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Abstract

We show that machine learning can improve the efficacy of simulations of stress waves in
one-dimensional composite materials. We propose a data-driven technique to learn nonlocal
constitutive laws, which act as a homogenized surrogate for stress wave propagation models.
The method is an optimization-based technique in which the nonlocal kernel function is
approximated via Bernstein polynomials. The kernel, including both its functional form
and parameters, is derived so that when used in a nonlocal solver, it generates solutions that
closely match high-fidelity data. The optimal kernel therefore acts as a homogenized nonlocal
continuum model that accurately reproduces wave motion in a smaller-scale, more detailed
model that can include multiple materials. We apply this technique to wave propagation within
a heterogeneous bar with a periodic microstructure. Several one-dimensional numerical tests
illustrate the accuracy of our algorithm. The optimal kernel is demonstrated to reproduce
high-fidelity data for a composite material in applications that are substantially different
from the problems used as training data.

Keywords Wave propagation - Data-driven learning - Nonlocal operator regression -
Homogenization - Nonlocal models

1 Introduction

Nonlocal models use integral operators acting on a lengthscale 8, known as horizon. This
feature allows nonlocal models to capture long-range forces at small scales and multiscale
behavior, and to reduce regularity requirements on the solutions, which are allowed to be
discontinuous or even singular. In recent decades, nonlocal equations have been successfully
used to model several engineering and scientific applications, including fracture mechanics
[1-3], subsurface transport [4, 5], image processing [6, 7], multiscale and multiphysics sys-
tems [8—10], finance [11], and stochastic processes [12, 13].

However, it is often the case that nonlocal kernels defining nonlocal operators are justified
a posteriori and it is not clear how to define such kernels to faithfully describe a physical
system. The problem of learning an appropriate kernel for a specific application is one of
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the most challenging open problems in nonlocal modeling. The literature on techniques
for learning kernel parameters for a given functional form is vast, see, e.g., [14, 15] for
control-based approaches, and [16, 17] for machine-learning approaches. However, the use
of machine learning to learn the functional form of the kernel is still in its infancy, [18-20]
being the only relevant works that we are aware of.

In this work we use an approach similar to the one developed in [20] to learn nonlocal
kernels whose associated nonlocal wave equation is well posed by construction and can be
used as an accurate surrogate for more detailed, high-fidelity wave propagation models. In
particular, we present an application to wave propagation at the microscale in a heterogeneous
solid. In this context, the machine-learned nonlocal kernel embeds the material constitutive
behavior so that the material interfaces do not have to be treated explicitly and, more impor-
tantly, the material microstructure can be unknown. Furthermore, the corresponding nonlocal
models allow for accurate simulations at scales that are much larger than the microstructure.

Our main contributions are:

e The design of an optimization technique that bridges micro and continuum scales by
providing accurate and stable homogenized surrogate models for the simulation of wave
propagation in heterogeneous materials.

e The illustration of this method via one-dimensional experiments that confirm the applica-
bility of our technique and the improved accuracy compared with state-of-the-art results.

e The demonstration of generalization properties of our algorithm whose associated model
surrogates are effective even on problem settings that are substantially different from the
ones used for training in terms of loading and time scales.

2 Nonlocal Kernel Learning

We introduce the high-fidelity (HF) model that faithfully represents the system: for Q € R,
the scalar function u(x, t) solves, for (x, 1) € Q x [0, T']

8%u
ﬁ(x,l)_ﬁHF[u](X,t)=f(.x,[), (1)

provided some boundary conditions on d€2 for u(x, ¢) and initial conditions at = 0O for u
and du /0t are satisfied. Here, Ly is the HF operator, which can either be a differential or
integral operator, and f represents a forcing term.

We assume that solutions to this HF problem may be approximated by solutions to a
nonlocal problem of the form

3u
W(x,t)—ﬁl([u](x,t):f(x,t), (2)

for (x,7) € @ x [0, T], augmented with nonlocal boundary conditions on 25 (a layer of
thickness § that surrounds the domain) and the same initial conditions on the variable u and
its derivative as in (1). The forcing f may coincide with the forcing term in (1) or it could
be an appropriate representation of the same.

