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Abstract Molecular dynamics (MD) has served as a powerful tool for designing
materials with reduced reliance on laboratory testing. However, the use of MD directly
to treat the deformation and failure of materials at the mesoscale is still largely beyond
reach. In this work, we propose a learning framework to extract a peridynamics model as
a mesoscale continuum surrogate from MD simulated material fracture data sets. Firstly,
we develop a novel coarse-graining method, to automatically handle the material fracture
and its corresponding discontinuities in the MD displacement data sets. Inspired by the
weighted essentially non-oscillatory (WENO) scheme, the key idea lies at an adaptive
procedure to automatically choose the locally smoothest stencil, then reconstruct the
coarse-grained material displacement field as the piecewise smooth solutions containing
discontinuities. Then, based on the coarse-grained MD data, a two-phase optimization-
based learning approach is proposed to infer the optimal peridynamics model with damage
criterion. In the first phase, we identify the optimal nonlocal kernel function from the data
sets without material damage to capture the material stiffness properties. Then, in the
second phase, the material damage criterion is learnt as a smoothed step function from the
data with fractures. As a result, a peridynamics surrogate is obtained. As a continuum
model, our peridynamics surrogate model can be employed in further prediction tasks
with different grid resolutions from training, and hence allows for substantial reductions
in computational cost compared with MD. We illustrate the efficacy of the proposed
approach with several numerical tests for the dynamic crack propagation problem in a
single-layer graphene. Our tests show that the proposed data-driven model is robust and
generalizable, in the sense that it is capable of modeling the initialization and growth of
fractures under discretization and loading settings that are different from the ones used
during training.
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1 Introduction

Detection and prediction of material damage progression attract lots of interest from the
broad scientific and engineering community[1–10]. Physically, the propagation of cracks results
from a long-term physical process with its origin in the atomistic scale, which often requires a
micro-structural model such as molecular dynamics (MD). However, although MD has made
enormous advances in capabilities through better algorithms, better interatomic potentials,
and improvements in computational power, its direct employment in treating the deformation
and failure of materials at the mesoscale is still largely beyond reach. At the mesoscale and
above, a continuum model of mechanics is often required in practice. This fact creates the
need for homogenized models that act at larger scales and that, combined with new advanced
architectures, allow for fast and accurate predictions of material deformation and fracture[11–21].

In this paper, we aim to address the question of how to extract coarse-grained measurements
and a homogenized surrogate model from MD simulations, which is able to capture material
deformation and the nucleation and growth of fractures. Nonlocal models are among the best
candidates for this task[22]. In the context of homogenization, nonlocal models are characterized
by integral operators (as opposed to differentiable operators) that embed time and length scales
in their definition. Therefore, they are able to capture long-range effects that classical partial
differential equation (PDE) models fail to describe[23], which makes nonlocal models viable
alternatives to PDE models when the effects of the small-scale behavior of a system affect its
global state[22,24–31]. For monitoring and predicting material fractures, because the nonlocal
viewpoint avoids classical notions like deformation gradient, nonlocal models allow a natural
description of processes requiring reduced regularity in the relevant solution[32–33]. As such,
the nonlocal continuum mechanics model, in the form of peridynamics[23,31,34–41], provides a
unified modeling of continuum media where continuity and complex material damage modes
can be captured autonomously.

In peridynamics and the general nonlocal models, constitutive laws take the form of in-
tegrand functions, whose functional form is often justified a posteriori, which makes rigorous
calibration and validation challenging and time-consuming. On the other hand, although the
nonlocal constitutive laws must be consistent with the classical effective properties, they con-
tain information about the small-scale response of the system and must be chosen to reproduce
this response with the greatest fidelity. Therefore, it is desired to extract an optimal integrand
function from small-scale data, such that the calibrated nonlocal model reproduces the mate-
rial responses and can further serve as a homogenized surrogate for future material deformation
and fracture prediction tasks[42–43]. Recently, with the explosion of machine learning, optimized
nonlocal models have been designed with the purpose of accurately reproducing observed coarse-
grained behavior and predicting unseen behavior with the learnt model. We refer the readers to
the works[44–49] for several examples of the use of optimization-based machine learning for the
design of homogenized nonlocal operators and the rigorous analysis of its learning theory[49–50].

Although successful in providing optimal nonlocal surrogates to the homogenization prob-
lem, to the authors’ best knowledge, none of these approaches addresses the challenge of cap-
turing the main features of dynamic fracture that are seen in small-scale data. Fundamental
challenges are still present, mainly due to the two difficulties. First, when mapping the MD
measurements onto a coarser grid, coarse-graining methods can use the mean atomic velocities
weighted by a smoothing function[51]. In a nonlocal setting, a smoothed displacement field can
be shown to evolve according to the peridynamic linear momentum balance[43,46]. However,
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once the material fracture occurs, such a weighted average approach might overly smooth the
displacement field and introduce errors near cracks in the coarse-grained data set. Second, in
peridynamics the material damage is often described by breaking bonds. Therefore, the inte-
grand functions present jumps near the damage criterion, which results in nonsmooth losses in
the optimization problem and hinders the application of a suite of continuous optimization tech-
niques. Herein, we address these two challenges and present a complete workflow demonstrating
how to obtain large-scale nonlocal descriptions that capture MD behavior with fractures.

To accomplish this, we develop a novel coarse-graining method which is inspired by the
weighted essentially non-oscillatory (WENO) scheme, and extend the machine learning tech-
nique in our previous work[46] to identify a smoothed damage criterion together with optimal
nonlocal kernel functions. We summarize our main contributions as below.

(I) We develop a novel coarse-graining approach from micro-scale fracture measurements,
to automatically choose a locally smoothest stencil and capture the displacement disconti-
nuities. While the existing coarse-graining techniques use the same smoothing stencil every-
where[43,46,51], our proposed method chooses the locally smoothest stencil to construct the
coarse-grained material displacement field. As such, coarse-grained measurements are obtained
as piecewise smooth solutions containing discontinuities without overly smoothing the crack
pattern.

(II) We propose a new two-step optimization strategy, and identify the best upscaled sur-
rogate in the form of peridynamics. Without prior knowledge of the material properties, the
resultant peridynamics model describes the material deformation together with the nucleation
and growth of fractures.

(III) The optimal nonlocal model generalizes well to fracture patterns that are substantially
different from the ones used for training. The optimal model also enables extrapolation to
longer time simulations and a multiscale capability to predictions across resolutions.

We adopt peridynamics as the continuum model because of its natural compatibility with
the physical nature of cracks as discontinuities. In contrast, the local theory of solid mechanics
uses PDEs, which fail to apply on the surfaces of an emergent or growing crack, on which the
deformation field is not differentiable. The basic equations of other nonlocal theories, such as
Eringen’s[30], similarly contain partial derivatives with respect to the spatial coordinates, and
therefore are also not directly applicable to fracture. The field equations of peridynamics do
not contain these partial derivatives, and thus treat fracture on the same mathematical basis
as continuous deformations.

This paper is organized as follows. Section 2 shows how to obtain an adaptive stencil in
the form of a smoothness indicator function, to extract coarse-grained measurements from MD
displacements with fractures. In Section 3, we summarize the linear peridynamic solid (LPS)
model, the treatment of material fracture and the handling of free surfaces, and the discretiza-
tion technique used in this work. Section 4 presents our two-step learning approach consisting
of a kernel learning step and a damage criterion learning step. Section 5 verifies the learning
technique for MD displacements and studies the generalizability of the resultant model. On a
single-layer graphene, we demonstrate the efficacy of our workflow by identifying an optimal
two-dimensional (2D) nonlocal model and employing this model in complex prediction tasks.
In particular, we illustrate several properties including generalization with respect to loadings,
domain settings, crack shapes, and grid resolutions. Section 6 summarizes our contributions
and provides future research ideas.

2 Coarse-graining of MD displacement with damage

In this section, we introduce the coarse-graining method to map the displacement field data
from MD simulations into a larger-scale discretized data cloud. For materials without fracture,
in Refs. [43] and [46], a nonlocal coarse-graining method was proposed. In this method, the
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coarse-grained displacement for each particle is defined as a weighted average of the microscale
displacements in its neighborhood. As such, a smoothed displacement field is obtained, which
preserves a linear momentum balance as a consequence of the momentum balance for the atoms.

