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Abstract

Purpose: This study aimed to develop an Al-ensembled network to identify five stages
of Alzheimer’s disease (AD) progression—normal cognition (NC), early mild cognitive
impairment (EMCI), mild cognitive impairment (MCI), late MCI (LMCI), and AD—using
brain features and regions.

Methods: T1-weighted MRI data of 1000 participants were retrieved from Alzheimer's
Disease Neuroimaging Initiative (ADNI) database. The dataset was preprocessed, and
brain volume was parcellated into 170 regions of interest (ROIls) using automated
anatomical labeling-3 (AAL-3) atlas. In each ROI, volumes of gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) was estimated to generate 13 brain
features. Data outliers were identified, and the dataset was divided into training,
testing, and validation in a 70:15:15 ratio. An Al-ensembled network comprising a
random forest (RF) model and 3D ResNet-18 was tested using four combinations of
features and regions. Hyperparameters were tuned via five-fold cross-validation.

Results: The RF model identified GM-to-WM, WM-to-CSF, and GM-to-CSF,
volumetric ratios as top predictors of AD progression. Thalamus, amygdala, and
hippocampus brain regions were consistently affected across all stages. The ResNet-
18 network performed best with combination-1 (RF selected three features and 60
regions) input, achieving 66% F-1 score, 76% sensitivity, and 93.5% specificity. Five-
fold cross-validation confirmed 60.02% accuracy for combination-1.

Conclusion: The proposed Al-ensembled network, first-of-its-kind, can effectively
identify the AD continuum, particularly the EMCI stage. Its implication in clinical
settings can assist in obtaining disease-modifying targeted therapeutic interventions,
extending patient’s life expectancy. Further enhancements could be achieved with
expanded training data and transfer learning techniques.

Keywords: Alzheimer's disease, random forest, brain features, brain regions,
progression pattern.
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Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting
in brain cell death and brain tissue shrinkage [1]. People with AD can progressively
experience various adverse effects, including breathing difficulties, heart failure, and,
ultimately, death [2]. It is also the most prevalent form of dementia, which collectively
indicates various forms of cognitive impairments (Cl), such as memory loss,
communication difficulty, and decline in thinking and reasoning skills [3]. According to
the 2020 World Health Organization (WHO) report, approximately 55.2 million
individuals have dementia and AD worldwide, and this number is predicted almost to
double every 20 years, reaching 78 million in 2030 and 139 million by 2050 [4]. In the
United States alone, about 6.9 million people aged 65 or older were living with AD in
2024. Approximately $360 billion was spent on the long-term medical care of
Alzheimer's patients in 2024, demonstrating the significant economic impact that AD
can have on the society [5].

The pathophysiological process of AD begins years before its clinical symptoms
appear. The mild cognitive impairment (MCI) condition is considered as the risk state
[6], and only 6—-15% of patients with MCI progress to AD [7]. However, not all MCI
cases progress to AD; some remain stable or even improve over time with appropriate
treatments [8]. In research and clinical settings [9], the progression of MCI is divided
into two stages: early MCI (EMCI), and late MCI (LMCI). This classification
distinguishes between individuals at the initial stage of clinical symptom (EMCI) and
those at a later stage (LMCI), progressing directly towards the development of AD [10].
As there is a lack of effective cure for AD, early and accurate detection is crucial [11].
Identifying the early stages of Alzheimer's Disease (AD), such as EMCI and MCI
through imaging modalities would facilitate more effective treatment strategies for
clinicians [12].

Previous studies have reported various MCl-associated brain degenerations,
such as shrinking of the hippocampus, significant atrophy in the medial temporal lobe,
and loss of gray matter volume in the frontal and parietal areas [13-15] using different
imaging technologies like computed tomography (CT), PET (positron emission
tomography), and MRI [16, 17]. MRI is the most commonly employed imaging
technique for predicting stages of AD [18]. In order to reveal hidden information and
eliminate noise inherent in complex MRI sequences, the extraction of important
features becomes imperative [19]. Numerous studies have utilized critical input
features, such as the measurement of brain volume, cortical thickness, brain surface
area, texture, and white matter lesion (WML) volume [20, 21] extracted from MRI data
to optimize performance [22-25]. Putcha et al. [26] introduced a new approach to
measure structural brain changes by using the gray matter to white matter ratio, which
emerged as a promising feature for detecting progression from earlier stages to the
most prevalent stage (i.e., AD). Dubois et al. [27] discussed the development of vivo
features that shifted the diagnosis of AD from the later dementia stages of the disease
towards the earlier stages. They showed structural MRI reveals atrophy, or the loss of
volume of gray matter, which denotes neurodegeneration in individuals with AD. Khagi
et al. [28] revealed that a decrease in gray matter (GM) and brain volume, as well as
a minor increase in cerebrospinal fluid (CSF), can be an effective feature for the
detection of AD. Most of these features were derived by considering the whole brain
instead of its various parcels [10, 29], which implied that there remains the need for a
method capable of detecting AD-induced localized brain lesions using a minimal
amount of brain features and brain ROIls. ROI-based techniques frequently utilize the



use of 3D volume and shape properties of specific brain regions [29, 30]. An atlas is a
map of brain’s anatomy and structure that can aid in partitioning the brain into
anatomically distinct regions or ROls. In recent research papers, automated
anatomical labelling-3 (AAL3) atlas was utilized to divide the brain into 170 ROlIs [31,
32].

