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Abstract

We show that machine learning can improve the efficacy of simulations of stress waves in

one-dimensional composite materials. We propose a data-driven technique to learn nonlocal

constitutive laws, which act as a homogenized surrogate for stress wave propagation models.

The method is an optimization-based technique in which the nonlocal kernel function is

approximated via Bernstein polynomials. The kernel, including both its functional form

and parameters, is derived so that when used in a nonlocal solver, it generates solutions that

closely match high-fidelity data. The optimal kernel therefore acts as a homogenized nonlocal

continuum model that accurately reproduces wave motion in a smaller-scale, more detailed

model that can include multiple materials. We apply this technique to wave propagation within

a heterogeneous bar with a periodic microstructure. Several one-dimensional numerical tests

illustrate the accuracy of our algorithm. The optimal kernel is demonstrated to reproduce

high-fidelity data for a composite material in applications that are substantially different

from the problems used as training data.

Keywords Wave propagation · Data-driven learning · Nonlocal operator regression ·

Homogenization · Nonlocal models

1 Introduction

Nonlocal models use integral operators acting on a lengthscale δ, known as horizon. This

feature allows nonlocal models to capture long-range forces at small scales and multiscale

behavior, and to reduce regularity requirements on the solutions, which are allowed to be

discontinuous or even singular. In recent decades, nonlocal equations have been successfully

used to model several engineering and scientific applications, including fracture mechanics

[1–3], subsurface transport [4, 5], image processing [6, 7], multiscale and multiphysics sys-

tems [8–10], finance [11], and stochastic processes [12, 13].

However, it is often the case that nonlocal kernels defining nonlocal operators are justified

a posteriori and it is not clear how to define such kernels to faithfully describe a physical

system. The problem of learning an appropriate kernel for a specific application is one of
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the most challenging open problems in nonlocal modeling. The literature on techniques

for learning kernel parameters for a given functional form is vast, see, e.g., [14, 15] for

control-based approaches, and [16, 17] for machine-learning approaches. However, the use

of machine learning to learn the functional form of the kernel is still in its infancy, [18–20]

being the only relevant works that we are aware of.

In this work we use an approach similar to the one developed in [20] to learn nonlocal

kernels whose associated nonlocal wave equation is well posed by construction and can be

used as an accurate surrogate for more detailed, high-fidelity wave propagation models. In

particular, we present an application to wave propagation at the microscale in a heterogeneous

solid. In this context, the machine-learned nonlocal kernel embeds the material constitutive

behavior so that the material interfaces do not have to be treated explicitly and, more impor-

tantly, the material microstructure can be unknown. Furthermore, the corresponding nonlocal

models allow for accurate simulations at scales that are much larger than the microstructure.

Our main contributions are:

• The design of an optimization technique that bridges micro and continuum scales by

providing accurate and stable homogenized surrogate models for the simulation of wave

propagation in heterogeneous materials.

• The illustration of this method via one-dimensional experiments that confirm the applica-

bility of our technique and the improved accuracy compared with state-of-the-art results.

• The demonstration of generalization properties of our algorithm whose associated model

surrogates are effective even on problem settings that are substantially different from the

ones used for training in terms of loading and time scales.

2 Nonlocal Kernel Learning

We introduce the high-fidelity (HF) model that faithfully represents the system: for � ∈ R
d ,

the scalar function u(x, t) solves, for (x, t) ∈ � × [0, T ]

∂2u

∂t2
(x, t) − LHF[u](x, t) = f (x, t), (1)

provided some boundary conditions on ∂� for u(x, t) and initial conditions at t = 0 for u

and ∂u/∂t are satisfied. Here, LHF is the HF operator, which can either be a differential or

integral operator, and f represents a forcing term.

