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ABSTRACT: The generation of internal tides at coastal margins is an important mechanism for the loss of energy from
the barotropic tide. Although some previous studies attempted to quantify energy loss from the barotropic tides into the
deep ocean, global estimates are complicated by the coastal geometry and spatially and temporally variable stratification.
Here, we explore the effects of supercritical, finite amplitude bottom topography, which is difficult to solve analytically. We
conduct a suite of 2D linear numerical simulations of the barotropic tide interacting with a uniform alongshore coastal
shelf, representing the tidal forcing by a body force derived from the vertical displacement of the isopycnals by the gravest
coastal trapped wave (of which a Kelvin wave is a close approximation). We explore the effects of latitude, topographic
parameters, and nonuniform stratification on the baroclinic tidal energy flux propagating into the deep ocean away from
the shelf. By varying the pycnocline depth and thickness, we extend previous studies of shallow and infinitesimally thin pyc-
noclines to include deep permanent pycnoclines. We find that scaling laws previously derived in terms of continental shelf
width and depth for shallow and thin pycnoclines generally hold for the deeper and thicker pycnoclines considered in this
study. We also find that baroclinic tidal energy flux is more sensitive to topographic than stratification parameters. Interest-
ingly, we find that the slope of the shelf itself is an important parameter but not the width of the continental slope in the
case of these steep topographies.

SIGNIFICANCE STATEMENT: The objective of this study is to better understand how vertical density stratifica-
tion, which can vary seasonally in the ocean, affects the interaction of tides with steep coastal topography and the gen-
eration of waves that travel away from the coast in the ocean interior. These waves in the interior can travel over long
distances, carrying energy offshore into the deep ocean. Our results suggest that the amount of energy in these internal
waves is more sensitive to changes in topography and latitude than to the vertical density profile. The scaling laws found
in this study suggest which parameters are important for calculating global estimates of the energy lost from the tide to
the ocean interior at the coastal margins.
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1. Introduction

Astronomically driven barotropic tides lose part of their en-
ergy to baroclinic internal tides when they interact with to-
pography in the presence of stratification (Bell 1975; Baines
1982). These internal tides can propagate large distances
(thousands of kilometers) away from the topography to where
they can play an important role in mixing density and momen-
tum (Alford 2003; Kunze et al. 2012; MacKinnon et al. 2017).
Their dissipation away from the generation site results in
ocean mixing that is thought to contribute to sustaining abyssal
stratification and overturning circulation (Munk and Wunsch
1998; Wunsch and Ferrari 2004) with mixing enhanced by rough
bottom topography driving downwelling and sloping topography
playing an important role for along-slope upwelling (Ferrari et al.
2016; Drake et al. 2022). As their vertical displacements in the in-
terior can be quite large, they are also important for distributing
nutrients (Stevens et al. 2012; Tuerena et al. 2019). In this study,
we specifically focus on the superinertial tides. In many parts of

the ocean, the semidiurnal (M2) tide, which is superinertial equa-
torward of 74.58, propagates along a coastline as a zero mode
(Huthnance 1978). Modes here refer to coastal modes, with
higher modes having more zero crossings in the cross-shore
direction; as such, the zero, or the gravest, mode has no zero
crossings and is vertically uniform. The gravest mode against a
nonvertical coast is sometimes called a topographically modified
Kelvin wave, to account for the deviations from the Kelvin wave
structure defined at a vertical wall. The deviations associated
with the gravest coastal mode from a Kelvin wave are what
generate the internal tides that we discuss in this paper. Inter-
est in this interaction of the tide with coastal topography and
generation of baroclinic tides can be traced back to Rattray
(1960, 1969), Huthnance (1975, 1978, 1981), Mysak (1980), and
Chapman and Hendershott (1982).

Internal tide generation over isolated ridges in the open
ocean has been extensively studied in the past (Garrett and
Kunze 2007, and references therein). Llewellyn Smith and
Young (2003) derived an analytical expression for the energy
flux of the internal tides generated by tidal flow over a knife-
edge ridge (an idealized representation of steep topography)
in the case of uniform stratification. In this expression, energy
flux radiating away from the topography is proportional to
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the barotropic velocity squared, height of the ridge, and pa-
rameter

����������
v2 2 f 2

√
, where v is the tidal frequency and f is the

Coriolis frequency. In a similar analysis to step topography,
St. Laurent et al. (2003) found the knife-edge ridge approxi-
mation to be a good model for abrupt topography, which can
be used as a prototype for coastal shelf topography. In both
models, the dependence of energy flux on latitude, i.e., f,
arises due to the dependence of the group speed (comes from
the dependence of the horizontal wavenumber of the gener-
ated waves and hence their group speed) on

����������
v2 2 f 2

√
(Kelly

et al. 2013).
St. Laurent et al. (2003) also derived that the baroclinic en-

ergy flux is proportional to the square of barotropic velocity
u2bt for step topography. This is because at the step, the veloc-
ity of the internal tides radiating away from the step must
be matched to be proportional to the barotropic velocity
(St. Laurent et al. 2003), and the baroclinic energy flux is pro-
portional to the square of internal tide velocity (Kelly et al.
2013). By representing arbitrarily sloping topography with a
collection of steps, and matching flat bottom modes between
each step so that energy is conserved, Kelly et al. (2013) found
similar scalings for the baroclinic energy flux of internal tides
radiating away from the sloping topography.

However, the problem of internal tide generation at steep
ridges or infinitely wide step topography is different from tidal
generation at continental slopes in three important ways.
First, continental shelves are typically much shallower and
can be substantially wider than the oceanic ridges for which
the previously derived scalings are appropriate. Second, the
depth-averaged cross-bathymetric currents are different at
the coast from those in the open ocean. This is important to
consider for imposing a barotropic forcing in a 2D model, es-
pecially as in ridge or infinitely wide step-topography models,
barotropic forcing is imposed at the open-ocean end. This
point is further discussed in section 4. Finally, models of flows
over oceanic ridges and infinitely wide step topography assume
radiating boundary conditions on both sides of the domain,
allowing the energy to radiate away from the topographic ob-
stacle in both directions. However, the coast is often modeled
using a no-flow boundary condition (zero cross-shore velocity)
(Hall et al. 2013; Zhang and Yankovsky 2016), which may lead
to dynamical differences compared to the radiative boundary
conditions. For example, Kelly et al. (2013) found that when
a vertical wall was imposed at the coast (i.e., shelf width was
finite), the baroclinic energy conversion was sensitive to the
shelf width in the case of mode-1 internal tide incident on
the coast. An argument can also be made that the radiative
boundary condition accounts for the dissipation of energy in
turbulent shallow waters at the coast. Yet, observations of
standing internal tides on continental shelves (Lerczak et al.
2003; Rayson et al. 2012; Suanda and Barth 2015) point to
some energy being reflected from the coast. Overall, it can-
not be a priori be concluded that the scalings derived in
ridge and step-topography models would hold for tidal gen-
eration over the continental shelf topography in nonuniform
stratification, a point that we investigate in our study.

Numerous previous studies showed that the generation and
propagation of baroclinic tides are sensitive to the shape of

the topography (Baines 1973; Craig 1987). One of the relevant
parameters that has been identified is the topographic critical-
ity. It is defined as

a 5

∣∣∣∣∣ =h�����������������������������
(v2 2 f 2)/(N2

bot 2 v2)
√ ∣∣∣∣∣, (1)

and it represents the ratio of topographic slope =h(x, y),
where h(x, y) is the local depth, to the characteristic slope of
an baroclinic tide, and where N2

bot is the squared buoyancy
frequency along the bottom. We define amax to be the maxi-
mum value within the domain. Topography is considered to
be subcritical if amax , 1 and supercritical if amax . 1. Subcrit-
ical topography generates beams that propagate upward away
from the generation region on the continental slope (Bell
1975). For critical slopes (amax " 1), the generated beam is
along the slope such that nonlinear effects become important,
leading to local wave breaking and dissipation (Dauxois et al.
2004; Gayen and Sarkar 2011b). Supercritical topography gen-
erates beams that propagate both upward and downward
away from the shelf (Llewellyn Smith and Young 2003). The
topographic criticality parameter amax has been previously
used to scale baroclinic energy flux away from the topogra-
phy. Previous studies found that the energy flux magnitude
increases with amax (Sherwin and Taylor 1990; Kelly et al.
2010), at a higher rate for subcritical topographies [e.g., scal-
ing as ~ a5 for subcritical and ~ a for supercritical topogra-
phies in Craig (1987)].

Stratification can also affect the conversion of barotropic to
baroclinic tidal energy, especially as seasonal cycles in maxi-
mum stratification can change amax (Cacchione et al. 2002).
For example, observational work by Liu et al. (2019) found
that in the Yellow Sea, baroclinic energy fluxes were larger in
the summer, when maximum N2 was greater, compared with
winter, when water was more well mixed. Using ray tracing,
Baines (1982) derived analytical expressions to compute en-
ergy flux radiated away from either subcritical or supercritical
topographies for a given topographic geometry and stratifica-
tion and provided a global estimate of baroclinic energy flux
from internal tides generated at the coast. It is important to
note that both our model presented here and the analytical
expressions in Baines (1982) are inviscid, such that the dissi-
pation rate is zero and the barotropic-to-baroclinic energy
conversion is exactly equal to the divergence of the outgoing
energy flux. However, estimates by Baines (1982) assumed a
shallow pycnocline, which may not be the case in some parts
of the ocean (Sherwin and Taylor 1990; Stewart and Thompson
2016; Barbot et al. 2021). It also assumed an infinitely thin
pycnocline that transitioned from a well-mixed top layer into
a linearly stratified bottom layer. Yet, pycnocline thickness is
finite, and its depth can vary significantly, for instance, from
around 200 m deep along the Australian North West Shelf
(Rayson et al. 2019) to 459 m deep in the East China Sea
(Vieira and Allshouse 2020) to up to 1 km deep in the Bay of
Biscay (Barbot et al. 2021). Feucher et al. (2019) found that
permanent pycnoclines can be quite deep and thick; particu-
larly along the eastern boundary of the North Atlantic, the
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mean depth and thickness of the pycnoclines are about 750
and 400 m, respectively. The importance of nonuniform strati-
fication to tide-topography interaction has been previously
studied (Nash et al. 2004; Hall et al. 2013), though these
studies were not specifically focused on the internal tide gen-
eration. Gerkema et al. (2004) found that a deep and thick
permanent pycnocline in the Bay of Biscay plays a role in
determining baroclinic energy conversion rates. Further-
more, Gerkema and van Haren (2012) found that spatially
nonuniform stratification changes generated internal tide
beams in channel simulations. More recently, Hartharn-Evans
et al. (2022) showed that the shoaling of baroclinic tides
propagating onto a shelf may be sensitive to pycnocline
thickness.

However, to our knowledge, sensitivity of energy flux of
the internal tides generated by the interaction of the baro-
tropic tide with coastal topography to the shape of the pycno-
cline has not been systematically examined; hence, it is the
aim of this study. We take a two-dimensional linear model
with the coast at one boundary and the open ocean the other.
The model is highly idealized}it is inviscid, linear, neglects
alongshore variations, and uses simplified analytical expres-
sion for bottom topography. However, such simplifications al-
low us to calculate energy fluxes over a large parameter space
(pycnocline depth and thickness, topographic parameters, and
latitude) using significantly less computational resources than
would be required of more realistic, but computationally ex-
pensive, ocean circulation models. Recent efforts to study the
generation of internal tides at steep topography have also
used Green’s functions (Griffiths and Grimshaw 2007; Lahaye
and Llewellyn Smith 2020) or local eigenfunction expansions
(Papoutsellis et al. 2023). However, in their current numerical
formulation, these models are limited to uniform stratifica-
tion, whereas our model can readily take any vertically non-
uniform stratification profile and is, thus, better suited to
address the goals of this study.

