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Porous non-woven fibrous media are widely used in various industrial applications such as filtration, insulation,
and medical textiles due to their unique structural and functional properties. However, predicting the
mechanical behavior of these materials is challenging due to their complex microstructure and anisotropic
nature. In this study, a computational model is developed to simulate the mechanical response of porous
non-woven fibrous media under external loading. The model is based on the finite element method and
takes into account the geometric and material properties of the fibers and the void spaces between them.
The effects of various factors such as fiber size, porosity, and fibers’ intersection ratio on the mechanical
behavior of the material are investigated. The results reveal that the material’s porosity and fibers’ intersection
ratio are the most significant factors influencing its mechanical properties. Additionally, the increase in fiber
diameter has a relatively minor effect on the material’s elastic properties. However, such changes in elastic
properties are primarily attributed to the increase in randomness within the fibrous network, which is directly
related to the fiber diameter for the investigated structure. The proposed computational model predicts the
mechanical properties of porous non-woven fibrous media and can provide invaluable insights into the design
and optimization of porous non-woven fibrous media for various scientific and engineering applications.

1. Introduction These materials exhibit significant similarities and can be considered as

a unified class of materials. Materials with controlled fiber orientation

Fibrous porous materials, which consist of randomly distributed
fibers in a network structure, have gained significant attention due to
their wide range of applications in various engineering and scientific
fields. Such materials possess unique properties that surpass those of
the constituent fibers. These properties include high porosity, large
surface area, and lightweight, which contribute to their high absorp-
tive, filtration, and thermal and acoustic insulation capabilities (Liu
et al., 2014; Yilmaz et al., 2020; Cheng et al., 2023). Additionally,
some materials exhibit enhancement in their mechanical properties
when the fiber diameter is less than 200 nm (Cheng et al., 2023).
These unique functionalities led to their utilization in diverse areas
including medical masks, filters, thermal and sound insulation, battery
separators, absorbent products, and packaging materials.

Materials with randomly distributed fibers can be divided into
two large classes, depending on their structure: quasi-structured and
randomly distributed (Picu, 2011). The first class includes materials
with a perturbed regular structure, such as quasi-body centered cubic
nanolattices (Cheng et al., 2023) or the open-cell foams (see Fig. 1-a).
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obtained by electrostatic deposition and spinning or magnetic align-
ment of fibers also belong to this class. Other types of materials have a
random distribution of fibers without any specific structure (see Fig. 1-
b-d). But even in such materials, their fibers can have a predominant
orientation along one or several axes or planes (see Fig. 1-c), such as the
needle-punched structures, which are produced from non-woven fiber
fabrics by means of a through-thickness needling technique (Chen et al.,
2016; Dabiryan et al., 2018).

The structure of non-woven fibrous materials is mainly determined
by the fiber material and the manufacturing process. Furthermore,
there are different methods of fiber bonding including mechanical,
chemical, and thermal bonding (Yilmaz et al., 2020). In chemical
bonding, binding agents are used in combination with various methods
such as spraying, printing, coating, or saturation to connect fibers
together (see Fig. 1-a). The resulting medium is fully connected, where
all fibers are bonded, and the fiber connections transmit both axial
forces and moments. In thermal bonding, fibers are joined together
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Fig. 1. SEM pictures of fibrous materials: a — Metal Foam in Scanning Electron Microscope ©SecretDisc, CC BY-SA 3.0; b — Outer Layer of Medical Mask ©Alexander Klepnev, CC
BY 4.0; ¢ - Cotton Fibers ©Janice Carr, Laura Rose, USCDCP, CCO; d — “Moonmilk” Calcium Carbohydrate Fibers ©Brian England, CC-BY-4.0.

through a heating and cooling process (see Fig. 1-c). However, the main
method of fiber bonding is mechanical bonding (see Fig. 1-d), which in-
volves fibers being bonded using methods such as hydroentanglement,
stitching, and needle punching. Overall, due to the immense diversity in
structure and available fabrication methods, designing fibrous porous
materials with specific properties is a complex task.

Understanding the effective properties of fibrous porous materials is
essential for gaining insights into their behavior and optimizing their
performance. By determining the effective properties, we can com-
prehend how these materials behave under external loads. Moreover,
understanding the effective properties allows us to assess the overall
performance of existing fibrous porous materials, providing valuable
information for quality control and ensuring reliable and efficient ap-
plications. In addition to understanding existing materials, knowledge
of effective properties plays a significant role in the future design of
fibrous porous materials. By manipulating and tailoring the material
structural parameters, such as porosity, fiber diameter and shape, and
method of fiber binding, we can engineer materials with desired effec-
tive properties. This enables the design of materials that exhibit specific
mechanical strength, thermal conductivity, permeability, or other tar-
geted characteristics. However, achieving this level of control requires
the development of a robust computational model capable of accurately
predicting the effective properties of fibrous porous materials and in
our case mechanical properties of non-woven fibrous materials. This
poses a challenge, as a model must account for the complex interplay
between material behavior and various structural parameters.

Over the past decades, extensive research has been conducted on
fibrous porous systems. An early contribution to the study of the
mechanical properties of fibrous media is the work by Cox (Cox, 1952),
where he obtained an analytical solution describing the deformations
of a two-dimensional (2D) fibrous system. This work assumed that the
fibers only experience tension while their orientation is random and
described by a distribution function. In a series of recent works, Bosco
et al. Bosco et al. (2015, 2016, 2017) developed analytical solutions for
describing the hygro-mechanical behavior of fibrous porous systems.
Their work focused on simplified 2D lattice structures with orthogonal
fiber arrangements. In one of their studies (Bosco et al., 2017), they
explored an analytical solution based on the Voigt model, where the
fibrous medium is treated as a composite plate composed of an infinite

number of layers oriented according to a probability density function.
However, they showed that such models have inherent limitations and
are applicable only within a restricted range of coverage area and fiber
orientations.

