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Abstract11

Sensory-guided behavior requires reliable encoding of stimulus information in neural populations, and task-specific12

readout through a selective combination of these responses. The former has been the topic of extensive study,13

but the means by which the brain achieves the latter remain poorly understood, especially when adapting to14

changing task demands. Here we introduce a novel theory for adaptive sensory processing based on functionally-15

targeted stochastic modulation. We find that responses of neurons in area V1 of monkeys performing a visual16

orientation discrimination task exhibit low-dimensional, rapidly fluctuating gain modulation, which is stronger17

in neurons that are most informative for the current behavioral task. We propose that this modulation serves18

as a label that supports adaptive downstream readout. Our theoretical and experimental results show that V119

modulation can be used to decode from neural activity after only a small number of training trials, consistent20

with observed behavior. In a hierarchical visual neural network model, the modulator-induced labels are learned21

quickly and accompany task information across several processing stages to finally guide decisions. Consistent22

with this model, we find that the V1 modulatory signal is also present in the activity of simultaneously recorded23

MT units, and that its label of task information is preserved. Our findings provide evidence for a novel mechanism24

for task-adaptive information routing in the brain, through targeted co-modulation.25

1 Introduction26

Humans and animals are able to flexibly adapt their behavior according to ever-changing sensory input and goals.27

In the brain, sensory information is transformed through hierarchical stages of computation, building increasingly28

complex feature maps. Yet, decisions can rely on local stimulus attribute, which requires not just preserving this29

information throughout the processing hierarchy, but also selectively choosing which aspects of the representation to30

read out [1]. Consider a decision about local visual orientation. This information is explicitly represented in primary31

visual cortex (V1), where neurons respond selectively to specific orientations at specific locations in the visual field.32

However, decisions are not made in V1 – visual orientation signals undergo a sequence of transformations, presumably33

mixing with task irrelevant information (other features of the stimulus or information from other spatial locations)34

before reaching decision areas. How do areas downstream of V1 access task-relevant sensory information to flexibly35

guide behavior?36

The problem of flexible sensory decision making has been studied from different perspectives. First, within the37

traditional “ideal observer” framework, statistically optimal decoders can be constructed from a complete description38

of response properties the encoding population, as they pertain to the task. These provide performance upper bounds39

for behavior [2–8], but fail to explain how a downstream circuit –with limited knowledge of each upstream neuron’s40

stimulus-response and noise properties– can construct such a readout [9]. Second, attentional boosts in the activity41

of the relevant neurons are believed to highlight task-informative sensory information for downstream processing42

[10–12]. However, this early-stage encoding selection may be insufficient to ensure the preferential transmission of43

task-specific information across a complex processing hierarchy [13]. Some have argued that the behavioral benefits44

of attention are largely due to effective contextual readouts [14], which may explain instances where behavioral-level45

benefits due to attention can be experimentally dissociated from increases in firing rates [15]. Finally, recurrent46

dynamics in prefrontal cortex can support context-dependent selection and integration of visual stimuli [16]. This47

has been demonstrated for cued switching between anatomically segregated stimulus features (such as color and48

motion), but it is not clear how this mechanism could generalize to the task of making decisions based on different49

local orientations and in the absence of an explicit cue. We also don’t know how the brain could learn the dynamics50

required for such late selection, from limited task experience.51
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Here we introduce a novel theory in which a stochastic modulatory signal induces shared variability in neural52

responses to serve as a label of task relevance. We examine its implications in the context of a change detection53

experiment in non-human primates [17; 18], with blocked task switches. We find that V1 neural responses exhibit54

fluctuations that can be captured with a shared modulator that preferentially targets task-informative neurons. This55

task-dependent covariability acts as a functional label that can be used to guide decoding, and can be learned within56

a handful of trials, facilitating fast readout from the population. By studying stochastic modulation in an artificial57

neural network model of the visual hierarchy, we find that task information can be read out using the modulator58

label after additional stages of processing and with minimal amounts of task-specific feedback. As predicted by the59

model, the V1 modulatory signal is also present in MT units, most strongly in task-informative MT units. These60

results support the hypothesis that the task-specific labeling propagates through the visual hierarchy in parallel to61

stimulus information, facilitating downstream decisions and actions.62

2 Results63

Monkeys were trained to detect a small change in orientation of a Gaussian-windowed drifting sine grating (Fig. 1A),64

and spiking responses of neurons in their primary visual cortex (V1) and middle temporal area MT were recorded65

simultaneously (Fig. 1B). Two to three gratings were present simultaneously, at high or low contrast levels, and66