As baroclinic internal tide beams generated at the conti-
nental slope with energy flux traveling offshore, they further
reflect off the bottom becoming upward propagating and then
again off the surface becoming downward propagating and
repeating the pattern (Craig 1987; Lamb 2014). The pycno-
cline can also play an important role in the propagation of the
baroclinic tide modes (Baines 1982; Gerkema 2001), which we
will examine here. The stratification affects the shape of the
vertical modes and their speeds; however, in a linear model,
we neglect the solitary wave generation, which is sensitive to
stratification as shown in Gerkema (2001). Our setup is simi-
lar to previous studies of internal tide generation on the conti-
nental slope (Sherwin and Taylor 1989; Dale and Sherwin
1996; Klymak et al. 2016). We will focus our analysis on the
amount of baroclinic energy flux from internal tide generation
at the continental shelf that is radiated into the deep ocean.
As we are interested in the barotropic-to-baroclinic energy
conversion, our model will be forced by the barotropic tide
body force, rather than incident mode-1 baroclinic tide used
in other previous studies that did not consider the generation
process itself (e.g., Hall et al. 2013; Wang et al. 2018). The ap-
proximation for the body force used in this study was derived

in Baines (1973) and previously used to calculate baroclinic
energy fluxes (e.g., Sherwin and Taylor 1990; Morozov 1995;
Sherwin et al. 2002; Gerkema et al. 2004). Despite this ideal-
ized setup, the superinertial tidal forcing (M2 tide is superiner-
tial equatorward of 74.58), supercritical coastal topography
that is ubiquitous in the ocean (Lamb 2014), and nonuniform
stratification make the numerical approach challenging, in
particular requiring high horizontal and vertical resolutions,
which we will discuss in this paper.

This paper is organized as follows. In section 2, we detail
the setup of the numerical simulations (topography, stratifica-
tion), governing equations (coupled u–p equations), and the
Baines body forcing. In section 3, we explain our numerical
methodology to solve the governing equations using finite dif-
ferences (section 3a) and examine the numerical convergence
of the solution, which is complicated by the hyperbolic nature
of the governing equations (because v . f), nonuniform strat-
ification, and the S-coordinate system (section 3b). We then
compare the solutions of our model with two existing linear
internal tide models in section 4. Sensitivities of baroclinic
energy flux magnitude to stratification, latitude, and topog-
raphy are presented in sections 5a–5c, comparing our results
to the previously derived scalings (Llewellyn Smith and
Young 2003; St. Laurent et al. 2003) and analytical expression
derived by Baines (1982). Appropriate scaling for baroclinic
energy flux magnitude is presented in section 5d. Finally,
section 6 summarizes and connects our results to oceano-
graphic observations.

2. Setup and governing equations

The simulation setup that we consider in this study is shown
in Fig. 1a. The domain of interest has coastal topography of
depth h(x) steeply sloping nearshore, and a large portion of
the domain is flat with a depth H. The across-shore (x) extent
of the domain is taken to be [2Lx, 0], such that the coastal
boundary is at x 5 0 and the open ocean boundary is at
x 5 2Lx. The bottom topography is uniform in the along-
shore (y) direction. We also impose background stratification
N(z) that is horizontally uniform.

In our simulations, we prescribe bottom topography to be

h 52H, for x , 2(xs 1 xW), (2)

h 52hs 2 (H 2 hs) 0:5 1 2 cos
p(x 1 xs)

xW

[ ]{ }( )0:75
,

for 2(xs 1 xW) , x , 2xs, (3)

h 5
hs 2 hc

xs
x 2 hc, for x . 2xs, (4)

where H is the maximum depth at the flat offshore potion of
the domain, hc is the depth at the coast, hs is the depth at the
shelf break, xs is the shelf width, and xw is the slope width. For
our baseline simulations, we set H 5 3.1 km, hc 5 100 m,
hs 5 150 m, xs 5 80 km, and xW 5 32 km. We take the domain
size to be Lx 5 300 km in order to allow for a sufficiently flat
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open ocean region. This piecewise topography follows the ide-
alized topography used in Dale et al. (2001) and is similar to
the one used in other previous studies of the interactions of
tides with coastal topography (e.g., Klymak et al. 2016; Zhang
and Yankovsky 2016). This functional form of the topography
allows us to control for the maximum value of the slope
through parameters xW and hs in Eq. (3). In many previous
studies (e.g., Legg and Adcroft 2003; Kelly and Nash 2010;

Hall et al. 2013), the shelf has been commonly assumed to be
flat, i.e., hc 5 hs. However, as shown in two realistic profiles
from ocean bathymetry [General Bathymetric Chart of the
Ocean (GEBCO) Compilation Group 2020] in Fig. 2, there is
often a slight slope on the continental shelf itself. For exam-
ple, for the selected profiles, hs 5 165 m and hc 5 83 m off the
eastern coast of South America and hs 5 78 m and hc 5 35 m
off the western coast of Australia. We will test whether the

FIG. 1. (a) Domain setup showing the topography (continental shelf, slope, and the deep region) with overlaid color indicating sample strati-
fication with pycnocline thickness mpyc 5 200 m and depth Zpyc 5 600 m; (b) topographic criticality parameter a for f 5 0.93 3 1024 s21 and
v5 vM2

5 1:413 1024s21 and the same pycnocline as in (a) with dotted line marking a 5 1; note that in the deep region, a 5 0, so it does
not appear on a log plot; (c) stratification profile varying pycnocline thickness set at depth of 600 m; (d) stratification profiles varying pycnocline
depth set at thickness of 200 m; and (e)–(g) amax as a function of stratification depth and thickness computed with f5 0.733 1024 s21 (;308),
f5 0.933 1024 s21 (;408), and f5 1.113 1024 s21 (;508), respectively.
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shelf slope affects the magnitude of baroclinic energy flux by
considering both hc Þ hs and hc 5 hs in section 5c.

We prescribe buoyancy frequency squared to be

N2 5 N2
bg 1

r2 2 r1
r0

g
mpyc

sech
z 2 Zpyc

mpyc

( )[ ]2
, (5)

where r1 and r2 are the densities of upper and lower layers,
respectively; background density is r0 5 0.5(r1 1 r2), mpyc

is the pycnocline thickness; Zpyc is the pycnocline depth,
and N2

bg is the constant buoyancy frequency squared associ-
ated with background linear density gradient. For all simula-
tions, we set r1 5 1027 kg m23, r2 5 1030 kg m23, and
N2

bg 5 1:223 1025s22. In the majority of our simulations, the
pycnocline is below the shelf break, with the exception of
some simulations in section 5c, where we vary the value of hs
allowing it to be deeper than Zpyc.

As shown in Fig. 1 for an example stratification with pycno-
cline depth of 600 m and thickness of 200 m, the topography
is supercritical (a . 1) in the continental slope and shelfbreak re-
gions and subcritical (a , 1) in the deep region and on the shelf
with respect to the baroclinic tide characteristic, with a defined in
Eq. (1). In this study, we primarily examine f5 0.933 1024 s21,
which is representative of the Coriolis parameter at midlatitudes
(;408). However, we also extend our analysis to examine the
dynamics over a range of latitudes 208–67.88 ( f 5 0.5–1.35 3

1024 s21). We consider the M2 tidal frequency (v 5 1.41 3

1024 s21). In this study, we will vary pycnocline thickness and
depth across numerical simulations as shown in Figs. 1c–g. As
we increase the pycnocline thickness (cf. Fig. 1c), the peak
value of N2 decreases to maintain the difference in r across the
pycnocline. From Eq. (1), for a fixed topographic slope and fixed
forcing frequency v, amax increases with increasing latitude, i.e.,
greater f (cf. Figs. 1e–g). The stratification profile also affects
amax; because max(N2) increases with decreasing pycnocline
thickness (Fig. 1c), amax is larger for thinner pycnoclines. The
location of max(N2) with respect to the maximum topo-
graphic slope changes with pycnocline depth; hence, amax

depends on Zpyc as well as mpyc (Figs. 1e–g). We will also

change topography through xs, hs, hc, and xW, some of which
will change amax.

We consider the Boussinesq approximation of the incom-
pressible, rotating, inviscid Navier–Stokes equations. The line-
arized governing equations for the baroclinic internal waves are

­u′

­t
2 fy ′ 52

1
r0

­p′

­x
, (6)

­y ′

­t
1 fu′ 52

1
r0

­p′

­y
, (7)

­w′

­t
52

1
r0

­p′

­z
2

gr′

r0
1 F, (8)

­r′

­t
2

r0N
2

g
w′ 5 0, (9)

­u′

­x
1

­y ′

­y
1

­w′

­z
5 0, (10)

where u′ 5 (u′, y ′,w′) is the velocity vector in (x, y, z) directions;
p′ is the pressure; r′ is the density, all of which are fluctuations as-
sociated with the baroclinic waves; and F is the forcing, which will
be discussed below. From the system of Eqs. (6)–(10), we derive
coupled equations for u′ and p′ subject to boundary conditions,
implementing assumptions from Baines (1982). Equations from
Baines (1982) are rederived in this form, rather than in the stream-
function form presented in the original study, in order to facilitate
the theoretical and numerical comparisons with the Dale et al.
(2001) model. Furthermore, we retain the nonhydrostatic term in
the governing equations presented in Dale and Sherwin (1996),
Dale et al. (2001), andGarrett andGerkema (2007).

a. Coupled u′–p′ equations

We assume that the perturbations, i.e., baroclinic motions,
are of the following plane waveform:

(u′, y ′, w′, p′, r′) 5 [û′(x, z), ŷ ′(x, z), ŵ′(x, z), p̂′(x, z),
r̂′(x, z)]e2ivt1ily, (11)

FIG. 2. Depth profiles as a function of cross-shore distance from GEBCO (black lines) and piecewise fit in the form
using Eqs. (2)–(4) (red lines) for sample bathymetries off the (a) eastern coastline of South America and (b) western
coastline of Australia.
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where v is a tidal frequency and l is the alongshore wavenumber.
In this study, we will follow the assumption by Baines (1982) that
the alongshore wavelength is much longer than the baroclinic
scales of interest and therefore assume that l5 0.