We seek Lk as a nonlocal operator of the form

Lilul(x,1) = /ﬁK(Ix =Dy, 1) —u(x, 1) dy 3

where K is aradial, sign-changing, kernel function, compactly supported on the ball of radius
6 centered at x, i.e., Bs(x) and Q = Q U Q5.
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2.1 The Algorithm

To learn the kernel K, we assume that we are given NV pairs of forcing terms and corresponding
solutions to (1), normalized with respect to the L? norm of each solution over € x [0, Ty ].
These are denoted by

Dy = {(ur(x, 1), fie(x, )}y “

for x € Q and ¢ € (0, T]. Similarly to [20], we represent K as a linear combination of
Bernstein basis polynomials:

M\ . C y
k(5= 2 (7)) ®

m=0

where the Bernstein basis functions are defined as
By (x) = (Z) A=) for0<x <1

and where C,, € R. Note that, by construction, this kernel guarantees that (2) is well-
posed [21].

We machine-learn the nonlocal model by finding optimal parameters {C,,} such that
solutions iy to (2), for f = f; and the kernel function K associated to {C,,}, are as close as
possible to the training variable u.

In this work we numerically approximate iy by ity using a central-differencing scheme in
time with time step dt, i.e.

gt () = 2R () — i () + de? (L alitp 1) + fiCxi 1) (6)
where u k+ (x;) represents the k-th approximate solution at time step ! and at discretization

point x;, and Lk j is an approximation of Lx by Riemann sum with uniform grid spacing
h. The optimal parameters are obtained by solving the following optimization problem.

N Ty/dt
2
min < dt3 2 2 @t — ™[ + RACKD, @)
k=1 n=1
s.t. iy satisfies (6) and (8)
K satisfies physics-based constraints. C))

Here, the ¢% norm is taken over the space-discretization points x;, and (9) depends on the
physics of the problem (as an example, it may correspond to enforcing that the surrogate
model reproduces exactly a certain class of solutions). R(-) is a regularization term on the
coefficients that improves the conditioning of the optimization problem. In this paper, we
adopt the classical practice in machine learning and employ the Tikhonov regularizer using

the /2 norm of trainable parameters: R({Cp,}) := Wl Zm -0 C? > where the regularization
weight € is chosen empirically to guarantee accurate predictions, as we explain later on. We

also point out that when additional knowledges, such as the prior knowledge about kernel
[22] or the information from data [23], are available, more advanced regularization terms can
be proposed accordingly.
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3 Dispersion in Heterogeneous Materials

We apply the learning algorithm described above to the propagation of waves in a one-
dimensional heterogeneous bar, like the one reported in Fig. 1, with an ordered microstructure,
i.e. two materials with the same length alternate periodically. Our goal is to learn a nonlocal
model able to reproduce wave propagation on distances that are much larger than the size
of the microstructure without resolving the microscales. The high-fidelity model we rely
on is the classical wave equation; the corresponding high-fidelity data used for training and
validation are obtained with the solver described below.

3.1 High-fidelity Data

For both training and validation purposes we generate data using high-fidelity simulations
for the propagation of stress waves within the microstructure of the heterogeneous, linear
elastic bar. This method, which will be referred to as Direct Numerical Solution (DNS),
constructs an arbitrarily complex wave diagram (also called an x-# diagram), that treats the
mutual interaction and superposition of many wavefronts moving in either direction. The bar
is discretized into nodes such that it takes a constant amount of time At for a wave to travel
between nodes y and y + 1, regardless of the elastic wave speed in the material between these
two nodes. Therefore, in a heterogeneous medium, the spacing between nodes is not constant.
Each node y, at each time step 7, has velocity vﬁ (note that, in this case, the subscript refers to
position, as opposed to the previous section where it corresponds to a specific sample k). To
compute the velocities in the next time step, it is assumed that two waves moving in opposite
directions converge on the node y at time step n (see Fig.2). The waves shown in the figure
can have unequal slopes on the x-¢ diagram because the materials on either side of node y
can have different waves speeds c. The jump conditions for the waves are applied that relate
the stress change [o'] across a wave to the velocity change [v]. These jump conditions have
the following form:
[o] = £pc(v],

where p is the mass density, and where the + and — signs apply to right-running waves and
left-running waves respectively. From these conditions, the velocity v +! can be computed
explicitly from the values at the adjacent nodes in time step n— 1. Externally applied forces can
also be included in a straightforward way. After v)’ﬁ“ is computed, the updated displacement
is approximated by

material 1

" mé‘terial‘ 2

2L
DY
i

—

h

Fig.1 One-dimensional bar with ordered microstructure of period 2L. Material 1 and 2 have the same density
and Young modulus Eq and E3. The horizon §, the wave length A, and the discretization size, h, are reported
for comparison
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Details of the method can be found in [24].

This DNS solver has the important advantage of not using an approximate representation
of derivatives in space or time for the computation of the velocity, which is, therefore, free
from truncation error and other sources of discretization error that are usually encountered
with PDE solvers. This allows us to model the propagation of waves through many thousands
of microstructural interfaces without the need to worry about what features of the velocity

are real and what are numerical artifacts.