spontaneously changed their orientation. The animals were rewarded only for responding to changes of one of67

these, with the others acting as distractors. The location of the relevant stimulus was fixed within each block of68

trials, switching randomly between blocks throughout an experimental session. The two possible orientations of69

the stimulus also switched between blocks. Monkeys were able to quickly adjust to these switches [18], reaching70

asymptotic performance levels after a handful of trials (Fig. 1C-D). We aim to explain how the brain achieves this71

impressive combination of accuracy and flexibility.72

2.1 Encoding of local visual orientation in a V1 population73
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Figure 1: An orientation discrimination task with distractors. A) In each block of trials, 2-3 drifting gratings flash
on and off on screen and can change their orientation. One stimulus is selected as relevant, and the monkey must
report changes in its orientation with a saccadic eye movement. B) The recorded population of V1 neurons has
receptive field centers (gray) within the receptive field of a simultaneously recorded MT unit. Two of the three
stimuli locations are within the MT unit’s receptive field (“relevant” - purple) and one is in the opposite hemifield
(“control” - black). C) Distribution of behavioral performance across blocks, quantified by the % hits. D) Behavioral
performance as a function of time within a block, binned using 5 consecutive trials; the boxes mark 25 and 75%
quantiles, points indicate different blocks and the red star indicates a significant difference in means (relative two-
sided t-test, p = 0.015). E) The distribution of firing rates over all stimulus presentations, to each of the two task
stimuli for three example neurons with different d′ values. F) |d′| distribution, over all blocks of relevant tasks and
all V1 neurons (shade). Lines indicate sub-distributions of neurons with significant informativeness (purple), and
neurons in the control task (black). G) Relationship between the informativeness values in relevant and control
tasks. A and B adapted from [18].
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Neurons in V1 respond selectively to the local orientation of visual stimuli, and the selectivities of the full pop-74

ulation span all orientations and visual field locations, in a topographical organization on the cortical sheet. In75

the experiment, individual grating stimuli are roughly matched to V1 receptive field (RF) sizes at the eccentricity76

at which recordings are performed, and orientation changes are relatively small (10-45◦, see [18]), which restricts77

relevant stimulus information to a small subset of V1 neurons whose responses change with the stimulus orientation.78

As nearly all visual information passes through V1 [19], the behavior of the monkey must rely on the responses of79

this subset (the same throughout a block), while ignoring the background chatter of activity from the remainder of80

the population. Moreover, since downstream decision-making areas do not have access to V1 responses directly, the81

relevant information must be traced as it progresses through various stages of visual processing.82

Two of the three stimulus locations were chosen so as to overlap the RFs of the recorded V1 population (Fig. 1A).83

When one of those locations is task-relevant, we expect a subset of the recorded neurons to provide information for84

the animal’s decision (“relevant tasks”). In contrast, the neurons should be uninformative when the third stimulus85

location is task-relevant as it lies in the opposite hemisphere (“control task”; Fig. 1A). We quantified the task-86

informativeness of each V1 unit as the absolute difference in mean responses for the two orientations relative to87

response standard deviation (|d′|). Figure 1E shows the relationship between informativeness and responsiveness for88

three representative examples. First, a large number of units are weakly responsive to both stimulus orientations89

(for instance, because their RFs did not overlap the stimulus location or because their preferred orientation was too90

different from the relevant stimuli) and consequently cannot be informative about stimulus identity (Fig. 1E, left).91

Second, some units respond strongly but similarly to both stimuli (Fig. 1E, middle), showing that responsiveness is92

necessary but not sufficient for task-relevance. Third, some units respond strongly to only one of the two stimuli93

and hence have high informativeness (Fig. 1E, right). Overall, for each relevant task block, a modest proportion of94

the recorded V1 units are significantly informative (monkey 1: 25.8%, monkey 2: 18.4%; non-parametric test, see95

Methods), whereas only 2.4% and 6% of units are significantly informative in the control task (Fig. 1F). Neurons that96

are most informative in either of the relevant tasks have low |d′| in the control task, reflecting their task-specificity97

(Fig. 1G). Across the two relevant tasks, unit informativeness is similar (61% of significant neurons are informative98

in both relevant tasks) because of the close proximity of the two relevant stimulus locations.99