However, this coarse-graining method hides a pitfall: once the material fracture occurs
when introducing discontinuities in the displacement field, the weighted average approach would
overly smooth the displacement field and smudge the crack pattern. To resolve this challenge,
in this section, we will extend the coarse-graining method to an adaptive approach, so as to
automatically handle the material fracture and its corresponding discontinuities in the MD
displacement data set.

To introduce the coarse-graining method, we consider the MD data set as an assembly of S
mutually interacting particles. Then, we define the mass of each mutually interacting particle
as Mε (ε = 1, 2, · · · , S), the reference positions of these particles as Xε, and the displacement
vectors as U ε(t). Each particle is subject to a prescribed external force Bε(t).

The coarse-grained measurements can be defined by choosing a compactly supported func-
tion ω(x, ·) for each material point x ∈ R

d, such that

∫

Rd

ω(x,Xε)dx = 1, ω(x,Xε) = 0 if |x − Xε| > R. (1)

Here, R is a pre-chosen hyperparameter, representing the coarse-grained radius. Then, the
smoothed material density and body force density are, respectively, expressed as

ρ(x) =
S∑

ε=1

ω(x,Xε)Mε, b(x, t) =
S∑

ε=1

ω(x,Xε)Bε. (2)

Correspondingly, the smoothed displacement field at the material point x is obtained by

u(x, t) =
1

ρ(x)

S∑

ε=1

ω(x,Xε)MεU ε(t). (3)

In Ref. [46], the authors proposed to employ a general cone-shaped weighted function for all
material points, by defining

ω(xi,Xε) :=
τ(xi,Xε)∑

j

τ(xj ,Xε)
, (4)

where τ(x,X) = max{0, R− |X − x|}. Such an approach is found to be effective for materials
without fracture, where the displacement field is continuous. Then, in Ref. [46], a data-driven
surrogate model was built from this coarse-grained displacement field, which has successfully
captured the material properties as well as a constitutive law acting at a larger scale.

However, once the material fracture occurs, the smooth weight function such as the one
in Eq. (4) would smudge the crack pattern and hence may compromise the reliability of the
resultant surrogate model. As shown in Fig. 1(a), coarse-grained points appear on the middle
of the crack, showing the effect of overly-smoothing the displacement field.

To provide coarse-grained displacement fields for both damaged and undamaged material
regions, we propose to adjust the smoothing function ω(x,Xε) when the material point x is
close to the crack. Intuitively, the weight function should choose the locally smoothest stencil
and avoid crossing discontinuities in the averaging procedure as much as possible. The simi-
lar idea was employed in the essentially non-oscillatory (ENO) and WENO methods[52–53], to
develop finite difference schemes for PDE problems with piecewise smooth solutions contain-
ing discontinuities. Inspired by the WENO methods, our key idea is to assign an additional
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Fig. 1 An example of the vanilla coarse-graining method developed in Ref. [43] and our proposed
approach, in handling the MD measurements with a crack. Small blue points represent the
MD particles, and red dots stand for coarse-grained points. The results of (a) are obtained
from the vanilla coarse-graining method with a weight function ω, and those of (b) are obtained
from our proposed coarse-graining method with an adaptive weight function ω̂ (color online)

smoothness indicator function α(x,Xε) to each pair of continuum material point x and MD
particle Xε, and modify the weight function ω(x,Xε) as

ω̂(x,Xε) =
ω(x,Xε)α(x,Xε)∫

Rd ω(x,Xε)α(x,Xε)dx
. (5)

When the crack intersects with the bond between x and Xε, the displacement field between
x and Xε contains discontinuity. One should use less information from Xε to calculate the
weighted average on x, by taking the smoothness indicator function α(x,Xε) ≈ 0. That means,
an adaptive procedure is required, to detect if there is a displacement jump between x and Xε.

As demonstrated in Fig. 2, we construct the smoothness indicator function α(x,Xε) with
the following procedure. First, we project all the MD particles within a distance of R from
x to the line segment that connects x and Xε. For each MD particle Xi, we denote the

projected point as X̃i, and calculate its projected position variable di, as the distance is from

x to X̃i. The displacement vector U i(t) on Xi is also projected, and its component along
the segment (x − Xε) is denoted as Ui. Next, we select all the particles with their projections
lying between x and Xε, to form a set of data pairs D = {(di, Ui)}. When plotting Ui as a
function of di, the curve will present a jump when there is a crack intersecting the segment
between x and Xε, and such a jump would naturally divide the set D as two sets, with each
set representing a smooth curve. Therefore, our goal is then to identify the discontinuity of
U(d) and define the smoothness indicator function according to it. Numerically, we loop over
all possible combinations of splitting the data pair set D into two sets, D1 and D2, such that
D1 ∪ D2 = D and D1 ∩ D2 = ∅. Then, we perform linear regressions on D1 and D2,

kβ , bβ = argmin
k,b

∑

(di,Ui)∈Dβ

|kdi + b − Ui|
2
, β = 1, 2 (6)

to obtain a fitted line for each set. In the meantime, we also perform a linear regression on
the entire displacement data set D, and obtain the fitted parameter set (k, b). Denote the total
squared error ε(D1,D2) associated with D1 and D2 as

ε(D1,D2) :=
2∑

β=1

∑

{(di,Ui)}∈Dβ

(kβdi + bβ − Ui)
2, (7)

and a squared error for the whole data set D as

ε0 :=
∑

{(di,Ui)}∈D
(kdi + b − Ui)

2. (8)
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Fig. 2 Schematics and examples of calculation for the smoothness indicator function α(x, Xε): (a)
a demonstration of the projection of MD points between x and Xε; (b) when the projected
displacement field is continuous, the smoothness indicator α(x, Xε) stays close to 1 since
ε(D1,D2) is close to ε0; (c) when material fracture occurs and the projected displacement field

is discontinuous (with a jump at d = 0.5),
ε(D1,D2)

ε0
reaches the minimum when D1 and D2

both consist of a smooth curve, and we have α(x, Xε) ≈ 0 (color online)

Then, we define the smoothness indicator function α(x,Xε) as

α(x,Xε) :=

min
(D1,D2)

ε(D1,D2)

ε0
. (9)

Intuitively, when there is no material fracture, and hence U(d) is a smooth curve with-
out discontinuity, we anticipate to have (kβ , bβ) ≈ (k, b) for β = 1, 2. As a result, we have
ε(D1,D2) ≈ ε0 and α(x,Xε) ≈ 1. In this case, the adjusted weight function ω̂(x,Xε) will
stay the same as the original weight function, and hence our smoothness indicator function
will not alter the coarse-graining approach for materials without fracture. Figure 2(b) shows
an example with continuous displacement. It can be observed that ε(D1,D2) stays roughly the
same and close to ε0 for different partitions. On the other hand, when fracture occurs, ε(D1,D2)
would achieve its minimum when both D1 and D2 consist of a smooth curve. That means, D1

and D2 are separated by the crack. In this case, we will have min
(D1,D2)

ε(D1,D2) < ε0 and hence

α(x,Xε) < 1. Therefore, the adjusted weight function ω̂(x,Xε) would automatically reduce
the weights of those particle points crossing discontinuities, so as to reduce the overly smoothing
near cracks. Figure 2(c) presents an example where the displacement is piecewise constant with
a jump at d = 0.5, demonstrating that the smooth indicator would reach its minimum when
neither D1 nor D2 contains the displacement jump.

Once the adjusted weight functions are obtained, the smoothed mass density, body force
density, and displacement can be, respectively, calculated as

ρ(x) =
S∑

ε=1

ω̂(x,Xε)Mε, (10)

b(x, t) =
S∑

ε=1

ω̂(x,Xε)Bε, (11)
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u(x, t) =
1

ρ(x)

S∑

ε=1

ω̂(x,Xε)MεU ε(t). (12)

The result of this modified weight function is demonstrated in Fig. 1(b). One can see that
the coarse-grained points (red dots) are almost aligned with the crack interface, verifying the
efficacy of our modified coarse-graining method in handling the MD data set with cracks.

Similar to the derivation in Ref. [46], we point out that our coarse-grained formulation
naturally induces a nonlocal equation of u. The goal of the present work is therefore to identify
an optimal nonlocal model in the form of peridynamics, which faithfully represents given MD
displacements under a given set of loading conditions, and is generalizable to further prediction
tasks for analysis of material deformation and crack propagation phenomena.