To address the limitations of analytical solutions, numerical models
have been employed to investigate fibrous porous systems, offering
more flexibility and the ability to consider a greater number of factors
compared to analytical approaches. For instance, Farukh et al. Farukh
et al. (2013) conducted an finite element analysis (FEA) of a thermally
bonded non-woven fibrous system, incorporating damage criteria based
on the deformation and fracture behavior of individual fibers into
their model. Sozumer et al. Sozumert et al. (2015) also took a similar
approach to investigate the effect of the central notch on non-woven
fibrous networks experimentally and numerically. Additionally, it is
also worth noting that there is a significant amount of works containing
experimental investigations on the mechanical behavior of both indi-
vidual fibers (Farukh et al., 2013) and fibrous systems (Sozumert et al.,
2015; Cucumazzo et al., 2021). For instance, Cucumazzo et al. Cu-
cumazzo et al. (2021) investigated the rate dependency of fibers by
individually testing fibers that exhibited nonlinear elasticity followed
by plastic strain hardening up to failure. These results were further in-
corporated in their paper (Cucumazzo and Silberschmidt, 2022) where
they used an approach to model the mechanical behavior of a thermally
bonded fibrous network using shell elements.

A more advanced approach has been proposed by Kulachenko and
Uesaka in Kulachenko and Uesaka (2012) where they introduced a
framework for direct modeling of 2D paperlike random fibrous net-
works, employing 3-node Timoshenko beam elements. Later Borodulina
et al. Borodulina et al. (2012) utilized their framework to simulate
fracture dynamics of a dry fiber network during tensile loading. In
another work, Borodulina et al. Borodulina et al. (2018) investigated
the effect of variation of individual fibers’ and bonds’ properties on the
effective stiffness and strength of the fibrous network. The additional
development of these works is demonstrated in the works of Mansur
et al. Mansour et al. (2019), Mansour and Kulachenko (2022), where
authors used the same framework as described in Kulachenko and Ue-
saka (2012), to develop a stochastic constitutive model for an isotropic
fibrous network, transitioning from representative volume elements
(RVE) to stochastic volume element (SVE). The proposed approach
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enables the propagation of uncertainties from the microscale to the
macroscale, allowing for more efficient modeling of the behavior of an
isotropic fibrous network compared to directly simulating the entire
medium. Other researchers (Lu et al., 2013; Liu et al., 2013, 2014)
adopted a similar approach to model three-dimensional (3D) random
fibrous (RF) networks composed of ceramics. Using 2-node Timoshenko
beam elements, interfiber contact was simulated, incorporating the
combined influences of grain boundaries and interfaces.

A drawback of using beam elements is the complexity of extend-
ing the model to investigate coupled thermo-hydro-mechanical (THM)
behavior. Geers et al. Bosco et al. (2016, 2017), Samantray et al.
(2022), Bosco et al. (2022) proposed a 2D framework for studying the
THM behavior of paper-like materials represented as random fibrous
networks. A regular grid with quadrilateral elements was used to
construct the geometry. Although this approach allows for modeling the
THM behavior of a wide range of fibrous materials (nonwoven, lattice,
etc.), it has several limitations: 1) the usage of spatial discretization
method results in a coarse representation of fiber boundaries and in-
troduces dimensional redundancy in solving system of linear equations
(SLE), causing higher computations compared to adaptive meshing;
2) this method is applicable only to materials with pronounced 2D
structures; 3) the 2D description does not account for fibers wrapping
each other (Bosco et al., 2022). Therefore, the most promising approach
is to model fibrous materials in a 3D framework, as it allows for a more
accurate consideration of the material’s internal mechanics. However,
currently, there is a scarcity of works utilizing a 3D framework to
study random fibrous networks. One such work is (Veyhl et al., 2013),
which investigates the mechanical behavior of sintered metallic fiber
structures. In this study, the simulations are conducted based on actual
material structures obtained from micro-computed tomography (micro-
CT) images. The resulting model consists of over 4.5 million linear
elements, which is computationally demanding.

Karakoc et al. Karakoc et al. (2020) also used a 3D finite element
method (FEM) to examine 2D random fibrous networks composed
of curvilinear fibers. They presented an original approach involving
the projection of the fibers’ boundary nodes onto the control nodes
of the domain bounding the RVE, followed by solving a boundary
value problem on this domain instead of the RVE boundary domain.
Such an approach is highly suitable for investigating RVEs with non-
conformal meshes, particularly for 2D networks such as paper. The
main disadvantage of this work is the usage of elements with reduced
integration, which resulted in a lower accuracy.

Additionally, it is worth mentioning that others (Rahali et al., 2016;
Ganghoffer et al., 2020) also investigated the elastic behavior of woven
materials with different structures (2D and 3D) in a 3D framework.
These studies combine homogenization methods with the higher-order
elasticity terms to determine the averaged components of the stiffness
and curvature tensors, offering advantages when the scales separation
approach does not apply (Vazic et al., 2022a). The drawbacks of these
works include the use of a regular “Voxel” grid, which significantly
increases the number of degrees of freedom in the problem, imprecise
description of fiber boundaries, and the usage of elements with reduced
integration, which exhibit low accuracy. Thus, it is crucial to develop
a computationally efficient model that allows for the investigation of
the behavior of random fibrous networks in a 3D framework.

Thus, it can be observed that the existing literature lacks compre-
hensive studies on the mechanical properties of non-woven fibrous
materials in the context of 3D random fibrous networks. Most previous
works have primarily focused on 2D structures or have utilized simpli-
fied fiber representations, which limit their ability to accurately capture
the complex behavior of real-world non-woven materials. Moreover,
the few studies that do consider 3D structures often examine ordered
materials with significantly smaller RVEs. Motivated by these research
gaps, the objective of this study is to develop a numerical model that
accounts for various structural parameters, including porosity, fiber
diameter, fiber shape, and the method of fiber binding. By investigating
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the mechanical properties of non-woven fibrous materials in their
true 3D complexity, this research aims to offer a more comprehensive
understanding of their behavior, enabling the optimization of material
construction and improvement of operational characteristics.