Within each task block, a different subset of V1 neurons carries task-relevant information. In order to make accurate100

decisions, a downstream circuit has to read out selectively from those, ignoring the rest. Moreover, the determination101

of this relevant subpopulation happens quickly: the monkey’s performance reaches asymptotic levels roughly 5 trials102

after each task change (Fig. 1D). How can this flexible routing of information be achieved? Since basic response103

statistics such as mean or variance do not differ much between informative and uninformative neurons (Suppl. S1),104

they cannot guide this selection. Instead, we propose that task-specific structure in the joint statistics of neuronal105

responses [17; 20; 21] are key to understanding flexible readout.106

2.2 A targeted shared stochastic modulator in V1107

Neural responses fluctuate from trial to trial. Some of this variability is neuron-specific, but some is correlated108

across neurons, driven by circuit dynamics [22–24]. To determine the structure of co-variability, we fitted a modu-109

lated stimulus response model (“modulated-SR model”) to the recorded population of V1 neurons in each block, using110

a Poisson latent dynamical system (PLDS, see Methods and [25]), which jointly estimates the stimulus drive to each111

unit and the shared, within-trial variability across the population (Fig. 2A, B). The stimulus response component112

(“SR model”) accounts for stimulus-induced transients across multiple time bins of 50ms, with time-specific param-113

eters for each contrast condition (see Methods for details) and independent Poisson noise. The shared, within-trial114

variability is assumed to arise from a low dimensional dynamic stochastic signal, which multiplicatively modulates115

the stimulus responses of all units, with neuron-specific modulator coupling strengths. This statistical framework116

allows us to probe the existence, dimensionality, and structure of shared modulation in each block, in a way that117

simpler dimensionality reduction methods cannot achieve (Suppl. S2).118

We found that 91% of blocks are better fit by the modulated-SR model than by the SR model alone (Fig. 2C).119

Moreover, varying the dimensionality of the modulator reveals that 72% of blocks are best described by a one-120

dimensional modulator (Fig. 2D; see Methods). For consistency, we restricted subsequent analyses to these blocks.121

The extracted modulator is unrelated to contrast variations in the stimulus (Suppl. S3) and fluctuates within and122

across trials at a fairly rapid timescale (Fig. 2B), with no evidence of oscillatory structure. The average estimated123

time scale of the fluctuations is 75ms (Fig. 2E) – faster than the average trial duration (3s) as well as the individual124

stimulus duration (200ms), and approaching the time resolution of spike count binning (50ms). This fast time125

scale, together with the unimodal marginal statistics of the estimated modulator (Suppl. S4), differentiate it from126

previously reported on-off dynamics [26].127

The improvement in fit quality obtained by including the modulator varies across units (Fig. 2C), but is most128

prominent in task-informative neurons (Fig. 2F), suggesting that they may be more strongly modulated. A non-129

parametric comparison revealed that task-informative neurons have larger coupling weights (i.e. stronger modulation)130
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Figure 2: Estimating V1 modulator. A) An illustration of the modulated stimulus response model: Each neuron’s
tuning function is modulated by a time-varying shared source of multiplicative noise (green), with spiking modeled
by a Poisson process. B) An example unit’s activity over concatenated test trials of a block and the corresponding
prediction of the SR model and the modulated-SR model. Bottom row shows the estimated trajectory of the
modulator. C) The distribution of pseudo-R2 values over all neurons in blocks that were best fitted by a 1-dimensional
modulated-SR model. D) Summary of the dimensionality of best fitted models across relevant tasks. E) The
distribution of estimated time constants over all blocks that were best fitted by a 1-dimensional modulated-SR model.
F) Distribution of the correlations between the individual unit’s model fit (pseudo-R2) and their informativeness.
(78% of blocks have significant positive correlations between informativeness and model fit, Spearman r, p < 0.05)
G) Relative population rank of modulator coupling strength (within each block) for significantly informative (dark
purple line) and uninformative (light purple shading) neurons. H) Informativeness vs. coupling strength for an
example block. I) Residual informativeness (unexplained by linear effects of mean firing) vs. coupling strength in
same example as H. J) Distribution of correlation coefficients obtained by partial correlation analysis across blocks
(green, 84% of blocks significant Spearman r) and a similarly obtained distribution that uses the modulated-SR
model residual response variance as a proxy for neuron individual variance (blue).

than uninformative neurons (Fig. 2G). Although informativeness is correlated with the mean firing rate of a unit131