Using the form of baroclinic perturbations in Eq. (11) and
the linearized governing Eqs. (6)–(10), we derive the follow-
ing coupled u′–p′ equations with F̃ being the forcing term:

1
r0

­p̂′

­x
1

v2 2 f 2

iv
û′ 5 0, (12)

1
r0

­2p̂′

­z2
2

1
N2 2 v2

dN2

dz
1
r0

­p̂′

­z
1

N2 2 v2

iv
­û′

­x
5 F̃ : (13)

The relationship between F in Eq. (8) and F̃ in Eq. (13) will
be discussed below. We keep the nonhydrostatic terms in
Eqs. (12) and (13) because they may become important in the
deeper regions of the domain, where the stratification is
weak. For simplicity, we will be dropping hats for û′ and p̂′

for the remainder of the paper.
We impose coastal wall boundary condition,

u′ 5 0 at x 5 0, (14)

rigid-lid boundary condition at the surface, such that

­p′

­z
5 0 at z 5 0, (15)

and no flow through the bottom boundary, such that

iv
r0(N2 2 v2)

­p′

­z
1 u′

­h
­x

5 0 at z 52h(x): (16)

Offshore at the flat-bottom open ocean end, away from the
localized forcing at the coast, we assume that the solution can
be decomposed as a linear combination of flat-bottom baro-
clinic modes that are either evanescent or propagating out of
the domain (oceanward). The boundary condition for p′ can
be derived by plugging in such linear decomposition,

p′ 5 ∑
‘

m51
amp

′
m(z)eikmx, (17)

into the unforced second-order equation for p′, which is

­2p′

­z2
2

1
N2 2 v2

dN2

dz
­p′

­z
2

N2 2 v2

v2 2 f 2
­2p′

­x2
5 0: (18)

It yields an eigenvalue problem for each vertical mode p′m(z)
with eigenvalue km to be solved in order to find the offshore
boundary condition:

­2

­z2
2

1
N2 2 v2

dN2

dz
­

­z

( )
p′m 52k2m

N2 2 v2

v2 2 f 2

( )
p′m: (19)

Signs of the eigenvalues km are chosen such that energy flux
is outward (out of the domain) at this boundary or decays

exponentially offshore in the case of the evanescent modes
(Dale and Sherwin 1996; Dale et al. 2001).

b. Forcing term

In Baines (1982), baroclinic motions are assumed to be
driven by the body force F, which only has a component in
vertical direction. This body force is due to the motions of the
gravest mode tide vertically displacing the background density
field, i.e.,

F 5 Fz 52
wbN

2

iv
z, (20)

where z is a unit vector in the upward z direction. Here,
wb 5 2zQ(1/h)x (Q is the barotropic volume flux) is the verti-
cal velocity of the barotropic motions, approximating the sea
surface moving up and down as the barotropic tide comes on
and off the shelf. This force is derived for a hydrostatic baro-
tropic tide interacting with a two-dimensional topography
(i.e., no variation in y) to be

F 5 F(x, z)z 52
grb
r0

z 52
QN2z
vh2

­h
­x

z: (21)

Volume fluxQ has been approximated asQ5 vhxs by Baines
(1973), where h is the surface elevation of the barotropic tide
and xs is the shelf width [cf. Eqs. (2)–(4)]. The approximation
for the mass flux is derived from the conservation of volume
of water as the barotropic tide enters or leaves the coastal
shelf. Baines (1982) suggests that this approximation is valid
at the scales of baroclinic tide generation (;100 km) as the
mass flux of the barotropic tide on the shelf varies on much
larger alongshore scales due to its long wavelength. Here, we
take h 5 0.1 m, making our Baines body force perhaps
smaller than barotropic tide that often has surface elevation
of approximately 1 m at the coast.

We apply the forcing from Eq. (21) as F(x, z)e2ivt to Eq. (8)
and derive the coupled u′–p′ system of equations as explained
above. Using this Baines body force, the forcing term in
Eq. (13), which we solve numerically, becomes

F̃B(x, z) 5
­F
­z

2
1

N2 2 v2

dN2

dz
F: (22)

This forcing function depends on both stratification and the
shape of bottom topography. It also depends on the forcing
frequency, but notably, it is independent of the latitude, i.e.,
the value of f. Figure 3 shows the examples of the forcing
term F̃B(x, z) for different pycnocline depths and thicknesses.
The F̃B(x, z) always has larger values near the shelf break.
However, the spatial distribution and magnitude depend on
the stratification profile, i.e., both maximum N2 (cf. Figs. 1c,d)
and the depth at which the pycnocline intercepts the topogra-
phy. As such, the maximum magnitude of F̃B(x, z) is a nonlin-
ear function of the pycnocline depth and thickness as shown
in Fig. 4a and is explained below.

In the hydrostatic limit (N2 .. v2), which is largely satisfied
for our simulations, the forcing term is simplified to
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F̃B(x, z) 5
QN2

vh2
­h
­x

: (23)

Maximum N2 is smaller for thicker pycnoclines (cf. Fig. 1c), and
so the maximum magnitude of forcing in general decreases with
the thickness of the pycnocline for a given topographic slope
and pycnocline depth. However, deeper pycnoclines may be in-
tercepting the topography substantially far away from the shelf
break. As a result, the location and the maximum value of the
forcing are determined by two competing terms in Eq. (23): N2

and hx/h
2 (here and throughout the paper, we use a shorthand

notation for derivatives, e.g., hx 5 dh/dx). We show how the rel-
ative importance of these two terms changes with pycnocline
thickness in Fig. 4b for a selected pycnocline depth of 600 m by
computing the product N2

bothx/h
2 as a function of cross-shore

distance. The stratification along the bottom, N2
bot, is maximum

at the cross-shore distance where the pycnocline intercepts the
topography, and the magnitude of N2

bot is larger for thinner pyc-
noclines. The other term hx/h

2 is always largest near the shelf
break. Notably, there are two peaks: one that corresponds to
where the pycnocline intersects the topography (large N2) and
the second that is at the shelf break (large hx/h

2). This is true
for the simulations in our setup, where we assume that the pyc-
nocline is below the shelfbreak depth. In general, we observe
two regimes, depending on which peak is larger. In the first one,
for thinner pycnoclines (e.g., mpyc 5 100 m), F̃B ~N2

bothx/h
2

decreases with increasing pycnocline thickness mpyc, and the
cross-shore location of the maximum value is closer to where the
pycnocline intersects the topography. In the second regime (e.g.,

mpyc 5 450 m), for pycnoclines thicker than some cutoff thick-
ness, F̃B ~N2

bothx/h
2 increases with increasing mpyc, and the max-

imum value of the forcing is around the shelf break. This
behavior of the forcing function was not captured by Baines
(1982), who only considered thin pycnoclines that are shallower
than the continental shelf and thus concluded that the forcing
function is always maximized around the shelf break.

c. Cross-shore energy flux

In this study, we focus on the cross-shore energy flux term,
which estimates how much baroclinic tide energy propagates off-
shore into the deep ocean. The cross-shore energy flux in units of
watts per square meter, which we will denote as Fup (u is the
cross-shore velocity in our coordinate system) throughout the pa-
per, is defined as

Fup(x, z) 5 |u′(x, z)p′(x, z)| 5 1
2
(u′Rep

′
Re 1 u′Imp

′
Im), (24)

where (?)Re and (?)Im indicate the real and imaginary compo-
nents, respectively, as both u′ and p′ are complex. Furthermore,
we are interested in the vertically integrated cross-shore energy
flux in watts per meter, defined as

hFupi(x) 5
�0

h
Fup(x, z)dz: (25)

Throughout text, we will denote vertical integrals with h?i.
Because the boundary conditions impose that the solution

is an internal inertia–gravity wave at the offshore boundary,

FIG. 3. Comparison of forcing functions F̃ B for M2 tidal forcing: (a) pycnocline depth of 600 m, thickness of 100 m; (b) pycnocline
depth of 600 m, thickness of 200 m; (c) pycnocline depth of 600 m, thickness of 400 m; (d) pycnocline depth of 200 m, thickness of 200 m;
(e) pycnocline depth of 400 m, thickness of 200 m; and (f) pycnocline depth of 800 m, thickness of 200 m. In all cases, forcing functions are
predominantly confined to the shelfbreak region, so we do not show the full domain (x 2 [2300 km, 0]) as F̃ B 5 0 elsewhere.
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the pressure in each vertical mode can be used to determine
the horizontal velocity via the u′–p′ polarization relation from
Eq. (12):

u′j 5
vkj

v2 2 f 2 p
′
j : (26)

Notably,

Cj 52
v2 2 f 2

vkj
(27)

is the group velocity of the jth vertical mode. Then, the cross-
shore energy flux at the offshore boundary is

Fup|x52Lx
5 h ∑‘

m51
∑
‘

n51

vkm
v2 2 f 2 amanp

′
m(z)p′n(z)i, (28)

where am and an are the amplitudes of themth and nth pressure
modes. For normal modes, hp′m(z)p′n(z)i5 0 formÞ n, so

Fup|x52Lx
5 h ∑‘

m51

vkm
v2 2 f 2 a

2
mp

′
m(z)p′m(z)i, (29)

meaning that there is no contribution to the cross-shore en-
ergy flux from the cross terms, i.e., hu′mp′ni5 0 formÞ n.

3. Numerical solution approach

a. Numerical method

We implement the numerical method derived by Lindzen
and Kuo (1969) to solve the coupled u′–p′ equations [Eqs. (12)
and (13)]. This method has been successfully implemented to

solve both elliptic (subinertial) and hyperbolic (superinertial)
differential equations in many previous studies (e.g., Chuang
and Wang 1981; Sherwin and Taylor 1990; Dale and Sherwin
1996; Dale et al. 2001; Klymak et al. 2016). In this method, we
write each of the coupled equations as

AixRix21 1 BixRix 1 CixRix11 5 Dix, (30)

where ix 5 1:Nx is the horizontal index (Nx is the number of
grid points in x and taken to be an even number);R is the ver-
tical vector of length Nz (number of vertical grid points) of u′

or p′ at ix position; Aix, Bix, and Cix are the operation matrices
of sizeNz 3 Nz; andDix is the forcing vector of lengthNz.

We use a staggered u′–p′ grid in the horizontal direction,
such that Eq. (12) is discretized and solved on the even grid
points in x, and correspondingly, Rix is u′and Rix21 and Rix11

are p′. Similarly, a discretized form of Eq. (13) is solved on
the odd grid points in x, and correspondingly, Rix is p′and
Rix21 and Rix11 are u′. We solve the coupled u′–p′ system of
first-order equations rather than a single second-order equa-
tion for p′ as in previous studies (e.g., Dale and Sherwin 1996;
Zhang and Yankovsky 2016; Klymak et al. 2016). This two-
equation formulation avoids a spurious mode that arises at
v 5 f. At this tidal frequency, the relationship between u′ and
p′ is singular [cf. Eq. (12)], which introduces problems with
the boundary conditions for the second-order p′ equation for-
mulation. This spurious mode is avoided when the equations
and the boundary conditions are recast in terms of both u′

and p′ (Dale et al. 2001).
Introducing matrices aix and vectors bix, we can pose the

following recursive relation:

Rix 5 aixRix11 1 bix: (31)

FIG. 4. (a) Maximum value of the Baines forcing F̃ B in contour lines and color overlay; the dashed blue line is
Zpyc5 600 m. (b) Values of hydrostatic forcing F̃ B from Eq. (23) as a function of cross-shore distance computed along
the bottom for pycnocline depth 600 m [see dashed blue line in (a)] for different pycnocline thicknesses, zoomed in
on the slope and shelfbreak region, where forcing is the largest. Shelf break is at x5 280 km as shown in the bathym-
etry profile in the bottom.
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Plugging in Eq. (31) into Eq. (30), the recursive relations for
aix and bix are

aix 52Cix(Aixaix21 1 Bix)21, (32)

bix 5 (Dix 2 Aixbix21)(Aixaix21 1 Bix)21: (33)

From the vertical modes found using the offshore boundary
condition solving Eq. (19), we can find a1 and b1 at the open
boundary and then find the remaining aix and bix iterating
forward using Eqs. (32) and (33). Finally, using the coastal
boundary condition given by Eq. (14), we can solve for all Rix

iterating backward using Eq. (31).

b. Grid resolution dependence

All equations are solved on a S-grid, such that S 5 z/h and
X5 x, and the derivatives are

­

­X
5

­

­x
1

z
h
­h
­x

­

­z
,

­

­S
5 h

­

­z
: (34)

The domain is discretized with Nx 5 3800 andNz 5 300 points
in the horizontal and vertical directions, respectively, such
that Dx 5 79 m and Dz 5 hDS 5 (h/300) m, which in the
deepest region is 10.3 m.

The resolution used in this study was chosen after perform-
ing sensitivity tests both to horizontal and vertical grid spacing
to ensure that the solution has converged across the parameter

space considered. Figure 5 shows cross-shore energy fluxes
hFupi for several representative combinations of pycnocline
depths and thicknesses computed in simulations. For these
cases, we observe eventual convergence as we increase the
horizontal (Figs. 5a,c,e) and vertical (Figs. 5b,d,f) resolutions.