3 A peridynamics model with brittle fracture

In the previous section, a data set of function trios, T := {(ρm,um, bm)}M
m=1, were derived

from our coarse-grained formulation, such that each trio contains a coarse-grained density field
ρm(x), a body force density bm(x, t), and their corresponding displacement field um(x, t) for
the material point x ∈ Ωm ⊂ R

d and t ∈ [0, Tm]. Herein, we note that each sample may
have different spatial domains Ωm and observation ranges Tm. We propose to learn a nonlocal
momentum balance equation based on these function trios in the form of peridynamic equation
of motion[23], to provide a continuum model with direct description of fracture within the basic
field equations. In peridynamics, each x interacts through bond forces with other material
points y within a neighborhood with the radius δ known as the family of x, denoted by Bδ(x).
Here, the horizon δ determines the extent of the nonlocal interactions. The equation of motion
for the material point x is given as

ρ(x)
∂2u(x, t)

∂t2
=

∫

Bδ(x)

f(y,x, t)dy + b(x, t). (13)

A material model in peridynamics supplies values of f(y,x, t) in terms of the deformations
of the families of x and y and any other relevant variables such as temperature[54]. Peridynam-
ics can model fracture because the equation of motion (see Eq. (13)) is an integro-differential
equation that does not involve the partial derivatives of displacement with respect to position,
which leads to a lower requirement of the solution regularity. Moreover, many material models
have been developed for peridynamics, and any material model from the local theory can be
translated into a peridynamic form[55]. For a more thorough introduction and review about
peridynamics, we refer interested readers to Ref. [31].

Peridynamics treats the internal forces in a body as a network of nonlocal bond forces.
Although the stress tensor is not used explicitly in peridynamics, it is often useful to compute
a stress tensor from these bond forces. This can be accomplished using the peridynamic stress
tensor[56]. An approximate form of this tensor that is less general but easier to compute is
called the partial stress tensor[57]. Either of these tensors, in essence, sums up the bond force
vectors per unit area through any plane that contains a given point x.

In this work, we aim to address the question of how to use MD to obtain a peridynamic
material model that is able to treat material deformation and the nucleation and growth of
fractures. With a purpose of demonstration and without loss of generality, we consider a 2D
simulation problem (d = 2) in a single-layer graphene, and concern small deformations in
the linear regime of material response, although the algorithm may be generalized to finite
deformations and three-dimensional (3D) cases. In Ref. [46], a data-driven 2D LPS model[54]

under the plane-stress assumption was found to adequately represent the material response from
MD simulations on a graphene sheet without fracture. Inspired by such preliminary results, in
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this work, we also employ the LPS model as the base model, and further consider learning of
material failure from coarse-grained MD data sets. In this section, we first briefly introduce the
LPS model without material fracture in Subsection 3.1. Then, we extend the model to describe
material fracture and handle the imposition of traction loads as fracture surfaces open up in
Subsection 3.2. Then, in the next section, we will describe our learning algorithm.
3.1 LPS model

In this section, we summarize the mathematical formulation for the LPS model[58–60]. The
LPS model is a prototypical state-based model which can be seen as a nonlocal extension of the
linear elasticity model. It is suitable to describe isotropic elastic materials under infinitesimal
deformation. Compared with the previously developed bond-based peridynamic models[23,61],
the LPS model has advantages in the fact that it is not restricted to a Poisson’s ratio of 1/4,
which is important for our application since Poisson’s ratio of graphene is found to be negative
from MD and molecular statistics simulations[62–63].

Consider a body occupying the domain Ω ⊂ R
d, and let θ be the nonlocal dilatation, general-

izing the local divergence of the displacement. In this section, we consider the material without
damage, with fully prescribed Dirichlet-type boundary conditions, and will further extend the
discussion to more general boundary conditions and brittle fractures in Subsection 3.2. Here,
we note that in nonlocal problems, unless otherwise stated, the boundary conditions should
no longer be prescribed on the sharp interface ∂Ω, but on a collar of thickness of at least δ
surrounding the domain Ω, which we denote as

BΩ := {x /∈ Ω|dist(x, ∂Ω) < 2δ} .

Given nonlocal boundary conditions prescribed on the nonlocal volumetric boundary domain
(or simply nonlocal boundary),

u(x, t) := uD(x, t), x ∈ BΩ, t ∈ [0, T ],

and the initial velocity φ(x) and displacement ψ(x) for x ∈ Ω ∪ BΩ at t = 0, the peridynamic
operator in the LPS model is given by

LK [u](x, t) := −
C1

m

∫

Bδ(x)

(λ − µ)K(|y − x|)(y − x)(θ(x, t) + θ(y, t))dy

−
C2

m

∫

Bδ(x)

µK(|y − x|)
(y − x) ⊗ (y − x)

|y − x|
2 (u(y, t) − u(x, t))dy, (14)

and the nonlocal dilatation is defined via

θ(x, t) :=
d

m

∫

Bδ(x)

K(|y − x|)(y − x) · (u(y, t) − u(x, t))dy, (15)

where m :=
∫

Bδ(0)
K(|z|)|z|2dz is the weighted volume, λ is Lamé’s first parameter, and µ is

the shear modulus. To recover parameters for 3D linear elasticity, one should take C1 = 3,
C2 = 30; whereas for 2D problems, C1 = 2, C2 = 16. Here, we note that m is determined
by the horizon size δ and the influence function K. We use the subscript K in the nonlocal
operator LK [u](x) to emphasize the operator’s dependence on the influence function K. Then,
the time-dependent LPS problem is given by





ρ(x)
∂2u(x, t)

∂t2
+ LK [u](x, t) = b(x, t), (x, t) ∈ Ω × [0, T ],

u(x, t) = uD(x, t), (x, t) ∈ BΩ × [0, T ],

u(x, 0) = ψ(x), x ∈ Ω ∪ BΩ,

u̇(x, 0) = φ(x), x ∈ Ω ∪ BΩ.

(16)
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Note that our learning algorithm is compatible with other types of boundary conditions in BΩ.
Here, we focus on the Dirichlet-type boundary condition in this work for its simplicity.

To discretize the above LPS model, we employ the optimization-based meshfree quadrature
rule developed in Refs. [64]–[71]. Suppose that the values of function trios ρ(x), u(x, t), and
b(x, t) are provided on a set of coarse-grained material points χ := {xi}

I
i=1 ⊂ Ω∪BΩ and time

instances tn = n∆t, n = 0, · · · , T/∆t. Although the machine learning algorithm as well as the
quadrature rule is compatible with the general non-uniform grids, in this work we consider the
uniform grids with the grid size h and the uniform time steps with the size ∆t, for simplicity.
We write the discretized approximation of LK as

Lh
K [u](xi, t

n) := −
C1

mi

∑

xj∈Bδ(xi)∩χ

(λ − µ)Kij(xj − xi)(θ
h(xi, t

n) + θh(xj , t
n))Wj,i

−
C2

mi

∑

xj∈Bδ(xi)∩χ

µKij
(xj − xi) ⊗ (xj − xi)

|xj − xi|
2 (u(xj , t

n) − u(xi, t
n))Wj,i, (17)

θh(xi, t
n) :=

d

mi

∑

xj∈Bδ(xi)∩χ

Kij(xj − xi) · (u(xj , t
n) − u(xi, t

n))Wj,i, (18)

where Kij := K(|xj − xi|), and mi :=
∑

xj∈Bδ(xi)∩χ

Kij |xj − xi|
2Wj,i. The quadrature weights

Wj,i are associated with a local neighborhood of particles for each discretization point xi,
generated by local optimizations to make the approximation rule exact for certain classes of
functions. For each xi ∈ χ ∩ Ω, we solve for Wj,i via

argmin
{ωj,i}

∑

xj∈χ∩Bδ(xi)\{xi}
W 2

j,i s.t.
∑

xj∈Bδ(xi)

q(xi,xj)Wj,i =

∫

Bδ(xi)

q(xi,y)dy, ∀ q ∈ Vxi
, (19)

where “s.t.” represents “subject to”, and Vxi
denotes the space of functions which should be

integrated exactly. Following Ref. [65], in this work, we take Vxi
:=

{
q(y − xi) = p(y−xi)

|y−xi|3
∣∣p ∈

P5(R
d) such that

∫
Bδ(0)

q(y)dy < ∞
}
, and denote P5(R

d) as the space of quintic polynomials.