(Suppl. S5), a partial correlation analysis confirmed that firing rate differences cannot explain the inferred modulation132

targeting, as firing-rate-corrected informativeness and modulator couplings are significantly correlated in 84% of133

blocks (Spearman r, α = 0.05; Fig. 2H-J). The increased variability in the task-relevant neurons (Suppl. S1) is134

primarily due to the modulation; residual variability unexplained by the modulated-SR model is generally not135

correlated with informativeness (Spearman r with α = 0.05; Fig. 2J); only 9% of blocks have significantly positive136

correlations between residual variability and informativeness (19% significantly negative). While most of this residual137

variability is neuron-specific, we also find weak, structured correlations in pairs of units which suggest additional138

sources of shared noise not captured by the model (Suppl. Fig. S2).139

The modulator coupling is dissociable from traditional attentional effects on mean firing rate (Suppl. S7), which140

have been suggested to improve encoding precision of particular attended stimuli [27], and it cannot be explained by141

neural adaptation, as the degree of adaptation was uncorrelated with the quality of the fit of the modulated-SR model142

(Suppl. S8). Finally, the modulator structure cannot be explained by the fact that the response measurements are143

in the form of multi-unit spike counts (Suppl. S9). Overall, our analysis reveals that V1 responses are modulated by144
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a common fluctuating signal, and that the strength of this modulation in each unit reflects its task-informativeness.145

From an encoding perspective, this seems counter-intuitive (Suppl. S10). Why would the brain inject noise specifically146

in the few neurons that matter most?147

2.3 Targeted modulation can facilitate decoding148
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Figure 3: Theory of modulator guided decoding. A) The average response of neurons of the three subpopulations
to two task stimuli. There are 12 informative, 38 uninformative and 4950 inactive neurons. B) Effects of increasing
modulator strength on encoding and decoding, respectively, for modulator coupling weights equal to informativeness.
Encoding is measured by the SNR, while decoding precision is quantified as the variance of the decoding weights of
the modulator-guided decoder. C) Performance of three different decoders in simulations of a discrimination task
with 1000 model V1 neurons, 50 informative, with increasing relative modulator strength (mean and 95% confidence
interval). D) Same comparison as in C, but with the modulator coupling weights corrupted by Gaussian noise, as
shown in the right panel. E) Decoder performance comparison for simulated multiunits, obtained by summing the
activity of random pairs of neurons.

The modulator fluctuates rapidly, allowing any task information it provides to be accessed quickly, potentially on the149

time scale of single trials. We hypothesize that the modulation serves to “label” the responses of the task-relevant150

V1 subpopulation, so that downstream circuits can easily identify and use these signals.151

To analyze the decoding process, we simulated an encoding model that captures the essence of the response properties152

observed in the V1 data. For this, we use a variant of the modulated-SR model with static stimulus-dependent firing153

rates, and one shared, temporally-independent stochastic modulator mt (see Methods, and [9]):154

kn,t(s) ∼ Poisson (λn(s) exp(cnmt)) , (1)

where kn,t(s) is the spike count of neuron n at time t in response to stimulus s; the modulator mt is drawn155

independently from a Gaussian distribution with zero mean, and influences neuron n with coupling weight cn,156

which is set to be proportional to the neuron’s task-informativeness. Finally, since the degree of modulation affects157

not only variability but also mean responses, we explicitly correct for the mean increase to isolate the effects of158

modulator-induced co-variability (see Methods).159

Given this encoding model and a binary discrimination task, s ∈ {0, 1}, the ideal observer’s optimal decoder compares160

a weighted sum of the neural responses with a modulator-specific decision threshold, c(mt) (see Methods):161

∑
n

a(opt)n kn,t(s) > q(mt), (2)

where a(opt)n = log(λn(1))−log(λn(0)) denotes the optimal decoding weights. These are independent of the modulator162
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and equivalent to those derived from an independent Poisson model. The decoding weights are non-zero only for163

the small subpopulation of informative neurons (Fig. 3A, purple), with their signs indicating preference between the164

two stimulus alternatives. Zero weights eliminate active but uninformative (Fig. 3A, black) or inactive (Fig. 3A,165

grey) neurons.166

The optimal decoder provides an upper bound on decoding performance given the encoding model, and motivates167

the use of a linear-threshold functional form for the readout. However, it uses weights that rely on full knowledge of168

each neuron’s mean responses to the stimuli of the current task. The challenge for a downstream circuit is to find a169

way to approximate these weights, when provided only with incoming spikes, the task feedback, and potentially the170

modulator, but without explicit knowledge of the stimulus encoding model. How can the brain achieve this? The171

conventional means of learning decoding weights is regression. Although this is feasible for a small set of mostly172

informative neurons, the number of training examples needed for accurate weight estimation grows significantly with173

population size [28; 29]. So the behavioral flexibility exhibited by the monkeys precludes such a solution. Instead,174