Sufficiently high resolution is required to numerically solve
this problem, in particular the eigenvalue problem at the off-
shore boundary shown in Eq. (19), which can be recast in the
matrix form as

LV 5 LMV, (35)

where L and V are, respectively, the eigenvalue and eigenvector
matrices. Although we are solving the Sturm–Liouville eigenvalue
problem that theoretically guarantees orthogonal eigenvectors,
the vertically nonuniform stratification [second left-hand side
term in Eq. (19)] makes the problem formulation nonselfadjoint
(Carasso 1969). The finite-difference matrix on the left-hand side
is nonsymmetric because of the first-order vertical derivative, and
orthogonal eigenvectors are no longer guaranteed. In other
words, while orthogonal eigenvectors are guaranteed in the
case of a continuous differential equation problem of this type,
they are not guaranteed in the discretized representation of
this particular differential equation problem. For uniform strati-
fication, matrix L is symmetric (second-order finite-difference
matrix), so eigenvectors are guaranteed to be orthogonal.

As shown by Carasso (1969) and Gekeler (1974), for suffi-
ciently small grid spacing Dz, one can construct a diagonal

FIG. 5. Cross-shore energy flux hFupi computed for (a),(c),(e) different horizontal resolutions keeping Nz 5 300
and (b),(d),(f) different vertical resolutions keeping Nx 5 1800 for a selected sample of pycnocline depths and thick-
nesses. All values are computed for simulations forced with M2 tidal forcing and with rigid-lid top boundary.
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matrix D, such that L̂ 5 D21LD is symmetric. The accuracy of
computed eigenvalues increases with numerical resolution
(Gheorghiu and Zinsou 2019; Early et al. 2020), which is nec-
essary to accurately compute the associated eigenvectors. As
such, the departure from orthogonality of the eigenvectors de-
creases with increased grid resolution. Furthermore, on a reg-
ularly spaced grid, in the case of nonuniform stratification, the
grid points might not align with the Gaussian quadrature
points (roots) of higher modes (eigenvector solutions), which
requires increasing vertical resolution to resolve these modes,
even if we can recast Eq. (19) in a self-adjoint form (Early
et al. 2020). We find that for the resolution that we have chosen
in this study (Nz 5 300), the contribution to the computed cross-
shore energy flux values from the cross-term components, which
suggests nonorthogonal eigenvectors, is small (,5%).

Furthermore, horizontal resolution is also important be-
cause of the S-grid coordinates. In regions of steep topogra-
phy, significant numerical errors may arise in computing the
horizontal pressure gradient (Manabe and Smagorinsky 1967;
Haney 1991). In models, the magnitude of the errors depends on
the topographic gradient and strength of stratification, i.e., on
how much the vertical isosurface coordinate is not aligned with
the geopotential or isopycnal surfaces (Haidvogel et al. 2000;
Sikirić et al. 2009). To address this problem inmeteorological and
oceanographic modeling, the following criterion known as the hy-
drostatic consistency was derived (Mesinger 1982; Haney 1991):

r 5
∣∣∣∣SLx(­h/­x)

H

Nz

Nx

∣∣∣∣ # 1: (36)

However, it has been shown that in models, for instance
ROMS, instability does not immediately occur for r . 1, and a
grid can be numerically stable even for up to r, 6 (Shchepetkin
and McWilliams 2003; Sikirić et al. 2009).

Here, we find that if the horizontal resolution is insufficient,
the model yields resonance-like peaks for certain parameter
values, even in the case of uniform stratification. That is, over-
all, we find that grid spacing with Nx ; 1800 is sufficient for
most parameter combinations, as shown in Figs. 5a, 5c, and
5e. However, as shown in Fig. 6, sweeping over values of
Coriolis parameter f or slope width xW, this horizontal resolu-
tion (Nx 5 1800) produces peaks at certain values of f or xW.
Upon further inspection, energy flux beams generated in
those simulations appear unphysical and indeed disappear as
we increase Nx. Hence, we set Nx 5 3800 in our simulations,
which also meets the condition of r , 6 over the slope region.
This resolution is equivalent to Dx 5 79 m, which is much
smaller than the O(1) km spacing used in previous studies using
S-coordinates (e.g., Sherwin and Taylor 1990; Dale et al. 2001;
Klymak et al. 2016). Although the coarser resolution may have
been sufficient for the coastal trapped waves of interest in these
previous studies, we find that it is not sufficient for estimating the
offshore baroclinic energy flux, which is the aim of this paper.

4. Model validation

We compare the output from our model with two other lin-
ear internal tide models: Coupling Equations for Linear Tides
(CELT) (Kelly et al. 2013) and Centre de Météorologie
Spatiale (CMS) (Papoutsellis et al. 2023). Numerical codes for
both are publicly available and can be modified to match our
topography setup in Fig. 1. Because the CMS model is cur-
rently restricted to uniform stratification, we take N2 5N2

bg in
all cases. We take the coastal shelf to be flat, i.e., hs 5 hc. The
CELT model solves for vertical modes at each depth as if it is
locally flat and then uses pressure and velocity matching condi-
tions to adjust for changes in topography. These matching con-
ditions allow for coupling of the modes. The CMS model uses

FIG. 6. Cross-shore energy flux hFupi computed for (a),(c) different horizontal resolutions given as the number of
grid points Nx and horizontal spacing Dx (Nz 5 300) and (b),(d) different vertical resolutions given as the number of
grid pointsNz and vertical spacing Dz (Nx 5 3800) for the uniform stratification case. In (a) and (b), energy flux values
are computed as a function of Coriolis parameter f, and in (c) and (d), values are computed as a function of slope
width xW. All values are computed for simulations forced with M2 tidal forcing and with a rigid-lid top boundary.
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local eigenfunction expansion of the streamfunction, which is
advantageous because it satisfies the bottom boundary condi-
tion for any arbitrary topography. It then poses the problem in
terms of a coupled-mode system of equations and solves them
numerically.

One of the main differences between our model and these two
models is in the definition of barotropic flux Q in the forcing
term. Both the CELT and CMS define it in terms of the baro-
tropic velocity ubt and depth offshore, i.e., Q 5 h0ubt(x 5 2L).
Because the barotropic flow is assumed to be constant with the
cross-shore distance, in 2D flows, barotropic velocity increases
going toward the shore over the sloping region as the depth
decreases. In Baines (1982), which we follow in our model,
Q is approximated as the barotropic flux onto the shelf, i.e.,
shelf water “volume” hxs per tidal period 1/v. The barotropic
velocity at the shelf break is then implicitly prescribed as
ubt(x 5 2xs) 5 Q/hs 5 hxsv/hs. What is the most appropriate
model for barotropic currents in shallow regions is still uncertain
(Zaron and Elipot 2021; Stammer et al. 2014) and beyond the
scope of our process study. To be consistent in our comparison of
the three models, we use ubt(x 5 2xs) 5 hxsv/hs 5 0.75 cm s21

and find the appropriate offshore barotropic forcing that
yields the same ubt at the shelf break in the other two models.
For h0 5 3100 m, we need to setQ5 6.5 m2 s21 or equivalently
ubt(x5 2L)5 0.21 cm s21 for the CELT and CMS runs.

We find that the spatial distribution and baroclinic energy
flux magnitude for this test setup computed using our model
match the outputs of the other two linear models (Fig. 7). The
CELT model has vertically uniform grid spacing Dz throughout
the domain, meaning that in order to have Dz5 0.5 m as we set
over the shelf, quite fine vertical resolution of Nz 5 6200 is re-
quired, and inverting such large matrices is computationally ex-
pensive. In our code, this problem is circumvented by using S

coordinates. To be consistent with the number of vertical

modes fully resolved at the offshore boundary in our model,
we set Nz 5 300, which corresponds to 12 resolved modes. As
the model output was shown to be insensitive to the number
of horizontal steps, especially for supercritical topography, in
Kelly et al. (2013), we use 32 steps. The CMS model is more
memory-intensive compared with our model and CELT, so we
use 128 internal wave modes, which was the number suggested
in Papoutsellis et al. (2023) to achieve convergence. The hori-
zontal spacing is the same (Nx5 3800) as in our model.

Although idealized, our model presented here offers more flex-
ibility to approximate the real ocean conditions in comparison
with the other two linear tidal models. First, unlike our model,
the CMS and other similar models (Griffiths and Grimshaw 2007;
Lahaye and Llewellyn Smith 2020) are currently limited to uni-
form stratification. Second, both CELT and CMS assume radiat-
ing boundary condition, i.e., energy leaving the domain, along
both horizontal boundaries at x 5 0 and x 5 2L, unlike our
model that imposes a coastal wall with u5 0 at x5 0. This is not
a significant problem for supercritical topographies studied here,
as internal tide propagation onto the shelf is small, though notably
that results in small, but nonzero baroclinic energy flux on the
shelf and at the coastal wall in those two models (Fig. 7a). How-
ever, for subcritical topographies, a significant portion of the
waves can be reflected onto the shelf. The radiation boundary,
which would allow this energy to leave the domain, might not be
an appropriate choice at the coast, in contrast with a reflective
wall boundary. However, it could also be argued that the radia-
tion boundary can represent dissipation on the shelf in turbulent
shallow water, which would prevent significant reflection.

5. Results

In this study, we are interested in the energy generated by
the interaction of the gravest (barotropic Kelvin wave–like)

FIG. 7. Comparison of the linear internal tide model used in this study with CELT (Kelly et al. 2013) and CMS
(Papoutsellis et al. 2023) for the uniform stratification case: (a) vertically integrated cross-shore energy flux hFupi computed
using three differentmodels; (b)–(d) spatial distribution of cross-shore energy fluxFup for the three differentmodels.
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mode with the coastal topography. The gravest mode for all
configurations is at l 5 0 (not shown). This is the case for the
rigid-lid boundary condition, and when we impose a free-
surface boundary condition, in general, l Þ 0 for the gravest
mode (not shown). However, the rigid-lid boundary condition
and the corresponding zero alongshore variability are consis-
tent with the assumptions made in Baines (1982) to derive the
barotropic tide body force that we use in this study.

In this section, we will investigate the sensitivity of cross-
shore energy flux to the nonuniform stratification, in particu-
lar pycnocline depth Zpyc and thickness mpyc. In our setup, all
of the nonuniform stratification profiles have approximately
the same depth-averaged N2 (denoted as N2 ) at the offshore
boundary, which is approximately 1:75N2

bg. We will also assess
how the presence of a pycnocline affects the cross-shore en-
ergy flux by comparing the simulations with nonuniform strat-
ification to those with uniform stratification with N2 5N2

bg
and N2 5N2 5 1:75N2

bg. It is important to recall that in our
setup, energy flux is directed westward (negative x direction),
and hence, hFupix52Lx is negative; therefore, in the parameter
sweeps, we plot its absolute value, and terms such as “increase”
and “decrease” refer to the magnitude of the flux.

a. Cross-shore energy flux

Figure 8 shows cross-shore energy flux Fup(x, z) and vertically
integrated values hFupi(x), defined in Eqs. (24) and (25), respec-
tively, for M2 tidal forcing runs for pycnocline depth of 600 m.
The middle panel (Fig. 8b) shows the energy flux for simulations
with the relatively narrower pycnocline mpyc 5 200 m, corre-
sponding to the blue line in the stratification profiles, and the
right panel (Fig. 8c) one with relatively thicker pycnoclines
(Zpyc 5 mpyc), corresponding to the black stratification profile
lines. We find beam-like structure of the energy flux with bottom
and surface reflections, as has been previously predicted by the-
ory (Craig 1987) and observed in numerical simulations (Kelly
et al. 2010). Overall, we find that the magnitude of the cross-
shore flux does not vary significantly with stratification, so
we only show representative results in Fig. 8. However, the

pycnocline depth and thickness changes the spatial distribution
of the energy flux. For instance, there is elevated near-surface
energy flux magnitude and the beam is distorted for simulations
with narrower pycnoclines compared with the thicker pycno-
clines that approach uniform stratification. The effect of the
pycnocline can also be seen from the deviation of the tidal
beams (characteristics in solid black lines) from the black
dashed lines, which are internal tide characteristics assuming
constant background stratification. The specifics of the sensi-
tivity to pycnocline depth and thickness and the interplay be-
tween stratification and topography will be discussed in detail
in sections 5b–5d.

b. Examining previously derived scalings

We find the same latitudinal dependence of the cross-shore
energy flux magnitude as previously derived for knife-edge
ridge (Llewellyn Smith and Young 2003) and topographic
step (St. Laurent et al. 2003), i.e., hFupix52Lx ~

�����������
v2 2 f 2

√
(cf. Fig. 9a). This is, of course, because the group speed non-
linearly decreases with latitude, that is, the eigenvalues at the
offshore boundary defined in Eq. (19) kj ~

�����������
v2 2 f 2

√
, and it

can be inferred from Eq. (27) that Cj ~
�����������
v2 2 f 2

√
for a given

forcing frequency v, which translates to the decrease of cross-
shore energy flux with latitude.