We consider four types of data and use the first two for training and the last two for
validation of our algorithm. In all our experiments we set L=0.2, E; =1, E»=0.25, p=1,
and the symmetric domain Q = (—b, b). Discretization parameters for the DNS solver are

set to At =0.01 and max{Ax}=0.01.

1. Oscillating source. We set b = 50, v(x, 0) = u(x,0) =0,

=19 \2

2
Fan=e F) () cop? (ZIZT—LX) k=1,2,....20, 19 =1, =08,

2. Plane wave. For b = 50, f(x,t) = 0 and u(x, 0) = 0, we prescribe v(—b, t) = sin(wt)

for w = 0.35,0.7,--- , 3.85.

3. Wave packet. For b = 133.3, f(x,t) = 0 and u(x, 0) = 0, we prescribe v(—b, t) = sin
(wt) exp(—(t/5 —3)?) forw = 2,3.9, 5.
4. Impact. For b =266.6, f(x,t) = 0 and u(x,0) = 0, we prescribe v(x,0) = 1 for all
x € [=b, —b + 1.6] and v = 0 outside of this interval. This initial condition represents
an impactor hitting the bar at time zero, generating a velocity pulse of width roughly 3.2
that propagates into the interior of the bar. The pulse attenuates and changes shape as it
encounters the many microstructural interfaces.

3.2 Training Procedure

For the optimization problem (7) we choose a Tikhonov regularization of the form R({C,,})
= ﬁ Z%:o C,%l. The physics-based constraints in (9) are defined as follows and also

@ Springer



Journal of Peridynamics and Nonlocal Modeling

discretized by Riemann sum; they are used to explicitly prescribe values of Cj—1 and Cyy:
M 82
y |yl
Z Cm/ TBm,M<7>dy = IOC(%’
0o o 8
m=0
M § 4
y Lyl 3
Z Cm[) BTBm,M<?>dy = _4:06()Ra

m=0

(10)

where p is the density and cy is the effective wave speed for infinitely long wavelengths. For
p = l,itis givenby co = (2/(1/E1 + l/Eg)%. R is the second derivative of the wave group
velocity with respect to the frequency w evaluated at @ = 0. Both parameters are obtained by
simulating a very low frequency plane wave propagating through the microstructure over a
long distance using DNS [24]. These parameters primarily affect simulations at large times,
t > 10. However, due to practical limitations on computer resources, our training simulations
are restricted to ¢ < 2. Therefore, we incorporate these parameters as constraints obtained
from DNS as indicated in (10), rather than attempting to learn these through our algorithm.
The first constraint in (10) is also used for similar purposes in [19] and prescribed in a weak
sense by penalization.

Training is performed with DNS data of type 1) and 2). Parameters for the nonlocal solver
and the optimization algorithm are setto & = 0.05,dt = 0.02, T = 2,6 =1.2, M = 24 and
€ = 0.01. The optimization problem (7) is solved with L-BFGS. Note that we empirically
choose § and € in such a way that the group velocity, defined below, corresponding to the
optimal kernel is as close as possible to the one computed with DNS.

The optimal kernel, K, is reported in Fig. 3; as expected from the literature [18-20, 25],
we observe a sign-changing behavior. We also compute the corresponding dispersion w (k)
and group velocity vg(w) = dw/dk. For a given kernel K and different frequencies k; = 0,

2%%, s 27", the corresponding angular frequency w (k;) and group velocity vg (w(k;)) are
approximated by

1
o(k)* ~ p > K(lygD(1 = cos(kiyg)h,
q

w(kiy1) — w(ki—1)
kiv1 — ki

ve(w (ki) =~

)

where y, belong to a uniform grid of size & in (=4, §).

Fig.3 Optimal kernel Kopy as a
function of distance

K(lyl)

-10 . .
0 0.2 0.4 0.6 0.8 1 1.2

Bond length (Jy|)
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The dispersion curve is reported in Fig.4, its positivity indicates that K corresponds
to a physically stable material model. The group velocity is reported in the upper plot of
Fig.5 in comparison with the curve computed with DNS by observing the speed of a wave
packet of a given frequency as it moves through the microstructure. We also display the
group velocities associated with two alternative kernels obtained for the same material by
a completely different method [24]. The first alternative kernel is a constant, specifically,
we have that C,;, = Kconst = 0.7714 for § = 0.15. For the second alternative kernel we
consider a singular kernel which has been widely studied in nonlocal models (see, e.g., [3,
261): Ksingular (¥) = 82%‘ for C=0.6 and §=0.15.