We assume that solutions to this HF problem may be approximated by solutions to a

nonlocal problem of the form

∂2u

∂t2
(x, t) − LK [u](x, t) = f (x, t), (2)

for (x, t) ∈ � × [0, T ], augmented with nonlocal boundary conditions on �δ (a layer of

thickness δ that surrounds the domain) and the same initial conditions on the variable u and

its derivative as in (1). The forcing f may coincide with the forcing term in (1) or it could

be an appropriate representation of the same.

We seek LK as a nonlocal operator of the form

LK [u](x, t) =

∫

�

K (|x − y|) (u(y, t) − u(x, t)) dy (3)

where K is a radial, sign-changing, kernel function, compactly supported on the ball of radius

δ centered at x , i.e., Bδ(x) and � = � ∪ �δ .
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2.1 The Algorithm

To learn the kernel K , we assume that we are given N pairs of forcing terms and corresponding

solutions to (1), normalized with respect to the L2 norm of each solution over � × [0, Ttr].

These are denoted by

Dtr = {(uk(x, t), fk(x, t))}N
k=1 , (4)

for x ∈ � and t ∈ (0, Ttr]. Similarly to [20], we represent K as a linear combination of

Bernstein basis polynomials:

K

(

|y|

δ

)

=

M
∑

m=0

Cm

δd+2
Bm,M

(
∣

∣

∣

∣

y

δ

∣

∣

∣

∣

)

, (5)

where the Bernstein basis functions are defined as

Bm,M (x) =

(

M

m

)

xm(1 − x)M−m for 0 ≤ x ≤ 1

and where Cm ∈ R. Note that, by construction, this kernel guarantees that (2) is well-

posed [21].

We machine-learn the nonlocal model by finding optimal parameters {Cm} such that

solutions ûk to (2), for f = fk and the kernel function K associated to {Cm}, are as close as

possible to the training variable uk .

In this work we numerically approximate ûk by ūk using a central-differencing scheme in

time with time step dt , i.e.

ūn+1
k (xi ) = 2ūn

k (xi ) − ūn−1
k (xi ) + dt2

(

LK ,h[ūn
k ](xi ) + fk(xi , tn)

)

, (6)

where ūn+1
k (xi ) represents the k-th approximate solution at time step tn+1 and at discretization

point xi , and LK ,h is an approximation of LK by Riemann sum with uniform grid spacing

h. The optimal parameters are obtained by solving the following optimization problem.

min
Cm

Ttr

dt3 N

N
∑

k=1

Ttr/dt
∑

n=1

∥

∥ūn+1
k − uk(t

n+1)
∥

∥

2

�2 + R({Cm}), (7)

s.t. ūk satisfies (6) and (8)

K satisfies physics-based constraints. (9)

Here, the �2 norm is taken over the space-discretization points xi , and (9) depends on the

physics of the problem (as an example, it may correspond to enforcing that the surrogate

model reproduces exactly a certain class of solutions). R(·) is a regularization term on the

coefficients that improves the conditioning of the optimization problem. In this paper, we

adopt the classical practice in machine learning and employ the Tikhonov regularizer using

the l2 norm of trainable parameters: R({Cm}) :=
ε

M + 1

∑M
m=0 C2

m , where the regularization

weight ε is chosen empirically to guarantee accurate predictions, as we explain later on. We

also point out that when additional knowledges, such as the prior knowledge about kernel

[22] or the information from data [23], are available, more advanced regularization terms can

be proposed accordingly.
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3 Dispersion in HeterogeneousMaterials

We apply the learning algorithm described above to the propagation of waves in a one-

dimensional heterogeneous bar, like the one reported in Fig. 1, with an ordered microstructure,

i.e. two materials with the same length alternate periodically. Our goal is to learn a nonlocal

model able to reproduce wave propagation on distances that are much larger than the size

of the microstructure without resolving the microscales. The high-fidelity model we rely

on is the classical wave equation; the corresponding high-fidelity data used for training and

validation are obtained with the solver described below.

