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Abstract 
Purpose: This study aimed to develop an AI-ensembled network to identify five stages 

of Alzheimer’s disease (AD) progression—normal cognition (NC), early mild cognitive 

impairment (EMCI), mild cognitive impairment (MCI), late MCI (LMCI), and AD—using 

brain features and regions. 

Methods: T1-weighted MRI data of 1000 participants were retrieved from Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database. The dataset was preprocessed, and 

brain volume was parcellated into 170 regions of interest (ROIs) using automated 

anatomical labeling-3 (AAL-3) atlas. In each ROI, volumes of gray matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF) was estimated to generate 13 brain 

features. Data outliers were identified, and the dataset was divided into training, 

testing, and validation in a 70:15:15 ratio. An AI-ensembled network comprising a 

random forest (RF) model and 3D ResNet-18 was tested using four combinations of 

features and regions. Hyperparameters were tuned via five-fold cross-validation. 

Results: The RF model identified GM-to-WM, WM-to-CSF, and GM-to-CSF, 

volumetric ratios as top predictors of AD progression. Thalamus, amygdala, and 

hippocampus brain regions were consistently affected across all stages. The ResNet-

18 network performed best with combination-1 (RF selected three features and 60 

regions) input, achieving 66% F-1 score, 76% sensitivity, and 93.5% specificity. Five-

fold cross-validation confirmed 60.02% accuracy for combination-1.  

Conclusion: The proposed AI-ensembled network, first-of-its-kind, can effectively 

identify the AD continuum, particularly the EMCI stage. Its implication in clinical 

settings can assist in obtaining disease-modifying targeted therapeutic interventions, 

extending patient’s life expectancy. Further enhancements could be achieved with 

expanded training data and transfer learning techniques. 

 

Keywords: Alzheimer's disease, random forest, brain features, brain regions, 
progression pattern.
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Introduction   
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting 

in brain cell death and brain tissue shrinkage [1]. People with AD can progressively 
experience various adverse effects, including breathing difficulties, heart failure, and, 
ultimately, death [2]. It is also the most prevalent form of dementia, which collectively 
indicates various forms of cognitive impairments (CI), such as memory loss, 
communication difficulty, and decline in thinking and reasoning skills [3]. According to 
the 2020 World Health Organization (WHO) report, approximately 55.2 million 
individuals have dementia and AD worldwide, and this number is predicted almost to 
double every 20 years, reaching 78 million in 2030 and 139 million by 2050 [4]. In the 
United States alone, about 6.9 million people aged 65 or older were living with AD in 
2024. Approximately $360 billion was spent on the long-term medical care of 
Alzheimer's patients in 2024, demonstrating the significant economic impact that AD 
can have on the society [5]. 

The pathophysiological process of AD begins years before its clinical symptoms 
appear. The mild cognitive impairment (MCI) condition is considered as the risk state   
[6], and only 6–15% of patients with MCI progress to AD [7]. However, not all MCI 
cases progress to AD; some remain stable or even improve over time with appropriate 
treatments [8].  In research and clinical settings [9], the progression of MCI is divided 
into two stages: early MCI (EMCI), and late MCI (LMCI). This classification 
distinguishes between individuals at the initial stage of clinical symptom (EMCI) and 
those at a later stage (LMCI), progressing directly towards the development of AD [10]. 
As there is a lack of effective cure for AD, early and accurate detection is crucial [11]. 
Identifying the early stages of Alzheimer's Disease (AD), such as EMCI and MCI 
through imaging modalities would facilitate more effective treatment strategies for 
clinicians [12]. 

Previous studies have reported various MCI-associated brain degenerations, 
such as shrinking of the hippocampus, significant atrophy in the medial temporal lobe, 
and loss of gray matter volume in the frontal and parietal areas [13-15] using different 
imaging technologies like computed tomography (CT), PET (positron emission 
tomography), and MRI [16, 17]. MRI is the most commonly employed imaging 
technique for predicting stages of AD [18].  In order to reveal hidden information and 
eliminate noise inherent in complex MRI sequences, the extraction of important 
features becomes imperative [19]. Numerous studies have utilized critical input 
features, such as the measurement of brain volume, cortical thickness, brain surface 
area, texture, and white matter lesion (WML) volume [20, 21] extracted from MRI data 
to optimize performance [22-25]. Putcha et al. [26] introduced a new approach to 
measure structural brain changes by using the gray matter to white matter ratio, which 
emerged as a promising feature for detecting progression from earlier stages to the 
most prevalent stage (i.e., AD). Dubois et al. [27] discussed the development of vivo 
features that shifted the diagnosis of AD from the later dementia stages of the disease 
towards the earlier stages. They showed structural MRI reveals atrophy, or the loss of 
volume of gray matter, which denotes neurodegeneration in individuals with AD. Khagi 
et al. [28] revealed that a decrease in gray matter (GM) and brain volume, as well as 
a minor increase in cerebrospinal fluid (CSF), can be an effective feature for the 
detection of AD. Most of these features  were derived by considering the whole brain 
instead of its various parcels [10, 29], which implied that there remains the need for a 
method capable of detecting AD-induced localized brain lesions using a minimal 
amount of brain features and brain ROIs. ROI-based techniques frequently utilize the 
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use of 3D volume and shape properties of specific brain regions [29, 30]. An atlas is a 
map of brain’s anatomy and structure that can aid in partitioning the brain into 
anatomically distinct regions or ROIs. In recent research papers, automated 
anatomical labelling-3 (AAL3) atlas was utilized to divide the brain into 170 ROIs [31, 
32].  