The field of artificial intelligence, particularly machine learning (ML) and deep
learning (DL), is continually evolving and playing an important role in analyzing MRI
data to classify Alzheimer's Disease (AD) stages [33-35]. Among the various ML
techniques, random forest has proven to be one of the most effective models for
identifying minimal brain features and regions of interest (ROls). This is due to its
resilience to noise and its ability to handle complex, multimodal data [36, 37]. Deep
learning methods have been utilized to predict the progression of AD using features
derived from structural MRI data [30, 35, 38, 39]. The Convolutional Neural Network
(CNN), a widely used deep learning network, has been employed for the classification
and prediction of AD [40-43]. In CNN, there was limited interaction between the feature
maps from different layers. The advent of Residual Network (ResNet) marked a
significant milestone in the evolution of deep learning methods. It introduced a
residual unit to connect the current layer to the previous one, known as skip-
connection, addressing the degradation problem [44]. This architecture allowed
ResNet to become deeper, and achieve better performance than conventional CNN
[45].

3D CNNs have been used in predicting Alzheimer’s disease mostly as they
extract intricate features from 3D data and enhance model comprehensibility [44, 45].
Long et al. [32] proposed a 3D densely connected convolutional neural network (CNN)
with a connection-wise attention mechanism to learn the multi-level features of brain
MR images for AD classification. They used MRI of 968 subjects from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database to discriminate (1) AD versus
healthy subjects, (2) MCI converters versus healthy subjects, and (3) MCI converters
versus non-converters. Their proposed method achieved 97.35% accuracy for
distinguishing AD patients from healthy control, 87.82% for MCI converters against
healthy control, and 78.79% for MCI converters against non-converters. In the training
process, they adjusted the parameters of the deep CNN model, including the number
of layers, the size, and the number of kernels in each layer; nevertheless, network
convergence was still challenging. Furthermore, the study didn’t consider the multi-
classification among the categories and considered the whole brain instead of its
various parcels. Folego et al. [46] developed an end-to-end deep 3D CNN (namely,
LeNet-5, VGG, GooglLeNet, and ResNet-18) for the multiclass AD biomarker
identification task, using the whole image volume as input. It was composed of three
main steps: brain extraction and normalization, 3D CNN processing, and domain
adaptation to classify subjects into AD, MCI, or NC groups. They utilized the ADNI
dataset and reached 52.3% accuracy in the testing set. They found the degradation
problem, where traditional models similar to VGG stopped improving performance
after a certain number of layers and even started getting worse afterward. To
overcome this problem, they proposed the residual function, which was the basic
building block of a Residual Network (ResNet). In their approach, the training was
stopped after 50 epochs without further improvement in average TPF (true positive
rate) over the validation set and did not consider disease specific features, such as
hippocampal volume, demographic information. Khagi et al. [47] used SPM tool to get
a 3D image of gray matter and fed into 3D CNN. Once trained, an untested MRI can



be passed through CNN to determine whether it is a healthy control (HC), or Mild
Cognitive Impairment (MCI) due to AD (mAD) or AD dementia (ADD). They collected
a dataset from the Gwangju Alzheimer’s Disease and Related Dementia (GARD)
center. The dataset consisted of 42 Alzheimer's disease dementia (ADD), 42 HC, and
39 MCI due to AD (mAD). They achieved an accuracy of around 40% for mutual
information. The detailed feature extraction and analysis were still under study, and
the overall classification result was not very high, which was due to the use of limited
training materials. Chen et al. [48] introduced an ensemble deep learning model for
AD classification, which incorporated Soft-NMS (Non-Maximum Suppression) into the
Faster R—-CNN architecture to classify the three categories, i.e. 115 AD patients, 106
subjects with MCI, and 185 NC subjects. Using a validation accuracy of about 50%
and fine-tuning the ADNI dataset, they were able to reach an accuracy of 84.37% for
the 3-way classification. They did not consider the five-way classification, and
recommended using a larger dataset, key features and regions as identification of
early biomarkers for future work. We considered their recommendations for the
proposed methodology by using important features and regions. Only a few studies
[49, 50] have addressed the classification of the four stages of AD. However, to our
knowledge, no study has explored the utilization of a five-way categorization scheme,
coupled with the implementation of minimal features and regions using an ensembled
3D deep learning network, for effectively categorizing the cognitive impairment
conditions associated with Alzheimer's disease.

This study aimed to develop an Al-ensembled network using important brain
features and brain regions in order to identify five stages of AD progression—NC,
EMCI, MCI, LMCI, and AD—and link their associated brain lesions effectively. The
efficacy of our model was validated using a five-fold cross-validation approach,
statistical analysis as well as existing literature data from similar works.

Materials and Methods

The methodological approach of this work was divided into four major steps,
comprising of 3D MRI data retrieved from ADNI database (available at
http://adni.loni.usc.edu), pre-processing, feature extraction, and development of an
ensembled Al network to predict Cl condition using a minimal set of brain features.
The entire process of the suggested methodology was thoroughly introduced in this
portion of the paper.

Data Acquisition

In this study, We retrieved T1-weighted MRI data of 1000 participants from the
widely-recognized ADNI database, including 200 AD patients, 200 LMCI subjects
(progressing within 18 months), 200 MCI subjects (not progressing within 5 years),
200 EMCI subjects (showing early signs of AD), and 200 cognitively normal controls
(NC) maintaining stability over 3 years [51]. Demographic and cognitive test data for
each group, such as gender, age, clinical dementia rating (CDR), and mini-mental
state examination (MMSE) scores (decreasing with Alzheimer’s progression)—were
presented in Table 1. The CDR score, indicates dementia presence and severity,
ranged from O (no dementia) to 3 (severe dementia) [52] [53].