It is well known that layered, periodic elastic media have a band structure for wave
propagation, see [27, pages 121-122]. In the present study, because it is not possible to
reproduce the higher-frequency pass bands with the coarse discretization that is used in fitting
our nonlocal kernel, we address only the first, low-frequency pass band, i.e. v € (0, wps),
where “bs” stands for band stop. Hence, the optimal kernel is suitable only for wavelengths
that are bigger than the microstructure; this is enough to reproduce the physically most
important features of wave propagation in layered media for typical applications.

The profile of the group velocity shows the improved accuracy of our optimal kernel
that not only matches the behavior for low values of w, but also catches the behavior at
® = wps ~ 4. This fact has important consequences on the ability to reproduce wave
propagation for values of w bigger than wy. In order to justify the statement above on the
optimality of the parameters § and €, we report the group velocity profile in correspondence
of different pairs; it is clear from the profiles in Fig.5 that (8, €) = (1.2, 0.01) provides the
best match both in terms of curvature at @ = 0 and identification of the band stop. One can
also see the when the regularization weight, €, is too strong, it leads to a under-fitting to the
DNS data: there is a large discrepancy between the group velocities of the learnt kernel and
the DNS data. On the other hand, a too-small € would lead to over-fitting. In this case, the
model gives accurate predictions for training data by memorizing the noise, and hence the
model would not perform well for new data. Such an undesired performance can be probed
from the group velocity. As demonstrated by the group velocity of the (8, €) = (1.2, 0.0001)
case: the group velocity almost overlaps with the ground truth, but the band stop does not
match well. In the following simulations, we will take the result from (8, €) = (1.2, 0.01) as
the optimal kernel, Kop.

To further demonstrate the training procedure, in Fig. 6 we report the convergence proper-
ties of the learning algorithm by showing the history training loss in (7). One can see that the
L-BFGS algorithm reaches a plateau within 5 epochs. We also conduct a sensitivity analysis

Fig.4 Dispersion curve 20
associated with Kopt
15
N3 10 -
5 |- 4
0 s s s s
0 20 40 60 80 100 120 140

Wave number
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for the optimal kernel parameter set {C,, } %:0’ and demonstrate the results in Fig. 7. Here, we

add an additive noise to the optimal kernel parameter set as {C,, (1 +¢€)}, where € is a random
variable satisfying the uniform distribution: € ~ U[—0.1, 0.1]. We generate 100 realizations
of perturbed kernels, then report their averaged group velocity and 95% confidence region.
Because the perturbation introduces errors on the two physical constraints (10), the resultant
group velocity does not guarantee a perfect match with the DNS data at the low frequency end,
as can be seen from the averaged group velocity curve in Fig. 7. On the other hand, the confi-
dence region almost coincides with the averaged group velocity. This fact demonstrates that
the wave dispersion behavior has a low sensitivity to the perturbation of kernel parameters.

3.3 Numerical Validation

We test the performance of the optimal kernel Kope on data sets of type 3) and 4), i.e.
the problem setting considered for validation has different model parameters, including the
domain, than the one used for training and, hence, these tests serve as an indicator of the
generalization properties of our algorithm.

Fig.7 Sensitivity analysis of
Kopt, where we perturb the
optimal kernel parameter set
{C}M_ ) by 10%, then calculate

the averaged group velocity and Ep 0.5
95% confidence region from 'O
100 realizations O o4
O
> 0.3
o °
>
© 021 — DNs data
O]

—— Optimal kernel
1 — Perturbed kernel mean
95% confidence region

o
-

0.0 1

0 1 2 3 4

Angular Frequency
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Wave packet For data type 3) we numerically compute solutions to (2) using Kope and DNS
data as nonlocal boundary conditions. We consider solutions corresponding to three values
of w: w1 =2 < wpg, w3 =3.9 X wpg and w3 =5 > wpg. Note that the latter value is beyond
the band stop and, as such, corresponds to a zero group velocity, i.e. the wave does not travel
in time. In Fig.8 we report the velocity corresponding to the computed displacement i at
time r = 100, t = 320, and t = 100 for w1, w2, and w3 respectively; as a reference, we also
report the exact DNS velocity. Our results indicate that our kernel can accurately reproduce
solutions of type 3) at times larger than Ti, and for all values of , even larger than wy,. This is
possible because the group velocity corresponding to K¢ reproduces the true group velocity
very accurately, see Fig.5. In particular, detecting the presence of a band stop allows us to
accurately predict the wave propagation for values of w > wyg. Due to the poor accuracy of
the group velocity associated to the two baseline kernels, Kconst and Kgingular, corresponding

—DNS data
0.5+ ---Optimal kernel

Velocity
=)

-1 I I I L I I
-150 -140 -130 -120 -110 -100 -90 -80

1 T T T
—DNS data

—Optimal kernel
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0 pemmmmmmsedi ‘,';‘lly‘,"i,))l"ﬂ”') Y)\ ” l "( (' I ‘\ ﬂ, i

-80 -60 -40 -20 0 20
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0.01- ---Optimal kernel

o_

-0.01 .
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-0.02 - .