As the horizon size δ vanishes, this discretization preserves the consistency in the limit to the
local solution[64–65]. Moreover, we point out that the quadrature weights, Wj,i, only depend
on the grid set χ, and they are invariant of the influence function K. Hence, in our learning
algorithm, one only needs to generate the quadrature weights and solves the local optimization
problem (19) once in the preprocessing step.

For the dynamic peridynamics model, to discretize in time we apply the central difference
time stepping scheme. With the time step size ∆t, at the (n + 1)th time step, one can solve for
the displacement un+1

i ≈ u(xi, t
n+1) following

{
ρ(xi)ü

n
i + Lh

K [u](xi, t
n) = b(xi, n∆t) for xi in Ω ∩ χ,

un+1
i = uD(xi, (n + 1)∆t) for xi in BΩ ∩ χ,

(20)

where Lh
K is the discretized nonlocal operator as defined in Eq. (17), and the acceleration ün

i is
estimated via the central difference scheme,

ün
i :=

un+1
i − 2un

i + un−1
i

∆t2
. (21)

As the initial conditions, we set u0
i = ψ(xi) and

u1
i − u0

i

∆t
= φ(xi) for xi ∈ (BΩ ∪ Ω) ∩ χ.
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3.2 Peridynamics formulation for brittle fractures

One of the main appeals of peridynamics is to handle fracture problems, where free surfaces
are associated with the evolution of a fracture surface. In this section, we consider the LPS
model with free surfaces, then apply it to the treatment of brittle fractures.

To describe the free surfaces associated with the time evolution of a fracture surface, we now
consider general mixed boundary conditions: ∂Ω = ∂ΩD ∪ ∂ΩN and (∂ΩD)o ∩ (∂ΩN )o = ∅.
Here, ∂ΩD and ∂ΩN are both curves. ∂ΩN is the (possibly time-dependent) sharp crack surface
evolving with the material fractures, and a free surface boundary condition is applied on it. To
define a Dirichlet-type constraint, we denote

BΩD := {x /∈ Ω|dist(x, ∂ΩD) < 2δ},

and assume that the value of u(x, t) = uD(x, t) is given on x ∈ BΩD. For notation simplicity,
we denote ΩD := Ω ∪ BΩD. To apply the free surface boundary condition, we denote

IΩN := {x ∈ Ω|dist(x, ∂ΩN ) < δ}, IΩ := {x ∈ Ω|dist(x, ∂Ω) < δ}.

Unless stated otherwise, in this paper we further assume sufficient regularity in the boundary
region IΩ that there exists a unique orthogonal projection of x onto ∂Ω, which is the closest
point on ∂Ω to x, and we denote this projection as x. Then, one has x − x = sxn(x) for
x ∈ IΩN , where 0 < sx < δ. Here, n denotes the normal direction pointing out of the domain
for each x ∈ IΩN , and let p denote the tangential direction. In our numerical solver, we treat
x with the free surface boundary condition if the projection of x is in ∂ΩN . Otherwise, we use
the Dirichlet-type boundary condition at x.

In peridynamics, material damage is incorporated into the constitutive model by allowing the
bonds of material points to break irreversibly. To model brittle fracture in the LPS model, we
employ a smoothed critical stretch criterion, where weakening occurs when a bond is extended
beyond some predetermined critical bond deformed length[39,65,72]. In particular, a scalar
state function γ(x,y, t) is defined and takes values in the interval [0, 1], to describe the bond
weakening and breakage through the crack growing,

γ(x,y, t) :=
1

2

(
− tanh

(maxτ∈[0,t] S(x,y, τ) − s0

η

)
+ 1

)
, (22)

where

S(x,y, τ) :=
|x − y + u(x, τ) − u(y, τ)|

|x − y|
− 1, (23)

and s0 is the critical stretch criterion depending on the material. γ(x,y, t) is a history-
dependent function, i.e., a bond can never recover once it exceeds the critical stretch criterion.
An illustration of γ can be visualized in Fig. 3, where a hyperparameter η ¿ 1 can be tuned to
control the level of smoothness. When γ(x,y, t) = 1, the bond between material points x and y

is considered “intact”, and the change of displacement on material point y may have an impact
on the displacement at x. When the stretch S(x,y, τ) exceeds the critical criterion s0 for some
time τ < t, the material gets damaged, and we have γ(x,y, t) < 1. As the stretch further
increases, finally γ(x,y, t) = 0, and we consider the bonds between x and y as fully “broken”.
Instead of defining γ as a step function following Ref. [65], in Eq. (22) we allow the weakening of
force scalar within small ranges of excessive bond stretch values, and set γ as a smoothed step
function. As shown in Ref. [39], such a smoothed state function would impose the continuity of
the learnt bond force f(x,y, t) in our peridynamics model, and guarantee the well-posedness
of the peridynamics model as a dynamic system. On the other hand, a continuous formulation
of the damage factor γ would result in a continuous optimization problem, and allow generic
optimization routines to be used in the training procedure.
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Fig. 3 An illustration of the smoothed scalar state function γ with the tunable parameter η =
{0.05, 10−8} (color online)

With the state function γ, we treat the time-evolving fracture as free surfaces and employ
the following formulations:





ρ(x)
∂2u(x, t)

∂t2
+ LKN [u](x, t) = b(x, t), (x, t) ∈ Ω × [0, T ],

u(x, t) = uD(x, t), (x, t) ∈ BΩD × [0, T ],

u(x, 0) = ψ(x), x ∈ Ω ∪ BΩ,

u̇(x, 0) = φ(x), x ∈ Ω ∪ BΩ.

(24)

Here, the modified LPS operator LKN follows the formulation[65,71],

LKN [u](x, t) := −
C1

m

∫

Bδ(x)

(λ − µ)K(|y − x|)γ(x,y, t)(y − x)(θcorr(x, t) + θcorr(y, t))dy

−
C2

m

∫

Bδ(x)

µK(|y − x|)γ(x,y, t)
(y − x) ⊗ (y − x)

|y − x|
2 (u(y, t) − u(x, t))dy

−
2C1θ

corr(x, t)

m

∫

Bδ(x)

(λ − µ)K(|y − x|)(1 − γ(x,y, t))(y − x)dy

−
C2θ

corr(x, t)

2m

∫

Bδ(x)

(λ + 2µ)K(|y − x|)(1 − γ(x,y, t))

·
((y − x) · n)((y − x) · p)2

|y − x|
2 ndy

+
C2θ

corr(x, t)

2m

∫

Bδ(x)

λK(|y − x|)(1 − γ(x,y, t))
((y − x) · n)3

|y − x|
2 ndy (25)

with

θcorr(x, t) :=
d

m

∫

Bδ(x)

K(|y − x|)γ(x,y, t)(y − x) · M(x) · (u(y, t) − u(x, t))dy, (26)

M(x, t) :=
( d

m

∫

Bδ(x)

K(|y − x|)γ(x,y, t) (y − x) ⊗ (y − x) dy
)−1

. (27)

As such, the LPS model provides an approximation for the corresponding linear elastic model
with free surfaces in the case of linear displacement fields. We notice that when all bonds in
Bδ(x) are intact, i.e., the material point x is sufficiently far away from the free surface, we have
γ(x,y, t) = 1 for all y ∈ Bδ(x). Then, Eq. (25) yields LKN = LK , and the original momentum
balance and nonlocal dilatation formulation in the LPS model are obtained. Therefore, Eq. (25)
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provides a unified mathematical framework which automatically captures material deformation
and the evolution of cracks as free surfaces.