 The field of artificial intelligence, particularly machine learning (ML) and deep 
learning (DL), is continually evolving and playing an important role in analyzing MRI 
data to classify Alzheimer’s Disease (AD) stages [33-35]. Among the various ML 
techniques, random forest has proven to be one of the most effective models for 
identifying minimal brain features and regions of interest (ROIs). This is due to its 
resilience to noise and its ability to handle complex, multimodal data [36, 37].  Deep 
learning methods have been utilized to predict the progression of AD using features 
derived from structural MRI data [30, 35, 38, 39].  The Convolutional Neural Network 
(CNN), a widely used deep learning network, has been employed for the classification 
and prediction of AD [40-43]. In CNN, there was limited interaction between the feature 
maps from different layers. The advent of Residual Network (ResNet) marked a 
significant milestone in the evolution of deep learning methods. It introduced a 
residual unit to connect the current layer to the previous one, known as skip-
connection, addressing the degradation problem [44]. This architecture allowed 

ResNet to become deeper, and achieve better performance than conventional CNN 
[45]. 

3D CNNs have been used in predicting Alzheimer’s disease mostly as they 
extract intricate features from 3D data and enhance model comprehensibility [44, 45].  
Long et al. [32] proposed a 3D densely connected convolutional neural network (CNN) 
with a connection-wise attention mechanism to learn the multi-level features of brain 
MR images for AD classification. They used MRI of 968 subjects from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) database to discriminate (1) AD versus 
healthy subjects, (2) MCI converters versus healthy subjects, and (3) MCI converters 
versus non-converters. Their proposed method achieved 97.35% accuracy for 
distinguishing AD patients from healthy control, 87.82% for MCI converters against 
healthy control, and 78.79% for MCI converters against non-converters. In the training 
process, they adjusted the parameters of the deep CNN model, including the number 
of layers, the size, and the number of kernels in each layer; nevertheless, network 
convergence was still challenging. Furthermore, the study didn’t consider the multi-
classification among the categories and considered the whole brain instead of its 
various parcels.  Folego et al. [46] developed an end-to-end deep 3D CNN (namely, 
LeNet-5, VGG, GoogLeNet, and ResNet-18) for the multiclass AD biomarker 
identification task, using the whole image volume as input. It was composed of three 
main steps: brain extraction and normalization, 3D CNN processing, and domain 
adaptation to classify subjects into AD, MCI, or NC groups. They utilized the ADNI 
dataset and reached 52.3% accuracy in the testing set. They found the degradation 
problem, where traditional models similar to VGG stopped improving performance 
after a certain number of layers and even started getting worse afterward.  To 
overcome this problem, they proposed the residual function, which was the basic 
building block of a Residual Network (ResNet). In their approach, the training was 
stopped after 50 epochs without further improvement in average TPF (true positive 
rate) over the validation set and did not consider disease specific features, such as 
hippocampal volume, demographic information. Khagi et al. [47] used SPM tool to get 
a 3D image of gray matter and fed into 3D CNN. Once trained, an untested MRI can 
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be passed through CNN to determine whether it is a healthy control (HC), or Mild 
Cognitive Impairment (MCI) due to AD (mAD) or AD dementia (ADD). They collected 
a dataset from the Gwangju Alzheimer’s Disease and Related Dementia (GARD) 
center. The dataset consisted of 42 Alzheimer's disease dementia (ADD), 42 HC, and 
39 MCI due to AD (mAD). They achieved an accuracy of around 40% for mutual 
information. The detailed feature extraction and analysis were still under study, and 
the overall classification result was not very high, which was due to the use of limited 
training materials. Chen et al. [48] introduced an ensemble deep learning model for 
AD classification, which incorporated Soft-NMS (Non-Maximum Suppression) into the 
Faster R–CNN architecture to classify the three categories, i.e. 115 AD patients, 106 
subjects with MCI, and 185 NC subjects. Using a validation accuracy of about 50% 
and fine-tuning the ADNI dataset, they were able to reach an accuracy of 84.37% for 
the 3-way classification. They did not consider the five-way classification, and 
recommended using a larger dataset, key features and regions as identification of 
early biomarkers for future work. We considered their recommendations for the 
proposed methodology by using important features and regions. Only a few studies 
[49, 50] have addressed the classification of the four stages of AD. However, to our 
knowledge, no study has explored the utilization of a five-way categorization scheme, 
coupled with the implementation of minimal features and regions using an ensembled 
3D deep learning network, for effectively categorizing the cognitive impairment 
conditions associated with Alzheimer's disease.  

This study aimed to develop an AI-ensembled network using important brain 
features and brain regions in order to identify five stages of AD progression—NC, 
EMCI, MCI, LMCI, and AD—and link their associated brain lesions effectively. The 
efficacy of our model was validated using a five-fold cross-validation approach, 
statistical analysis as well as existing literature data from similar works. 

Materials and Methods   
The methodological approach of this work was divided into four major steps, 

comprising of 3D MRI data retrieved from ADNI database (available at 
http://adni.loni.usc.edu), pre-processing, feature extraction, and development of an 
ensembled AI network to predict CI condition using a minimal set of brain features. 
The entire process of the suggested methodology was thoroughly introduced in this 
portion of the paper.  

