2024. Assoc. Editor: AbdMonem Beitelmal.

ASME Journal of Engineering for Sustainable Buildings and Cities MAY 2024, Vol. 5 / 021001-1
Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/sustainablebuildings/article-pdf/5/2/021001/7322499/jesbc_5_2_021001.pdf by Villanova U

niversity user on 30 July 2024

mailto:mmcmull1@villanova.edu
mailto:aaron.wemhoff@villanova.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4065053&domain=pdf&date_stamp=2024-03-25


viable since it is difficult to manage the load variations and power
availability for a single data center with on-site renewable energy
production [19].
The aforementioned studies are important in determining the

challenges posed by implementing on-site renewables, yet no
known study exists that shows the potential reductions in carbon
and water scarcity footprints at the U.S. county level when imple-
menting on-site solar and wind power for data centers. The
current study therefore provides the best-case values of combined
carbon and water scarcity footprint reductions based on geographic
location, with the guidance that the actual environmental benefits
will depend on workload variation and renewable power
availability.
A comprehensive study evaluating the impact of on-site renew-

able energy on the pairing of carbon and water scarcity footprints
that include indirect contributions from power generation sources
and grid electricity transfers is lacking in the literature. This is par-
ticularly true for water scarcity footprint in the data center industry,
where existing research is lacking in identifying mitigating strate-
gies. Therefore, this study fills an important research gap by calcu-
lating the reductions in these footprints at the U.S. county scale
when on-site solar or wind energy is implemented. The study spe-
cifically examines how changes in these footprints are affected by
geographic location, indicating, for the first time, specific metrics
to provide guidance on the anticipated environmental benefits
from an on-site power generation strategy.

2 Materials and Methods
Metrics have been widely used to measure the water consumption

and energy efficiency of data centers, namely power usage effec-
tiveness (PUE) and water usage effectiveness (WUE):

PUE =
Ptot

PIT
(1)

WUE =
Wsite

PIT
(2)

where Ptot, PIT, and Wsite represent total power draw, IT load, and
on-site water consumption, respectively. However, the holistic
data center water footprint includes the water consumed at the
power generation source and is represented by the metric

WUEsource = EWIF · PUE +WUE (3)

where the energy water intensity factor (EWIF) quantifies the
amount of water required to produce the electric power consumed
by the data center [13]. PUE is dimensionless, and the units of
EWIF, WUE, and WUEsource are L/kW h. The values of EWIF
depend on both electricity generation method and geographic loca-
tion [20].
The above performance metrics are commonly used to indicate

environmental impact by data centers, but they do not provide a
direct indication of neither carbon footprint nor water scarcity foot-
print. However, the metrics water scarcity usage effectiveness
(WSUE) and carbon usage effectiveness (CUE) are direct indicators
of the water scarcity and carbon footprints associated with data
center operation:

WSUE =
WSF
PIT

(4)

CUE =
Ctot

PIT
(5)

where WSF is the water scarcity footprint, and Ctot is the total facil-
ity carbon footprint. The above metrics in Eqs. (4) and (5) include
both direct and indirect sources. All metrics in Eqs. (1)–(5) are
calculated on an annual basis.

The most accurate approach to assessing WSUE and CUE is to
incorporate electricity transfers within the grid [21]. Carbon emis-
sions and water scarcity footprint are embedded in electricity gen-
eration through both fuel combustion and also in the materials
used to generate electricity, so it is important to use lifecycle calcu-
lations of emissions and water footprint. Furthermore, electricity
transfers in the grid should be incorporated to accurately estimate
the energy portfolio feeding a particular geographic location [22–
24]. The equations to calculate these metrics are

WSUE = ACFWUE + SWI · PUE (6)

CUE = CEF · PUE (7)

where ACF is the available water remaining (AWARE)-
characterization factor (CF) factor (a measure of water scarcity),
SWI is the scarce water index, and CEF is the carbon emissions
factor. Values of ACF, SWI, and CEF are based on geographic loca-
tion and may be estimated down to the U.S. county level. Equations
(6) and (7) indicate that knowledge of the geographical distribution
of these three factors enables location-dependent predictions of
grid-based water scarcity footprint and carbon emissions for a
data center with known PUE and WUE.
One can see from comparing Eqs. (1) and (2) to Eqs. (6) and

(7) that while PUE and WUE are related to data center environmen-
tal burden (i.e., reducing PUE and WUE reduce WSUE and
CUE), the true measure of environmental impact also requires
examination of ACF, SWI, and CEF. The use of on-site renewable
energy effectively adjusts SWI and CEF by replacing a portion of
upstream grid-based scarce water and carbon flows by their corre-
sponding lifecycle values associated with on-site solar or wind
energy.