The paper is structured as follows: in Section 1, we provide an
overview of the methodology, including the constitutive model, prop-
erties identification, and a detailed description of the computational
workflow using the FEniCSx framework. Section 2 focuses on the model
setup, encompassing the problem description, network geometry gener-
ation, numerical setup, and an in-depth analysis of mesh convergence.
Section 3 presents and discusses the simulation results, and finally,
Section 4 provides the concluding remarks for the paper.

2. Methodology

In this section, we start with a brief overview of the constitutive
model for fibrous systems followed by some general insights into the
asymptotic homogenization method. Subsequently, we introduce the
details of our computational workflow and the tools used in our study.

2.1. Constitutive model and properties of fibrous network

In this study, we consider a fibrous porous network made of
polypropylene (PP) fibers. PP can be considered as isotropic material,
meaning that its mechanical properties are independent of the direc-
tion. This assumption simplifies the modeling process and allows for a
more straightforward analysis of the fibrous network. The constitutive
model used to describe the behavior of the fibrous network is given
through the constitutive relation

c=4CT:¢ 1

where ¢ is the Cauchy stress tensor, *C/ is the 4th order elasticity tensor
and ¢ is the symmetric strain tensor. In Voigt notation, the elasticity
tensor *C/ can be expressed as:

1- \Z: \Z; \Z: 0 0 0
vy 1-v, vr 0 0 0
;o E; \Z; \Z; 1- \7: 1—8v 0 0
T d+vpd-2vpy| O 0 0 — 0 0
0 0 0o =20

0 0 0 0 A —
2

(2)

where E, and v, are Young’s modulus and Poisson’s ratio of the fibers
material.

Other important parameters in characterizing the fibrous network’s
mechanical behavior are its volume fraction and porosity. Volume
fraction ¢ represents the proportion of the total volume occupied by
the fibers in the network and can be calculated as

Vi
b= v 3)

t

where V; is the fibers’ volume and V/, is the total volume of the RVE.
The porosity # is defined as:
Vi v,
J v
=l-¢=1--2L=22L, 4
n ¢ 727 @
where V, is the volume of voids in the specimen. These parameters
affect key properties such as stiffness, strength, and overall deformation
response.

2.2. Extracting effective property via homogenization

The asymptotic homogenization method, proposed by Bahvalov
(Bahvalov, 1974) and further developed by Bensoussan, Lions, and
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Fig. 2. Linear elasticity problem domain with boundary and applied boundary
conditions.

Papanicolaou (Bensoussan et al., 1978), Sanchez-Palencia (Sanchez-
Palencia, 1980), Pobedrja (Pobedrya, 1983), Bahvalov-Panasenko
(Bahvalov and Panasenko, 1989), and others, is used to determine the
effective properties of fibrous nonwoven materials among many other
materials (Kouznetsova et al., 2004; Vazic et al., 2023, 2022b; He et al.,
2020; Vazic et al., 2022a). The details of this method are well described
in the works of Panasenko (Panasenko, 2008) and Sokolov (Ivanovich
and Sokolov, 2010).

The main idea of asymptotic homogenization is to divide the so-
lution domain into two distinct levels: the microscopic scale with
a characteristic size of / and the macroscopic scale with a charac-
teristic size of L, such that /| <« L. At the microscopic scale, the
domain is represented as a heterogeneous structure with periodicity.
At the macroscopic scale, the material is considered homogeneous with
certain averaged characteristics.

As shown in Fig. 2, the governing equations for the linear elasticity
within a domain £ with boundary 92 will take the form:

e= % (Vu+ (Vo)) (5)
¢=%C:e (6)
V.6=0 %)

where u is displacements vector, ¢ and ¢ denote strain and stress ten-
sors respectively, and *C denotes 4th rank tensor of elastic properties.
The boundary conditions are presented as known displacements and
surface tractions on the outer boundary:

6-n=T,
u=u,,
For the homogenization procedure, we will use the Voigt notation,

according to which the stress and strain tensors are represented as a
vector:

x €00, ®
x €9, ©

€11 Ex o11 Ox
£9n €, %) oy,
el = €33 — €z : ol = 033 — 0, : (10)
2823 Vyz 023 Tyz
2613 Vxz 013 Txz
2512 yxy (V] Txy

Then the stiffness can be determined as:

(%) = €%, (). an
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where C! iy is averaged matrix of elastic properties, (') and (¢") are
average strain and stress vectors within the volume of the RVE V, and
are determined according to:

<w=%/wmm (12)

Q

(e¥)y = &/SU(X)dX. 13)
ke

After the averaging process, any solutions of the system of Egs. (5)-
(7) with different boundary conditions (8)-(9) must satisfy Eq. (11).
Therefore, to determine the matrix C! o We need to solve 6 different
boundary value problems, whose averaged parameters can be expressed
as an equation:

[(e}) (o) (o) (of) (%) (op)]

S (GO R R CAR AN GO R CA) (14)
or
% =C E 1s)
And then by solving this equation for C! 1o We obtain
_ yp-!
Copr ==E (16)

Here in (15) and (16) we employ matrix multiplication on the tensors
written as matrices using Voigt notation, which yields a matrix as the
result.

Fig. 3 shows three types of boundary conditions that are commonly
used in the homogenization procedure of heterogeneous media. Here is
a brief explanation of each:

» Kinematic Uniform Boundary Conditions (KUBC) (Hill, 1963; Ben-
soussan et al., 1978; Huet, 1990) assumes that the strain field is
uniform on the boundary of a cell of a composite material (CM).
This type of boundary condition is often used to determine the
effective elastic properties of composites.