Data Acquisition 
In this study, We retrieved T1-weighted MRI data of 1000 participants from the 

widely-recognized ADNI database, including 200 AD patients, 200 LMCI subjects 
(progressing within 18 months), 200 MCI subjects (not progressing within 5 years), 
200 EMCI subjects (showing early signs of AD), and 200 cognitively normal controls 
(NC) maintaining stability over 3 years [51]. Demographic and cognitive test data for 
each group, such as gender, age, clinical dementia rating (CDR), and mini–mental 
state examination (MMSE) scores (decreasing with Alzheimer’s progression)—were 
presented in Table 1. The CDR score, indicates dementia presence and severity, 
ranged from 0 (no dementia) to 3 (severe dementia) [52] [53]. 
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Table 1 Demographic and cognitive examination scores of the retrieved ADNI data.1 

 
Preprocessing    

Data preprocessing steps subsequently consisted of brain extraction, bias field 
correction, noise reduction, image registration, normalization, segmentation, and 
parcellation of 170 regions using an AAL-3 brain atlas. Statistical parametric mapping 
(SPM12) toolbox was utilized in preprocessing data due to its widespread acceptance 
in recent studies [54, 55]. Brain extraction distinguished brain voxels structures like 
the brainstem, cerebrospinal fluid (CSF), gray matter (GM), white matter (WM), and 
subcortical regions, from the non-brain voxels, including scalp, eyes, bones, and other 
tissues [56]. Bias field correction adjusted image contrast affected by magnetic field 
inhomogeneity, crucial for analysis at magnetic field strengths of 1.5 T, 3 T, or higher 
[57]. Additionally, noise reduction techniques were employed to mitigate Rician noise, 
improving overall performance of the proposed methodology. Image registration, in 
inter and intra-patient forms, was used to align images to common anatomical spaces 
[58], resulting in each MRI having dimensions of 79x95x79 mm³. The images were 
then uniformly scaled through normalization and segmentation, generating the 
volumes of gray matter, white matter, and CSF based on input modalities, as shown 
in Fig. 1. The automated anatomical labeling (AAL) atlas, specifically the widely used 
AAL3 version [59], was applied to create 170 parcellated brain region masks. Outliers 
were identified and reduced using the interquartile range (IQR) method [60], leading 
to the exclusion of approximately 40 subjects from the dataset. 

Feature Extraction 
Using the AAL3 atlas, we created region masks and computed the volumes of 

gray matter (GMV), white matter (WMV), and CSF (CSFV) in each region, as shown 
in Equation 1. 

𝑉𝑜𝑙𝑢𝑚𝑒𝐺𝑀/𝑊𝑀/𝐶𝑆𝐹 = ∑ 𝑉𝑜𝑥𝑒𝑙𝑖 

𝑁

𝑖=1

    (1) 

Where, 𝑉𝑜𝑥𝑒𝑙𝑖 denoted the volume of each voxel within the GM/WM/CSF region 

and 𝑁 was the total number of ROIs. 

The first three features are the ratios of GM to CSF (GCR), WM to CSF (WCR), 
and GM to WM (GWR), with GWR being a novel feature [26]. These ratios were 
calculated using the equations in Table 2. 

 
1 NC = normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late 
mild cognitive impairment, AD = Alzheimer’s disease, F = female, M = male, SD = standard deviation, MMSE = 
mini–mental state examination, CDR = clinical dementia rating 

Category #Subjects 
Gender 

F M 
 

Age 

average ± SD 

MMSE 

average ± SD 

CDR 

average ± SD 

AD 200 100 100 74.40±5.78 20.16±6.60 2.98±0.60 

LMCI 200 100 100 73.78±7.29 25.82±2.98 1.97±0.61 

MCI 200 100 100 69.65±7.18 27.87±4.63 0.99±0.22 

EMCI 200 100 100 72.078±8.05 28.86±1.99 0.435±0.20 

NC 200 100 100 76.735±3.40 29.93±1.79 0.06±0.19 
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Fig. 1 Pre-processing steps of MRI with respect to automated anatomical labelling 
atlas-3 (AAL-3). Here, MRI = magnetic resonance imaging, CSF = cerebrospinal 

fluid, AAL-3 = automated anatomical labeling atlas-3. 

Utilizing three separate Montreal Neurological Institute (MNI) template as the 
ground truth [14] for gray matter, white matter, and CSF, resulted in three additional 
features. We evaluated the overlap between the volume of each ROIs (A) and 
respected ground truth volume (B) to assess the Dice similarity coefficient (DSC) — a 
statistical measure used to measure the similarity between two sets [61]— generating 
three features of GM, WM and CSF. 

𝐷𝑖𝑐𝑒 − 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
        (2) 

 Where 𝐴 = GM/ WM/ CSF volume, 𝐵 = respected ground truth of GM/ WM/ CSF 
volume. 

We calculated the tenth feature by averaging the intensity values in each ROI. 
The final three features were a quantitative measure of the surface area. To derive the 
final three features, we applied erosion to the ROI volume, then subtracted the eroded 
volume from the original. The process of extracting these 13 features from the brain 
atlas of 170 regions was visually depicted in Fig. 1. After extracting features, we 
utilized the brain atlas to assign feature values to each region, forming a 4D matrix 
with dimensions 79x95x79x𝑙, where 𝑙 denoted either all features or RF selected 
features. 

Ensemble RF Network for Feature and Region Selection 
To identify CI categories effectively, a feature selection algorithm was required 

for selecting optimal features. Studies showed that reducing features not only speeds 
up computation but also enhances classification performance [62, 63]. In this study, 
random forest, an ensemble machine learning technique was used for the selection of 
most important features and mostly affected regions.  

The parameters for the random forest were chosen as outlined in Table 3 for both 
feature selection and identifying the most affected regions. The selected features and 
regions were presented in the results section. 
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Table 2 Names and equations of the features. 2 

 
Residual Neural Network Architecture 

The evolution of CNNs into 3D CNNs [64] enhances the analysis by capturing 

spatial, temporal, and depth data especially valuable in medical imaging (CT, MRI, 

ultrasound). To address the vanishing gradient issue encountered in training deep 

convolutional networks, the ResNet (residual network) was introduced [65]. 