2.1 Assessing Water Consumption From Power
Generation. To first assess the water scarcity and carbon footprints
of a data center, it is helpful to examine the water flows within the
grid to see which geographic areas are most impacted by water con-
sumption in electricity generation. The U.S. Energy Information
Administration’s (EIA) annual report includes every power genera-
tion source in the US that produces over 1 MW h of electricity
annually, as well as the geographic coordinates of these power
plants [25]. Using geolocation software, each power generation
plant is first assigned its home U.S. county. A power generation
mix is then calculated for each county. In this study, emissions gen-
eration resource integrated database (eGRID) subregion boundaries
and county boundary regions are taken from the U.S. Environmen-
tal Protection Agency (EPA) [26]. Counties are assigned to one of
the 26 eGRID subregion boundaries in the contiguous U.S. using
the geographic centroids of each county.
Peer et al. [20] provide EWIF values based on power generation

technology and location (eGRID subregion). Combining a county’s
power generation mix with the associated power generation EWIF
value yields a county-level EWIF value:

EWIF =
∑

i PiEWIFi∑
i Pi

(8)

where all recorded power generation sources i within the county are
used.
Figure 1 shows the EWIF values for each county based solely on

county power generation sources using data from Ref. [20], the
EIA [25], and Eq. (8). EWIF values contain a median value of
1.61 L/kW h. The figure shows that the highest EWIF values are
seen in the southwestern U.S., indicating large water loss in
power generation technologies in this region, which is likely due
to the high evaporation rate of water due to a dry climate. This con-
clusion indicates a larger contribution to indirect water consumption
by a data center compared to other parts of the country. The large
EWIF values in the southwestern U.S. are specifically due to the
prevalence of hydropower-based generation, which has an
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exceptionally large value (126 L/kW h in the Arizona-New Mexico
eGRID subregion) compared to values ranging from 0 to 13 L/kW h
for other generation technologies and/or eGRID subregions [20].
Since power can be transported across county borders and eGRID
subregion borders, the EWIF can be defined here as only a rough
approximation, but general trends at broader geographic scales
(i.e., relatively large EWIF values in the southwestern U.S.) are
independent of the inclusion of electricity transfers.

2.2 Assessing Water Scarcity. The amount of water available
for human use after environmental needs are met varies across each
U.S. county. Several areas across the country are experiencing
longer and more harsh droughts due to climate change, and it is
important to quantify the scarcity of water in our results [27]. Lee
et al. [28] created a U.S. model that quantifies water scarcity and
the impact of water consumption in different U.S. counties. The
AWARE-US CF, as the metric is named, compares regional
water availability to a reference value of 0.0093 m3/m2 ·month
and is bounded between 0.1 and 100 [29]. The factor is defined as

ACF =
AMDREF

AMD
(9)

where ACF is the county’s AWARE-US CF factor, AMD is water
availability minus demand, and the subscript REF denotes a univer-
sal constant reference value. The factor is geographic-specific and
applied within the calculations of WSUE (Eq. (6)). A high
AWARE-US CF value represents areas of high-water scarcity.
Figure 2 depicts the AWARE-US CF values for each county in
the U.S., showing the largest water scarcity in the south-central
and southwestern U.S., demonstrating a consistent trend with the
EWIF values in Fig. 1.

2.3 Assessing Carbon Emissions From Power Generation.
Embodied carbon in electricity flows is captured via the carbon
emission factor (CEF) and is used in the CUE calculation of Eq.
(7). CEF quantifies the amount of carbon emissions embodied in
unitary electricity consumption by the percentage of each category
of power production per county. The units for CEF are kg/kW h.
Values of CEF for each power generation source are based on

lifecycle emissions data by the Intergovernmental Panel on
Climate Change and the World Nuclear Association [30] and incor-
porate electricity transfers within the grid, culminating in scope 1
and 2 emissions due to data center operation [31].
Figure 3 shows the CEF values for each county. CEF scores

range from 0.007 kg/kW h to 0.902 kg/kW h, with a median
CEF score of 0.17 kg/kW h, and a standard deviation of
0.452 kg/kW h. The largest values appear in the mountain regions
(e.g., WY, UT, MT, SD, and ND) and near the western side of the
Appalachian Mountains (e.g., WV, KY, and TN). The highest CEF
values appear in the LGEE (Louisville Gas and Electric Company
and Kentucky Utilities Company) balancing authority, which con-
tains 83% coal power generation [32], where coal contains the
highest life cycle emission rates of all power generation sources [30].