We now extend the optimization-based quadrature rule and the central difference time-
stepping method introduced in Subsection 3.1, to the LPS model (25) with fracture. Particu-
larly, at the (n + 1)th time step, we approximate the state function γ(xi,xj , t

n) via

γn
ij :=

1

2

(
− tanh

( max
06m6n

Sm
ij − s0

η

)
+ 1

)
, (28)

where Sm
ij :=

|xi−xj+um
i −um

j |
|xi−xj | − 1. Then, the approximated displacement field un+1

i ≈

u(xi, t
n+1) can be solved via the following formulations:

{
ρ(xi)ü

n
i + Lh

KN [u](xi, t
n) = b(xi, n∆t) for xi in Ω ∩ χ,

un+1
i = uD(xi, (n + 1)∆t) for xi in BΩD ∩ χ,

(29)

where

Lh
KN [u](xi, t

n) := −
C1

mi

∑

xj∈Bδ(xi)∩χ

(λ − µ)Kijγ
n
ij(xj − xi)

(
(θcorr)n

i + (θcorr)n
j

)
Wj,i

−
C2

mi

∑

xj∈Bδ(xi)∩χ

µKijγ
n
ij

(xj − xi) ⊗ (xj − xi)

|xj − xi|
2 (un

j − un
i )Wj,i

−
2C1(θ

corr)n
i

mi

∑

xj∈Bδ(xi)∩χ

(λ − µ)Kij(1 − γn
ij)(xj − xi)Wj,i

−
C2(θ

corr)n
i

2mi

∑

xj∈Bδ(xi)∩χ

(λ + 2µ)Kij(1 − γn
ij)

·
((xj − xi) · n

n
i )((xj − xi) · p

n
i )2

|xj − xi|
2 nn

i Wj,i

+
C2(θ

corr)n
i

2mi

∑

xj∈Bδ(xi)∩χ

λKij(1 − γn
ij)

((xj − xi) · n
n
i )3

|xj − xi|
2 nn

i Wj,i (30)

with

(θcorr)n
i :=

d

mi

∑

xj∈Bδ(xi)∩χ

Kijγ
n
ij(xj − xi) · M

n
i · (un

j − un
i )Wj,i, (31)

Mn
i :=

( d

mi

∑

xj∈Bδ(xi)∩χ

Kijγ
n
ij(xj − xi) ⊗ (xj − xi)Wj,i

)−1

. (32)

Here, we note that both the free surface ∂ΩN and the normal vector n(x) on free surfaces
change as the fracture evolves. To numerically approximate n(xi, t

n) at each time step, we
update it via

nn
i = −

∑
xj∈χ∩Bδ(xi)

(xj − xi)Wj,iγ
n
ij

∣∣∣∣∣
∑

xj∈χ∩Bδ(xi)

(xj − xi)Wj,iγn
ij

∣∣∣∣∣

, (33)

and the tangential vector pn
i is calculated as the orthogonal direction to nn

i . The correction
tensor should be invertible to ensure that the correction dilatation can be computed. This holds
as long as the bonds in the horizon are non-colinear. For fracture cases resulting in bond break,
leaving an isolated particle, we replace the matrix inverse with the pseudo-inverse.
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4 Learning algorithm

Let T := {ρm(xi,m),um(xi,m, tnm), bm(xi,m, tnm)}, m = 1, 2, · · · ,M , be coarse-grained func-
tion trios available at xi,m ∈ χm and tnm = n∆tm, n = 1, 2, · · · , Nm. Our goal is to identify an
optimal constitutive relation on the basis of MD data sets. Here, we use χm and ∆tm to high-
light the fact that in our learning algorithm, each sample can be of different spatial/temporal
domains and resolutions. In the following content, we will skip the subscript m and denote
the function trios as ρm(xi), um(xi, t

n), and bm(xi, t
n) for simplicity. Let LKN be the LPS

operator defined in Eq. (30). Then, we aim to learn an optimal continuum model in the form
of LPS models, where the optimal model consists of the influence function K, which may be
sign-changing, and the parameters λ, µ, and s0, such that the action of LKN most closely
satisfies (30) for all s. Formally, the optimal influence function and parameters (λ∗, µ∗, s∗0,K

∗)
are the solutions to the following optimization problem:

(λ∗, µ∗, s∗0,K
∗)

= argmin
λ,µ,s0,K

1

M

M∑

m=1

Nm−1∑

n=1

∆tm
∥∥ρm(xi)(ü

m)n
i + Lh

KN [um](xi, t
n) − bm(xi, t

n)
∥∥2

`2(χm)
. (34)

The influence function K(|x − y|) will now be parameterized. Following Ref. [73], in this work,
the interacting kernel function K(|x − y|) is taken as a radial function compactly supported on
the δ-ball Bδ(x) with αth-order singularity,

K(|x − y|) =
P∑

k=0

Dk

|x − y|α
Bk,P

( |x − y|

δ

)
. (35)

Here, the Bernstein polynomials are defined as

Bk,P (r) =

(
P
k

)
rk(1 − r)P−k for 0 6 r 6 1. (36)

Following the arguments in Refs. [66] and [46], in the learning algorithm, we require the frac-
tional order α to be bounded by 3 and allow Dk ∈ R for all k with sufficient well-posedness
conditions embedded for the discretized operator. Here, we note that in the samples with
material fracture, some particles might become isolated due to fragmentation, and hence it
would be impossible to require solvability constraints. Therefore, we only apply the solvability
constraints to the model without fracture. With the analysis in Ref. [46], given a tolerance
parameter ζ > 0, we apply the following solvability constraints:





λ + µ > 0, µ > 0, α < 3, Λmin(Γ(α,D,δ,P )) > ζ,

Λmin(Φ(α,D,δ,P )Γ
†
(α,D,δ,P )Φ

t
(α,D,δ,P )) > ζ,

Λmin(Γ(α,D,δ,P ) − 2Φt
(α,D,δ,P )Φ(α,D,δ,P )) > 0.

(37)

Here, Γ and Φ are the matrices that correspond to the deviatoric and dilatation contributions
of the deformation, and Λmin(A) denotes the smallest nonzero eigenvalue of a matrix A.

The overall formulation of the constrained optimization problem is as follows. Given a
collection of training samples {ρm(xi),u

m(xi, t
n), bm(xi, t

n)}, m = 1, 2, · · · ,M , we seek to
learn the parameters λ and µ, the Bernstein polynomial coefficients D = [D0, D1, · · · , DP ] ∈
R

P+1, the order α, the horizon δ, the polynomial order P , and the damage criterion s0, by
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minimizing the mean square loss (MSL) of the LPS equation,





(λ∗, µ∗,D∗, α∗, δ∗, P ∗, s∗0) = argmin
λ,µ,D,α,δ,P,s0

1

M

M∑

m=1

Nm−1∑

n=1

∆tm
∥∥ρm(xi)(ü

m)n
i

+ Lh
KN [um](xi, t

n) − bm(xi, t
n)

∥∥2

`2(χm)

s.t. solvability constraints (37).

(38)

However, numerically solving the constraint optimization problem (37) could be time-
consuming and possibly unstable, due to three factors. First, as shown in Fig. 3, when s0

is away from the optimal value, its impact on the loss function would be relatively flattened,
causing the vanishing gradient issue in optimizers. Second, the update of s0 would induce
the change of correction operator (30), which increases the computational cost on each epoch.
Lastly, the imposition of solvability constraints (37) would also be expensive, since it involves
additional calculations (such as with the projection method) and/or subiterations (such as with
the augmented Lagrangian method), together with the evaluation of eigenvalues at each epoch.
To make the optimization algorithm more efficient and robust, we propose to separate the solv-
ing procedure of the damage criterion s0 with other parameters, and propose a “two-stage”
strategy. Key components are summarized in Algorithm 1. In particular, we notice that the
correction operator (30) and the damage criterion s0 are only associated with samples with ma-
terial fractures, while the influence function K and other material parameters can be inferred
from samples without fracture. Therefore, we divide the training data set into two sets,

T Non-Frac := {ρm(xi),u
m(xi, t

n), bm(xi, t
n)}, m = 1, 2, · · · ,MNon-Frac,

which includes all samples without fracture, and

T Frac := {ρ̃m(xi), ũ
m(xi, t

n), b̃m(xi, t
n)}, m = 1, 2, · · · ,MFrac

for training samples with fracture. Then, the optimization problem (38) is also split into a
non-fracture kernel learning step and a damage criterion learning step.