The 3D ResNet-18 architecture employed in this study was designed to process 
volumetric data shown in Fig. 2. The input layer accepted volumetric brain data, 
formatted as 3D tensors. The initial convolutional layer applied a 3D convolution with 
a kernel size of 7×7×7, a stride of 2×2×2, and padding of 3×3×3, producing a set of 
feature maps. Following this, a 3D batch normalization layer was applied to 
standardize the outputs from the convolutional layer. A ReLU activation function was 
introduced to enable non-linearity. Subsequent to the initial convolution and 
normalization steps, a max pooling layer with a kernel size of 3×3×3 and a stride of 
2×2×2 was added to down sample the feature maps. 

 

 
2 GMV: volume of gray matter, WMV: volume of white matter, CSFV: volume of CSF, GGMV = ground truth of GMV, 
GWMV = ground truth of GWMV, GCSFV = ground truth of CSFV, N: total number of regions, Intensity_i: the 
intensity value of the i-th region 

Feature number Name of the features Equations for the features 

Feature 1 Gray matter to CSF ratio (GCR) 𝐺𝐶𝑅 =  
100 × (𝐺𝑀𝑉 − 𝐶𝑆𝐹𝑉)

0.5(𝐺𝑀𝑉 + 𝐶𝑆𝐹𝑉)
 

Feature 2 White matter to CSF ratio (WCR) 𝑊𝐶𝑅 =  
100 × (𝑊𝑀𝑉 − 𝐶𝑆𝐹𝑉)

0.5(𝑊𝑀𝑉 + 𝐶𝑆𝐹𝑉)
 

Feature 3 Gray matter to white matter ratio (GWR) 𝐺𝑊𝑅 =  
100 × (𝐺𝑀𝑉 − 𝑊𝑀𝑉)

0.5(𝐺𝑀𝑉 + 𝑊𝑀𝑉)
 

Feature 4 
Gray matter to gray matter ground truth ratio 

(GGR) 
𝐺𝐺𝑅 =  

100 × (𝐺𝑀𝑉 − 𝐺𝐺𝑀𝑉)

0.5(𝐺𝑀𝑉 + 𝐺𝐺𝑀𝑉)
 

Feature 5 
White matter to white matter ground truth 

ratio (WGR) 
𝑊𝐺𝑅 =  

100 × (𝑊𝑀𝑉 − 𝐺𝑊𝑀𝑉)

0.5(𝑊𝑀𝑉 + 𝐺𝑊𝑀𝑉)
 

Feature 6 CSF to CSF ground truth ratio (CGR) 𝐶𝐺𝑅 =  
100 × (𝐶𝑆𝐹𝑉 − 𝐺𝐶𝑆𝐹𝑉)

0.5(𝐶𝑆𝐹𝑉 + 𝐺𝐶𝑆𝐹𝑉)
 

Feature 7 Dice coefficient of gray matter 𝐷𝑖𝑐𝑒 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝐺𝑀𝑉 ∩ 𝐺𝐺𝑀𝑉|

|𝐺𝑀𝑉| + |𝐺𝐺𝑀𝑉|
 

Feature 8 Dice coefficient of white matter 𝐷𝑖𝑐𝑒 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝑊𝑀𝑉 ∩ 𝐺𝑊𝑀𝑉|

|𝑊𝑀𝑉| + |𝐺𝑊𝑀𝑉|
 

Feature 9 Dice coefficient of CSF 𝐷𝑖𝑐𝑒 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝐶𝑆𝐹𝑉 ∩ 𝐺𝐶𝑆𝐹𝑉|

|𝐶𝑆𝐹𝑉| + |𝐺𝐶𝑆𝐹𝑉|
 

Feature 10 Average intensity 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 
1

𝑁
∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑖𝑁

𝑖=1  

Feature 11 Surface area of gray matter 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 =  𝐺𝑀𝑉 − 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑜𝑓 𝐺𝑀𝑉 

Feature 12 Surface area of white matter 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 𝑊𝑀𝑉 − 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑜𝑓 𝑊𝑀𝑉 

Feature 13 Surface area of CSF 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 𝐶𝑆𝐹𝑉 − 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑜𝑓 𝐶𝑆𝐹𝑉 
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Table 3 Selected parameters for the random forest model used to select important 
brain features and regions in this study. 

 

 The core of the ResNet-18 architecture consisted of two types of residual 
blocks: Residual Block 1, and Residual Block 2. Residual Block 1 contained two 
convolutional layers but did not incorporate skip connections. Each convolutional layer 
within this block used a 3×3×3 kernel with padding to maintain spatial dimensions. 
Residual Block 2 also incorporated two convolutional layers, but, unlike Residual Block 
1, it included skip connections. These connections were important in addressing the 
vanishing gradient problem and enabling the construction of deeper networks. Each 
convolutional layer in Residual Block 1 and 2 used a 3×3×3 kernel with padding, 
followed by batch normalization and ReLU activation. 

After the series of residual blocks, the model employed an average pooling 
layer, which reduced each feature map to a single value. Following the average 
pooling layer, the architecture included three fully connected layers. These layers 
further processed the pooled features, allowing for more complex representations to 
be learned. The final fully connected layer mapped the processed features to the 
output classes, corresponding to the five impairment conditions (NC, EMCI, MCI, 
LMCI, and AD) in Alzheimer's disease. This final layer used a Softmax activation 
function to produce probabilities for each class, enabling the classification task. 

Methodology of AD Progression Classification 
The proposed methodology followed a thorough process of feature and region 

selection, coupled with deep learning classification shown in Fig. 3. The RF algorithm 
played a critical role in identifying the most relevant features and brain regions from 
the expansive initial datasets. Subsequently, the ResNet-18 model processed brain 
features and regions through four distinct combinations, each aimed at classifying 
subjects into the five stages of Alzheimer's disease progression: normal cognition, 
early mild cognitive impairment, mild cognitive impairment, late mild cognitive 
impairment, and Alzheimer's disease. This approach ensured that the classification 
was based on the most important data, effectively combining the strengths of both 
traditional machine learning and advanced deep learning techniques. 