we seek a heuristic that can be estimated quickly.175

Consider first a decoder motivated by early work on neural binary discrimination [30]. The idea is to split all176

neurons into two sub-populations (“preferred” and “anti-preferred”) and then compare their average responses. This177

solution only assigns decoding signs (aSOn ∈ {−1, 1}), which indicate relative stimulus preference, but ignores the178

relative importance of different neurons (there are no zero weights); we refer to this approach as the sign-only (SO)179

decoder. It can be learned quickly (Suppl. S10), but its performance falls as the fraction of informative neurons180

decreases (Suppl. S10): Since all neurons must be included, the noise from the uninformative neurons corrupts the181

decision signal. For realistically small fractions of informative neurons [2; 27], the SO decoder cannot match monkey182

performance (Suppl. S10).183

To improve performance, the readout needs to consider the relative importance of individual neurons. A decoder can184

achieve this by estimating the amplitude of individual decoding weights. Since the relative strength of modulation185

of each neuron reflects the relative informativeness (by design cn ∝ |d′|), we can define a modulator-guided (MG)186

decoder that sets its decoding weight amplitudes from temporal correlations of the modulator with each neuron’s187

activity, which provide a simple estimate for cn:188

|a(MG)
n | ∝ 1

T

∑
t

mtkn,t(s). (3)

The MG decoder does not rely on knowledge of the response properties of the encoding population, but it assumes189

access to the modulator (e.g., it is a broadcast signal). This has important implications for learning the decoder;190

the MG weight estimates converge rapidly, on the time scale of the modulator fluctuations which are much faster191

than a trial (Sec. 2.2). Once the informative neurons have been identified, their decoding sign is determined based192

on explicit trial feedback, which only requires a handful of trials for small populations (Suppl. S10). For simplicity,193

the amplitude and sign were estimated separately here. Nonetheless, the two can also be learned jointly using a194

form of local online learning based on eligibility traces [31; 32] (Suppl. S11).195

We compared the performance of different decoders in a binary discrimination task, based on simulated responses of196

a large population of V1 neurons with a small fraction of informative neurons (5%, Fig. 3A; see also Suppl. S10D for197

variations in percentage of informative neurons). The statistically optimal decoder corresponds to the ideal observer’s198

solution, and thus provides an upper bound on achievable performance; the SO decoder provides a lower bound.199

The optimal decoder’s accuracy deteriorates as the modulator increases in amplitude, corrupting the encoded signal200

(Fig. 3C). This reinforces the point that, unlike other forms of noise correlations [33; 29], the targeted, multiplicative201

noise is strictly detrimental for encoding (Suppl. S10). While the performance of the MG decoder is limited by this202

corruption as well, it also benefits from a stronger label in the informative neurons (Fig. 3B). Its performance follows203

an inverted U-shape as a function of modulation amplitude, reflecting the trade-off between these two opposing effects204

(Fig. 3C). MG decoding performance is maximized at an intermediate modulation amplitude, where it attains an205

accuracy close to that of the ideal observer, a result that is robust to variations in population size (Suppl. S10).206

In practice, the performance of the MG decoder could depend on how strongly correlated the modulator couplings,207

cn, are with task-informativeness. To test the robustness of the MG decoder, we weakened the correlation between208

the modulator couplings, cn, and task-informativeness by adding noise to cn. We found that although performance209

decreases overall, the nonmonotonic dependence of the MG decoder performance on modulator strength is preserved210

(Fig. 3D). Given that our measurements mostly include multiunits, we also tested their impact on decoding and found211

that the results are qualitatively robust to such measurement noise (Fig. 3E). Interestingly, the optimal modulation212

amplitude generally shifts towards the range estimated from the data, suggesting that physiologically, the degree of213

modulation may be well-matched to the precision of the modulator targeting.214
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Figure 4: V1 modulator is task-specific and facilitates decoding. A) The distribution of relative modulator strengths
across all relevant task blocks (purple) and all control task blocks (black). The star indicates significant difference
between the two distributions (U-test, p < 0.001). B) Same as A, but comparing across the two relevant tasks
(p = 0.45). C) The distribution of correlation coefficients between modulator coupling (green) or residual response
variance (blue) and the residual behavioral relevance of a unit’s activity (correlation with behavior), obtained by
regressing out informativeness and mean firing rate. D) Decoding from the recorded V1 population: performance of
different decoders or logistic regression for an example block population with increasing number of training samples
(mean ± SEM); star indicates significant differences between the optimal and the MG decoder. E) Performance
with minimal training against minimal number of training samples (stimulus presentations) needed to reach above
chance (50%) performance, for each block; stars indicate significant differences between the optimal and the MG
decoder. F) Decoding weights estimated with maximum training (90% of all stimulus presentations) versus with
minimal training (1%) for various decoders; same colors as D,E.