Table 1 Demographic and cognitive examination scores of the retrieved ADNI data."

. Gender Age MMSE CDR
Category #Subjects
F M average * SD average * SD  average £ SD

AD 200 100 100 74.4045.78 20.1646.60 2.98+0.60
LMCI 200 100 100 73.7847.29 25.82+2.98 1.97+0.61
MCI 200 100 100 69.65+7.18 27.87+4.63 0.99+0.22
EMCI 200 100 100 72.078+8.05 28.86+1.99 0.435+0.20
NC 200 100 100 76.735+3.40 29.93+1.79 0.06+0.19

Preprocessing

Data preprocessing steps subsequently consisted of brain extraction, bias field
correction, noise reduction, image registration, normalization, segmentation, and
parcellation of 170 regions using an AAL-3 brain atlas. Statistical parametric mapping
(SPM12) toolbox was utilized in preprocessing data due to its widespread acceptance
in recent studies [54, 55]. Brain extraction distinguished brain voxels structures like
the brainstem, cerebrospinal fluid (CSF), gray matter (GM), white matter (WM), and
subcortical regions, from the non-brain voxels, including scalp, eyes, bones, and other
tissues [56]. Bias field correction adjusted image contrast affected by magnetic field
inhomogeneity, crucial for analysis at magnetic field strengths of 1.5 T, 3 T, or higher
[57]. Additionally, noise reduction techniques were employed to mitigate Rician noise,
improving overall performance of the proposed methodology. Image registration, in
inter and intra-patient forms, was used to align images to common anatomical spaces
[58], resulting in each MRI having dimensions of 79x95x79 mm?3. The images were
then uniformly scaled through normalization and segmentation, generating the
volumes of gray matter, white matter, and CSF based on input modalities, as shown
in Fig. 1. The automated anatomical labeling (AAL) atlas, specifically the widely used
AAL3 version [59], was applied to create 170 parcellated brain region masks. Outliers
were identified and reduced using the interquartile range (IQR) method [60], leading
to the exclusion of approximately 40 subjects from the dataset.

Feature Extraction
Using the AAL3 atlas, we created region masks and computed the volumes of
gray matter (GMV), white matter (WMV), and CSF (CSFV) in each region, as shown
in Equation 1.
N
Volumegy wwm/csr = Z Voxel, (1)
i=1

Where, Voxel; denoted the volume of each voxel within the GM/WM/CSF region
and N was the total number of ROls.

The first three features are the ratios of GM to CSF (GCR), WM to CSF (WCR),
and GM to WM (GWR), with GWR being a novel feature [26]. These ratios were
calculated using the equations in Table 2.

" NC = normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late
mild cognitive impairment, AD = Alzheimer’s disease, F = female, M = male, SD = standard deviation, MMSE =
mini—-mental state examination, CDR = clinical dementia rating
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Fig. 1 Pre-processing steps of MRI with respect to automated anatomical labelling
atlas-3 (AAL-3). Here, MRI = magnetic resonance imaging, CSF = cerebrospinal
fluid, AAL-3 = automated anatomical labeling atlas-3.

Utilizing three separate Montreal Neurological Institute (MNI) template as the
ground truth [14] for gray matter, white matter, and CSF, resulted in three additional
features. We evaluated the overlap between the volume of each ROIs (A) and
respected ground truth volume (B) to assess the Dice similarity coefficient (DSC) — a
statistical measure used to measure the similarity between two sets [61]— generating
three features of GM, WM and CSF.

. . 2|AnB|
Dice — =
ice — Coefficients A5 (2)

Where A = GM/ WM/ CSF volume, B = respected ground truth of GM/ WM/ CSF
volume.

We calculated the tenth feature by averaging the intensity values in each ROI.
The final three features were a quantitative measure of the surface area. To derive the
final three features, we applied erosion to the ROI volume, then subtracted the eroded
volume from the original. The process of extracting these 13 features from the brain
atlas of 170 regions was visually depicted in Fig. 1. After extracting features, we
utilized the brain atlas to assign feature values to each region, forming a 4D matrix
with dimensions 79x95x79xl, where | denoted either all features or RF selected
features.

Ensemble RF Network for Feature and Region Selection

To identify Cl categories effectively, a feature selection algorithm was required
for selecting optimal features. Studies showed that reducing features not only speeds
up computation but also enhances classification performance [62, 63]. In this study,
random forest, an ensemble machine learning technique was used for the selection of
most important features and mostly affected regions.

The parameters for the random forest were chosen as outlined in Table 3 for both
feature selection and identifying the most affected regions. The selected features and
regions were presented in the results section.



Table 2 Names and equations of the features. ?