2.4 WSUE and Carbon Usage Effectiveness Metrics With
On-Site Power Generation. The proposed solution to reduce data
center environmental impacts is the introduction of on-site solar or
wind power generation. Depending on the size, workload distribu-
tion, and electricity demand, each data center would be capable of
producing a different quantity of electricity on-site. For this study,
it is approximated that the hypothetical data center studied can
produce 25% of their electricity demand on-site, on average. This per-
centage is a reasonable approximation and is based off conservative
estimates from discussions with industry executives. Baseline
values of PUE and WUE are taken as 1.85 and 1.80, respectively,
as typical for many data centers. In this study, PUE and WUE are
constant, although for computer room air conditioner (CRAC)
cooling systems they are generally higher in the southern U.S. due
to the effects of external air temperature on CRAC coefficient of per-
formance [33] or the external wet-bulb temperature on the perfor-
mance of evaporative cooling towers [34]. The nonzero WUE
values largely stem from the use of evaporative cooling towers to
reject heat from a condenser water loop connected to a chilled
water system. Knowledge of PUE and WUE enable predictions of
scope 1 and 2 carbon and water scarcity footprints due to data
center operations since other factors are location dependent.
Calculations of WSUE and CUE via Eqs. (6) and (7), respec-

tively, are modified to enable evaluation of the effects of on-site
solar or wind power generation. Since PUE and WUE are taken

Fig. 1 EWIF values for every contiguous U.S. county
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to be constant, then only the factors related to electricity generation
source are altered. Equation (6) may therefore be modified as

WSUE = ACFWUE + SWIEFF · PUE (10)

where SWIEFF = {SWIGS, SWIGW} is the effective scarce water
index that incorporates the influence of on-site renewable energy.
The subscripts GS and GW represent the combination of grid

power with solar and wind power, respectively. The presence of
on-site renewable energy sources only impacts the quantity of
scarce water within electricity flows, thereby only altering SWI.
The scarce water index is therefore modified by adding the contri-
butions by the grid power sources as well as the on-site renewable
energy sources:

SWIGS = SWIGxG + EWIFS · ACF · (1 − xG) (11)

Fig. 3 CEF values for every contiguous U.S. county

Fig. 2 AWARE-US CF values for every contiguous U.S. county (adapted using Ref. [28] supplementary information dataset,
plotted via Tableau software)
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SWIGW = SWIGxG + EWIFW · ACF · (1 − xG) (12)

where xG is the fraction of energy consumed by the data center that
originates from the electric grid (off-site), and EWIFS and EWIFW
are the EWIF values associated with solar and wind energy, respec-
tively. The first term in Eqs. (11) and (12) therefore indicates the
contribution of scarce water flows from power generation by the
grid, whereas the second term incorporates the embodied water in
the on-site renewables (captured as EWIF) times the water scarcity
metric (ACF).
CUE can similarly be defined as

CUE = CEFEFF · PUE (13)

where CEFEFF = {CEFGS, CEFGW} is the effective CEF which
incorporates contributions by the grid and on-site renewable
sources:

CEFGS = CEFGxG + CEFS(1 − xG) (14)

CEFGW = CEFGxG + CEFW(1 − xG) (15)

where CEFS and CEFW are the emission factors associated with
solar and wind energy sources, respectively.
One can view Eqs. (11), (12) and (14), (15) as weighted contri-

butions of virtual scarce water and carbon flows from two
sources: the grid with known effective flow parameters of SWIG
and CEFG, and on-site solar or wind with effective flow parameters
SWIS or SWIW and CEFS or CEFW. The SWIS or SWIW parameter
represents the scarce water flow between on-site solar panels/wind
turbines and the data center, but since no grid electricity transfers
occur, then SWIS or SWIW reduces to the on-site scarce water
flow, captured as the water requirement for solar/wind power gen-
eration (EWIFS or EWIFW) times the local water scarcity factor
(ACF). The values of EWIFS and EWIFW are taken from Ref. [35]
as 0.338 L/kW h and 0.0547 L/kW h, respectively, and are
location-independent.