3.1 High-fidelity Data

For both training and validation purposes we generate data using high-fidelity simulations

for the propagation of stress waves within the microstructure of the heterogeneous, linear

elastic bar. This method, which will be referred to as Direct Numerical Solution (DNS),

constructs an arbitrarily complex wave diagram (also called an x-t diagram), that treats the

mutual interaction and superposition of many wavefronts moving in either direction. The bar

is discretized into nodes such that it takes a constant amount of time �t for a wave to travel

between nodes γ and γ +1, regardless of the elastic wave speed in the material between these

two nodes. Therefore, in a heterogeneous medium, the spacing between nodes is not constant.

Each node γ , at each time step n, has velocity vn
γ (note that, in this case, the subscript refers to

position, as opposed to the previous section where it corresponds to a specific sample k). To

compute the velocities in the next time step, it is assumed that two waves moving in opposite

directions converge on the node γ at time step n (see Fig. 2). The waves shown in the figure

can have unequal slopes on the x-t diagram because the materials on either side of node γ

can have different waves speeds c. The jump conditions for the waves are applied that relate

the stress change [σ ] across a wave to the velocity change [v]. These jump conditions have

the following form:

[σ ] = ±ρc[v],

where ρ is the mass density, and where the + and − signs apply to right-running waves and

left-running waves respectively. From these conditions, the velocity vn+1
γ can be computed

explicitly from the values at the adjacent nodes in time step n−1. Externally applied forces can

also be included in a straightforward way. After vn+1
γ is computed, the updated displacement

is approximated by

Fig. 1 One-dimensional bar with ordered microstructure of period 2L . Material 1 and 2 have the same density

and Young modulus E1 and E2. The horizon δ, the wave length λ, and the discretization size, h, are reported

for comparison
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Fig. 2 Interaction of two waves

in the DNS method. Each node

may or may not be located at a

material interface

un+1
γ = un

γ + �tvn+1
γ .

Details of the method can be found in [24].

This DNS solver has the important advantage of not using an approximate representation

of derivatives in space or time for the computation of the velocity, which is, therefore, free

from truncation error and other sources of discretization error that are usually encountered

with PDE solvers. This allows us to model the propagation of waves through many thousands

of microstructural interfaces without the need to worry about what features of the velocity

are real and what are numerical artifacts.

We consider four types of data and use the first two for training and the last two for

validation of our algorithm. In all our experiments we set L =0.2, E1 =1, E2 =0.25, ρ =1,

and the symmetric domain � = (−b, b). Discretization parameters for the DNS solver are

set to �t =0.01 and max{�x}=0.01.

1. Oscillating source. We set b = 50, v(x, 0) = u(x, 0) = 0,

f (x, t)= e
−

(

2x
5kL

)2

e
−

(

t−t0
tp

)2

cos2

(

2πx

kL

)

, k = 1, 2, . . . , 20, t0 = tp = 0.8.

2. Plane wave. For b = 50, f (x, t) = 0 and u(x, 0) = 0, we prescribe v(−b, t) = sin(ωt)

for ω = 0.35, 0.7, · · · , 3.85.

3. Wave packet. For b = 133.3, f (x, t) = 0 and u(x, 0) = 0, we prescribe v(−b, t) = sin

(ωt) exp(−(t/5 − 3)2) for ω = 2, 3.9, 5.

4. Impact. For b =266.6, f (x, t) = 0 and u(x, 0) = 0, we prescribe v(x, 0) = 1 for all

x ∈ [−b,−b + 1.6] and v = 0 outside of this interval. This initial condition represents

an impactor hitting the bar at time zero, generating a velocity pulse of width roughly 3.2

that propagates into the interior of the bar. The pulse attenuates and changes shape as it

encounters the many microstructural interfaces.