Feature number Name of the features Equations for the features
, 100 x (GMV — CSFV)
Feature 1 Gray matter to CSF ratio (GCR) GCR = 05(GMV + CSFV)
Feature 2 White matter to CSF ratio (WCR weg = 200X WMV — CSFY)
eature ite matter to atio ( ) = T0SWMV £ CSFV)
Feature 3 Gray matter to white matter ratio (GWR Gwr = 100X (GMV — WMV)
eature ay matter to white matter ratio ( ) = T0SGMV + WMV
i 100 x (GMV — GGMV
Feature 4 Gray matter to gray matter ground truth ratio GGR = ( )
(GGR) 0.5(GMV + GGMV)
i i 100 x (WMV — GWMV
Feature 5 White matter to whlte matter ground truth WGR = ( )
ratio (WGR) 0.5(WMV + GWMV)
Feature 6 CSF to CSF ground truth ratio (CGR cor = 20X (CSFV — GESFV)
eature (o} ground truth ratio ( ) = T0S(CSFV + GCSFV)
Feature 7 Di fficient of gray matter Di ici t—zlGMVﬂGGMVl
eature ice coefficient of gray matte ice — coefficient = [GMV] + [GGMV]|
Feature 8 Di fficient of whit tt Di ici t-leMVﬂGWMVl
eature ice coefficient of white matter ice — coefficient = WMV + [GWHMV]|
Feature 9 Di fficient of CSF Di icient = 2|CSFV 0 GESFV]
eature ice coefficient o ice — coefficient = [CSFV] + [GCSFV |
Feature 10 Average intensity Average intensity = %Z{":l Intensity_i
Feature 11 Surface area of gray matter Surface area = GMV — erosion of GMV
Feature 12 Surface area of white matter Surface area = WMV — erosion of WMV
Feature 13 Surface area of CSF Surface area = CSFV — erosion of CSFV

Residual Neural Network Architecture

The evolution of CNNs into 3D CNNs [64] enhances the analysis by capturing
spatial, temporal, and depth data especially valuable in medical imaging (CT, MR,
ultrasound). To address the vanishing gradient issue encountered in training deep
convolutional networks, the ResNet (residual network) was introduced [65].

The 3D ResNet-18 architecture employed in this study was designed to process
volumetric data shown in Fig. 2. The input layer accepted volumetric brain data,
formatted as 3D tensors. The initial convolutional layer applied a 3D convolution with
a kernel size of 7x7x7, a stride of 2x2x2, and padding of 3x3x3, producing a set of
feature maps. Following this, a 3D batch normalization layer was applied to
standardize the outputs from the convolutional layer. A ReLU activation function was
introduced to enable non-linearity. Subsequent to the initial convolution and
normalization steps, a max pooling layer with a kernel size of 3x3x3 and a stride of
2x2x2 was added to down sample the feature maps.

2 GMV: volume of gray matter, WMV: volume of white matter, CSFV: volume of CSF, GGMV = ground truth of GMV,
GWMV = ground truth of GWMV, GCSFV = ground truth of CSFV, N: total number of regions, Intensity_i: the
intensity value of the i-th region



Table 3 Selected parameters for the random forest model used to select important
brain features and regions in this study.

Parameter name Description Chosen value

n_estimators The number of decision trees 100

The largest number of features to

consider when branching 5

max_features

max_depth The maximum depth of a single tree 25

The minimum number of samples

required to split an internal node 6

min_samples_split

The minimum number of samples

required to be at a leaf node. L

min_samples_leaf

The core of the ResNet-18 architecture consisted of two types of residual
blocks: Residual Block 1, and Residual Block 2. Residual Block 1 contained two
convolutional layers but did not incorporate skip connections. Each convolutional layer
within this block used a 3x3x3 kernel with padding to maintain spatial dimensions.
Residual Block 2 also incorporated two convolutional layers, but, unlike Residual Block
1, it included skip connections. These connections were important in addressing the
vanishing gradient problem and enabling the construction of deeper networks. Each
convolutional layer in Residual Block 1 and 2 used a 3x3x3 kernel with padding,
followed by batch normalization and ReLU activation.

After the series of residual blocks, the model employed an average pooling
layer, which reduced each feature map to a single value. Following the average
pooling layer, the architecture included three fully connected layers. These layers
further processed the pooled features, allowing for more complex representations to
be learned. The final fully connected layer mapped the processed features to the
output classes, corresponding to the five impairment conditions (NC, EMCI, MCI,
LMCI, and AD) in Alzheimer's disease. This final layer used a Softmax activation
function to produce probabilities for each class, enabling the classification task.

Methodology of AD Progression Classification

The proposed methodology followed a thorough process of feature and region
selection, coupled with deep learning classification shown in Fig. 3. The RF algorithm
played a critical role in identifying the most relevant features and brain regions from
the expansive initial datasets. Subsequently, the ResNet-18 model processed brain
features and regions through four distinct combinations, each aimed at classifying
subjects into the five stages of Alzheimer's disease progression: normal cognition,
early mild cognitive impairment, mild cognitive impairment, late mild cognitive
impairment, and Alzheimer's disease. This approach ensured that the classification
was based on the most important data, effectively combining the strengths of both
traditional machine learning and advanced deep learning techniques.

10
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Fig. 2 A detailed schematic of the proposed ResNet-18 architecture. Here, NC =
normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive
impairment, LMCI = late mild cognitive impairment, AD = Alzheimer’s disease, f1 =
gray matter to CSF ratio (GCR), f2 = white matter to CSF ratio (WCR), | = 13
features or random forest selected features, m = 13 features, n = random forest
selected feature.