Varying the shelf width xs, we find that hFupi ~ x2s (Fig. 9b).
This relationship is perhaps not surprising as the magnitude of
the forcing F̃B is linearly dependent on xs. Furthermore, this is
consistent with the previously derived scaling of the energy
flux magnitude being proportional to the square of barotropic
velocity. The barotropic velocity at the shelf break is defined as
ubt 5Q/hs5 vxsh/hs; therefore, hFupix52Lx ~ u2bt ~ x2s for a fixed
tidal frequency v and barotropic tidal elevation at the coast h.

c. Sensitivity of cross-shore energy flux to stratification
and topography

As the topographic criticality amax depends on both stratifi-
cation and topographic slope [cf. Eq. (1)], we now investigate
the effects of the interplay between the stratification and

FIG. 8. Cross-shore energy flux (spatial structure and vertically integrated values) for (b) Zpyc 5 600 m, mpyc 5 200 m and (c) Zpyc 5 600 m,
mpyc5 600 m. The corresponding pycnoclines are shown in (a). All simulations are forced with M2 tide and run with a rigid-lid boundary condi-

tion. Black dashed lines in (b) and (c) are the internal tide characteristics for uniform stratification case with slope
����������������������������
(v2 2 f 2)/(N2

bg 2v2)
√

, and

black solid lines are the characteristics for the specific nonuniform stratification profiles with slope
���������������������������(v2 2 f 2)/(N2 2v2)√

.
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topography on the cross-shore energy flux. Specifically, in
Eq. (3), we vary (i) the width of the slope xW between 30 and
60 km (xW 5 32 km in the main setup), (ii) the depth of the
shelf hs between 150 and 600 m (hs 5 150 km in the main
setup), and (iii) the ratio of the coastal depth to shelf depth
hc/hs over the range 0.5–1 (hc/hs 5 2/3 in the main setup),
while keeping all of the other simulation parameters the same
and fixing f 5 0.93 3 1024 s21 (;408). The last parameter
hc/hs does not affect the topographic criticality amax of the
slope. In all cases considered here, amax . 1, i.e., the topogra-
phy is supercritical, with respect to M2 tide characteristics. We
present these results to show some of the effects of different
topographies and show results with smaller amax values (i.e.,
more gradual slopes) comparable with some previous studies
(Craig 1987; Kelly and Nash 2010; Hall et al. 2013; Wang et al.
2018).

Overall, at a fixed latitude, the energy flux is smaller for deeper
shelves as shown for a sample stratification profile with pycno-
cline depth of 600 m and thickness of 200 m in Fig. 10a. Varying
the pycnocline depth and thickness, the energy flux values pre-
dominantly collapse onto one curve, such that hFupi ~ 1/hs
(Fig. 10b). For smaller hs, there is about 10% variability depend-
ing on the stratification. In the expression for cross-shore energy
flux derived by Baines (1982), hFupi increases withZpyc/hs, which
is consistent with our finding here, although we do not find strong

dependence on Zpyc. The expression in Baines (1982) is only
valid for Zpyc/hs # 1, i.e., pycnoclines that are shallower than the
shelf break. Here, we extend the analysis to Zpyc/hs . 1, i.e.,
deeper pycnoclines, and show that similarly hFupi ~ 1/hs.

In general, as we vary hs, the magnitude of the energy flux in-
creases with the topographic criticality parameter amax (Fig. 10c),
though the rate of change of hFupi with amax is dependent on
the stratification profile. The increase in energy flux here appears
to be exponential with amax, not linear as was previously esti-
mated by Craig (1987). However, we consider the values of amax

even larger than those in Craig (1987), and for the smaller amax

values in our range, the relationship could be approximated as
linear.

The energy flux is also smaller for flatter shelves (i.e., larger
hc/hs) as shown in Fig. 10a. As the value of coast depth hc is
doubled, hFupi is approximately reduced by a factor of two
(cf. solid and dashed lines in Fig. 10b). Figure 10c also highlights
that the slope of the shelf itself (i.e., hc/hs) is an important pa-
rameter. Varying hc/hs does not change amax, but it does change
the energy flux. However, the effect of this parameter is not
thoroughly studied, as most works on the sensitivity of energy
flux to topography are focused on the effects of amax.

Over our selected range of slope widths xW, the magnitude of
the cross-shore energy flux does not vary, even though amax varies
with xW (Figs. 10d,e). In Baines (1982) formulation, the parameter

FIG. 9. Cross-shore energy flux hFupi at the offshore boundary x 5 2Lx as a function of latitude in terms of
(a)

�����������
v2 2 f 2

√
and (b) x2s . Energy flux is computed for nonuniform stratification profiles’ varying pycnocline depth Zpyc

and thickness mpyc and also for uniform stratifications N2 5N2
bg 5 1:223 1025 s22 (black line) and N2 5 1:75N2

bg 5

2:143 1025 s22 (gray line).
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xW does not explicitly appear but contributes by changing the

slope hx through the parameter T 5 (hs
�����������
v2 2 f 2

√ )/(hx
��������
g′Zpyc

√
),

where g′ 5 gDr/r0. However, for our chosen parameter range,
T only varies between 0.3 and 0.9, which would have an insignifi-
cant effect on the expression in Baines (1982), consistent with our
result of energy flux magnitude not depending on xW. This can

also be explained by the fact that most of the forcing F̃B occurs at
or close to the shelf break (cf. Figs. 3 and 4b) for our chosen
ranges ofZpyc and mpyc. As such, the maximum value and area in-
tegral of the forcing function are mostly not sensitive to the width
of the slope xW, as we will see in section 5d and the appendix,
thus not affecting the magnitude of the baroclinic energy flux.
Gerkema et al. (2004) similarly found that the magnitude of

barotropic-to-baroclinic energy conversion does not depend on
the slope width. Notably, we find that for deeper pycnoclines and
a uniform stratification profile, simulation results with wider xW
are sensitive to resolution and, for our chosen resolution, begin to
drift due to unphysical numerical errors at larger xW. Hence, we
omit those values in Figs. 10d and 10e.

We also find that the energy flux for nonuniform stratifica-
tion profiles (colored lines in Figs. 9 and 10) is greater than
that for the uniform stratification profiles (black and gray
lines in Figs. 9 and 10). This is in part because the nonuniform
stratification profiles have a peak that is larger than N2

bg;
hence, the forcing term is also larger [cf. Eq. (23)]. However,
for nonuniform stratifications, the maximum value of N2 is
also not the determining factor, as it can vary by at least a factor

FIG. 10. (a) Cross-shore energy flux hFupi at the offshore boundary as a function of shelf depth hs and the ratio of coastal depth to shelf
depth hc/hs for Zpyc 5 600 m, mpyc 5 200 m; hFupi at the offshore boundary for several selected stratification profiles as (b) a function of
1/hs, (c) a function of amax(hs), (d) a function of xW, and (e) a function of amax(xW). In (b)–(e), solid lines are for hc/hs 5 0.5 and dashed
lines are for hc/hs 5 1. All values are computed for a fixed f5 0.9331024 s21 (;408).
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of three depending on the pycnocline thickness (cf. Fig. 1c), yet
the energy flux magnitude only varies by about 10% over the
range of pycnocline depths and thicknesses considered here.
Therefore, the presence of a pycnocline itself, and not its parti-
cular shape, seems to result in larger baroclinic energy flux mag-
nitude. Even the energy flux curves for stratification profiles
with deeper and thicker pycnoclines, e.g., Zpyc 5 mpyc 5 600 m
and Zpyc 5 mpyc 5 800 m, for which the stratification profile
approaches that of a uniform stratification, collapse onto a
similar line as the energy flux curves for shallower and nar-
rower pycnoclines.

Notably, group speed does not depend on the pycnocline
thickness; there is only a small change in kj in Eq. (27) as we
change Zpyc and mpyc at a given latitude. However, kj is larger
in the case of uniform stratification compared with the non-
uniform stratification profiles. That results in slower group
velocity and smaller baroclinic energy flux magnitude for the
uniform stratification case.

d. Scaling of cross-shore energy flux magnitude

In this section, we summarize the combined previously and
newly found latitudinal and topographic effects on the cross-
shore energy flux magnitude that we investigated separately
in sections 5b and 5c, respectively. As we have shown in these
previous sections, the topographic criticality parameter amax

does not capture the variability in the magnitude of baroclinic
energy flux well. As such, we seek to find a better scaling that
explains the dependence of the energy flux magnitude on the
parameters explored in this study.

We derive a scaling for the baroclinic energy flux magnitude,
using the relationships found in sections 5b and 5c and the ener-
getics arguments in Baines (1982), to be

hFupi ~
hF̃BiA
hF̃Bi0A

hxs
hc

�����������
v2 2 f 2

√
: (37)

Here, hF̃BiA is the area integral of the Baines body force
function [i.e., Eq. (22)] that depends on xs, hs, hc, h, and N2;
specifically, hF̃BiA ~ hxs(hc/hs): The term hF̃Bi0A is the area
integral of the Baines body force function for some baseline
topographic parameters (x0s , h0s , h0c , h

0) for a particular strati-
fication N2. Here, for each (Zpyc, mpyc), we compute hF̃Bi0A
as the area integral of Eq. (22) setting x0s 5 30 km,
h0s 5 h0c 5 150 m, and h0 5 0.05 m. In this manner, the first
fraction of Eq. (37) normalizes for the N2 dependence of F̃B.
Derivation details are summarized in the appendix.

Notably, the derivation of Baines body force in Eq. (21) as-
sumes that the cross-shore barotropic velocity at the shelf break
is ubt 5 (Q/hs)exp(2ivt) (Baines 1973). Then, the expression in
Eq. (37) for baroclinic energy flux can be rewritten as

hFupi ~
u2bths
hF̃Bi0A

�����������
v2 2 f 2

√
: (38)

This expression shows that the scalings previously derived
for the energy fluxes of baroclinic tides generated isolated
ridge (Llewellyn Smith and Young 2003) and step topography
(St. Laurent et al. 2003), namely, the dependence on u2bt

�����������
v2 2 f 2

√
,

also hold for the generation in the presence of supercritical
coastal topography despite the difference in geometry and im-
posed boundary conditions.

To test our scaling, we run full parameter sweeps for differ-
ent stratifications (Zpyc and mpyc) varying f 5 0.8 3 1024

–

1.35 3 1024 s21, xs 5 30–120 km, hs 5 150–600 m,
hc/hs 5 0.5–1, and h 5 0.05–0.2 m. Our results, summarized
in Fig. 11, indicate that our scaling from Eq. (37) (Fig. 11a),
which is derived using specific topographic parameters, approxi-
mates the baroclinic energy flux variability well. In contrast, the
topographic criticality parameter amax (Fig. 11b), the expression
which does not consider the topographic parameters in detail, is
not a good scaling for the baroclinic flux magnitude.