3.2 Training Procedure

For the optimization problem (7) we choose a Tikhonov regularization of the form R({Cm})

= ε
M+1

∑M
m=0 C2

m . The physics-based constraints in (9) are defined as follows and also
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discretized by Riemann sum; they are used to explicitly prescribe values of CM−1 and CM :

M
∑

m=0

Cm

∫ δ

0

y2

δ3
Bm,M

(

|y|

δ

)

dy = ρc2
0,

M
∑

m=0

Cm

∫ δ

0

y4

δ3
Bm,M

(

|y|

δ

)

dy = −4ρc3
0 R,

(10)

where ρ is the density and c0 is the effective wave speed for infinitely long wavelengths. For

ρ = 1, it is given by c0 = (2/(1/E1 + 1/E2)
1
2 . R is the second derivative of the wave group

velocity with respect to the frequency ω evaluated at ω = 0. Both parameters are obtained by

simulating a very low frequency plane wave propagating through the microstructure over a

long distance using DNS [24]. These parameters primarily affect simulations at large times,

t > 10. However, due to practical limitations on computer resources, our training simulations

are restricted to t ≤ 2. Therefore, we incorporate these parameters as constraints obtained

from DNS as indicated in (10), rather than attempting to learn these through our algorithm.

The first constraint in (10) is also used for similar purposes in [19] and prescribed in a weak

sense by penalization.

Training is performed with DNS data of type 1) and 2). Parameters for the nonlocal solver

and the optimization algorithm are set to h = 0.05, dt = 0.02, Ttr = 2, δ =1.2, M = 24 and

ε = 0.01. The optimization problem (7) is solved with L-BFGS. Note that we empirically

choose δ and ε in such a way that the group velocity, defined below, corresponding to the

optimal kernel is as close as possible to the one computed with DNS.

The optimal kernel, Kopt, is reported in Fig. 3; as expected from the literature [18–20, 25],

we observe a sign-changing behavior. We also compute the corresponding dispersion ω(k)

and group velocity vg(ω) = dω/dk. For a given kernel K and different frequencies ki = 0,
2π

200h
, · · · , 2π

h
, the corresponding angular frequency ω(ki ) and group velocity vg(ω(ki )) are

approximated by

ω(ki )
2 ≈

1

ρ

∑

q

K (|yq |)(1 − cos(ki yq))h,

vg(ω(ki )) ≈
ω(ki+1) − ω(ki−1)

ki+1 − ki−1
,

where yq belong to a uniform grid of size h in (−δ, δ).

Fig. 3 Optimal kernel Kopt as a

function of distance
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The dispersion curve is reported in Fig. 4, its positivity indicates that Kopt corresponds

to a physically stable material model. The group velocity is reported in the upper plot of

Fig. 5 in comparison with the curve computed with DNS by observing the speed of a wave

packet of a given frequency as it moves through the microstructure. We also display the

group velocities associated with two alternative kernels obtained for the same material by

a completely different method [24]. The first alternative kernel is a constant, specifically,

we have that Cm = Kconst = 0.7714 for δ = 0.15. For the second alternative kernel we

consider a singular kernel which has been widely studied in nonlocal models (see, e.g., [3,

26]): Ksingular(y)= C
δ2|y|

, for C =0.6 and δ=0.15.

It is well known that layered, periodic elastic media have a band structure for wave

propagation, see [27, pages 121–122]. In the present study, because it is not possible to

reproduce the higher-frequency pass bands with the coarse discretization that is used in fitting

our nonlocal kernel, we address only the first, low-frequency pass band, i.e. ω ∈ (0, ωbs),

where “bs” stands for band stop. Hence, the optimal kernel is suitable only for wavelengths

that are bigger than the microstructure; this is enough to reproduce the physically most

important features of wave propagation in layered media for typical applications.