The process began with the application of a random forest algorithm, consisting
of 100 decision trees, to evaluate 13 brain features. The ResNet-18 model was trained,
tested, and validated under four different input combinations. In combination-1, RF-
selected brain features and regions of interest (ROls) were used, where the selected
features GM-to-WM ratio (f3), GM-to CSF ratio (f2), GM-to-CSF ratio (f1), and 60
regions were fed into the ResNet-18 model. Combination-2 utilized the original 13
features and 170 ROls, employing the entire set of original features and regions. The
third combination involved RF-selected brain features alongside the 170 ROls,
demonstrating the robustness and consistency of the features f3, 2, f1 identified by
the RF algorithm when used with the complete set of ROIs. The fourth combination
incorporated the original 13 features with RF-selected ROIs, highlighting the
importance of the specific brain regions identified by the RF algorithm in the
classification process. These combinations aimed to classify subjects into five
impairment conditions, emphasizing the role of specific brain features and regions in
the advanced stages of Alzheimer's disease.

Training and Testing

The dataset of 960 subjects was divided into training, validation, and testing
setsin a 70:15:15 ratio. The training set included approximately 672 subjects, with 144
randomly selected for validation, and the remaining 144 used for testing. Additionally,
five-fold cross-validation was conducted to ensure a balance between computational
efficiency and model robustness, as recommended by previous literature [66].
Following the flowchart in Fig. 4, the validation accuracy threshold for the five-category
classification was set at 60%, aligning with previous studies [28] [67]. The model was
trained until it achieved validation accuracy at or above this threshold, and the network

11



hyperparameters were selected at this stage shown in Table 4. For two or three-
category classifications, we didn't repeat the procedure outlined in Fig. 4, as our
primary focus centered on categorizing five categories. We only determined the
classification accuracy for two or three categories to facilitate comparison with other
models.

Random forest (N = 100) Selected features Combination 1 p-eeeemeeee .
> - — >
f1 % f3 . f1 ResNet-18 NC
£o 4 —
b [
. Selected regions
> ¢ % “%\9\\% Combination 2 { |-\1c)
L ey
f3 Y ‘; o ResNet-18 |/
. MCI
f4 ’ Selected features Combination 3
P
> g oDo Y N
5 S de o @ w ResNet-18 |—»
> LMCI
Selected regions Combination 4
£ 5 Q‘ § |—) ResNet-18 [—s! :
d%b dee = X AD i

Fig. 3 An overview of the methodology to develop and Al-ensembled network to
classify Alzheimer’s disease progression. Here, NC = normal cognition, EMCI = early
mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late mild
cognitive impairment, AD = Alzheimer’s disease, f1 = gray matter to CSF ratio
(GCR), f2 = white matter to CSF ratio (WCR), f3 = gray matter to white matter ratio
(GWR), f4 = gray matter to gray matter ground truth ratio (GGR), f5 = White matter to
white matter ground truth ratio (WGR), f6 = CSF to CSF ground truth ratio (CGR),
f13 = Surface area of CSF, N = number of decision trees.

We trained our deep learning models on an Alienware Aurora R15 Windows 11
enterprise- 64 bit) machine with 13th Gen Intel® Core i9 3.00 GHz CPUs (32 CPUs),
65536MB of memory, and a 64GB NVIDIA GeForce RTX 4090 GPU. The computation
time depends on the features and regions, the combination of more features and
regions led to more converging time whereas the selected three features and 60
regions maintained the convergence within or less than 3 hours.

Table 4 Description of hyperparameters tuned using five-fold cross-validation
approach among four input combinations.

Model Three features- 13 features-60 13 features-all Three features-
60 regions regions regions all regions

Traininfgi”(])cﬁitci)nr:ization Adam Adam Adam Adam
Mini-batch size 35 35 35 35
Maximum Epoch 50 50 50 50

Learning rate 5e-05 1e-05 1e-05 5e-05

Drop Factor 0.75 0.50 0.50 0.75

L2-Regularization 0.05 0.1 0.1 0.05

12
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Fig. 4 The methodology of training, testing and validating the proposed model.

Validation

We followed a five-fold cross-validation strategy to evaluate the classification
performance on the proposed model for selected features and brain lesions
(combination-1). In the experiment, we split the data into five non-overlap folds, where
one-fold was used as the testing data and the remaining four folds are used for training
at each time. We repeated the whole process five times to avoid any possible bias
caused by dataset partition. The final classification accuracy was reported by
averaging the classification results from cross-validations. To validate the significance
of the most important regions across five distinct categories, ANOVA tests were
performed on an equal number of category instances within the most important three
features. This methodological approach aimed to ascertain the pivotal role of these
features in delineating the most crucial region.

Results
Experimental Analysis of the Important Features and Most Affected Regions
The RF model respectively identified GM-to-WM, WM-to-CSF, and GM-to-CSF,
volumetric ratios as first, second, and third most important features with a threshold
level of 1 illustrated in Fig. 5. Subsequently, the RF model was utilized to select the
important brain regions among 170 parcellated ROIs which were mostly affected
during the progression of AD. To reduce time and computational complexity, we
selected the top 60 regions using the same threshold level of 1. Out of 60 RF-selected
brain regions, ventral posterolateral, pulvinar lateral, ventral lateral, and superior
temporal gyrus regions of brain thalamus, left and right amygdala regions, and all
hippocampus regions were identified as the most affected brain regions, indicating that
any clinical manifestation (cognitive changes) in these regions during EMCI and MCI
stage could potentially be used as AD biomarkers. Fig. 6 illustrates a few most affected

13



regions of a patient classified under the MCI category, displayed in coronal, sagittal,
axial, and render planes, with red indicating the highly affected areas, based on the
selected features. The anatomical description of these affected regions was presented
in Table 5.