Static Uniform Boundary Conditions (SUBC) (Hill, 1963; Ben-
soussan et al., 1978; Huet, 1990) assumes that the stress field
is uniform on the boundary of a cell of a composite material.
This type of boundary condition is often used to determine the
effective strength properties of composites.

Periodic Boundary Conditions (PBC) (Hashin and Shtrikman,
1963; Bahvalov and Panasenko, 1989; Panasenko, 2008; Ostoja-
Starzewski, 2006) assumes that the stress and displacement fields
are periodic within the domain, with periodicity corresponding
to the cell size. This type of boundary condition is commonly
employed to evaluate not only mechanical properties but also
thermal and hygro properties. It also shows faster convergence of
the field of interest, such as displacement or temperature fields.

Other types of BCs used for CM property identification include:

* Mixed uniform BCs (Moulinec and Suquet, 1994; Pahr and Bohm,
2008): These boundary conditions combine two or more types
of boundary conditions to model more complex loading and
deformation scenarios.

» Non-uniform boundary conditions (Geers et al., 2001): These
boundary conditions assume that the external load or displace-
ment is non-uniform across the unit cell of the composite mate-
rial.

Although PBC captures the periodicity of the microstructure and
it can lead to accurate homogenized properties, it requires a conjoint
mesh on the opposite boundaries of the RVE, which can be challenging
to achieve for random fibrous networks. KUBC, on the other hand, is
simpler to implement and can be applied to any arbitrary geometry
without the need for uniformity or periodicity, especially for random
media. It is also computationally efficient, since it does not change
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a)

b) 0)

Fig. 3. Different types of boundary condition: kinematic uniform (a), static uniform (b) and periodic (c) boundary conditions.

u

il

u 2

Fig. 4. Example of applying KUBC for shear loading.

the dimension of the resolving SLE, and can be applied to large-scale
problems (Walters et al., 2021). Moreover, since one of the aims of this
work was to build a numerical framework that is applicable to various
types of networks, the KUBC approach was used in this study.

For KUBC two types of boundary conditions can be considered: the
uniaxial tension along the ith direction and shear in i — j plane. For
the first type of boundary condition, the boundary nodes’ displacement
will be calculated as:

w =X
=T
u, =0,

where L; is the RVE size along the ith direction. For the second type
of boundary condition the boundary nodes’ displacement will be:

a7
for k #i.,

i 2Lj
Xi
u, =0, fork#i,j

An example of boundary conditions for applying the shear loading
is shown in Fig. 4.

Finally, the macroscopic strain tensor can be obtained by averaging
the local strain tensor over the RVE through the following equations:

E=1

v -
Ceff—E

19

2.3. Computational workflow using fenicsx

For the numerical implementation, we chose FEniCSx framework
(Scroggs et al., 2022b,a), a powerful and versatile, open-source com-
putational tool. FEniCSx provides significant advancements over the
legacy version of FEniCS, making it an ideal choice for developing an
efficient and robust approach to homogenizing mechanical properties
in our study. One primary motivation for selecting FEniCSx is its

open-source nature, which promotes inclusivity and accessibility to
researchers regardless of their financial resources. This commitment
to open science ensures that a broader community of researchers can
leverage and benefit from the capabilities offered by FEniCSx. More-
over, FEniCSx offers a wide range of improvements and enhancements
compared to its legacy version. It provides comprehensive support for
various cell types and elements, along with features like memory paral-
lelization and complex number support. These enhancements improve
computational efficiency and extend the range of problems that can
be effectively solved. Furthermore, FEniCSx incorporates an enhanced
library design, contributing to the overall effectiveness and reliability
of the framework in performing complex numerical simulations.

To ensure transparency and reproducibility, we have made all the
code utilized in this study available on GitHub (Kuts and Walker, 2023).
Sharing the codebase enables other researchers to easily access and
verify the computational workflow, facilitating replicating our results
and fostering further advancements in the field.

The generalized flowchart of the computational workflow is shown
in Fig. 5. This framework comprises three main stages: preprocessing,
solving, and postprocessing. The preprocessing stage involves mesh
generation using GMSH (Geuzaine and Remacle, 2009), an open-source
mesh generator. GMSH supports the generation of various mesh types,
including structured, unstructured, and adaptive meshes, providing
flexibility in mesh design. A notable feature of GMSH is its integra-
tion with the OpenCASCADE kernel, enabling the creation of complex
2D and 3D geometries using boundary representation (B-Rep) and
constructive solid geometry (CSG) techniques. This capability is partic-
ularly valuable when simulating the mechanical properties of complex
fibrous networks, as it allows for accurate geometry representation.

Additionally, GMSH provides multiple programming interfaces, in-
cluding its own scripting language, C++, Python, and Julia. The avail-
ability of Python programming interfaces is advantageous since FEn-
iCSx also utilizes Python as its primary programming language. This
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Fig. 5. Generalized workflow describing first-order homogenization using FEniCSx.

compatibility enables seamless integration between the mesh genera-
tion process in GMSH and the subsequent computation stage in FEn-
iCSx. Furthermore, the option to use C++ or Julia programming inter-
faces offers the possibility to improve the performance and accelerate
the computational speed, if required.

The main part of the computational workflow consists of three
subparts: model initialization, solving the constitutive system of linear
equations using PETSc (Balay et al., 1997, 2023), and computation
of the averaged mechanical properties. For model initialization, the
dolfinx.io module is employed, facilitating the import of the geometry
generated in GMSH. Once the geometry is imported, we define the
governing equations described by Eq. (5)—(7) in weak form using the
Unified Form Language (UFL) (Alnes et al., 2014). The weak form of
these equations takes the following form:

a(u,v) = L(v), v e p? (20)

where v is a test function, defined on the test functions space V3, u
is the trial function which represents an unknown displacements to be
solved, a(-,-) and L(-) are bilinear and linear form, respectively, which
are calculated as:

a(u, v) =/6(I.l) :e(v)dx 21)
Q
L(V):/f-vdx+ /T-vdx (22)
Q 0Qr

The bilinear form a(u, v) and the linear form L(v) further are used
to assemble stiffness matrix K and forces vector f which govern a
constitutive system of linear equations:

Ku" =f (23)

where u” € R3" is a vector of nodal displacements with N - number of
degrees of freedom. The solution of the system (23) is obtained using
PETSc, which provides various Krylov subspace methods for solving
large-scale linear systems efficiently.