For the kernel learning step, we infer the influence function K and Lamé’s moduli λ and µ
by solving a constraint optimization problem from T Non-Frac,





(λ∗, µ∗,D∗, α∗, δ∗, P ∗) = argmin
λ,µ,D,α,δ,P

Res(T Non-Frac)

s.t. solvability constraints (37),
(39)

where

Res(T Non-Frac)

:=
1

MNon-Frac

MNon-Frac∑

m=1

Nm−1∑

n=1

∆tm
∥∥ρm(xi)(ü

m)n
i + Lh

K [um](xi, t
n) − bm(xi, t

n)
∥∥2

`2(χm)
. (40)

As such, one only has to evaluate the nonlocal operator without fracture following Eq. (17),
which is computationally more efficient. In this step, we treat δ and P as hyperparameters to
be separately tuned, to achieve the best learning accuracy without overfitting. For each combi-
nation of δ and P , the Adam optimizer in PyTorch is employed, together with the augmented
Lagrangian method to impose the inequality constraints. For further details of the optimization
algorithm and settings, we refer interested readers to Ref. [46].
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In the damage criterion learning step, we fix the learnt parameters (λ∗, µ∗,D∗, α∗, δ∗, P ∗)
and search for the optimal s0 by considering an unconstraint optimization problem on T Frac,

s∗0 = argmin
s0

R̃es(T Frac), (41)

where

R̃es(T Frac)

:=
1

MFrac

MFrac∑

m=1

Nm−1∑

n=1

∆tm
∥∥ρ̃m(xi)(¨̃u

m
)n
i + Lh

NK [ũm](xi, t
n) − b̃m(xi, t

n)
∥∥2

`2(χm)
. (42)

Algorithm 1 Workflow for learning the LPS model from MD data sets
(i) To obtain samples without material fracture, generate relatively small MD displacements

on fine grids {Xm
ε } using different external forces and domain configurations, then group the

samples into two data sets, MNon-Frac
train for training the nonlocal kernel and MNon-Frac

val for hy-
perparameter tuning,

MNon-Frac
train/val := {Mm

ε ,Um
ε (t),Bm

ε (t)}, m = 1, 2, · · · ,MNon-Frac
train/val .

(ii) Generate MD displacement samples with material fracture, on fine grids {X̃
m

ε } using
different external forces and domain configurations, then group the samples into two data sets,
MFrac

train for training the damage criterion and MFrac
test for test,

MFrac
train/test := {M̃m

ε , Ũ
m

ε (t), B̃
m

ε (t)}, m = 1, 2, · · · ,MFrac
train/test.

(iii) Coarse grain the data sets MNon-Frac
train/val and MFrac

train/test, then evaluate the coarse-grained
data at coarser grids χm to obtain the function trio sets,

T Non-Frac
train/val := {ρm(xi),u

m(xi, t
n), bm(xi, t

n)}, m = 1, 2, · · · ,MNon-Frac
train/val ,

T Frac
train/test := {ρ̃m(xi), ũ

m(xi, t
n), b̃m(xi, t

n)}, m = 1, 2, · · · ,MFrac
train/test.

(iv) (Kernel learning step) Solve the optimization problem based on the non-fracture data
set T Non-Frac

train ,





(λ∗, µ∗,D∗, α∗) = argmin
λ,µ,D,α

Res(T Non-Frac
train )

s.t. solvability constraints (37),

and tune the hyperparameters δ∗ and P ∗, to minimize the test errors on the validation data
set T Non-Frac

val .
(v) (Damage criterion learning step) With fixed parameters (λ∗, µ∗, D∗, α∗, δ∗, P ∗), train

for the optimal fracture criterion parameter based on the fracture data sets T Frac
train ,

s∗0 = argmin
s0

R̃es(T Frac).

(vi) To study the generalizability on unseen external forces and fracture scenarios, use the
learnt LPS model to predict the material deformation and fracture on T Frac

test .

In all tests, we set the smoothing parameter η = 0.05, and employ the bisection method to
solve for s∗0.

In this study, all training and tests were performed on a 26-core 2.1GHz Xeon Gold 6230R
processor. The most time-consuming step in training is the kernel learning step, since we need
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to calculate the eigenvalues of three matrices of sizes I × I and 2I × 2I (where I = #(χ) is
the total number of coarse-grained material points), so as to impose the solvability constraints
in Eq. (37). Therefore, the computational complexity scales as O(I3). The training time cost
can become extremely large and even non-feasible if we keep refining the mesh resolution and
correspondingly increasing the number of coarse-grained material points. However, we point out
that since a continuous kernel is obtained, our model is resolution-independent. As such, the
learnt nonlocal model on a coarse grid can generalize and provide consistent simulations on finer
grids. Therefore, training on a very fine mesh is often unnecessary. Such mesh generalization
performances are verified in the empirical studies of the previous work[46] and Subsection 5.4 of
this work.

5 Application to single-layer graphene

To illustrate the capability of our method in obtaining an optimal surrogate material dam-
age model from coarse-grained MD displacements, we consider single-layer graphene sheets
as the application. Graphene is a single layer of carbon atoms, tightly bound in a hexago-
nal honeycomb lattice. Up to now, much of what has been known about the mechanical and
electronic properties of graphene is based on models on the atomistic scale, such as the MD
simulations. However, the use of MD directly to treat the deformation and failure of materials
at the mesoscale is still largely beyond reach. Hence, we aim to learn a peridynamics model by
upscaling from MD to a continuum scale.

For the present study, an MD model is created using the Tersoff interatomic potential[74], a
widely used potential in the MD community for graphene[43]. Unstressed graphene nominally
has an interatomic spacing of 1.46 Å (1 Å= 0.1 nm). Unless otherwise stated, in this study, the
values of the coarse-grained data trios are evaluated on a square lattice of nodes with spacing
h =5.0 Å. The only exception is in Subsection 5.4, where we also consider an additional, finer
data set generated with spacing 3.17 Å, to assess the generalization properties of the proposed
learning approach to different grids. Without loss of generality, in this work, we consider MD
simulations on the temperature 0 K. In all cases, external loading is applied to the atoms in the
MD grid. For the non-fracture data sets, the magnitude of the loading is chosen so that the
bond strains are no larger than 2%, which is less than the strains at which nonlinear effects
appear. In all MD experiments, the atoms are initialized with positions on a hexagonal lattice
in the x1x2-plane with an interatomic spacing of 1.46 Å. The mass of each atom is 2×10−26 kg.
For purposes of computing stresses, the thickness of the lattice is set to 3.35 Å, which is the
approximate distance between layers in multi-layer graphene. On quasi-static data sets, we
smooth the MD simulation results in time as described in Ref. [46]. For the dynamic data sets,
the MD time step size is set as 4.95 × 10−14 s.
5.1 Data generation and learning results

In this section, we apply the learning algorithm described in Section 4, to extract a coarse-
grained model from MD simulations of a graphene sheet at 0K. For the purpose of training,
validation, and test, we generate the following four groups of MD simulations, with exemplar
images showing contours of U1, the component of atomic displacement in the x1-direction,
provided in Fig. 4.

(I) Non-fracture training data set (MNon-Frac
train with 70 quasi-static MD simulation samples)

The MD domain is a 10 nm × 10 nm square, and for k1, k2 ∈ {0, π
50 , 2π

50 , · · · , 5π
50 }, the pre-

scribed external loadings are given by

b(x1, x2)=(C1
k1,k2

cos(k1x1) cos(k2x2), 0) or b(x1, x2) = (0, C2
k1,k2

cos(k1x1) cos(k2x2)). (43)

The constants C1
k1,k2

and C2
k1,k2

are adjusted so that the bond strains are no larger than
2%. Therefore, the deformation remains in the linear range of material response. A periodic
boundary condition is employed for all samples in this data set.
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(a) Non-fracture training
     data set Mtrain

Non-Frac
(b) Non-fracture validation
     data set Mval

Non-Frac
(c) Fracture training
     data set Mtrain

Frac
(d) Fracture test
     data set Mtest

Frac

Fig. 4 Contours of exemplar U1 displacement in typical MD simulations at zero temperature for the

four data sets: (a) non-fracture training data set MNon-Frac

train for the kernel learning step; (b)
non-fracture validation data set MNon-Frac

val for the kernel learning step; (c) fracture training
data set MFrac

train for the damage criterion learning step; (d) fracture test data set MFrac

test to
study the efficacy and generalizability of the overall workflow (color online)

(II) Non-fracture validation data set (MNon-Frac
val with 10 quasi-static MD simulation samples)

For the same MD grid and coarse-grained nodes as in the non-fracture training data set, the
applied loads in the validation data set are as follows:

b(x1, x2) = (C1
k , C2

k)
1∑

j=−1

(−1)j cos
(π

2
min

{
1,

rj,k

Rk

})
, (44)

where

rj,k =
√

(x1 − (1 − pk)Lj)2 + (x2 − pkLj)2. (45)

Here, L = 50, and the values of the parameters C1
k , C2

k , pk, and Rk are given in Table 1. In each
case, loads are applied to the atoms within three disks of radius Rk with centers at the center
of the grid and at the left and right boundaries (if pk = 0) or the upper and lower boundaries
(if pk = 1). The loads in all cases are self-equilibrated and periodic. A periodic boundary
condition is employed for all samples in this data set.