Feature importance
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£ 11 [
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Feature n

25
Importance score

Fig. 5 Feature importance as determined by random forest model. Threshold level 1
identified the most important features: gray matter to white matter ratio (f3), white
matter to CSF ratio (f2), gray matter to CSF ratio (f1).
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. tpuL
Hippocampus (Pulvinar lateral)
Amygdala Region: 147,148
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(Ventral posterolateral)
Region:129,130

tVA
(Ventral anterior)
Region: 125,126

Fig. 6 Most affected brain regions selected by random forest for a subject of MCI
Category.
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Table 5 Anatomical description of the random forest selected most affected brain
regions during AD progression [31].

Region Anatomical description Label
41,42 Hippocampus left and right Hippocampus
43,44 Left and right para-hippocampus Para-Hippocampal
45,46 Left and right-amygdala Amygdala
85,86 Superior temporal gyrus Temporal_Sup

125,126 Ventral anterior Thal_VA

127,128 Ventral lateral Thal_VL

129,130 Ventral posterolateral Thal_VPL

147,148 Pulvinar lateral Thal_PuL

To validate the importance of brain regions influenced by the three most
significant features (GM-to-WM, WM-to-CSF, and GM-to-CSF volumetric ratios), we
performed one-way ANOVA tests. Moreover, we explored the significance across five
AD stages through post hoc multivariate testing, employing Tukey's Honestly
Significant Difference (HSD) method. Table 6 shows the top five significant brain
regions and their significance in categorizing AD conditions.

Feature-1 (GM-to-CSF volumetric ratio) significantly affected five brain regions,
such as amygdala, ventral posterolateral, pulvinar lateral, ventral lateral, and superior
temporal gyrus. The most significant regions were the superior temporal gyrus (4.91e-
13) and ventral lateral (6.30e-10). Among these, the pulvinar lateral and ventral lateral
regions were severely affected in the earlier stages of AD progression (NC, EMCI, and
MCI), while the amygdala and ventral posterolateral regions were greatly impacted in
the AD stage. Feature-2 (WM-to-CSF volumetric ratio) identified the pulvinar lateral,
superior temporal gyrus, ventral posterolateral, hippocampus, and ventral lateral as
the most affected brain regions. The most significant changes were observed in the
ventral lateral (p = 2.5e-10) and hippocampus (8.89e-09) regions. The superior
temporal gyrus, hippocampus, and ventral lateral were primarily affected during the
EMCI, MCI, and LMCI stages. Pulvinar lateral and ventral posterolateral regions
exhibited significant changes that differentiated patients from the early stages to the
final stage of AD prominently. However, feature-3 (GM-to-WM volumetric ratio)
highlighted the pulvinar lateral, ventral posterolateral, hippocampus, ventral lateral,
and ventral anterior as the most affected brain regions. The ventral anterior region
showed the highest significance (8.32e-12), particularly between EMCI and MCI
conditions, while the hippocampus (3.74e-09) was another critically affected region
with significant changes across disease progression stages. Except for the pulvinar
lateral region, analyzing the other four regions for feature-3 could be helpful in
detecting AD progression at early stages.

This analysis highlighted the hippocampus and ventral lateral as consistently
significant regions across all three features for detecting the disease progression at
early stages. GM-to-WM volumetric ratio demonstrated its potential utility in
categorizing AD at earlier stages, as four out of the five regions showed significant
changes.
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Table 6 Statistical analysis of the affected brain regions based on random forest
selected features and their category-wise significance.?

Features Most affected five regions

- — Category-wise significance (p-value)
Region name Significance

NC vs. AD (<1.07e-05)
EMCI vs. AD (<6.97e-05)
MCI vs. AD (<0.0423)
LMCI vs. AD (<0.0076)

NC vs. MCI (<0.0128)
NC vs. AD (<1.32e-06)
EMCI vs. AD (<0.0003)
LMCI vs. AD (<0.0041)

NC vs. MCI (<0.0279)
Pulvinar lateral 4.90e-08 EMCI Vs. LMCI (<5.08e-10)
MCI vs. AD (<0.0026)

NC vs. MCI (<0.0279)
Ventral lateral 6.30e-10 MCI vs. AD (<5.08e-10)
EMCI Vs. MCI (< 1.35e-06)

NC vs. MCI (<0.0145)

Amygdala 6.82e-06

Ventral posterolateral 1.66e-06

Feature 1

Superior temporal gyrus 4.91e-13 NC vs. LMCI (< 0.0175)
LMCI vs. AD (<2.36e-13)
Pulvinar lateral 0.0004 NC vs. AD (<0.0002)

EMCI vs. AD (<0.0047)

EMCI vs. MCI (<0.0161)
Superior temporal gyrus 0.0002 MCI vs. LMCI (<8.62e-05)
MCI vs. AD (<0.0086)

NC vs. AD (<0.0226)

Feature 2 Ventral posterolateral 1.56e-06 EMCI vs. AD (<0.0001)
NC vs. LMCI (<0.0210)
Hippocampus 8.89e-09 EMCI vs. LMCI (<8.75e-09)
MCI vs. AD (<6.79e-06)
EMCI vs. MCI (<8.85e-05)
Ventral lateral 2.59e-10 MCI vs. LMCI (<7.34e-08)
MCI vs. AD (<6.54e-06)
Pulvinar lateral NC vs. AD (<0.0001
0.0002 MCI vs AD §<0.0096;
Ventral posterolateral 6.63e-07 EMCI vs. LMCI (<0.0002)
Feature 3 EMCI vs. MCI (<1.61e-06)