The computation of averaged mechanical properties involves the
calculation of integrals in Egs. (12) and (13). FEniCSx simplifies this
procedure by utilizing the dolfinx.fem.assemble function, which allows
to compute integrals of specified forms formulated using UFL. The

final calculation of the averaged mechanical properties can be achieved
through Eq. (16).

Lastly, in the postprocessing stage, both ParaView (Ahrens et al.,
2005; Ayachit, 2015) and PyVista (Sullivan and Kaszynski, 2019) were
used for the visualization of the computed results. ParaView, a widely
recognized and extensively used scientific visualization software, pro-
vided us with a comprehensive set of tools for analyzing and visualizing
simulation data. To facilitate the visualization process, the mesh with
calculated fields is exported to the VTK or XDMF file formats directly,
which seamlessly integrates with ParaView. Leveraging ParaView en-
ables interactive exploration and in-depth visualization of the data.
Additionally, we utilized PyVista, a Python library, for direct visual-
ization within the Jupyter Notebook environment. PyVista offered a
convenient interface for generating high-quality visualizations directly
from our computational workflow. With PyVista, we visualized the
mesh, displayed the computed results, and created interactive plots
within the familiar Jupyter Notebook interface.

3. Model setup

This section highlights the numerical model from geometry gen-
eration to numerical analysis. It should be noted that in this study,
we employed the “quasi-BCC nanogrid” microstructure as previously
introduced in Cheng et al. (2023). The choice of this microstructure
was motivated by its simplicity and inherent randomness, which make
it ideal for showcasing the concept of our numerical approach.

3.1. Geometry creation of the fibrous porous network

The geometry of the investigated material can be described as a
quasi-structured fibrous medium with an orthogonal fiber arrangement.
The lattice is composed of a triad of three mutually orthogonal fibers
with a circular cross-section (see Fig. 6-I), intersecting by an amount of
s; =dsy, where d; is the fiber diameter, and y is the intersection ratio.
Each fiber axis is then shifted from the triad center by s, = 0.5(d s —s,).

Within the RVE, the fiber triads are located at the nodes of a simple
cubic lattice with a pitch P,. The maximum number of fibers along one
axis is N2, where N is a grid size. However, structural defects in the
form of vacancies (absence of fibers) may occur, resulting in the actual
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Fig. 6. Structure and geometry of fibrous network: I — geometry of a single fibers’ triad with diameter d, and intersection s;; Il — generation of fibers within a grid N x N with
a pitch P, along each basis axes for a given fillness parameter y; III — fusion of all three sets of fibers; IV — result network.

number of fibers along each axis varying within the range 1 < m < N2.
The fiber fill fraction of the structure is characterized by the parameter
“fillness” v = % If the number of fibers is different in each direction,
the structure will be characterized by three respective coefficients (y,,

Wy W)
=2 24
v = F @4

However, in the current work, the network with equal fillness along
all axis (y, = w, = w, = y) is considered. Thus, the overall actual
number of fibers within the RVE is N, = 3m.

To ensure the connectivity of the structure during RVE generation,
the vacancies are randomly distributed on two of the base planes (see
Fig. 6-1I), followed by the computation of all fiber intersections along
these two directions. Fibers along the third direction are generated at
existing nodes without repetition and then supplemented randomly to
reach the desired quantity. Subsequently, cylindrical fibers are gener-
ated at the obtained nodes (see Fig. 6-III) and fused together into a
single body using the fusion (i.e., merge) operation (Fig. 6-IV).

It is worth noting that in this work, it is assumed that fibers can
only intersect from one side by a fixed amount. Thus, the maximum
diameter for the chosen pitch is related by the following dependence:

Dy < ——. (25)
3.2. Problem description
This study focuses on a chemically bonded quasi-structured fibrous

media composed of PP fibers. The main properties of the typical PP
fibers are presented in Table 1. The network structure is designed

Table 1

The main properties of the typical PP fibers.
Property Unit Value
Young’s modulus GPa 1.8
Poisson’s ratio - 0.43
Elongation, Yield - 0.10-0.12
Elongation, Break - 0.50-1.45
Density £ 0.905

to resemble a configuration described in the literature (Cheng et al.,
2023). It is assumed that all fibers intersect with each other, and
through a bonding process, the entire network forms a cohesive solid
body.

Primarily, the effect of RVE size was investigated through two types
of networks: (i) a structured mesh and (ii) a quasi-structured mesh with
fillness ratio w = 0.5. The results of the first investigation were used to
define the size of the RVE for the second investigation.

For the structured grid convergence analysis, a porosity of 0.5 was
chosen, with a fiber diameter of 0.2 mm and an intersection ratio of
25%. To achieve the target porosity, the spacing between fibers was set
at 0.423 mm. Several meshes were generated with varying parameters,
including the number of fibers per axis, the overall number of fibers
within the RVE, and mesh parameters such as the overall number of
nodes and elements. The specific values for these parameters are listed
in Table 2. Additionally, Fig. 7(a-b) illustrates the RVEs of structured
networks with scale ratios of 1, 4, and 7.

Similarly, the investigation of convergence on the quasi-structured
network was performed. The geometrical fiber parameters such as
their diameter and the intersection ratio remained consistent with the
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Fig. 7. Examples of the mesh used for the study of the RVE size on the structured (a—c) and unstructured (d—f) networks with different scale ratios: a) scale ratio = 1, b) scale

ratio = 4, ¢) scale ratio = 7, d) scale ratio = 2, e) scale ratio = 6, f) scale ratio = 10.