 

Parameter name Description Chosen value 

n_estimators The number of decision trees 100 

max_features 
The largest number of features to 

consider when branching 
5 

max_depth The maximum depth of a single tree 25 

min_samples_split 
The minimum number of samples 

required to split an internal node 
6 

min_samples_leaf 
The minimum number of samples 

required to be at a leaf node. 
1 
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Fig. 2 A detailed schematic of the proposed ResNet-18 architecture. Here, NC = 
normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive 

impairment, LMCI = late mild cognitive impairment, AD = Alzheimer’s disease, f1 = 
gray matter to CSF ratio (GCR), f2 = white matter to CSF ratio (WCR), l = 13 

features or random forest selected features, m = 13 features, n = random forest 
selected feature. 

The process began with the application of a random forest algorithm, consisting 
of 100 decision trees, to evaluate 13 brain features. The ResNet-18 model was trained, 
tested, and validated under four different input combinations. In combination-1, RF-
selected brain features and regions of interest (ROIs) were used, where the selected 
features GM-to-WM ratio (f3), GM-to CSF ratio (f2), GM-to-CSF ratio (f1), and 60 
regions were fed into the ResNet-18 model. Combination-2 utilized the original 13 
features and 170 ROIs, employing the entire set of original features and regions. The 
third combination involved RF-selected brain features alongside the 170 ROIs, 
demonstrating the robustness and consistency of the features f3, f2, f1 identified by 
the RF algorithm when used with the complete set of ROIs. The fourth combination 
incorporated the original 13 features with RF-selected ROIs, highlighting the 
importance of the specific brain regions identified by the RF algorithm in the 
classification process. These combinations aimed to classify subjects into five 
impairment conditions, emphasizing the role of specific brain features and regions in 
the advanced stages of Alzheimer's disease. 

Training and Testing 
The dataset of 960 subjects was divided into training, validation, and testing 

sets in a 70:15:15 ratio. The training set included approximately 672 subjects, with 144 
randomly selected for validation, and the remaining 144 used for testing. Additionally, 
five-fold cross-validation was conducted to ensure a balance between computational 
efficiency and model robustness, as recommended by previous literature [66]. 
Following the flowchart in Fig. 4, the validation accuracy threshold for the five-category 
classification was set at 60%, aligning with previous studies [28] [67]. The model was 
trained until it achieved validation accuracy at or above this threshold, and the network 
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hyperparameters were selected at this stage shown in Table 4. For two or three-
category classifications, we didn't repeat the procedure outlined in Fig. 4, as our 
primary focus centered on categorizing five categories. We only determined the 
classification accuracy for two or three categories to facilitate comparison with other 
models. 

 
 

Fig. 3 An overview of the methodology to develop and AI-ensembled network to 
classify Alzheimer’s disease progression. Here, NC = normal cognition, EMCI = early 

mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late mild 
cognitive impairment, AD = Alzheimer’s disease, f1 = gray matter to CSF ratio 

(GCR), f2 = white matter to CSF ratio (WCR), f3 = gray matter to white matter ratio 
(GWR), f4 = gray matter to gray matter ground truth ratio (GGR), f5 = White matter to 

white matter ground truth ratio (WGR),  f6 = CSF to CSF ground truth ratio (CGR), 
f13 = Surface area of CSF, N = number of decision trees. 

We trained our deep learning models on an Alienware Aurora R15 Windows 11 
enterprise- 64 bit) machine with 13th Gen Intel® Core i9 3.00 GHz CPUs (32 CPUs), 
65536MB of memory, and a 64GB NVIDIA GeForce RTX 4090 GPU. The computation 
time depends on the features and regions, the combination of more features and 
regions led to more converging time whereas the selected three features and 60 
regions maintained the convergence within or less than 3 hours. 

Table 4 Description of hyperparameters tuned using five-fold cross-validation 
approach among four input combinations. 

Model 
Three features-

60 regions 

13 features-60 

regions 

13 features-all 

regions 

Three features-

all regions 

Training Optimization 

function 
Adam Adam Adam Adam 

Mini-batch size 35 35 35 35 

Maximum Epoch 50 50 50 50 

Learning rate 5e-05 1e-05 1e-05 5e-05 

Drop Factor 0.75 0.50 0.50 0.75 

L2-Regularization 0.05 0.1 0.1 0.05 
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Fig. 4 The methodology of training, testing and validating the proposed model. 

Validation 

We followed a five-fold cross-validation strategy to evaluate the classification 
performance on the proposed model for selected features and brain lesions 
(combination-1). In the experiment, we split the data into five non-overlap folds, where 
one-fold was used as the testing data and the remaining four folds are used for training 
at each time. We repeated the whole process five times to avoid any possible bias 
caused by dataset partition. The final classification accuracy was reported by 
averaging the classification results from cross-validations. To validate the significance 
of the most important regions across five distinct categories, ANOVA tests were 
performed on an equal number of category instances within the most important three 
features. This methodological approach aimed to ascertain the pivotal role of these 
features in delineating the most crucial region. 

Results 
Experimental Analysis of the Important Features and Most Affected Regions 

 The RF model respectively identified GM-to-WM, WM-to-CSF, and GM-to-CSF, 
volumetric ratios as first, second, and third most important features with a threshold 
level of 1 illustrated in Fig. 5. Subsequently, the RF model was utilized to select the 
important brain regions among 170 parcellated ROIs which were mostly affected 
during the progression of AD. To reduce time and computational complexity, we 
selected the top 60 regions using the same threshold level of 1. Out of 60 RF-selected 
brain regions, ventral posterolateral, pulvinar lateral, ventral lateral, and superior 
temporal gyrus regions of brain thalamus, left and right amygdala regions, and all 
hippocampus regions were identified as the most affected brain regions, indicating that 
any clinical manifestation (cognitive changes) in these regions during EMCI and MCI 
stage could potentially be used as AD biomarkers. Fig. 6 illustrates a few most affected 
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regions of a patient classified under the MCI category, displayed in coronal, sagittal, 
axial, and render planes, with red indicating the highly affected areas, based on the 
selected features. The anatomical description of these affected regions was presented 
in Table 5. 