Ventral lateral 2.62e-09 MCI vs. LMCI (<0.0010)
LMCI vs. AD (<0.0002)
NC vs. MCI (<0.0001)
Ventral anterior 8.32e-12 EMCI vs. MCI (<1.97e-08)
MCI vs. LMCI (<0.0001)

3 NC = normal cognition, EMCI = early mild cognitive impairment, MCl = mild cognitive impairment, LMCI = late
mild cognitive impairment, AD = Alzheimer’s disease
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Experimental Analysis of the Ensembled Network and Validation

The performance outcomes of the proposed models encompassing run-1
through 4, with comparisons drawn among them using sensitivity, specificity, and F1-
score metrics was presented in Table 7. It was found that 3D CNN (ResNet-18)
network with three features and 60 brain regions model (run-1) outperformed the same
models for other combinations (run-2, run-3 and run-4). The training accuracies for
the three features with 60 regions (run-1) and for the three features with all 170 regions
(run-4) were reported to be 99.99% and 99.96%, respectively. In contrast, the training
accuracies for run-2 (13 features and 60 regions) and run-3 (13 features and all
regions) were 77.29% and 80.10%, respectively, which were lower than those for run-
1 and run-4.

The sensitivity, F-1 score, and specificity values were reported in Table 7 for
four runs which demonstrated that the combination of selected features (three
features) and selected regions (60 regions) yielded the most promising results across
performance metrics. To validate the model, we also utilized the proposed model for
two and three AD categories based on the selected three features and most affected
60 regions. The performance parameters for the two and three categories are shown
in Table 8. The highest training accuracy was reported for AD vs. NC (93.33%).
Through five-fold cross-validation, the proposed model incorporated three features
and 60 regions (run-1) demonstrated a validation accuracy of approximately 60.02%.

Table 7 Performance parameters of the proposed approaches (for five AD categories).

Run number Regions and features Sensitivity F-1 score Specificity
Run-1 3 features — 60 regions 0.760 0.660 0.935
Run-2 13 features — 60 regions 0.600 0.439 0.883
Run-3 13 features — all regions 0.630 0.470 0.840
Run-4 3 features — all regions 0.733 0.650 0.941

Experimental Analysis of the Progression Pattern

In neuroimaging research, the absolute mean Z-score serves as a common
metric for quantifying the level of atrophy across various brain regions, particularly in
Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI), where a higher
absolute mean Z-score usually signifies a greater degree of atrophy [68]. The
progression pattern of volumetric changes in different brain regions among three RF
selected features was presented in Fig. 7. To determine the Z-score of all categories
(EMCI, MCI, LMCI, AD), we utilized the mean and standard deviation of NC subjects.
The absolute mean Z-score value revealed a noticeable alteration in regional volume
throughout the progression from the early MCI stage to the final stage of AD disease.
From the observed progression pattern, it became apparent that the absolute mean
Z-score value exhibited an increasing trend (indicative of higher atrophy) during the
transition from the EMCI stage to AD.
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Table 8 Performance parameters of the proposed approaches (for two and three AD

categories).*

Run number Category Sensitivity F1 score Specificity
Run-1 AD Vs. NC 0.933 0.912 0.932
Run-2 EMCI vs. MCI 0.866 0.787 0.860
Run-3 LMCI Vs. AD 0.832 0.819 0.830
Run-4 MCI Vs. AD 0.833 0.793 0.830
Run-5 MCI Vs. LMCI 0.801 0.768 0.800
Run-6 MCl vs. NC 0.702 0.700 0.702
Run-7 NC Vs. MCI Vs. AD 0.800 0.727 0.900
Run-8 NC Vs. LMCI Vs. AD 0.866 0.833 0.9667
Run-9 EMCI Vs. LMCI Vs. AD 0.690 0.689 0.867
Run-10 NC Vs. MCI Vs. LMCI 0.800 0.645 0.967
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Fig. 7 The Progression trend among five AD stages based on absolute mean Z-
score value. Here, NC = normal cognition, EMCI = early mild cognitive impairment,
MCI = mild cognitive impairment, LMCI = late mild cognitive impairment, AD =

Alzheimer’s disease.

4 NC = normal cognition, EMCI = early mild cognitive impairment, MCl = mild cognitive impairment, LMCI = late
mild cognitive impairment, AD = Alzheimer’s disease
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Discussion

In comparison to previous Al models in the literature (developed based on ADNI
datasets), our model provided higher values across all performance metrics, which
could be attributed to our systematic hyperparameter tuning process, the presence of
skip connections, and residual blocks in the ResNet-18 network. In this study, the aim
was to classify the five categories of Alzheimer’s disease and predict the progression
pattern through EMCI to AD stage. The progression pattern would help the clinicians
to detect the symptoms in earlier stages (e.g. EMCI, MCI) and in obtaining disease-
modifying targeted therapeutic interventions to assist potential AD patients, which can
eventually extend their life expectancy. Notably, combination-1 (utilizing RF selected
three features and 60 regions) yielded the highest performance parameters which
could help in detecting early stages of AD with less computational time and cost. This
combination of selected features and brain regions achieved the highest accuracy as
they were significantly contributing to classifying the five categories of the AD.