The profile of the group velocity shows the improved accuracy of our optimal kernel

that not only matches the behavior for low values of ω, but also catches the behavior at

ω = ωbs ≈ 4. This fact has important consequences on the ability to reproduce wave

propagation for values of ω bigger than ωbs. In order to justify the statement above on the

optimality of the parameters δ and ε, we report the group velocity profile in correspondence

of different pairs; it is clear from the profiles in Fig. 5 that (δ, ε) = (1.2, 0.01) provides the

best match both in terms of curvature at ω = 0 and identification of the band stop. One can

also see the when the regularization weight, ε, is too strong, it leads to a under-fitting to the

DNS data: there is a large discrepancy between the group velocities of the learnt kernel and

the DNS data. On the other hand, a too-small ε would lead to over-fitting. In this case, the

model gives accurate predictions for training data by memorizing the noise, and hence the

model would not perform well for new data. Such an undesired performance can be probed

from the group velocity. As demonstrated by the group velocity of the (δ, ε) = (1.2, 0.0001)

case: the group velocity almost overlaps with the ground truth, but the band stop does not

match well. In the following simulations, we will take the result from (δ, ε) = (1.2, 0.01) as

the optimal kernel, Kopt.

To further demonstrate the training procedure, in Fig. 6 we report the convergence proper-

ties of the learning algorithm by showing the history training loss in (7). One can see that the

L-BFGS algorithm reaches a plateau within 5 epochs. We also conduct a sensitivity analysis

Fig. 4 Dispersion curve

associated with Kopt
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Fig. 5 Comparison of the group velocity. Upper: group velocity corresponding to Kopt , Kconst , Ksingular , and

DNS data. Bottom: group velocity corresponding to Kopt for different pairs (δ, ε)
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Fig. 6 Optimization history of

Kopt , using the L-BFGS

algorithm and the training loss

following (7)

for the optimal kernel parameter set {Cm}M
m=0, and demonstrate the results in Fig. 7. Here, we

add an additive noise to the optimal kernel parameter set as {Cm(1+ε)}, where ε is a random

variable satisfying the uniform distribution: ε ∼ U[−0.1, 0.1]. We generate 100 realizations

of perturbed kernels, then report their averaged group velocity and 95% confidence region.

Because the perturbation introduces errors on the two physical constraints (10), the resultant

group velocity does not guarantee a perfect match with the DNS data at the low frequency end,

as can be seen from the averaged group velocity curve in Fig. 7. On the other hand, the confi-

dence region almost coincides with the averaged group velocity. This fact demonstrates that

the wave dispersion behavior has a low sensitivity to the perturbation of kernel parameters.

3.3 Numerical Validation

We test the performance of the optimal kernel Kopt on data sets of type 3) and 4), i.e.

the problem setting considered for validation has different model parameters, including the

domain, than the one used for training and, hence, these tests serve as an indicator of the

generalization properties of our algorithm.

Fig. 7 Sensitivity analysis of

Kopt , where we perturb the

optimal kernel parameter set

{Cm }M
m=0 by 10%, then calculate

the averaged group velocity and

95% confidence region from

100 realizations
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Wave packet For data type 3) we numerically compute solutions to (2) using Kopt and DNS

data as nonlocal boundary conditions. We consider solutions corresponding to three values

of ω: ω1 = 2 <ωbs, ω2 = 3.9 ≈ ωbs and ω3 = 5 >ωbs. Note that the latter value is beyond

the band stop and, as such, corresponds to a zero group velocity, i.e. the wave does not travel

in time. In Fig. 8 we report the velocity corresponding to the computed displacement ū at

time t = 100, t = 320, and t = 100 for ω1, ω2, and ω3 respectively; as a reference, we also

report the exact DNS velocity. Our results indicate that our kernel can accurately reproduce

solutions of type 3) at times larger than Ttr and for all values of ω, even larger than ωbs. This is

possible because the group velocity corresponding to Kopt reproduces the true group velocity

very accurately, see Fig. 5. In particular, detecting the presence of a band stop allows us to

accurately predict the wave propagation for values of ω >ωbs. Due to the poor accuracy of

the group velocity associated to the two baseline kernels, Kconst and Ksingular , corresponding

Fig. 8 Velocity computed with Kopt . Plots from top to bottom correspond to: 1. ω1 = 2 at t = 100; 2.