Table 2
Parameters of the RVE of structured network.
Network type Scale Number Number Number of
ratio of fibers of DoFs elements
1 3 20,778 3,636
2 12 79,820 14,260
3 27 189,452 34,508
Structured 4 48 427,372 77,648
5 75 835,624 150,362
6 108 1,353,934 244,362
7 147 2,085,690 376,530
2 6 37,866 6,782
4 24 161,224 30,047
Unstructured 6 54 498,865 92,481
8 96 1,080,284 200,570
10 150 2,072,314 383,332

structured network, while the porosity was increased to 0.744. The
generated networks for scale ratios of 2, 6, and 8 are depicted in
Fig. 7(d—f).

The second and primary investigations are dedicated to studying
the influence of porosity and fiber geometry on the effective mechan-
ical properties of the fibrous porous network. The selected network
structure enables the examination of the mechanical properties of the
medium with specific porosity values and varying diameters of fibers.
This is achieved by adjusting the density of the fiber grid. Additionally,
the impact of intersection magnitude, which affects the bonding pro-
cess, is examined to understand its effect on the mechanical properties.
The grid size N of the network was selected as 6 based on the findings
from investigating the size effect of the RVE. The grid pitch P, was
50 pm, so the length of the RVE was L = P,N = 300 um. The variable
parameters of the investigated network are shown in Table 3.

3.3. Numerical setup

The numerical setup employed in this study encompassed an un-
structured FEM-mesh comprising 27 nodal second-order hexahedral

elements. This choice of mesh allowed for an accurate representation
of the geometric features and facilitated efficient computations within
the FEniCSx framework. The mesh sizes of the RVEs used in this
investigation varied within a range of ~ 0.4 x 10° DoFs up to ~ 1.8 x 10°
DoFs. Additionally, a convergence study was performed using meshes
of up to ~ 2.2 x 10° DoFs.

For solving the governing system (23), we utilized the conjugate
gradient (CG) method, combined with the multigrid preconditioner.
This combination of solvers and preconditioners ensured rapid conver-
gence and efficient solutions to the problem at hand.

In our specific project, the utilization of the multigrid precondi-
tioner and conjugate gradient (CG) solver proved to be effective in
efficiently handling fairly large problems. For instance, a problem
consisting of approximately 4 x 10° DoFs was solved within a computa-
tional time of fewer than 10 min. These computations were performed
on a personal computer equipped with an i7-1165G7 2.8 GHz processor
and 16 GB of RAM. Specifically, the entire computational process was
executed within a Docker container installed on Windows Subsystem
for Linux 2 (WSL2). It should be noted that running the compu-
tations on a native Linux system results in additional performance
improvements.

3.4. Mesh convergence

We investigated the dependence of solution accuracy on element
size through systematic variations in mesh parameters and observation
of convergence behavior. The convergence study was performed on a
representative cell containing a single triad of fibers, with the depicted
meshes shown in Fig. 8.

We evaluated the accuracy of the numerical solution by evaluating
the L, norm of the error for the components of the elasticity tensor
C:‘f ; compared to the reference solution C, rs (see. Fig. 8-a). The L,
norm is defined as follow:

Ly(A) = max 4;, (26)
1
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Table 3
Geometrical properties of the investigated RVEs.

Fibers Fillness Fibers’ Porosity Intersection Fibers Fillness Fibers’ Porosity Intersection
number diameter ratio number diameter ratio
N, f v d s ¢ 14 N, f v d f ¢ Y

- - mm X 1072 - - - - mm X 1072 - -

12 0.33 1.800 0.9 0.25 24 0.67 1.290 0.9 0.40
18 0.50 1.470 0.9 0.25 30 0.83 1.155 0.9 0.40
24 0.67 1.275 0.9 0.25 12 0.33 2.590 0.8 0.40
30 0.83 1.140 0.9 0.25 18 0.50 2.120 0.8 0.40
12 0.33 2.550 0.8 0.25 24 0.67 1.845 0.8 0.40
18 0.50 2.085 0.8 0.25 30 0.83 1.655 0.8 0.40
24 0.67 1.810 0.8 0.25 36 1.00 1.515 0.8 0.40
30 0.83 1.620 0.8 0.25 18 0.50 2.620 0.7 0.40
36 1.00 1.480 0.8 0.25 24 0.67 2.278 0.7 0.40
18 0.50 2.560 0.7 0.25 30 0.83 2.045 0.7 0.40
24 0.67 2.221 0.7 0.25 36 1.00 1.875 0.7 0.40
30 0.83 1.990 0.7 0.25 18 0.50 3.040 0.6 0.40
36 1.00 1.820 0.7 0.25 24 0.67 2.645 0.6 0.40
12 0.33 1.815 0.9 0.40 30 0.83 2.378 0.6 0.40
18 0.50 1.485 0.9 0.40 36 1.00 2.183 0.6 0.40

0 d)

Fig. 8. Meshes used for mesh convergence tests: coarse mesh with A = 4.7 pm (a), mean mesh with A = 2.6 pm (b), fine mesh with A = 1.5 um (¢) and reference mesh with

a) b)
h=1.0 pm (d).

Table 4

Parameters of the RVE used for mesh convergence investigation.
Element size, pm DoFs Elements M

L)

4.7 11,194 2,052 38.5x 1073
2.6 67,206 10,702 7.69 x 1073
1.5 384,562 55,270 1.57x 1073
1.0 999,194 137,736 -

where /; is an ith eigenvalue of the tensor A. In our case it corresponds
to the maximum eigenvalue A, of the elasticity tensor C. The refer-
ence solution C was obtained using a mesh with an element size of
approximately 1 p m. Model parameters and corresponding solution
errors are provided in Table 4. Fig. 9 shows the relationship between
the error and element size. Through regression analysis, we determined
the convergence rate to be approximately O(h>¢'), where h represents
the element size.