2.4 V1 modulator is task specific and facilitates decoding215

In our experimental context, the theory predicts that the co-variability of neural responses should change based on216

whether they are task-informative. Given that the recorded V1 population is informative in the relevant tasks but217

not the control task (Fig. 1G), we expect differences in overall modulator strength across tasks and in individual218

modulation strengths across neurons. Indeed, the overall strength of the estimated modulation significantly decreases219

in the control task, both in absolute terms and relative to stimulus induced variations (Fig. 4A and Suppl. S12).220

In comparison, the two relevant task conditions have indistinguishable statistics of overall modulation strength221

(Fig. 4B). Our theory explains this difference as a change in labeling, from the recorded subpopulation that is222

informative for the relevant tasks, to a different (unrecorded) subpopulation that is informative in the control task.223

The comparison between the two relevant tasks is limited by the proximity of the two relevant stimulus locations, as224

only few units are exclusively informative in one task (see Sec. 2.1). However, despite the reduced sample size, we225

find a significant correlation between the difference in informativeness in the two relevant tasks and the difference226

in coupling (Spearman correlation, r = 0.16 with p < 0.05), showing that units that are more informative in one of227

the two tend to also have higher coupling in that task.228

In our framework, decoding weights are approximated by estimating coupling strengths, and thus neurons with large229

coupling (and thus strongly modulated) should have a stronger influence on behavior. Despite V1’s early position230

in the visual processing stream, we find this to be true in our data; 91% of blocks show significant correlations231

(Spearman r, α = 0.05) between modulator coupling and a unit’s correlation with the monkey’s behavior computed232

as a d′ of neural responses, with categories defined by the animal’s choices rather than stimulus identity (see Methods).233

Potential confounds in this analysis are not only overall firing rates, but also the informativeness of a unit, as the234

most informative neurons would be expected to have a stronger influence on behavior [34; 35]. Nonetheless, even235

after controlling for these confounds, it remains the case that units that are more modulated are the ones that are also236

more predictive of behavior (Fig. 4C). This relationship is not present for the residual response variance (Fig. 4C).237

Furthermore, we do not find a relationship with behavioral correlation in other shared noise sources (Suppl. S13),238

which suggests that the shared modulator-induced fluctuations are particularly relevant for downstream processing.239
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The most direct prediction of the theory is the ability of the MG decoder to set appropriate decoding weights for the240

recorded V1 responses, and to do so rapidly, with limited data. To test these predictions, we decoded the stimulus241

identity from V1 responses using our heuristic MG decoder and compared its performance with that of the ideal242

observer for the estimated (modulated-SR) encoding model. When all available data is used for estimation, the MG243

decoder performance is close to that of the optimal decoder (∼ 80% correct, which suggests that the strength and244

targeting precision of the estimated modulator is sufficient to guide decoding).245

The optimal decoder provides an upper bound on decodability assuming perfect knowledge of the V1 response246

properties, but it can still perform poorly when the model is estimated from limited data; in fact, its performance is247

at chance in the low-data regime (Fig. 4D). Similarly, learning decoding weights directly through logistic regression248

requires many training trials before performing above chance (Fig. 4D). In contrast, the modulator-guided (MG)249

decoder finds informative units after only a few training examples, as it estimates the modulator coupling on the250

time scale of the modulator itself instead of that of trials. It outperforms the learned optimal decoder and logistic251

regression in the small training sample regime (comparing MG against either learned optimal or regression-based252

decoder significant; t-test, p < 0.0001, see Fig. 4D). We quantify this effect across all data and find that the MG253

decoder reaches above-chance performance significantly faster than the learned optimal decoder (t-test, p < 0.0001,254

Fig. 4E) and that the performance attained with minimal training is significantly higher relative to that of the255

learned optimal decoder (t-test, p = 0.01). The MG decoder also reaches above-chance performance significantly256

faster than a regression-based decoder (t-test p < 0.001) and learned optimal and regression-based decoder do not257

differ significantly (t-test, p > 0.05 for minimal training and performance). Our theory predicts that the advantage258

of the MG decoder lies in its ability to accurately estimate the decoding weights quickly. Indeed, we find a strong259

correlation between the MG decoding weights obtained with minimal training and those estimated from all available260

data, but this relationship does not hold for the learned optimal decoding weights or the regression weights (Fig. 4F).261