ω2 = 3.9 at t = 320; 3. ω3 = 5 at t = 100
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Fig. 9 Velocity computed with Kconst . Plots from top to bottom correspond to: 1. ω1 = 2 at t = 100; 2.

ω2 = 3.9 at t = 320; 3. ω3 = 5 at t = 100. The optimal kernel Kopt obtained by machine learning (Fig. 8)

clearly performs better than Kconst for the second and third cases (ω2 and ω3)

solutions are not as accurate for ω in the proximity of ωbs and beyond. To illustrate this

phenomenon, we report in Fig. 9 the behavior of the velocity corresponding to Kconst at time

t = 100, t = 320 and 100, respectively for ω1, ω2 and ω3. Comparison with DNS data shows

that, for ω2 the wave associated with Kconst is traveling faster than the exact one and, for ω3,

it keeps traveling while the exact wave is not propagating. Similar phenomenon is observed

for Ksingular , as shown in Fig. 10.
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Fig. 10 Velocity computed with Ksingular . Plots from top to bottom correspond to: 1. ω1 = 2 at t = 100; 2.

ω2 = 3.9 at t = 320; 3. ω3 = 5 at t = 100. The optimal kernel Kopt obtained by machine learning (Fig. 8)

again performs better than Ksingular

Impact We use the optimal kernel to compute solutions corresponding to data type 4). In

Fig. 11 we report the velocity profile at different time steps in correspondence of Kopt and DNS

data, displayed for comparison. Figs. 12 and 13 display the same results in correspondence of

Kconst and Ksingular , respectively. These results indicate that our optimal kernel can accurately

predict the short- and long-time wave propagation, as opposed to the constant kernel that

successfully predicts the long-time behavior only, and the singular kernel that overly predicts

the size of oscillations that trail the main pulse in both short-time and long-time simulations.

We also point out that for values of (δ, ε) for which the group velocity is not accurate, the

predicted velocity and displacement exhibit non-physical oscillations, which disappear in

correspondence of pairs that guarantee an accurate group velocity profile.
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Fig. 11 Velocity profile for the Impact problem at T = 20 and T = 600 with Kopt

Fig. 12 Velocity profile for the Impact problem at T = 20 and T = 600 with Kconst . The optimal kernel Kopt

obtained by machine learning (Fig. 11) provides better agreement with the DNS data than Kconst at the earlier

time (T = 20) by reducing the size of the oscillations that trail the main pulse. For large T , the solution is

dominated by the low frequency components of the pulse, for which the two kernels behave similarly
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Fig. 13 Velocity profile for the Impact problem at T = 20 and T = 600 with Ksingular . The optimal kernel

Kopt obtained by machine learning (Fig. 11) provides better agreement with the DNS data than Ksingular
at both the earlier time (T = 20) and the later time (T = 600), since the later overly predicts the size of

oscillations that trail the main pulse

4 Conclusion

We introduced a new data-driven, optimization-based algorithm for the identification of

nonlocal kernels in the context of wave propagation through material featuring heterogeneities

at the microscale. The corresponding nonlocal model is well-posed by construction and allows

for accurate simulations at a larger scale than the microstructure. We stress the fact that our

algorithm does not require a priori knowledge of the microstructure (often unknown and/or

hard to model), but only requires high-fidelity measurements of the displacements or the

velocity. We also point out that our algorithm has excellent generalization properties as the

optimal kernel performs well at much larger times than the time instants used for training

and on problem settings that are substantially different from the training data set.

One of the most important findings in this work is the key role of the group velocity in

the accuracy of the predictions; in fact, our criterion for the choice of the horizon δ and

the regularization weight ε is the accurate prediction of the group velocity profile. Given

the critical role of such quantity, our future work includes the identification of the optimal

horizon by, possibly, embedding constraints on the group velocity to the training procedure.

Another natural follow-up work is the illustration of the efficiency of our algorithm on two-

and three-dimensional test cases.
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