The expression in Eq. (37) can be used at a given location
in the ocean using data for local bathymetry and stratification.
For instance, a piecewise fit in the form of Eqs. (2)–(4) to a re-
alistic topographic profile can be calculated to find the rele-
vant topographic parameters xs, hc, hs, and h0. Examples of
such curve fits are shown in Fig. 2. The area integral of the
Baines body force hF̃BiA can be found semianalytically by in-
tegrating Eq. (22). These values would be sufficient to approx-
imate the magnitude of the offshore energy flux. The term
that corrects for stratification hF̃Bi0A can be computed using
our numerical model for any given stratification and bathyme-
try profile or approximated using the expression in Eq. (A6).
However, we found this term to have less impact on the off-
shore energy flux magnitude compared with the other terms
in Eq. (37), which suggests that the estimates of the topo-
graphic parameters and body force integral hF̃BiA are suffi-
cient to approximate the magnitude of the offshore baroclinic
energy flux relatively easily.

6. Discussion and conclusions

In this study, we conduct a series of idealized numerical simula-
tions in order to investigate the sensitivity of the magnitude of
the cross-shore energy flux generated by the interaction of baro-
tropic semidiurnal tide with supercritical topography. The gener-
ation of baroclinic tides at the continental slope is a complicated
problem, and it is difficult to exhaustively investigate the sensitiv-
ity of the radiated baroclinic energy flux, even though we already
consider a wide range of parameters. However, the numerical
framework developed in this study makes it easy to further ex-
plore the relevant parameter spaces.

Here, we specifically explore the dependence of the energy
flux magnitude on 1) latitude, 2) topographic parameters, and
3) nonuniform stratification by varying pycnocline thickness
and depth. The first two parameter categories were consid-
ered in the ray-tracing analysis by Baines (1982). Here, we ex-
tend that work to pycnoclines that are deeper than the shelf
break and with thickness of the same order of magnitude as
their depth. As such, the stratification profiles we consider are
akin to deep and relatively thick permanent thermoclines of-
ten present in the ocean (Gerkema et al. 2004; Vieira and
Allshouse 2020), in contrast with the shallow and infinitesi-
mally thin pycnocline that resembles a seasonal (summer)
pycnocline in the Baines (1982) model.
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We present the sensitivity of the cross-shore baroclinic tide
energy flux in terms of both the physical parameters (e.g.,
latitude, shelf width, and pycnocline depth/thickness) and
the nondimensional topographic criticality parameter amax

[cf. Eq. (1)], which is commonly used in studying the tide–
topography interactions. We draw three main conclusions from
our findings for the ranges of parameters considered here:

1) For the nonuniform stratification profiles, cross-shore en-
ergy flux magnitudes are more sensitive to the latitude
and topographic parameters than to pycnocline depth and
thickness; yet, the presence of a pycnocline amplifies the
energy flux magnitude compared with uniform stratifica-
tion cases, and the variability of energy flux magnitude
cannot be simply explained by the values of deep-ocean
N2, depth-averaged N2, or maximum N2.

2) The magnitude of cross-shore energy flux is not simply
governed by the topographic criticality: self-similar re-
gimes appear in terms of physical parameters: specifically,
the cross-shore energy flux decreases with latitude (f), in-
creases with shelf width (xs), decreases with shelf depth
(hs), and remains unchanged with slope width (xW).

3) Cross-shore energy flux magnitude is sensitive to the slope
of the coastal shelf itself, which has been previously ne-
glected as the shelf is often modeled to be flat.

Our findings are of particular interest, as many previous
studies were focused on the effects of topographic criticality
amax on the magnitude of the baroclinic energy flux (e.g.,
Craig 1987; Hall et al. 2013; Kelly 2016; Wang et al. 2018).
However, we find amax to be a poor nondimensional parame-
ter to describe baroclinic tide generation at the coast. For ex-
ample, the energy flux scales with 1/hs, i.e., it increases with
shallower shelf break and steeper topographic slope, meaning
that it increases with amax. Yet, the energy flux magnitude

remains relatively constant with the width of the slope xW,
even though narrower slope increases the value of amax. Al-
though pycnocline thickness and depth can change the value
of amax, the energy flux magnitude is not very sensitive to dif-
ferences in stratification at a fixed latitude and for a given set
of topographic parameters.

Instead, we find that the energy flux magnitude depends on
many physical parameters that describe the system. Using
scaling analysis and energetic arguments, we find a scaling pa-
rameter that captures the dependence of the baroclinic energy
flux on topographic parameters, latitude, and stratification
better than amax does. Therefore, we propose that although
amax captures the transition of the topography from subcriti-
cal to supercritical regimes with respect to the baroclinic tide
propagation, Eq. (37) provides a better scaling for the baro-
clinic energy flux magnitude itself. The sensitivity of the baro-
clinic energy flux to some of the topographic parameters that
we find to be important has not been previously considered in
the context of generation at continental slopes. For instance,
Gerkema et al. (2004) found that the conversion rate at any
supercritical slope can be closely approximated by the theo-
retical value derived for step topography in St. Laurent et al.
(2003), but the only parameter varied was the slope width xw,
which we also find to have small impact on the baroclinic en-
ergy flux magnitude. However, we caution the reader that the
new scaling derived here relies in part on particular assump-
tions made in Baines (1973) to estimate the cross-shore baro-
tropic velocity, ubt, dependence on which is evident in Eq. (38).
As such, accurate estimates of the baroclinic energy flux rely on
accurate estimates of barotropic currents. In future studies, it will
be useful to compare the estimates of energy fluxes using mea-
sured tidal elevation and estimated tidal currents from satellite
measurements, such as TOPEX/Poseidon (Egbert and Erofeeva
2002) or AVISO.

FIG. 11. The dependence of cross-shore energy flux hFupi at the offshore boundary for different stratifications
on latitude and topographic parameters in Eqs. (2)–(4) as a function of (a) scaling parameter defined in Eq. (37) and
(b) topographic criticality parameter amax defined in Eq. (1).
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Interestingly, one of the parameters that significantly affects
the baroclinic energy flux magnitude in our results is the slope of
the continental shelf itself. We find that the energy magnitude in-
versely scales with a ratio of the water depth at the coast to the
depth at the shelf break. Yet, to our knowledge, this parameter
has not been studied, in part because it does not affect the topo-
graphic criticality amax, and it does not appear in the analytical ex-
pression in Baines (1982), which assumes a flat continental shelf.
In all of our simulations, the continental shelf remains subcritical
(a ,, 1) and has a significantly more gentle slope than the conti-
nental slope. Switching to CELT and CMS models with onshore
radiation boundary condition, we find insignificant differences in
the cross-shore energy flux between setup with flat and sloping
continental shelf, so it is possible that the differences that we find
in our study are largely due to the reflective wall boundary condi-
tion. A careful consideration of the appropriateness of each
boundary condition is beyond the scope of this study; although
wave energy dissipation due to breaking near the coast is better
captured by the radiation boundary condition, an argument from
observations of standing internal tides on continental shelves
(Lerczak et al. 2003; Rayson et al. 2012; Suanda and Barth 2015)
can also be made in favor of reflections from the coast. Regard-
less, many modeling studies choose to represent the coastal
boundary as reflective, both in linear models (e.g., Dale et al.
2001; Zhang andYankovsky 2016) and full-equationmodels (e.g.,
Hall et al. 2013; Klymak et al. 2016). Hence, it is important to doc-
ument how the slope of the continental shelf affects the energy
flux under the assumption of a coastal wall.

For our selected range of parameter values, energy flux magni-
tudes correlate with the areal integral rather than the maximum
value of the forcing function. Furthermore, the location on the
slope where the forcing function has the maximum value, which
depends on the pycnocline thickness and depth, does not signifi-
cantly affect the energy flux magnitude. However, it is possible
that the specific functional approximation of the bathymetry used
in this study [cf. Eqs. (2)–(4)] makes the shelf break a particularly
important location for the generation of the internal tide beam
(Chen et al. 2017). As such, the shape of the continental slope
(e.g., piecewise linear as in this study, Gaussian, or sinusoidal)
may be another parameter that needs to be considered, as was
previously suggested byWang et al. (2018) in the case of uniform
stratification. That is, it is possible that pycnocline thickness and
depth play amore important role if the bathymetry is smoother at
the shelf break, which needs to be explored in a future study.

Althoughwe see the imprint of the pycnocline depth and thick-
ness in the spatial distribution of the cross-shore energy flux, most
of the energy propagates offshore as a single beam in our simula-
tions; mode 1 accounts for a large fraction in offshore energy flux.
However, global maps of baroclinic tide energy reconstruction
from climatology data by de Lavergne et al. (2019) suggested that
modes 2–5 can be important inmany coastal regions. Barbot et al.
(2021) found that in theBay of Biscay, themode 1 baroclinic tides
are controlled by maximum N around 750-m depth, akin to the
deep permanent pycnoclines considered in this study. In contrast,
modes 2 and 3 baroclinic tides are controlled by N at much shal-
lower depths (;20–40 m), i.e., seasonal near-surface secondary
pycnoclines. One of the interesting continuations of our study
would be to add a shallow pycnocline to investigate its effect on

the baroclinic energy flux magnitude and its modal decomposi-
tion, which is possible using our model, as stratification is ex-
pected to be responsible for setting the modal wavelengths
(Llewellyn Smith and Young 2002). This would assess whether
baroclinic energy flux might be seasonally variable, which may be
especially important in temperate and subpolar regions, where
seasonal differences in stratification are more significant, yet not
captured in global estimates.

In this study, we consider a 2D linear model, the advantage of
which is allowing us to perform sweeps over a wide range of pa-
rameters using a reasonable number of computational resources.
Similar models have been used in a number of previous studies in
unstratified and stratified systems (e.g., Sherwin and Taylor 1990;
Dale and Sherwin 1996; Dale et al. 2001; Klymak et al. 2016;
Yankovsky and Zhang 2017). Our examination of the numerical
approach revealed that the finite-difference method used to solve
this problem requires high spatial (vertical and horizontal) resolu-
tion, especially when stratification is nonuniform. The cross-shore
energy flux may be under- or overestimated if the problem is
underresolved and, furthermore, results in unphysical solutions
that show up as resonance-like peaks in the parameter sweeps.
The grid size that we find to be sufficient for the solution to con-
verge (Dx � 100 m, Dz � 100 m in our setup) is much smaller
than that used in some of the previous studies (e.g., Sherwin and
Taylor 1990; Dale and Sherwin 1996; Dale et al. 2001; Klymak
et al. 2016). Now that we have established a setup for this prob-
lem, we can use this tool to update the global estimate of the baro-
clinic internal tide energy flux, previously computed by Baines
(1982), with more accurate approximations of coastal bathymetry
and stratification.

However, the linear setup of simulations in this study limits the
consideration of several aspects thatmay be important to the gen-
eration and propagation of the baroclinic tides. First, we are ne-
glecting the alongshore variation; previously, Katsumata (2006)
showed that 2D simulations may underestimate the offshore en-
ergy flux by up to an order ofmagnitude compared with 3D simu-
lations. Alongshore variations in topography can also result in
changes in propagation of the Kelvin wave–like barotropic mode
itself (Yankovsky and Zhang 2017), which means that the as-
sumptions made to derive Baines body forcing no longer hold.
Furthermore, due to the complex nature of bottom topography,
baroclinic wave beams that are prevalent in 2D simulations may
be more scattered in a realistic 3D ocean (Lamb 2014). The rigid-
lid boundary condition also leads to neglecting the alongshore
variation, as the gravest mode has zero alongshore wavenumber.
In contrast, with the free-surface boundary condition, the along-
shore wavenumber of the gravest mode is nonzero. In this case,
internal tides propagate at an oblique angle to the coast and
“leaky” superinertial coastal trapped waves that redistribute en-
ergy are possible (Dale and Sherwin 1996;Musgrave 2019).