 

Fig. 5 Feature importance as determined by random forest model. Threshold level 1 
identified the most important features: gray matter to white matter ratio (f3), white 

matter to CSF ratio (f2), gray matter to CSF ratio (f1). 

 

Fig. 6 Most affected brain regions selected by random forest for a subject of MCI 
Category. 
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Table 5 Anatomical description of the random forest selected most affected brain 

regions during AD progression [31]. 

 

To validate the importance of brain regions influenced by the three most 

significant features (GM-to-WM, WM-to-CSF, and GM-to-CSF volumetric ratios), we 

performed one-way ANOVA tests. Moreover, we explored the significance across five 

AD stages through post hoc multivariate testing, employing Tukey's Honestly 

Significant Difference (HSD) method. Table 6 shows the top five significant brain 

regions and their significance in categorizing AD conditions.   

Feature-1 (GM-to-CSF volumetric ratio) significantly affected five brain regions, 

such as amygdala, ventral posterolateral, pulvinar lateral, ventral lateral, and superior 

temporal gyrus. The most significant regions were the superior temporal gyrus (4.91e-

13) and ventral lateral (6.30e-10). Among these, the pulvinar lateral and ventral lateral 

regions were severely affected in the earlier stages of AD progression (NC, EMCI, and 

MCI), while the amygdala and ventral posterolateral regions were greatly impacted in 

the AD stage. Feature-2 (WM-to-CSF volumetric ratio) identified the pulvinar lateral, 

superior temporal gyrus, ventral posterolateral, hippocampus, and ventral lateral as 

the most affected brain regions. The most significant changes were observed in the 

ventral lateral (p = 2.5e-10) and hippocampus (8.89e-09) regions. The superior 

temporal gyrus, hippocampus, and ventral lateral were primarily affected during the 

EMCI, MCI, and LMCI stages. Pulvinar lateral and ventral posterolateral regions 

exhibited significant changes that differentiated patients from the early stages to the 

final stage of AD prominently. However, feature-3 (GM-to-WM volumetric ratio) 

highlighted the pulvinar lateral, ventral posterolateral, hippocampus, ventral lateral, 

and ventral anterior as the most affected brain regions. The ventral anterior region 

showed the highest significance (8.32e-12), particularly between EMCI and MCI 

conditions, while the hippocampus (3.74e-09) was another critically affected region 

with significant changes across disease progression stages. Except for the pulvinar 

lateral region, analyzing the other four regions for feature-3 could be helpful in 

detecting AD progression at early stages. 

This analysis highlighted the hippocampus and ventral lateral as consistently 

significant regions across all three features for detecting the disease progression at 

early stages. GM-to-WM volumetric ratio demonstrated its potential utility in 

categorizing AD at earlier stages, as four out of the five regions showed significant 

changes. 

Region Anatomical description Label 

41,42 Hippocampus left and right Hippocampus 

43,44 Left and right para-hippocampus Para-Hippocampal 

45,46 Left and right-amygdala Amygdala 

85,86 Superior temporal gyrus Temporal_Sup 

125,126 Ventral anterior Thal_VA 

127,128 Ventral lateral Thal_VL 

129,130 Ventral posterolateral Thal_VPL 

147,148 Pulvinar lateral Thal_PuL 
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Table 6 Statistical analysis of the affected brain regions based on random forest 

selected features and their category-wise significance.3 

Features Most affected five regions 
Category-wise significance (p-value) 

Feature 1 

Region name Significance 

Amygdala 6.82e-06 

NC vs. AD (<1.07e-05) 

EMCI vs. AD (<6.97e-05) 

MCI vs. AD (<0.0423) 

LMCI vs. AD (<0.0076) 

Ventral posterolateral 1.66e-06 

NC vs. MCI (<0.0128) 

NC vs. AD (<1.32e-06) 

EMCI vs. AD (<0.0003) 

LMCI vs. AD (<0.0041) 

Pulvinar lateral 4.90e-08 

NC vs. MCI (<0.0279) 

EMCI Vs. LMCI (<5.08e-10) 

MCI vs. AD (<0.0026) 

Ventral lateral 6.30e-10 

NC vs. MCI (<0.0279) 

MCI vs. AD (<5.08e-10) 

EMCI Vs. MCI (< 1.35e-06) 

Superior temporal gyrus   4.91e-13 

NC vs. MCI (<0.0145) 

NC vs. LMCI (< 0.0175) 

LMCI vs. AD (<2.36e-13) 

Feature 2 

Pulvinar lateral 

 
0.0004 

NC vs. AD (<0.0002) 

EMCI vs. AD (<0.0047) 

Superior temporal gyrus   0.0002 

EMCI vs. MCI (<0.0161) 

MCI vs. LMCI (<8.62e-05) 

MCI vs. AD (<0.0086) 

Ventral posterolateral 1.56e-06 
NC vs. AD (<0.0226) 

EMCI vs. AD (<0.0001) 

Hippocampus 8.89e-09 

NC vs. LMCI (<0.0210) 

EMCI vs. LMCI (<8.75e-09) 

MCI vs. AD (<6.79e-06) 

Ventral lateral 2.59e-10 

EMCI vs. MCI (<8.85e-05) 

MCI vs. LMCI (<7.34e-08) 

MCI vs. AD (<6.54e-06) 