-0.03 I L L I I I
-135 -130 -125 -120 -115 -110 -105 -100

Position

Fig. 8 Velocity computed with Kopi. Plots from top to bottom correspond to: 1. w; = 2 att = 100; 2.
wy =39atr =320;3. w3 =5att =100
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Fig. 9 Velocity computed with Kconst. Plots from top to bottom correspond to: 1. w1 = 2 at r = 100; 2.

wy =3.9atr = 320; 3. w3 = S att = 100. The optimal kernel Kop; obtained by machine learning (Fig. 8)
clearly performs better than Kconst for the second and third cases (w> and w3)

solutions are not as accurate for w in the proximity of wps and beyond. To illustrate this
phenomenon, we report in Fig. 9 the behavior of the velocity corresponding to K¢ons at time
t = 100, ¢ = 320 and 100, respectively for w;, w, and w3. Comparison with DNS data shows
that, for w, the wave associated with K¢ong 18 traveling faster than the exact one and, for w3,
it keeps traveling while the exact wave is not propagating. Similar phenomenon is observed
for Kiingular» as shown in Fig. 10.
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Fig. 10 Velocity computed with Kingular- Plots from top to bottom correspond to: 1. ) = 2 at ¢t = 100; 2.
wp =3.9atr = 320; 3. w3 = S att = 100. The optimal kernel Kop; obtained by machine learning (Fig. 8)
again performs better than Kingular

Impact We use the optimal kernel to compute solutions corresponding to data type 4). In
Fig. 11 we report the velocity profile at different time steps in correspondence of K, and DNS
data, displayed for comparison. Figs. 12 and 13 display the same results in correspondence of
K const and Kingular, respectively. These results indicate that our optimal kernel can accurately
predict the short- and long-time wave propagation, as opposed to the constant kernel that
successfully predicts the long-time behavior only, and the singular kernel that overly predicts
the size of oscillations that trail the main pulse in both short-time and long-time simulations.
We also point out that for values of (8, €) for which the group velocity is not accurate, the
predicted velocity and displacement exhibit non-physical oscillations, which disappear in
correspondence of pairs that guarantee an accurate group velocity profile.
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Fig. 11 Velocity profile for the Impact problem at T = 20 and T" = 600 with Kopt
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Fig.12 Velocity profile for the Impact problem at T = 20 and 7 = 600 with K¢onst- The optimal kernel Kopt
obtained by machine learning (Fig. 11) provides better agreement with the DNS data than Kconst at the earlier
time (T = 20) by reducing the size of the oscillations that trail the main pulse. For large T, the solution is
dominated by the low frequency components of the pulse, for which the two kernels behave similarly
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Fig. 13 Velocity profile for the Impact problem at 7 = 20 and 7' = 600 with Kjngular- The optimal kernel
Kopt obtained by machine learning (Fig. 11) provides better agreement with the DNS data than Kgingular
at both the earlier time (7 = 20) and the later time (7 = 600), since the later overly predicts the size of
oscillations that trail the main pulse

4 Conclusion

We introduced a new data-driven, optimization-based algorithm for the identification of
nonlocal kernels in the context of wave propagation through material featuring heterogeneities
at the microscale. The corresponding nonlocal model is well-posed by construction and allows
for accurate simulations at a larger scale than the microstructure. We stress the fact that our
algorithm does not require a priori knowledge of the microstructure (often unknown and/or
hard to model), but only requires high-fidelity measurements of the displacements or the
velocity. We also point out that our algorithm has excellent generalization properties as the
optimal kernel performs well at much larger times than the time instants used for training
and on problem settings that are substantially different from the training data set.

One of the most important findings in this work is the key role of the group velocity in
the accuracy of the predictions; in fact, our criterion for the choice of the horizon § and
the regularization weight € is the accurate prediction of the group velocity profile. Given
the critical role of such quantity, our future work includes the identification of the optimal
horizon by, possibly, embedding constraints on the group velocity to the training procedure.
Another natural follow-up work is the illustration of the efficiency of our algorithm on two-
and three-dimensional test cases.
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