3 Results and Discussion
3.1 Improvement in WSUE. The improvement in WSUE

when implementing on-site solar power is defined as

IWSUE,S = (100%)
WSUEG −WSUEGS

WSUEG

( )
(16)

where the subscript GS indicates a value featuring a combination of
grid power (75%) and on-site solar (25%). The improvement is
therefore equal to the negative percentage change in WSUE.
Figure 4 depicts the distribution of IWSUE,S predictions. Green coun-
ties see a reduction in WSUE due to the addition of on-site renew-
able energy production, while red counties see higher WSUE
values. Many counties experience considerable improvements,
whereas others have larger WSUE values because of on-site
power generation.
Combining Eqs. (6), (10), (11), and (16) shows that the value of

IWSUE,S can be rewritten as

IWSUE,S = (100%)
(1 − xG)(PUE/WUE)((SWIG/ACF) − EWIFS)

1 + (PUE/WUE)(SWIG/ACF)

( )

(17)

Relations for wind energy can be derived by modifying Eqs. (16)
and (17) by replacing the subscript S with the subscript W, and
similar results are seen in the county distribution of IWSUE,W
(Fig. 5) as for IWSUE,S (Fig. 4). Since EWIFS and EWIFW are cons-
tant, then the largest benefit is seen in areas where the ratio
SWIG/ACF is largest, or areas with a relatively large SWIG and rel-
atively low ACF. Figure 6 depicts this relationship for varying ratios
of SWIG/ACF, pinpointing the possibility of increased WSUE when
the ratio falls below EWIFS. This ratio is therefore the key metric to
gauging the viability of reducing water scarcity footprint for a given
location. The figure also shows that more improvement is seen for
on-site wind power due to the lower EWIF of wind energy com-
pared to solar energy. Figure 7 provides the distribution of
SWIG/ACF, showing similar patterns as seen in Figs. 4 and 5, pro-
viding confidence in this conclusion. This ratio is physically defined
as being proportional to the scarce water draw from grid-based
power generation versus on-site scarce water generation, since the

Fig. 4 Percent improvement in WSUE after implementing 25% on-site solar energy production
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latter is defined as EWIFS · ACF (solar) or EWIFW · ACF (wind).
Figures 4 and 5, when compared to Fig. 2, show that counties
with low ACF and low SWIG have little benefit, which agrees with
Eq. (17), but counties with low ACF that border counties with
large ACF have maximum benefit since they have large SWIG
values due to some power draw from their adjacent water-scarce
counties. This is most readily seen in Humboldt County, CA,
which has a low ACF (0.178, first percentile of all contiguous U.S.
counties) but a high SWIG (124 L/kW h, 96th percentile) due to
its assignment to a balancing authority containing power
generation with high-water consumption.

3.2 Improvement in Carbon Usage Effectiveness. The defi-
nition of improvement in CUE values using on-site solar energy
follows the same approach as that for WSUE:

ICUE,S = (100%)
CUEG − CUEGS

CUEG

( )
(18)

where again the subscript S can be replaced with W to represent
wind energy. Here, Eq. (18) is combined with Eqs. (13) and (14)
to yield

ICUE,S = (100%) (1 − xG) 1 −
CEFS
CEFG

( )( )
(19)

It follows that the improvement in carbon footprint follows

ICUE,S ∝ 1 −
CEFS
CEFG

( )
(20)

Therefore, the largest improvement is seen where CEFG is large
as expected.
Figure 8 shows the CUE percent improvement values of each

U.S. county from 0% on-site to 25% on-site solar power generation
for data centers. As expected, almost every county saw significant
improvement in their CUE value when using on-site solar energy
as expected. Those counties seeing an increase in CUE may be
attributed to the fact that these counties produce power through
existing wind and hydropower energy, which both have lower
CEF values than solar energy. One can see that the amount of
improvement follows trends seen in Fig. 3 for CEFG distribution.
The benefits of on-site solar are nearly universal in nature except
for a few counties fed by large existing renewable energy sources
from the grid.
A Pareto front was generated based on the combined values of

CEFG and SWI/ACF for all contiguous U.S. counties. The front
was generated by finding the minimum combinations of 1/CEFG
and ACF/SWI as shown in Fig. 9. The list of optimal counties on
the front is provided in Table 1, which indicates that on-site renew-
able power should be incorporated into Sierra, Yuba, and
Humboldt counties in California to maximize the reduction in
WSUE, whereas incorporation into Mason, Russell, and Pulaski
counties in Kentucky will provide the largest reduction in carbon
footprint. These results are consistent with Figs. 7 and 8.