Although significant, the difference in the number of trials required for above-chance performance may seem small.262

Nonetheless, it is likely that the benefits of modulation are substantially underestimated due to two experimental263

limitations. First, the recorded subpopulation is biased towards informative neurons since the stimuli are placed264

so as to drive these neurons. The animal must decode the information present in the entire V1 population, with a265

much lower percentage of informative neurons. Under such conditions, finding the few informative neurons from task266

feedback becomes even harder (Suppl. S10), and the benefits of modulation stronger. Second, the modulator may267

vary on a time scale faster than the stimulus-presentations of the experiment and model, which would allow an even268

faster estimation of the decoding weights (Eq. 3 could also be applied to single spikes). Finally, we found additional269

sources of co-variability not considered in the theory (measured as residual pairwise correlations, see Suppl. S6)270

which are consistent with previously documented effects of the task condition noise correlations [18]. These do not271

seem to interfere with the ability of the targeted modulator to facilitate decoding, suggesting that the theory is272

robust to deviations from the exact model assumptions. Overall, the benefits of the MG decoder for the V1 data273

provide strong support for the hypothesis that the brain could use task specific modulation to enable flexible task274

switching.275

2.5 Learning modulator targeting in a hierarchical circuit276

Visual information processing is hierarchical, and task-relevant information needs to propagate through several277

stages before reaching decision-making areas. Moreover, since receptive field sizes increase across stages of processing278

[36], localized task-specific information will diffuse in subsequent visual layers, making the task of identifying the279

subpopulation of relevant readout neurons even harder. Thus, the decoding problem identified in V1 persists, and280

likely worsens, in downstream areas. As a separate issue, while thus far we have assumed the correct modulator281

targeting to be already present in the circuit, the right degree of modulation for each neuron in a task needs to also282

be learned from experience. Can the modulator-guided readout still facilitate flexible and accurate task performance283

under these conditions?284

To answer this question, we use an artificial neural network to model the visual processing hierarchy with a stochastic285

modulator and learned targeting. The first layer of the network consists of a V1-like encoding population with local-286

ized oriented filters, whose responses are then propagated through two processing layers of neurons with increasing287

RF size, and finally read out by a decision stage (Fig. 5A; details in Methods). To reflect previous experience, connec-288

tions between stages are pre-trained (via backpropagation), to solve a general image classification task (identifying289

handwritten digits [37] randomly positioned in different locations; Fig. 5B-C), in the absence of the modulator. As290

a result of this optimization, the model is capable of discriminating complex visual features.291

Analogous to the V1 experiment, we use stochastic modulation to fine-tune this network to the task of discriminating292

the orientation of local gratings (Fig. 5D-E). After adjusting the decision circuit to the new data (see Methods for293

details), the network needs to perform a binary discrimination task involving two orientations at a fixed location294

(Fig. 5E). As in the actual experiment, distractors are placed at other locations in the image, something which295

the network has not encountered during the previous episodes of learning. We introduce shared, stochastic gain296
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Figure 5: Learned stochastic modulation in a hierarchical network. A) Network with a primary encoding layer
consisting of 2560 neurons with fixed Gabor filters with varying orientation and RF location, two locally connected
processing layers and a fully connected decision layer. B) Pre-training on a spatially invariant version of the classic
MNIST classification. C) Pre-training involves optimizing weights of the processing and the decision layer. D) A
stochastic modulator mt varies the gain of each primary layer neuron according to their coupling terms cn (green).
The fluctuations introduced at the primary layer guide the gain term of the input to the decision layer through a
modulator-gated learning rule (blue). E) Task training involves binary discrimination of grating orientation at a
particular location in the presence of distractors. F) Task-training involves learning the coupling terms cn via task
feedback and adjusting the modulator-gated readout accordingly. G) Performance of different decoding strategies,
as a function of the amount of data used for task training. Grey dotted line indicates criterion performance. H)
Distribution of task-optimized modulator coupling for most informative neurons (5% highest |d′| values) vs. all other
neurons at the primary encoding layer. I) Estimated neuron-specific modulation at the first processing layer for
most informative neurons vs. the rest.

modulation with neuron-specific coupling parameters in the primary encoding layer of the network (with the same297

functional form as the original encoding model in Eq. 1, but without the Poisson noise; see Methods for details). This298

injected variability accompanies the stimulus information across the processing layers. The responses of neurons in299

the last layer are combined with gain terms gn, which tune the readout of the decision circuit to the specific task300