Feature 3 

 Pulvinar lateral 

 
0.0002 

NC vs. AD (<0.0001) 

MCI vs AD (<0.0096) 

Ventral posterolateral 6.63e-07 EMCI vs. LMCI (<0.0002) 

Hippocampus 3.74e-09 
EMCI vs MCI (<0.0002) 

MCI vs LMCI (<0.0001) 

Ventral lateral 2.62e-09 

EMCI vs. MCI (<1.61e-06) 

       MCI vs. LMCI (<0.0010) 

        LMCI vs. AD (<0.0002) 

Ventral anterior 8.32e-12 

NC vs. MCI (<0.0001) 

EMCI vs. MCI (<1.97e-08) 

MCI vs. LMCI (<0.0001) 

 

 

 
3 NC = normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late 
mild cognitive impairment, AD = Alzheimer’s disease 
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Experimental Analysis of the Ensembled Network and Validation  

The performance outcomes of the proposed models encompassing run-1 

through 4, with comparisons drawn among them using sensitivity, specificity, and F1-

score metrics was presented in Table 7. It was found that 3D CNN (ResNet-18) 

network with three features and 60 brain regions model (run-1) outperformed the same 

models for other combinations (run-2, run-3 and run-4).  The training accuracies for 

the three features with 60 regions (run-1) and for the three features with all 170 regions 

(run-4) were reported to be 99.99% and 99.96%, respectively. In contrast, the training 

accuracies for run-2 (13 features and 60 regions) and run-3 (13 features and all 

regions) were 77.29% and 80.10%, respectively, which were lower than those for run-

1 and run-4. 

The sensitivity, F-1 score, and specificity values were reported in Table 7 for 

four runs which demonstrated that the combination of selected features (three 

features) and selected regions (60 regions) yielded the most promising results across 

performance metrics.  To validate the model, we also utilized the proposed model for 

two and three AD categories based on the selected three features and most affected 

60 regions. The performance parameters for the two and three categories are shown 

in Table 8. The highest training accuracy was reported for AD vs. NC (93.33%). 

Through five-fold cross-validation, the proposed model incorporated three features 

and 60 regions (run-1) demonstrated a validation accuracy of approximately 60.02%. 

Table 7 Performance parameters of the proposed approaches (for five AD categories). 

 

Experimental Analysis of the Progression Pattern 

In neuroimaging research, the absolute mean Z-score serves as a common 

metric for quantifying the level of atrophy across various brain regions, particularly in 

Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI), where a higher 

absolute mean Z-score usually signifies a greater degree of atrophy [68]. The 

progression pattern of volumetric changes in different brain regions among three RF 

selected features was presented in Fig. 7. To determine the Z-score of all categories 

(EMCI, MCI, LMCI, AD), we utilized the mean and standard deviation of NC subjects. 

The absolute mean Z-score value revealed a noticeable alteration in regional volume 

throughout the progression from the early MCI stage to the final stage of AD disease. 

From the observed progression pattern, it became apparent that the absolute mean 

Z-score value exhibited an increasing trend (indicative of higher atrophy) during the 

transition from the EMCI stage to AD.  

Run number Regions and features Sensitivity F-1 score Specificity 

Run-1 3 features – 60 regions 0.760 0.660 0.935 

Run-2 13 features – 60 regions 0.600 0.439 0.883 

Run-3 13 features – all regions 0.630 0.470 0.840 

Run-4 3 features – all regions 0.733 0.650 0.941 
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Table 8 Performance parameters of the proposed approaches (for two and three AD 

categories).4 

Run number Category Sensitivity F1 score Specificity 

Run-1 AD Vs. NC 0.933 0.912 0.932 

Run-2 EMCI vs. MCI 0.866 0.787 0.860 

Run-3 LMCI Vs. AD 0.832 0.819 0.830 

Run-4 MCI Vs. AD 0.833 0.793 0.830 

Run-5 MCI Vs. LMCI 0.801 0.768 0.800 

Run-6 MCI vs. NC 0.702 0.700 0.702 

Run-7 NC Vs. MCI Vs. AD 0.800 0.727 0.900 

Run-8 NC Vs. LMCI Vs. AD 0.866 0.833 0.9667 

Run-9 EMCI Vs. LMCI Vs. AD 0.690 0.689 0.867 

Run-10 NC Vs. MCI Vs. LMCI 0.800 0.645 0.967 

 

Fig. 7 The Progression trend among five AD stages based on absolute mean Z-

score value. Here, NC = normal cognition, EMCI = early mild cognitive impairment, 

MCI = mild cognitive impairment, LMCI = late mild cognitive impairment, AD = 

Alzheimer’s disease. 

 
4 NC = normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late 
mild cognitive impairment, AD = Alzheimer’s disease 
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Discussion 
 In comparison to previous AI models in the literature (developed based on ADNI 
datasets), our model provided higher values across all performance metrics, which 
could be attributed to our systematic hyperparameter tuning process, the presence of 
skip connections, and residual blocks in the ResNet-18 network. In this study, the aim 
was to classify the five categories of Alzheimer’s disease and predict the progression 
pattern through EMCI to AD stage. The progression pattern would help the clinicians 
to detect the symptoms in earlier stages (e.g. EMCI, MCI) and in obtaining disease-
modifying targeted therapeutic interventions to assist potential AD patients, which can 
eventually extend their life expectancy. Notably, combination-1 (utilizing RF selected 
three features and 60 regions) yielded the highest performance parameters which 
could help in detecting early stages of AD with less computational time and cost. This 
combination of selected features and brain regions achieved the highest accuracy as 
they were significantly contributing to classifying the five categories of the AD.   