3.3 Case Study. A case study was performed on the publicized
implementation of 7.2 MW solar energy on an Iron Mountain data
center in Edison, NJ [5]. The array is reported to address

Fig. 5 Percent improvement in WSUE after implementing 25% on-site wind energy production

Fig. 6 Percent improvement in WSUE after implementing 25%
on-site solar or wind energy production for the system in this
study based on ratio SWIG/ACF
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“approximately 15 percent of the data center’s current energy load.”
The grid-based EWIF, CEF, ACF, and SWI associated with Middle-
sex County, NJ, are 1.65 L/kW h, 0.412 kg CO2e/kW h, 0.315, and
0.686 L/kW h, respectively, using methods outlined in Refs. [8,31].
The combined PUE and WUE values are generally not reported
[36], so typical values of 1.85 and 1.80 for PUE and WUE, respec-
tively, are used. Values of CEFS and EWIFS are taken as 0.0441 kg
CO2e/kW h [30] and 0.338 L/kW h [35], respectively. The resultant

predicted reductions in WSUE and CUE are 9% and 13% after
employing Eqs. (17) and (19), respectively.

3.4 Sensitivity Analysis. A sensitivity analysis was performed
to verify the assumption of fixed PUE and WUE in this study. Lei
and Masanet [37] provide estimated ranges of PUE and WUE for
various cooling system configurations and American Society for

Fig. 8 Percent improvement in CUE after implementing 25% on-site solar energy production. The implementation of wind
energy production produces similar results.

Fig. 7 Geographic distribution of SWIG/ACF
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Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)
climate zones. The average values of PUE and WUE were found
based on the statistical ranges provided for a cooling system con-
taining airside economization with adiabatic cooling and a water-
cooled chiller, typical of large data centers (case 1). The average
and standard deviation of this set of PUE and WUE values (one
for each of 15 ASHRAE climate zones) are used, along with the
mean and standard deviation of CEF, AWARE-CF, EWIF, and
SWI for all counties in the contiguous U.S. (Table 2). Uncertainty
quantification employed on Eqs. (6) and (7), respectively, yield

sWSUE=
�������������������������������������������������������������
(WUE·sACF )

2
+(ACF ·sWUE)

2
+(PUE·sSWI)

2
+(SWI·sPUE)2

√
(21)

sCUE =
��������������������������������
(PUE · sCEF)2 + (CEF · sPUE)2

√
(22)

where s represents the standard deviation, and the bar accent indi-
cates a mean value. The contributions to overall uncertainties in
WSUE and CUE are represented by the individual terms inside

the parentheses in Eqs. (21) and (22) and are shown in Table 3.
The table indicates that variations in ACF and SWI are dominant
contributors to the uncertainty in WSUE, and the variation in
CEF is the dominant contributor to the uncertainty in CUE. The
assumption of a fixed PUE and WUE are therefore justified for
this study since the geographic variations in ACF, SWI, and CEF
dominate over variations in PUE and WUE.

3.5 Discussion. This analysis provides a simple means to
predict the environmental benefits of incorporating on-site renew-
able energy, but other factors must also be considered. A full
STEEP (social, technological, environmental, economic, and polit-
ical) analysis [38] should be undertaken to identify all the pros and
cons of incorporating on-site renewables, where this study provides
calculations focused on the environmental category only. Further
work is required to examine the remaining STEEP aspects, in

Fig. 9 Pareto analysis of grid-based environmental carbon and
water scarcity characteristics for contiguous U.S. counties. The
optimal counties are indicated by the darker markers.