To validate the significance of our results, we conducted statistical analysis
(ANOVA) on RF selected three features to evaluate the most important regions. Our
findings indicated that the Amygdala, Hippocampus, Ventral posterolateral, Pulvinar
lateral, Ventral lateral, and Superior temporal gyrus regions were among the most
affected regions, showing significance across different disease categories of cognitive
impairment condition. The analysis was aimed to delineate the progression pattern for
categorizing the early stages of cognitive impairment, achieved by leveraging the
absolute mean Z-score. This pattern revealed an upward trend when progressing from
the NC stage to AD. To show the novelty of the work, we compared our findings with
the existing literature presented in Table 9. Most previous studies focused on analyzing
two or three categories of Alzheimer's disease. Therefore, we extended our analysis
among five AD stages to validate our novel approach using the proposed ensemble Al
network. To ensure fair comparison, we utilized common platforms, including MRI
datasets, activation functions, classifiers, categories, validation approaches, and
performance parameters.

Although our proposed network provided a validation accuracy of nearly 60%
using RF selected three important features and most affected 60 brain regions, the
result could be improved by applying the transfer learning algorithm, expanding
training data, and/or further analyzing the voxels as 2D slices. The total number of MRI
samples was 1000, which could be increased to reduce the effects of overfitting.
Different features (selection of different weights/coefficients and different combination)
and atlases could be utilized to localize the brain regions and determine the
progression rate for each combination of feature and atlas. Furthermore, depending
upon the regions of hippocampus and amygdala, the biomarkers could be developed
for different specific features.
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Table 9 Comparison of the proposed model with the existing literature.®

Dataset and

- . o
Networks Layers Classifier Categories validation approach Accuracy (%)
3D CNN and CNN- 12 (3D CNN) 894 MRI scans from 0.53 (3D CNN)
LSTM [69] and 23 layers Softmax NC Vs. AD OASIS; 10-fold cross- 0.63 (CNN-LSTM)
(CNN-LSTM) validation ’
LeNet-5, .
VGG, Google AD Vs. MCI Vs. MRl scan from ADNI; Highest accuracy
3D CNN [46] Softmax leave-one-out cross-
Net, and NC validation :0.52
ResNet
3D CNN (VGG16, Binary and MRI dataset (EDLB, AD Vs. NC: 0.89
ResNet-50 architecture) 16 layers Softmax Multiple ADNI); 10-fold cross- 4-way
[70] Classification validation classification: 0.66
MRI from Gwangju
Alzheimer’s disease .
3D CNN [47] 21 layers Softmax P VS,‘\"\CAC' vs. and Related H'ghegt g‘ﬁ“racy'
Dementias (GARD) ’
center.
0.973, 0.878, and
3D Cpnnectlon-Wlse- AD Vs. MCI Vs. MRI from ADNI 0.78? accuracy
attention-model (CAM- 20 layers Softmax NG Validation: 15% for for mild AD, MCI
CNN) [45] validation and stable MCI
against NC
11 Blocks
3D VC\:I:?hNGNCI:o’\??I-zFIENet (9 convolution EMCI Vs. LMCI DTI of 298 subjects
LN (grap and 2 fully ReLU : from the ADNI accuracy: 0.833
convolutional network) Vs. NC
connected
[71]
layer)
- AD Vs. MCI 1230 PET scans from AD Vs. NC;
3D CNN Classifier [72] 27 layers Softmax Vs.NC ADNI database accuracy: 0.887
DenseCNN2, a
lightweight 3D deep MRI dataset from Average accuracy
convolutional network 23 layers Softmax AD Vs.NC ADNI of 0.925
model [73]
EMCI, MCl,
LMCI, and AD 413 MRI scans from MCI vs. EMCI:
ResNet-18 Network [74] 72 layers Softmax (Binary ADNI 0.896
Classification)
3D deep learning AD Vs. HC Vs. AD vs. HC: 0.84,
approach (3D-SENet) 15 layers Softmax MClI, Binary 509 MRI scans from 0 v/ He: 0.79
N ADNI
[75] Classification
EMCI Vs. LMCI 480 MRI scans from AD, EMCI, LMCI,
3D DenseNets [67] 121 layers Softmax Vs. AD Vs. NC ADNI NC: 0.667
(Deize?\lee‘etz::t;";r;et) 55 lavers Softnay  ADVs-MCIVs. 449 MRIscans from  AD vs. NC: 0.889,
[76] y NC ADNI MCI Vs NC: 0.760
AD Vs. NC: 0.868
AD, MCI and ’
- 815 MRI scans from AD Vs. MCI:
CNN - LeNet [77] - - C'I\'acs’szg‘;gn ADNI 0.714, MCI Vs.
NC: 0.698
AD Vs. NC: 0.933
AD Vs. MCI:
0.783
AD, LMCI, .
Proposed Work: MCI, EMCI and 1000 MRI scans MCI Vs. NC:
ResNet-18 - RF 72 layers Softmax NC (2-, 3-and from ADNI; 5-fold 0.700
(selected features and y ’ S AD Vs. NC Vs.
. 5-way cross-validation
regions) classification) MCI: 0.644
AD, LMCI, MCl,
EMCI and NC:
0.663

5 NC = normal cognition, EMCI = early mild cognitive impairment, MCl = mild cognitive impairment, LMCI = late

mild cognitive impairment, AD = Alzheimer’s disease
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