4. Simulation results and discussion

The following subsections provide an in-depth discussion of the
results of our case studies.

4.1. Anisotropy of mechanical properties

The structure of the selected fibrous media exhibits pronounced
asymmetry even in the case of a fully structured case (fillness=1.0, see
Fig. 7), leading to the emergence of complex stress states even under
KUBC conditions.

10° 2x10° 3x10°  4x10°

Element size, ym

Fig. 9. L, norm of relative error of effective matrix of elasticity for different average
mesh size.

Due to the weak inter-fiber connectivity, individual fibers are sub-
jected to bending under shear loading. For example, Fig. 10 illustrates
the displacements fields for an RVE with porosity ¢ = 0.8, fiber diame-
ter d, = 25.5 pm and fillness w = 0.333 subjected to tensile loading (a)
and shear loading (b), with a deformation scale of 0.5. All these factors
contribute to the emergence of additional interdependencies between
the shear and tensile components of the elasticity matrix. In the case
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b)

Fig. 10. Displacements fields for uniform tension (a) and shear(b) of RVE with porosity ¢ = 0.8, fibers’ diameter d, =25.5 pm and fillness y = 0.333.

Fig. 11. Structure of the matrix of elastic properties.

where an equal number of fibers are present along each direction of the
base lattice, the elasticity matrix will consist of six distinct components,
as shown in Fig. 11. It should be mentioned that, due to randomness
in structure and computational error, these six components have a
variation in values. To represent these variations, min/max ranges
are also shown in Figs. 12-14 in addition to the mean values. These
components will be further discussed in the following subsections.

4.2. Investigation of the scale effect

Previously, in works (Huet, 1990, 1999; Alzebdeh et al., 1998;
Ostoja-Starzewski, 2006) was shown that for heterogeneous networks,
an improperly chosen mesoscale window can lead to inappropriate
results since the volume element is not further “representative”. Thus,
in work (Ostoja-Starzewski, 2006), the SVE was introduced, and it was
demonstrated that as the mesoscale size increased, it tended to the RVE.
In the following subsection, we examine the effect of the unit cell size
to determine the appropriate size of the mesoscale window, which can
be considered as representative (Kouznetsova, 2002).
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The resulting values of the elasticity tensor components, namely C;
and C,, for various sizes of the unit cell are illustrated in Fig. 12. The
analysis was performed on both structured networks (with a fillness
of w = 1.0) and quasi-structured (heterogeneous) networks (with a
fillness of y = 0.5), constructed according to the parameters outlined in
Table 2, respectively. In Fig. 12-a, which represents the component C,
it is evident that the value of C, decreases with the increase in the unit
cell size, controlled by the base grid size N. The same dependency on
unit cell size is observed for components C, and C; as well. However,
the value of the C, component increases with an increase in the unit cell
size and these variations are relatively small for the quasi-structured
networks. Additionally, it should be noticed that component C; shows
very small variations, whereas component C, displays a noticeable
variation, which increases with higher network fillness and decreases
with larger unit cell size. It can be explained by the fact that the
components of the elasticity tensor, which corresponded to the C,,
were responsible only for tension along the basis axes and depended
only on the cross-section area, which was equal for each unit cell
along all three basis axes. However, component C, mainly depends
on the fibers’ connection, which is not constant due to the asymmetry
of the connection within the triad (see Fig. 6) and the heterogeneous
structure of unit cells with fillness y # 1. It is worth mentioning that
the components Cs and Cg exhibit similar behavior as component C,.

While it is commonly accepted that the KUBC overestimates the
elastic parameters of the investigated material, Fig. 12 demonstrates
an opposite trend for component C,. Moreover, it is important to note
that while the change in the unit cell size has a significant impact on
the elastic properties of materials with a structured fiber, resulting in a
33% change in the value of component C; and over 75% change in the
value of component C,, its effect on materials with heterogeneous fibers
is much smaller. However, increasing the unit cell size considerably
reduces the variability of components C,, Cs, and Cg for heterogeneous
materials, whereas its effect on the variation of elastic properties in
structured materials is negligible.

Furthermore, this investigation aids in determining the optimal unit
cell size to balance computational efficiency and acceptable accuracy.
Based on these considerations, a unit cell with a base grid size of N =6
was chosen for the subsequent investigation described in Section 4.3
and will be considered as the RVE.
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Fig. 12. The scale effect of unit cell on the components of the elasticity tensor: (a) C, and (b) C,.

4.3. Influence of fibers diameter and porosity

Given the significant influence of fiber diameter on the mechanical
properties, particularly the strength and stiffness, of fibrous porous ma-
terials, this section focuses on examining the response of the elasticity
tensor with respect to variations in fiber diameter. Specifically, Fig. 13
illustrates the relationship between the components of the elasticity
tensor and the diameter of the fibers for RVEs with an intersection ratio
of y = 0.25 for different values of porosity.

These plots demonstrate that as the porosity increases, the compo-
nents of the elasticity tensor C decrease. A closer look also reveals that
the largest change is observed for the porosity of ¢ = 0.7, while for the
porosity of ¢ = 0.9, the changes are nearly negligible and comparable
to computational errors. Additionally, as the porosity decreases, there
is a noticeable reduction in the components of the elasticity tensor
when the fiber diameter size increases. However, the most significant
changes are observed in the absolute values of components C,, C;, and
C,. At a certain point (i.e., higher porosity), these components reach a
stable value, and even a slight increase is observed as the role of fibers
becomes minimal.

In contrast, components C,, Cs, and C,4 do not reach a stable value.
Furthermore, a 50% increase in fiber diameter leads to a multiple
decrease in the values of these components. Another interesting obser-
vation is that increasing the fiber diameter leads to an increase in the
variation of components C,, Cs, and Cg.