Table 1 Predicted optimal counties for on-site power generation

County FIPS SWIG/ACF (L/kW h) CEFG (kg CO2e/kW h)

Mason County, KY 21,161 2.14 0.902 (most CF reduction benefit)
Russell County, KY 21,207 2.49 0.890
Pulaski County, KY 21,199 2.62 0.853
Harlan County, KY 21,095 2.81 0.830
Whitley County, KY 21,235 2.85 0.783
Randolph County, MO 29,175 3.43 0.757
New Madrid County, MO 29,143 4.96 0.756
Le Flore County, OK 40,079 5.92 0.720
Cache County, UT 49,005 8.97 0.683
Madison County, ID 16,065 14.0 0.676
Lincoln County, WY 56,023 47.4 0.666
Park County, WY 56,029 66.0 0.655
Taos County, NM 35,055 114 0.576
Los Angeles County, CA 6037 116 0.531
Polk County, AR 5113 135 0.459
Iron County, UT 49,021 188 0.333
Sierra County, CA 6091 289 0.258
Yuba County, CA 6115 371 0.254
Humboldt County, CA 6023 691 (most WSF reduction benefit) 0.248

FIPS: Federal Information Processing Standards.

Table 2 Mean and standard deviation of parameters used in
sensitivity analysis

Parameter Mean Standard deviation

PUE 1.18 0.0361
WUE (L/kW h) 0.760 0.164
CEF (kg CO2e/kW h) 0.452 0.123
EWIF (L/kW h) 2.01 1.63
AWARE-CF 7.83 23.7
SWI (L/klW h) 21.3 65.4

Table 3 Contributions of parameter uncertainty to WSUE and
CUE

Parameter Metric Contribution

ACF WSUE (L/kW h) 18.0
WUE WSUE (L/kW h) 1.28
SWI WSUE (L/kW h) 77.2
PUE WSUE (L/kW h) 0.769
CEF CUE (kg CO2e/kW h) 0.145
PUE CUE (kg CO2e/kW h) 0.0163
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particular a through engineering economic analysis featuring return
on investment and payback period.
An additional extension of work can be to predict future changes

in water scarcity footprint and carbon footprint trends using histor-
ical data, but with assumptions required for missing data. The EIA
[25], for example, provides power generation data back to 2012,
and the Uptime Institute tracks changes in PUE [39]. Assumptions
will need to be made, however, regarding WUE due to a lack of
reporting data, and AWARE-CF factors have only been recently
reported.

4 Conclusions
This study uncovered the key parameters associated with the

existing grid-based environmental metrics as a first-order guide to
implementing on-site power generation. The study found that the
ratio of SWIG/ACF is a good indicator as to the anticipated improve-
ment in water scarcity footprint from implementing on-site renew-
able energy in a given location, with wind energy providing a larger
benefit than solar energy because of the former’s lower EWIF. The
study also found that the reduction in carbon footprint roughly cor-
responds to the magnitude of existing grid-based carbon emission
factor, as expected. The largest potential areas for improvements
in carbon footprint are in mountain regions, specifically WY, UT,
MT, SD, ND, WV, KY, and TN. The areas that can most benefit
from on-site renewables for decreasing their water scarcity footprint
are more scattered by generally fall in the western portions of the
U.S. or are low-ACF counties adjacent to high-ACF counties. The
information provided therein can aid data center owners and oper-
ators in site selection for new data centers and electrical system ret-
rofits for legacy data centers as part of a broader STEEP analysis.
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Nomenclature
s = standard deviation
x = fraction of flow
C = carbon emissions, kg CO2e
I = improvement
P = electric power consumption, kW h
W = water consumption, L

ACF = AWARE-CF factor
AMD = availability minus demand, L
CEF = carbon emission factor, kg CO2e/kW h

CRAC = computer room air conditioner
CUE = carbon usage effectiveness, kg CO2e/kW h
EIA = U.S. Energy Information Administration

eGRID = emissions generation resource integrated database
EPA = U.S. Environmental Protection Agency

EWIF = energy water intensity factor, L/kW h
PUE = power usage effectiveness
SWI = scarce water index, L/kW h
WSF = water scarcity footprint, L

WSUE = water scarcity usage effectiveness, L/kW h
WUE = water usage effectiveness, L/kW h

WUEsource = modified water usage effectiveness that includes
source water flows, L/kW h

Subscripts

G = grid
S = solar
W = wind
site = on-site component
tot = total

EFF = effective values
GS = combined grid and on-site solar power
GW = combined grid and on-site wind power
IT = information technology equipment

REF = reference
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