To validate the significance of our results, we conducted statistical analysis 
(ANOVA) on RF selected three features to evaluate the most important regions. Our 
findings indicated that the Amygdala, Hippocampus, Ventral posterolateral, Pulvinar 
lateral, Ventral lateral, and Superior temporal gyrus regions were among the most 
affected regions, showing significance across different disease categories of cognitive 
impairment condition. The analysis was aimed to delineate the progression pattern for 
categorizing the early stages of cognitive impairment, achieved by leveraging the 
absolute mean Z-score. This pattern revealed an upward trend when progressing from 
the NC stage to AD. To show the novelty of the work, we compared our findings with 
the existing literature presented in Table 9. Most previous studies focused on analyzing 
two or three categories of Alzheimer's disease. Therefore, we extended our analysis 
among five AD stages to validate our novel approach using the proposed ensemble AI 
network. To ensure fair comparison, we utilized common platforms, including MRI 
datasets, activation functions, classifiers, categories, validation approaches, and 
performance parameters.  

 Although our proposed network provided a validation accuracy of nearly 60% 

using RF selected three important features and most affected 60 brain regions, the 

result could be improved by applying the transfer learning algorithm, expanding 

training data, and/or further analyzing the voxels as 2D slices. The total number of MRI 

samples was 1000, which could be increased to reduce the effects of overfitting. 

Different features (selection of different weights/coefficients and different combination) 

and atlases could be utilized to localize the brain regions and determine the 

progression rate for each combination of feature and atlas. Furthermore, depending 

upon the regions of hippocampus and amygdala, the biomarkers could be developed 

for different specific features. 
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Table 9 Comparison of the proposed model with the existing literature.5 

 
5 NC = normal cognition, EMCI = early mild cognitive impairment, MCI = mild cognitive impairment, LMCI = late 
mild cognitive impairment, AD = Alzheimer’s disease 

Networks Layers Classifier Categories 
Dataset and 

validation approach 
Accuracy (%) 

3D CNN and CNN-

LSTM [69] 

12 (3D CNN) 

and 23 layers 

(CNN-LSTM) 

Softmax NC Vs. AD 

894 MRI scans from 

OASIS; 10-fold cross-

validation 

0.53 (3D CNN) 

0.63 (CNN-LSTM) 

3D CNN [46] 

LeNet-5, 

VGG, Google 

Net, and 

ResNet 

Softmax 
AD Vs. MCI Vs. 

NC 

MRI scan from ADNI; 

leave-one-out cross-

validation 

Highest accuracy 

:0.52 

3D CNN (VGG16, 

ResNet-50 architecture) 

[70] 

16 layers Softmax 

Binary and 

Multiple 

Classification 

MRI dataset (EDLB, 

ADNI); 10-fold cross-

validation 

AD Vs. NC: 0.89 

4-way 

classification: 0.66 

3D CNN [47] 21 layers Softmax 
AD Vs. MCI Vs. 

NC 

MRI from Gwangju 

Alzheimer’s disease 

and Related 

Dementias (GARD) 

center. 

Highest Accuracy: 

0.4211 

3D Connection-wise-

attention-model (CAM-

CNN) [45] 

20 layers Softmax 
AD Vs. MCI Vs. 

NC 

MRI from ADNI 

Validation: 15% for 

validation 

0.973, 0.878, and 

0.787 accuracy 

for mild AD, MCI 

and stable MCI 

against NC 

3D CNN Model-SFENet 

with GCN (graph 

convolutional network) 

[71] 

11 Blocks 

(9 convolution 

and 2 fully 

connected 

layer) 

ReLU 
EMCI Vs. LMCI 

Vs. NC 

DTI of 298 subjects 

from the ADNI 

 

accuracy: 0.833 

3D CNN Classifier [72] 27 layers Softmax 
AD Vs. MCI 

Vs.NC 

1230 PET scans from 

ADNI database 

AD Vs. NC; 

accuracy: 0.887 

DenseCNN2, a 

lightweight 3D deep 

convolutional network 

model [73] 

23 layers Softmax AD Vs. NC 
MRI dataset from 

ADNI 

Average accuracy 

of 0.925 

ResNet-18 Network [74] 72 layers Softmax 

EMCI, MCI, 

LMCI, and AD 

(Binary 

Classification) 

413 MRI scans from 

ADNI 

MCI vs. EMCI: 

0.896 

3D deep learning 

approach (3D-SENet) 

[75] 

15 layers Softmax 

AD Vs. HC Vs. 

MCI, Binary 

Classification 

509 MRI scans from 

ADNI 

AD vs. HC: 0.84, 

MCIc Vs HC: 0.79 

 

3D DenseNets [67] 121 layers Softmax 
EMCI Vs. LMCI 

Vs. AD Vs. NC 

480 MRI scans from 

ADNI 

AD, EMCI, LMCI, 

NC: 0.667 

3D Deep Network 

(DenseNet and ResNet) 

[76] 

55 layers Softmax 
AD Vs. MCI Vs. 

NC 

449 MRI scans from 

ADNI 

AD vs. NC: 0.889, 

MCI Vs NC: 0.760 

CNN - LeNet [77] -- -- 

AD, MCI and 

NC; Binary 

Classification 

815 MRI scans from 

ADNI 

AD Vs. NC: 0.868, 

AD Vs. MCI:  

0.714, MCI Vs. 

NC:  0.698 

Proposed Work: 

ResNet-18 - RF 

(selected features and 

regions) 

72 layers Softmax 

AD, LMCI, 

MCI, EMCI and 

NC (2-, 3- and 

5-way 

classification) 

1000 MRI scans 

from ADNI; 5-fold 

cross-validation 

AD Vs. NC: 0.933 

AD Vs. MCI: 

0.783 

MCI Vs. NC: 

0.700 

AD Vs. NC Vs. 

MCI: 0.644 

AD, LMCI, MCI, 

EMCI and NC: 

0.663 
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