The maximum value is observed for components C; and the minimal
value — for C,. Moreover, all components can be ordered as follows
C, > C3 > C, > Cg > C5 > C4. The low values of components C,—
Cg is explained by the cubic structure of the network. In the limiting
case with high randomness, it may come to the case of anisotropy with
cubic symmetry, where these components are equal to zero, which can
be observed from the trends of these components plots (see Fig. 13). As
it was mentioned in Section 4.2, the component C, is responsible for
the tension along the basis axes. And since the fibers are also located
along them, this component has the highest value. The component
C; is responsible for shear in basis planes, and its low value can be
explained by the fact that fibers have weak connections, and during
shear, they mainly exhibit bending deformations. Finally, a low value
of the component C, means that for the chosen geometry, compression
along one of the basis axes has little effect on deformation along two
other axes.

Similarly, the results for RVEs with an intersection ratio of y = 0.4
are presented in Fig. 14. The same effects are observed in these cases
as well. However, reaching a stable value is only observed for higher
porosities of ¢ = 0.8 and ¢ = 0.9. The changes in components C;, C,,
and C; for a porosity of ¢ = 0.7 are approximately 30 MPa, 15 MPa,
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and 18 MPa, respectively. In relative terms, these changes correspond
to approximately 4%, 20%, and 21%, respectively. For the porosity of
¢ = 0.6, the changes are approximately 60 MPa (7.3%), 30 MPa (30%),
and 28 MPa (24%), respectively. Meanwhile, components C,, Cs, and
Cy decrease by a factor of 2, 3, and 2.5, respectively.

Furthermore, it should be noted that the components of the elas-
ticity tensor C for networks with an intersection ratio of y = 0.4 are
significantly larger compared to those with y = 0.25. For example, the
increase in the C; component is 3.1% for ¢ = 0.9, 5.2% for ¢ = 0.8, and
10% for ¢ = 0.7.

5. Conclusion

The present study introduces a computational model based on the
finite element method, which serves as a robust tool for simulating the
mechanical properties of porous non-woven fibrous media. This model
incorporates the geometric and material characteristics of the fibers
and the void spaces, enabling a consistent analysis of the material’s
mechanical response. Through systematically varying parameters such
as fiber size, porosity, and fiber intersection ratio, we explored their
impacts on the mechanical properties of fibrous porous materials.

The results demonstrate that the material’s porosity and fibers’
intersection ratio are the primary factors influencing its mechanical
behavior within the elastic region. A 10% increase in porosity results in
a corresponding up to 10% increase in the value of the C; component,
assuming the diameter remains constant. Similarly, when the intersec-
tion ratio y is increased from 0.25 to 0.4, there is a 7.3% increase in
the value of the C; component.

For the investigated structure it was observed that as the fiber
diameter increases, the structural fillness of the material decreases,
even at a fixed porosity. This leads to a higher level of randomness
in the material’s structure. Conversely, for smaller fiber diameters,
the random fibrous network becomes more structured. This insight
provides valuable knowledge for understanding and designing porous
non-woven fibrous media, as the level of structural filling directly
affects their mechanical properties. Furthermore, the study reveals that
the impact of fiber diameter on the mechanical behavior of the material
depends on the porosity. For materials with low porosity, both fiber
diameter and fillness factor play significant roles in determining the
material’s properties. In contrast, materials with high porosity exhibit
minimal sensitivity to changes in fiber diameter and fillness.

The analysis of the elasticity tensor components provides valuable
insights into the mechanical behavior of the material. Specifically,
increasing the fiber diameter leads to a reduction in these compo-
nents, particularly for C,, C,, and C;. For example, doubling the
fiber diameter results in a decrease of up to 60 MPa in C; and 25
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Fig. 13. Effect of fiber diameter on components of the tensor of elasticity for the network with y = 0.25.

MPa in C;. However, it is worth noting that these changes, while
significant, are small in relative value, ranging from 7.3% for C; to 24%
for C;. Moreover, the C,, Cs, and Cy; components exhibit even more
pronounced reductions, with C, decreasing by more than twice and Cs
and Cg4 exhibiting approximately three times reduction. This behavior
can be attributed to the increase in the heterogeneity in the material’s
structure caused by larger fiber diameters, which subsequently leads to
reduced anisotropy. These findings align with previous research (Bosco
et al., 2017; Cucumazzo et al., 2021; Karakoc et al., 2020), further
confirming the observed effect. Moreover, the study highlights the
influence of fiber diameter and fillness factor on the variation of
the elasticity tensor components. It was observed that increasing the
fiber diameter and decreasing the fillness factor result in an increased
variation of the C,, Cs, and C4 components, while the variation of the
C;, C,, and C; components remains relatively unchanged.
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At the same time, investigation of the RVE?s size effect on the
material’s behavior showed that increasing the size of the RVE leads
to an increase in the number of fibers, reduces high variation in the
C,, Cs, and Cg components. These findings provide valuable insights
into the computational strategy for modeling non-woven fibrous media.
While scaling up the RVE leads to a higher-dimensional system in the
finite element method, thus stabilizing the averaged values, it may
present computational challenges. Therefore, alternative approaches,
such as two-scale modeling of the media, show promise in addressing
these challenges. The two-scale modeling approach involves simulating
various variations of the porous material at the microscale and not
only calculating the equivalent values of the elastic properties but
also their dispersion. Subsequently, at the mesoscale, the material is
modeled as a continuum with spatial distributions of properties based
on microscale-defined intrinsic laws. This approach shares similarities
with the utilization of Stochastic Volume Elements (Mansour et al.,
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Fig. 14. Effect of fiber diameter on components of the tensor of elasticity for the network with y = 0.4.

2019; Mansour and Kulachenko, 2022) or Stochastic Local FEM (Pivo-
varov et al., 2019, 2022). However, modeling the random properties
requires the application of uncertainty quantification methods, which
will be the focus of future work.
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