Table 1 Parameters used in the MD loading in the 10 validation tests

k C1

k
C2

k
pk Rk

1 0.001 0 0 25

2 0 0.001 0 25

3 0.001 0 0 15

4 0 0.001 0 15

5 0.001 0 0 10

6 0.001 0 1 25

7 0 0.001 1 25

8 0.001 0 1 15

9 0 0.001 1 15

10 0.001 0 1 10

(III) Fracture training data set (MFrac
train with 1 dynamic MD simulation sample)

The domain of the graphene sheet is set as a square: [−50 Å, 50 Å] × [−50 Å, 50 Å]. The MD
grid initially contains a slit (edge crack) of length 25 Å, oriented vertically extending from the
lower surface. The vertical edges of the MD grid have prescribed velocities in the x1-direction
that tend to open the crack. These prescribed velocities are applied to the atoms along the
vertical edges of the MD sample. To help maintain stable crack growth, the prescribed velocities
decrease linearly with x2, thus tending to limit the crack growth velocity. A schematic of the
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crack pattern at the 40th time step in the MD simulation can be found in Fig. 4(c). For
the purpose of validation on different grid resolutions, the density, displacement, and external
loading are computed at two sets of coarse-grained nodes, which are spaced 5 Å or 3.17 Å, apart
on a square lattice.

(IV) Fracture test data set (MFrac
test with 1 dynamic MD simulation sample)

To demonstrate that the learnt material model applies to different loading scenarios and
crack patterns, one additional test case is considered. Here, the MD region and the pre-existing
slit are the same as in the fracture training data set. However, instead of hard loading along
the vertical edges, a non-zero body force is applied to the atoms in the MD grid as

b1 = b0

(
e−t/tr (1 − e−t/tr )

)
sin

(πx1

L

)
e−

(
1

2
+

x2

L

)
,

where L (= 100 Å) is the edge length of the sample, tr is constant pulse duration time, and b0

is a positive constant. The origin is at the center of the sample. This loading exerts a pulse
that tends to open the crack. Unlike the fracture training case, the vertical edges are free in
the fracture validation simulations. The resulting crack pattern, which includes branching, is
substantially different from that occurring in the training data. A view of the crack pattern at
the 40th time step in the MD simulation can be found in Fig. 4(d).

As metrics of accuracy on tests, we compare the prediction from the learnt peridynamics
model with the ground-truth data from coarse-grained MD measurements. Solution contours are
provided as a qualitative validation. With the purpose of providing a quantitative comparison,
we also calculate the averaged (in time) mean square errors (MSEs) of the displacement field
and the damage field. To provide a fair comparison between different sets, all these qualitative
accuracy metrics are normalized with respect to the ground-truth data.

For the kernel learning step, we have followed a similar procedure as in Ref. [46]. The
learnt influence function K is plotted in Fig. 5(a), and the optimal material parameters are
obtained as λ = −0.479 6 TPa, µ = 0.797 8 TPa, with Poisson’s ratio ν = −0.429 7, and the
horizon size δ = 20 Å. Then, for the damage criterion learning step, since the crack initiates
at the 5th time step, we use the fracture training data set from the 5th time step till the
20th time step to learn the damage criterion s0, then solve for the optimal s0 by minimizing
the loss R̃es(T Frac) in Eq. (41). Note that when calculating the loss function, we apply the
Dirichlet-type boundary conditions on a layer of particles near the boundary of our square
domain, and hence only the particles in [−50 Å + 2δ, 50 Å − 2δ] × [−50 Å + 2δ, 50 Å − 2δ] are
considered in Eq. (41). This setting differs from the settings in non-fracture data sets, where
periodic boundary conditions are considered for all samples. This is due to the fact that it
is generally non-realistic to prescribe the periodic boundary condition in the problem with a
crack, since the crack itself does not satisfy the periodic condition. This fact also highlights the
generalizability of the proposed approach: our homogenized surrogate model can handle data
sets with different domains, loadings, and also boundary conditions. A demonstration of the
loss function for different values of s0 is provided in Fig. 5(b). The optimal damage criterion is
obtained as s∗0 = 0.11, which is consistent with the result s0 = 0.145 inferred directly from the
MD data set in Ref. [43].

5.2 Extrapolation to longer time simulations

Next, we validate the learnt model, by using it in a longer term simulation on the fracture
training data set, to predict the material deformation and crack propagation upto the 40th time
step. Note that we have used the data upto the 20th time step for the purpose of training, and
therefore this test can be seen as an investigation on the long-term extrapolation capability of
our coarse-grained surrogate model. To solve for the displacement field from the LPS model, at
the nth time step, we first assume that there is no broken bond, and solve for the displacement
field û

n+1, then we update the bond-stretch for each connecting bond, and we keep solving for
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Fig. 5 Learning results on a single-layer graphene sheet, (a) the optimal influence function K for the
LPS model and (b) the optimal damage criterion s∗0 obtained at 0.11 (color online)

the displacement until there is no new bond breaking. Then, we define the damage profile at
each particle xi at the time step n as

φ(xi)
n = 1 −

∑
xj∈Bδ(xi)

γn(xi,xj)

∑
xj∈Bδ(xi)

1
. (46)

Figure 6 shows the comparison of displacement and damage fields at the time steps 20, 30,
and 40. It is observed that the prediction not only matches the data within the training set (the
step 20) but also exhibits good agreement at the time steps 30 and 40, which are not included
in the training set. This result suggests that our learnt damage criterion s0 is applicable to
longer term simulations out of the training data set. For the first 40 steps, we have obtained a
relative error of 27% for the prediction of the displacement field and a relative error of 9% for
the damage field.
5.3 Generalization to different body forces and crack patterns

In this section, we use the learnt LPS surrogate to model the same graphene sheet subject
to a different body force load as described in the fracture test data set. Different from the
settings in the training data set, in this data set, the graphene sheet is subject to a nonzero
body load, with its crack pattern at the 40th time step, as illustrated in Fig. 4(d). Compared
with the crack pattern in the training data set (see Fig. 4(c)), the crack path in this test data
set is less symmetric and bifurcates at the middle of the domain. Hence, with this example
we not only investigate the extrapolation capability of the learnt model by making a longer
time (the step 40) prediction, but also aim to verify its generalizability, since both the loading
scenario and crack pattern from this test data set are not covered in the training data. All these
factors make the validation more challenging. In Fig. 7, we show the prediction of displacement
and damage fields from the learnt LPS model upto the 40th step. Visually good agreement is
observed between the coarse-grained data and LPS prediction. This example has qualitatively
validated that the learnt material damage model can be directly applied to the problems with
different body forces. For the first 40 steps, we have obtained a relative error of 58% for the
prediction of the displacement field and a relative error of 15% for the damage field.

The very small time scales that characterize MD (picoseconds) create challenges in the sim-
ulation of the mechanics of real materials, including both continuous deformation and fracture.
For example, in polymers, the deformation of long molecules in response to an applied load
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Fig. 6 Comparison of the prediction and the ground truth measurement from the MD data set at
time steps 20, 30, and 40 on the fracture training data set, where the graphene sheet is subject
to a zero body force. Here, we use the first 20 steps, then we use the learnt model to predict for
the next 20 steps. (a) Comparison on the displacement field, where the color of the particles
represents the horizontal displacement and (b) comparison on the damage field (color online)
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is partially accomplished through random processes that are strongly affected by thermal os-
cillations. Similar considerations apply in metals, in which dislocation motion can occur over
a relatively long time scale. However, graphene is an almost ideally brittle material in which
breakage of the covalent bonds in the lattice structure is governed primarily by the state of
strain in the vicinity of an atom, with relatively few effects of thermal oscillations. The ef-
fects of strain rate and temperature on graphene have been studied in detail[75], confirming its
relative insensitivity up to moderate temperatures. For other materials in which longer time
scales apply, acceleration techniques have been developed within MD, for example, see Ref. [76].
We expect that the techniques proposed in the present paper will continue to be valid without
change when such an MD acceleration is included.