This setup also does not allow for nonlinear wave interactions,
which might play an important role (Gerkema et al. 2006; Maugé
and Gerkema 2008; Duda et al. 2012; Wang et al. 2021), in partic-
ular in transferring energy to higher frequencies and local dissipa-
tion (Grisouard and Staquet 2010; Gayen and Sarkar 2011a;
MacKinnon et al. 2017). Increased shear from internal wave
beams can also further enhance local dissipation and mixing
(Fructus et al. 2009). The relative effects of these processes must
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be considered in future studies with fully nonlinear 3D simula-
tions. Nevertheless, because the problem of baroclinic tide energy
at the coastal margins is dependent uponmany factors (e.g., topo-
graphic slope, tidal forcing frequency, and stratification), this pro-
cess study provides insights into the sensitivity of the energy flux
magnitude andmodal decomposition sweeping over a wide range
of parameters.
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APPENDIX

Derivation of the Baroclinic Energy Flux Scaling

Here, we derive a scaling for the cross-shore baroclinic energy
flux magnitude. From the energetics arguments in Baines (1982)
and our simulation results in sections 5b and 5c, we find that

hFupi ~
h2x2s
hs

�����������
v2 2 f 2

√
: (A1)

We further assume that the energy fluxmagnitude scales with the
area integral of the Baines body force F̃B. For the sake of simplic-
ity, we will use the hydrostatic approximation of the forcing term
given in Eq. (23) in the derivations here, though we use the full
term given in Eq. (22) in our calculations.

From Fig. 3, we can approximate the area integral of F̃B as the
sum of two trapezoids: 1) area A1 on the continental shelf with
height xs and lengths of bases equal to hc and hs and 2) areaA2 on
the continental slope with height x′s and lengths of bases equal to
hs and h′s.We denote x′s to be the horizontal extent of the nonzero
F̃B on the slope, and h′s 5 h(x′s). The approximate area integral
denoted by h?iA is

hF̃BiA 5

�
A

hxsN
2hx

h2
dxdz, (A2)

;
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hs 2 hc
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (A5)

Here, N2
A1

and N2
A2

are the average N2 over areas A1 and
A2, respectively. Because h2s . hs $ hc, the term in the
square brackets in Eq. (A5) that contains the dependency
on the stratification is always positive. Also, notably, x′s is
eliminated except for in the correction term hN2iA2

, so the
horizontal extent of F̃B over the slope does not appear in
the approximation, which is perhaps why hF̃BiA (and subse-
quently, as we will show below, the magnitude of the baro-
clinic energy flux) is not sensitive to the slope width xW.

Assuming that hFupi ~ hF̃BiA, from Eqs. (A1) and (A5),
we get

hFupi ~
1
2

hs
hc

2
hc
hs

( )
N2

A1
1

h′2s
hs

2 hs

( )
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A2

hc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(hxs)hchs hxshc
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√
,

(A6)

;Cprop

hF̃BiA
hF̃Bi0A

hxs
hc

�����������
v2 2 f 2

√
: (A7)

Normalizing by hF̃Bi0A removes the dependency on the stratifi-
cation, and we recover Eq. (37) with some proportionality
constant Cprop.

Furthermore, the expression for body force in Eq. (21)
assumes that at the shelf break, the barotropic cross-shore
current is ubt 5 (Q/hs)exp(2ivt). Plugging this expression
into Eq. (A7), we obtain the dependency of baroclinic en-
ergy flux on this velocity with C̃prop now including the term
in the square brackets in Eq. (A6):

hFupi ~ C̃prop

u2bths
hF̃Bi0A

�����������
v2 2 f 2

√
: (A8)

REFERENCES

Alford, M. H., 2003: Redistribution of energy available for ocean
mixing by long-range propagation of internal waves. Nature,
423, 159–162, https://doi.org/10.1038/nature01628.

Baines, P. G., 1973: The generation of internal tides by flat-bump
topography. Deep-Sea Res. Oceanogr. Abstr., 20, 179–205,
https://doi.org/10.1016/0011-7471(73)90050-8.

}}, 1982: On internal tide generation models. Deep-Sea Res.,
29A, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X.

Barbot, S., F. Lyard, M. Tchilibou, and L. Carrere, 2021: Back-
ground stratification impacts on internal tide generation and
abyssal propagation in the western equatorial Atlantic and
the Bay of Biscay. Ocean Sci., 17, 1563–1583, https://doi.org/
10.5194/os-17-1563-2021.

Bell, T. H., Jr., 1975: Topographically generated internal waves in
the open ocean. J. Geophys. Res., 80, 320–327, https://doi.org/
10.1029/JC080i003p00320.

Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The
shaping of continental slopes by internal tides. Science, 296,
724–727, https://doi.org/10.1126/science.1069803.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 541384

Brought to you by OREGON STATE UNIVERSITY | Unauthenticated | Downloaded 08/29/24 11:14 PM UTC

https://zenodo.org/record/8225828
https://zenodo.org/record/8225828
https://doi.org/10.5281/zenodo.8225828
https://doi.org/10.1038/nature01628
https://doi.org/10.1016/0011-7471(73)90050-8
https://doi.org/10.1016/0198-0149(82)90098-X
https://doi.org/10.5194/os-17-1563-2021
https://doi.org/10.5194/os-17-1563-2021
https://doi.org/10.1029/JC080i003p00320
https://doi.org/10.1029/JC080i003p00320
https://doi.org/10.1126/science.1069803


Carasso, A., 1969: Finite-difference methods and the eigenvalue
problem for nonselfadjoint Sturm-Liouville operators. Math.
Comput., 23, 717–729, https://doi.org/10.1090/S0025-5718-1969-
0258291-7.

Chapman, D. C., and M. C. Hendershott, 1982: Shelf wave disper-
sion in a geophysical ocean. Dyn. Atmos. Oceans, 7, 17–31,
https://doi.org/10.1016/0377-0265(82)90003-3.

Chen, Z., J. Xie, J. Xu, Y. He, and S. Cai, 2017: Selection of inter-
nal wave beam directions by a geometric constraint provided
by topography. Phys. Fluids, 29, 066602, https://doi.org/10.
1063/1.4984245.

Chuang, W.-S., and D.-P. Wang, 1981: Effects of density front on
the generation and propagation of internal tides. J. Phys. Oce-
anogr., 11, 1357–1374, https://doi.org/10.1175/1520-0485(1981)
011,1357:EODFOT.2.0.CO;2.

Craig, P. D., 1987: Solutions for internal tidal generation over
coastal topography. J. Mar. Res., 45, 83–105, https://doi.org/
10.1357/002224087788400954.

Dale, A. C., and T. J. Sherwin, 1996: The extension of baroclinic
coastal-trapped wave theory to superinertial frequencies. J.
Phys. Oceanogr., 26, 2305–2315, https://doi.org/10.1175/1520-
0485(1996)026,2305:TEOBCT.2.0.CO;2.

}}, J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped
waves and tides at near-inertial frequencies. J. Phys. Oceanogr.,
31, 2958–2970, https://doi.org/10.1175/1520-0485(2001)031
,2958:CTWATA.2.0.CO;2.

Dauxois, T., A. Didier, and E. Falcon, 2004: Observation of near-
critical reflection of internal waves in a stably stratified fluid.
Phys. Fluids, 16, 1936–1941, https://doi.org/10.1063/1.1711814.

de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander,
and C. Vic, 2019: Toward global maps of internal tide energy
sinks. Ocean Modell., 137, 52–75, https://doi.org/10.1016/j.
ocemod.2019.03.010.

Drake, H. F., X. Ruan, J. Callies, K. Ogden, A. M. Thurnherr,
and R. Ferrari, 2022: Dynamics of eddying abyssal mixing
layers over sloping rough topography. J. Phys. Oceanogr., 52,
3199–3219, https://doi.org/10.1175/JPO-D-22-0009.1.

Duda, T. F., W. G. Zhang, and Y.-T. Lin, 2012: Studies of internal
tide generation at a slope with nonlinear and linearized simu-
lations: Dynamics and implications for ocean acoustics. Proc.
2012 Oceans, Hampton Roads, VA, Institute of Electrical
and Electronics Engineers, 1–6.

Early, J. J., M. P. Lelong, and K. S. Smith, 2020: Fast and accurate
computation of vertical modes. J. Adv. Model. Earth Syst.,
12, e2019MS001939, https://doi.org/10.1029/2019MS001939.

Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of
barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019,0183:EIMOBO.2.
0.CO;2.

Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and
J.-M. Campin, 2016: Turning ocean mixing upside down. J.
Phys. Oceanogr., 46, 2239–2261, https://doi.org/10.1175/JPO-
D-15-0244.1.

Feucher, C., G. Maze, and H. Mercier, 2019: Subtropical mode
water and permanent pycnocline properties in the world
ocean. J. Geophys. Res. Oceans, 124, 1139–1154, https://doi.
org/10.1029/2018JC014526.

Fructus, D., M. Carr, J. Grue, A. Jensen, and P. A. Davies, 2009:
Shear-induced breaking of large internal solitary waves. J. Fluid
Mech., 620, 1–29, https://doi.org/10.1017/S0022112008004898.

Garrett, C., andT.Gerkema, 2007: On the body-force term in internal-
tide generation. J. Phys. Oceanogr., 37, 2172–2175, https://doi.org/
10.1175/JPO3165.1.

}}, and E. Kunze, 2007: Internal tide generation in the deep
ocean. Annu. Rev. Fluid Mech., 39, 57–87, https://doi.org/10.
1146/annurev.fluid.39.050905.110227.

Gayen, B., and S. Sarkar, 2011a: Boundary mixing by density
overturns in an internal tidal beam. Geophys. Res. Lett., 38,
L14608, https://doi.org/10.1029/2011GL048135.

}}, and }}, 2011b: Direct and large-eddy simulations of inter-
nal tide generation at a near-critical slope. J. Fluid Mech.,
681, 48–79, https://doi.org/10.1017/jfm.2011.170.

GEBCO Compilation Group, 2020: GEBCO_2020 grid. National
Oceanography Centre, accessed 20 September 2023, https://
doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9.

Gekeler, E., 1974: On the eigenvectors of a finite-difference ap-
proximation to the Sturm-Liouville eigenvalue problem.
Math. Comput., 28, 973–979, https://doi.org/10.1090/S0025-
5718-1974-0356524-1.

Gerkema, T., 2001: Internal and interfacial tides: Beam scattering
and local generation of solitary waves. J. Mar. Res., 59, 227–
255, https://doi.org/10.1357/002224001762882646.

}}, and H. van Haren, 2012: Absence of internal tidal beams
due to non-uniform stratification. J. Sea Res., 74, 2–7, https://
doi.org/10.1016/j.seares.2012.03.008.

}}, F.-P. A. Lam, and L. R. M. Maas, 2004: Internal tides in the
Bay of Biscay: Conversion rates and seasonal effects. Deep-
Sea Res. II, 51, 2995–3008, https://doi.org/10.1016/j.dsr2.2004.
09.012.

}}, C. Staquet, and P. Bouruet-Aubertot, 2006: Decay of semi-
diurnal internal-tide beams due to subharmonic resonance.
Geophys. Res. Lett., 33, L08604, https://doi.org/10.1029/
2005GL025105.

Gheorghiu, C.-I., and B. Zinsou, 2019: Analytic vs. numerical sol-
utions to a Sturm-Liouville transmission eigenproblem. J. Nu-
mer. Anal. Approx. Theory, 48, 159–174, https://doi.org/10.
33993/jnaat482-1201.

Griffiths, S. D., and R. H. J. Grimshaw, 2007: Internal tide genera-
tion at the continental shelf modeled using a modal decom-
position: Two-dimensional results. J. Phys. Oceanogr., 37,
428–451, https://doi.org/10.1175/JPO3068.1.

Grisouard, N., and C. Staquet, 2010: Numerical simulations of the
local generation of internal solitary waves in the Bay of Bis-
cay. Nonlinear Processes Geophys., 17, 575–584, https://doi.
org/10.5194/npg-17-575-2010.

Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P.
Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evalu-
ation experiments in the North Atlantic Basin: Simulations in
nonlinear terrain-following coordinates. Dyn. Atmos. Oceans,
32, 239–281, https://doi.org/10.1016/S0377-0265(00)00049-X.

Hall, R. A., J. M. Huthnance, and R. G. Williams, 2013: Internal
wave reflection on shelf slopes with depth-varying stratifica-
tion. J. Phys. Oceanogr., 43, 248–258, https://doi.org/10.1175/
JPO-D-11-0192.1.

Haney, R. L., 1991: On the pressure gradient force over steep topog-
raphy in sigma coordinate ocean models. J. Phys. Oceanogr., 21,
610–619, https://doi.org/10.1175/1520-0485(1991)021%3C0610:
OTPGFO%3E2.0.CO;2.

Hartharn-Evans, S. G., M. Carr, M. Stastna, and P. A. Davies, 2022:
Stratification effects on shoaling internal solitary waves. J. Fluid
Mech., 933, A19, https://doi.org/10.1017/jfm.2021.1049.

Huthnance, J. M., 1975: On trapped waves over a continental
shelf. J. Fluid Mech., 69, 689–704, https://doi.org/10.1017/
S0022112075001632.

}}, 1978: On coastal trapped waves: Analysis and numerical cal-
culation by inverse iteration. J. Phys. Oceanogr., 8, 74–92,

Z EM S KOVA E T AL . 1385JULY 2024

Brought to you by OREGON STATE UNIVERSITY | Unauthenticated | Downloaded 08/29/24 11:14 PM UTC

https://doi.org/10.1090/S0025-5718-1969-0258291-7
https://doi.org/10.1090/S0025-5718-1969-0258291-7
https://doi.org/10.1016/0377-0265(82)90003-3
https://doi.org/10.1063/1.4984245
https://doi.org/10.1063/1.4984245
https://doi.org/10.1175/1520-0485(1981)011<1357:EODFOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)011<1357:EODFOT>2.0.CO;2
https://doi.org/10.1357/002224087788400954
https://doi.org/10.1357/002224087788400954
https://doi.org/10.1175/1520-0485(1996)026<2305:TEOBCT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1996)026<2305:TEOBCT>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2
https://doi.org/10.1063/1.1711814
https://doi.org/10.1016/j.ocemod.2019.03.010
https://doi.org/10.1016/j.ocemod.2019.03.010
https://doi.org/10.1175/JPO-D-22-0009.1
https://doi.org/10.1029/2019MS001939
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
https://doi.org/10.1175/JPO-D-15-0244.1
https://doi.org/10.1175/JPO-D-15-0244.1
https://doi.org/10.1029/2018JC014526
https://doi.org/10.1029/2018JC014526
https://doi.org/10.1017/S0022112008004898
https://doi.org/10.1175/JPO3165.1
https://doi.org/10.1175/JPO3165.1
https://doi.org/10.1146/annurev.fluid.39.050905.110227
https://doi.org/10.1146/annurev.fluid.39.050905.110227
https://doi.org/10.1029/2011GL048135
https://doi.org/10.1017/jfm.2011.170
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.1090/S0025-5718-1974-0356524-1
https://doi.org/10.1090/S0025-5718-1974-0356524-1
https://doi.org/10.1357/002224001762882646
https://doi.org/10.1016/j.seares.2012.03.008
https://doi.org/10.1016/j.seares.2012.03.008
https://doi.org/10.1016/j.dsr2.2004.09.012
https://doi.org/10.1016/j.dsr2.2004.09.012
https://doi.org/10.1029/2005GL025105
https://doi.org/10.1029/2005GL025105
https://doi.org/10.33993/jnaat482-1201
https://doi.org/10.33993/jnaat482-1201
https://doi.org/10.1175/JPO3068.1
https://doi.org/10.5194/npg-17-575-2010
https://doi.org/10.5194/npg-17-575-2010
https://doi.org/10.1016/S0377-0265(00)00049-X
https://doi.org/10.1175/JPO-D-11-0192.1
https://doi.org/10.1175/JPO-D-11-0192.1
https://doi.org/10.1175/1520-0485(1991)021%3C0610:OTPGFO%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1991)021%3C0610:OTPGFO%3E2.0.CO;2
https://doi.org/10.1017/jfm.2021.1049
https://doi.org/10.1017/S0022112075001632
https://doi.org/10.1017/S0022112075001632


https://doi.org/10.1175/1520-0485(1978)008,0074:OCTWAA.

2.0.CO;2.
}}, 1981: Waves and currents near the continental shelf edge.

Prog. Oceanogr., 10, 193–226, https://doi.org/10.1016/0079-
6611(81)90004-5.

Katsumata, K., 2006: Two- and three-dimensional numerical models
of internal tide generation at a continental slope.OceanModell.,
12, 32–45, https://doi.org/10.1016/j.ocemod.2005.03.001.

Kelly, S. M., 2016: The vertical mode decomposition of surface
and internal tides in the presence of a free surface and arbi-
trary topography. J. Phys. Oceanogr., 46, 3777–3788, https://
doi.org/10.1175/JPO-D-16-0131.1.

}}, and J. D. Nash, 2010: Internal-tide generation and destruc-
tion by shoaling internal tides. Geophys. Res. Lett., 37,
L23611, https://doi.org/10.1029/2010GL045598.

}}, }}, and E. Kunze, 2010: Internal-tide energy over topog-
raphy. J. Geophys. Res., 115, C06014, https://doi.org/10.1029/
2009JC005618.

}}, N. L. Jones, and J. D. Nash, 2013: A coupled model for
Laplace’s tidal equations in a fluid with one horizontal di-
mension and variable depth. J. Phys. Oceanogr., 43, 1780–
1797, https://doi.org/10.1175/JPO-D-12-0147.1.

Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A.
MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016:
Reflection of linear internal tides from realistic topography:
The Tasman continental slope. J. Phys. Oceanogr., 46, 3321–
3337, https://doi.org/10.1175/JPO-D-16-0061.1.

Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B.
Girton, and S. R. Terker, 2012: Turbulent mixing and ex-
change with interior waters on sloping boundaries. J. Phys.
Oceanogr., 42, 910–927, https://doi.org/10.1175/JPO-D-11-075.1.

Lahaye, N., and S. G. Llewellyn Smith, 2020: Modal analysis of in-
ternal wave propagation and scattering over large-amplitude
topography. J. Phys. Oceanogr., 50, 305–321, https://doi.org/
10.1175/JPO-D-19-0005.1.

Lamb, K. G., 2014: Internal wave breaking and dissipation mecha-
nisms on the continental slope/shelf. Annu. Rev. Fluid Mech.,
46, 231–254, https://doi.org/10.1146/annurev-fluid-011212-140701.

Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and
convex continental slopes. J. Phys. Oceanogr., 33, 2224–2246,
https://doi.org/10.1175/1520-0485(2003)033,2224:IWBACA.

2.0.CO;2.
Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Ob-

servations of the semidiurnal internal tide on the Southern
California slope and shelf. J. Geophys. Res., 108, 3068, https://
doi.org/10.1029/2001JC001128.

Lindzen, R. S., and H.-L. Kuo, 1969: A reliable method for the
numerical integration of a large class of ordinary and partial
differential equations. Mon. Wea. Rev., 97, 732–734, https://
doi.org/10.1175/1520-0493(1969)097%3C0732:ARMFTN%3E2.
3.CO;2.

Liu, K., J. Sun, C. Guo, Y. Yang, W. Yu, and Z. Wei, 2019:
Seasonal and spatial variations of the M2 internal tide in the
Yellow Sea. J. Geophys. Res. Oceans, 124, 1115–1138, https://
doi.org/10.1029/2018JC014819.

Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of
the barotropic tide. J. Phys. Oceanogr., 32, 1554–1566, https://
doi.org/10.1175/1520-0485(2002)032,1554:COTBT.2.0.CO;2.

}}, and }}, 2003: Tidal conversion at a very steep ridge. J. Fluid
Mech., 495, 175–191, https://doi.org/10.1017/S0022112003006098.

MacKinnon, J. A., and Coauthors, 2017: Climate process team on
internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc.,
98, 2429–2454, https://doi.org/10.1175/BAMS-D-16-0030.1.

Manabe, S., and J. Smagorinsky, 1967: Simulated climatology of a
general circulation model with a hydrologic cycle II. Analysis
of the tropical atmosphere. Mon. Wea. Rev., 95, 155–169,
https://doi.org/10.1175/1520-0493(1967)095,0155:SCOAGC.2.
3.CO;2.

Maugé, R., and T. Gerkema, 2008: Generation of weakly nonlin-
ear nonhydrostatic internal tides over large topography: A
multi-modal approach. Nonlinear Processes Geophys., 15,
233–244, https://doi.org/10.5194/npg-15-233-2008.

Mesinger, F., 1982: On the convergence and error problems of the
calculation of the pressure gradient force in sigma coordinate
models. Geophys. Astrophys. Fluid Dyn., 19, 105–117, https://
doi.org/10.1080/03091928208208949.

Morozov, E. G., 1995: Semidiurnal internal wave global field.
Deep-Sea Res. I, 42, 135–148, https://doi.org/10.1016/0967-
0637(95)92886-C.

Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of
tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010, https://
doi.org/10.1016/S0967-0637(98)00070-3.

Musgrave, R. C., 2019: Energy fluxes in coastal trapped waves. J.
Phys. Oceanogr., 49, 3061–3068, https://doi.org/10.1175/JPO-
D-18-0172.1.

Mysak, L. A., 1980: Topographically trapped waves. Annu. Rev.
Fluid Mech., 12, 45–76, https://doi.org/10.1146/annurev.fl.12.
010180.000401.

Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: In-
ternal tide reflection and turbulent mixing on the continental
slope. J. Phys. Oceanogr., 34, 1117–1134, https://doi.org/10.
1175/1520-0485(2004)034,1117:ITRATM.2.0.CO;2.

Papoutsellis, C. E., M. J. Mercier, and N. Grisouard, 2023: Internal
tide generation from non-uniform barotropic body forcing. J.
FluidMech., 964, A20, https://doi.org/10.1017/jfm.2023.358.

Rattray, M., Jr., 1960: On the coastal generation of internal tides.
Tellus, 12A, 54–62, https://doi.org/10.3402/tellusa.v12i1.9344.

}}, 1969: Generation of the long internal waves at the continen-
tal slope. Deep-Sea Res., 16, 179–195.

Rayson, M. D., N. L. Jones, and G. N. Ivey, 2012: Temporal vari-
ability of the standing internal tide in the Browse basin, west-
ern Australia. J. Geophys. Res., 117, C06013, https://doi.org/
10.1029/2011JC007523.

}}, }}, and }}, 2019: Observations of large-amplitude
mode-2 nonlinear internal waves on the Australian North
West Shelf. J. Phys. Oceanogr., 49, 309–328, https://doi.org/
10.1175/JPO-D-18-0097.1.

Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for
computing horizontal pressure-gradient force in an oceanic
model with a nonaligned vertical coordinate. J. Geophys.
Res., 108, 3090, https://doi.org/10.1029/2001JC001047.

Sherwin, T., and N. Taylor, 1989: The application of a finite differ-
ence model of internal tide generation to the NW European
Shelf. Deutsche Hydrografische Z., 42, 151–167, https://doi.
org/10.1007/BF02226292.

Sherwin, T. J., and N. K. Taylor, 1990: Numerical investigations of
linear internal tide generation in the Rockall Trough. Deep-
Sea Res., 37A, 1595–1618, https://doi.org/10.1016/0198-0149
(90)90064-3.

}}, V. I. Vlasenko, N. Stashchuk, D. R. G. Jeans, and B. Jones,
2002: Along-slope generation as an explanation for some un-
usually large internal tides. Deep-Sea Res. I, 49, 1787–1799,
https://doi.org/10.1016/S0967-0637(02)00096-1.
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