5.4 Generalization to different resolutions

Last but not least, we study the resolution generalizability of our learning algorithm. Specif-
ically, we use the same MD data as the training data, but evaluate the density, displacement,
and force loading on a coarse-grained grid with a smaller grid size h = 3.17 Å. Since all training
data sets are with a fixed grid size h = 5 Å, with this study we aim to investigate if the learnt
surrogate model allows the grid size to be rescaled, providing a multiscale capability and allow-
ing for flexible solver resolution and reductions in computational cost. As suggested in Ref. [46],
we scale the horizon size δ proportionally with the grid size h to provide a fixed horizon/grid
size ratio. In particular, we take δ = 4h = 12.68 Å. Then, the optimal damage criterion is also
scaled correspondingly to guarantee a consistent critical release rate. As proved in Ref. [72],
the damage criterion and horizon size should satisfy the relation s0 ∝ 1√

δ
in the LPS model.

Thus, we use s0 := 0.11
√

5
3.17 for our fine scale simulation. In Fig. 8, we show the displacement

and damage field prediction results upto the 40th step, demonstrating qualitative agreement
between the coarse-grained MD data and our numerical prediction. For the displacement field,
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Fig. 8 Comparison of the prediction and the ground truth measurement from the MD data set at
time steps 20, 30, and 40 on the fracture training data set with fine grids, where the graphene
sheet is subject to a zero body force. Here, we use coarser grids data in the first 20 steps for
training, then we use the learnt model to predict for the next 20 steps on a finer resolution.
(a) Comparison on the displacement field, where the color of the particles represents the
horizontal displacement and (b) comparison on the damage field (color online)
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we have obtained a relative error of 19% in average for the first 40 steps, which is even smaller
than the prediction error without resolution alternation on the same data set (27% as shown in
Subsection 5.2). For the damage field, one can see that the crack pattern predicted by our sur-
rogate model grows faster than the crack from the MD data set. Therefore, a larger prediction
error, 30% average for the damage field in the first 40 steps, is obtained. This example suggests
that the surrogate model can provide the qualitatively consistent displacement prediction on
different resolutions. On the other hand, the prediction on the damage field is sub-optimal,
possibly due to the fact that the material crack originates from microscale phenomena, and
hence is more sensitive to the prediction scales. To improve the prediction accuracy on the
damage field across different resolutions, practitioners might consider performing the damage
criterion learning step on the new resolution, to provide a correction for the damage criterion.

6 Conclusions

In this paper, we demonstrate a data-driven workflow to extract a coarse-grained surro-
gate model from MD data with fracture. Firstly, to handle the discontinuities induced by
material fracture in the MD displacement measurements, a smoothness indicator function is
introduced, to automatically choose the locally smoothest stencil from the neighborhood of
each coarse-grained grid. As such, the coarse-grained measurements are built based on this
adaptive stencil, to automatically handle the discontinuities in the MD displacement data set
without overly smoothing the crack pattern. It is shown that this novel adaptive procedure
significantly improves the capability of capturing the location of crack interfaces. Then, based
on the coarse-grained data set, we propose to extract a peridynamics surrogate, which is a
continuum mechanics model that allows a natural treatment of discontinuities by replacing
spatial derivatives of stress tensors with integrals of force density functions. By learning the
kernel function of the integral and the damage criterion with a two-step optimization approach,
we obtain an LPS model which provides good agreement with nanoscale test data while being
capable to provide further material deformation and fracture predictions under unseen domain
settings, loading scenarios, and even different grid resolutions. These features greatly reduce
the cost of the calculation in comparison with MD, especially when used together with different
discretization resolutions.

Although the present work focuses on relatively small deformations and a linear peridynamics
model, the results suggest that this method may impact a broader range of materials and
applications. As another natural follow-up work, one may further combine the nonlocal model
with the approximation power of neural networks, to obtain a nonlinear peridynamics model
in the form of integral neural operators[77–80].
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[7] SORIĆ, J., WRIGGERS, P., and ALLIX, O. Multiscale Modeling of Heterogeneous Structures,
Springer Cham, Switzerland (2018)

[8] PIJAUDIER-CABOT, G. and DUFOUR, F. Damage Mechanics of Cementitious Materials and

Structures, John Wiley & Sons, U. S.A. (2013)

[9] MOURLAS, C., MARKOU, G., and PAPADRAKAKIS, M. Accurate and computationally effi-
cient nonlinear static and dynamic analysis of reinforced concrete structures considering damage
factors. Engineering Structures, 178, 258–285 (2019)

[10] MARKOU, G., GARCIA, R., MOURLAS, C., GUADAGNINI, M., PILAKOUTAS, K., and PA-
PADRAKAKIS, M. A new damage factor for seismic assessment of deficient bare and FRP-
retrofitted RC structures. Engineering Structures, 248, 113152 (2021)

[11] ZOHDI, T. I. Homogenization methods and multiscale modeling. Encyclopedia of Computational

Mechanics Second Edition, John Wiley & Sons, U. S.A., 1–24 (2017)

[12] BENSOUSSAN, A., LIONS, J. L., and PAPANICOLAOU, G. Asymptotic Analysis for Periodic

Structures, American Mathematical Society, U. S.A. (2011)

[13] WEINAN, E. and ENGQUIST, B. Multiscale modeling and computation. Notices of the AMS,
50(9), 1062–1070 (2003)

[14] EFENDIEV, Y., GALVIS, J., and HOU, T. Y. Generalized multiscale finite element methods
(GMsFEM). Journal of Computational Physics, 251, 116–135 (2013)

[15] JUNGHANS, C., PRAPROTNIK, M., and KREMER, K. Transport properties controlled by a
thermostat: an extended dissipative particle dynamics thermostat. Soft Matter, 4(1), 156–161
(2008)

[16] KUBO, R. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29(1), 255–284
(1966)

[17] SANTOSA, F. and SYMES, W. W. A dispersive effective medium for wave propagation in periodic
composites. SIAM Journal on Applied Mathematics, 51(4), 984–1005 (1991)

[18] DOBSON, M., LUSKIN, M., and ORTNER, C. Sharp stability estimates for the force-based quasi-
continuum approximation of homogeneous tensile deformation. Multiscale Modeling & Simulation,
8(3), 782–802 (2010)



1148 H. Q. YOU, X. XU, Y. YU, S. SILLING, M. D’ELIA, and J. FOSTER

[19] HUGHES, T. J., WELLS, G. N., and WRAY, A. A. Energy transfers and spectral eddy viscosity in
large-eddy simulations of homogeneous isotropic turbulence: comparison of dynamic Smagorinsky
and multiscale models over a range of discretizations. Physics of Fluids, 16(11), 4044–4052 (2004)

[20] MOËS, N., ODEN, J. T., VEMAGANTI, K., and REMACLE, J. F. Simplified methods and
a posteriori error estimation for the homogenization of representative volume elements (RVE).
Computer Methods in Applied Mechanics and Engineering, 176, 265–278 (1999)

[21] ORTIZ, M. A method of homogenization of elastic media. International Journal of Engineering

Science, 25(7), 923–934 (1987)

[22] DU, Q., ENGQUIST, B., and TIAN, X. Multiscale modeling, homogenization and nonlocal effects:
mathematical and computational issues. Contemporary Mathematics, American Mathematical So-
ciety, U. S. A. (2020)

[23] SILLING, S. A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal

of the Mechanics and Physics of Solids, 48(1), 175–209 (2000)

[24] BERAN, M. and MCCOY, J. Mean field variations in a statistical sample of heterogeneous linearly
elastic solids. International Journal of Solids and Structures, 6(8), 1035–1054 (1970)

[25] CHEREDNICHENKO, K., SMYSHLYAEV, V. P., and ZHIKOV, V. Non-local homogenised limits
for composite media with highly anisotropic periodic fibres. Proceedings of the Royal Society of

Edinburgh Section A: Mathematics, 136(1), 87–114 (2006)

[26] KARAL, F. C., JR and KELLER, J. B. Elastic, electromagnetic, and other waves in a random
medium. Journal of Mathematical Physics, 5(4), 537–547 (1964)

[27] RAHALI, Y., GIORGIO, I., GANGHOFFER, J., and DELL’ISOLA, F. Homogenization à la
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