(Fig. 5D). As for the MG decoder in Eq. 3, these gains are adaptively computed using the correlations between301

the individual neural responses and the modulator, which is again assumed to be available at the decision stage.302

We optimize the modulator coupling strengths to maximize behavioral performance on the task, using explicit trial303

feedback (via backpropagation). The general rationale is that if task-informative neurons can be modulator-labeled304

in the V1 stage, then this labeling will be inherited downstream by exactly those neurons that receive their signal.305

Thus their co-variability can guide decoding at the decision layer.306

We assess the efficiency of the modulator-based solution by comparing it to two alternative models, both of which307

adapt based on experience within the task, but which differ in their parameter complexity. At one extreme, we308

consider a system that relearns the connection strengths between all layers de novo (“retraining”). This approach309

corresponds conceptually to the regression model in Fig.. 4. At the other extreme, we consider a fixed network310

that only relearns the final readout weights (“readout only”). Retraining all network weights requires many training311

examples to reach good performance (defined as > 80% accuracy; Fig. 5G), likely due to the high dimensionality312

of the parameter space. Retraining only the decision layer results in poor performance, because the presence of313

distractors renders the pre-trained representation insufficient for effective category discrimination. Compared to314

alternative models, fine-tuning the network via the modulator substantially reduces the amount of task-training315
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required to reach criterion performance (Fig. 5G).316

The improvement in performance of the modulator solution over regression-based relearning corresponds qualitatively317

to what we found when decoding from the data in Fig. 4D). Nonetheless, one important distinction between this318

hierarchical model and the previous MG decoder is that the modulator affects both the mean and the variance of319

the V1-like encoding layer (see Methods). To disambiguate the effects of modulation on neural variability vs. mean320

responses, we introduce a third model, which is parametrized and trained in the same way, but deterministically321

boosts the gain of initial stage neurons [13], in the absence of stochastic modulation. We find that targeting of322

deterministic gain modulation can be learned faster than retraining all the connections, but it does not reach the323

same performance as the stochastic modulator given limited training. This suggests that the separation of stimulus324

information and task relevance into the mean and variance of neural activity, respectively, further enhances the325

identifiability of the stimuli at the decision stage.326

When investigating the properties of the learned solution, we find that the learned couplings are highest for task-327

informative neurons (5% highest |d′|) in the primary encoding layer (Fig. 5H), as in the data (2F-J). Although the328

modulator only affects the responses of these neurons directly, we find that informative neurons in the downstream329

processing layer are also preferentially correlated with the modulator (Fig. 5I). This suggests that task relevance330

propagates along the hierarchy in parallel to the stimulus information.331

2.6 Modulator label is preserved in MT activity332
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Figure 6: Effects of V1 modulator on simultaneously recorded MT units. A) Stimulus response variance as a function
of mean firing for all MT units, and stimulus presentations. B) Schematic of the model; the spiking of each MT unit
is specified by a tuning function potentially multiplicatively gated by the modulator estimated from V1 activity,
with Poisson noise. C) Distribution of model fit (pseudo-R2) values obtained by comparing the log-likelihood of the
SR model that includes the V1 modulator as an additional dimension (SR+V1 modulation model) against the SR
model. D) Improvement in fit quality for the SR+V1 modulation model, grouping MT units into those with high
informativeness values (50% with highest |d′|) and those uninformative. Boxplot shows median and interquartile
range. Black star indicates significant difference (t-test, p = 0.01). E) A modulator is extracted from a population
of MT cells. Shown are modulator couplings over informativeness in MT units over all 43 blocks. F) Correlations
of the extracted V1 and MT modulators with positive (V1 before MT) and negative (MT before V1) time lag in
seconds.

The model predicts that task-specific modulation introduced in V1 should label task-informative neurons in down-333

stream areas. We look for signatures of such labeling in simultaneously recorded MT activity. MT neurons are334

known to receive direct input from V1 [38] and selectively combine these afferents to construct their receptive field335

properties, such as motion selectivity [39; 36]. Their receptive fields are larger and more complex, responding to336

localized gratings with different combinations of position, speed and orientation [39; 40]. Given anatomical con-337

siderations, we expect correlated activity in V1 to drive MT to some extent. What is specific to our theory is the338

prediction that the degree of inherited modulation should reflect the task informativeness of individual MT units.339
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We find that responses of MT units that cover the two relevant stimulus locations (Fig. 1A) vary in their task-340

informativeness (Suppl. S15) and show different degrees of supra-Poisson variability (Fig. 6A), suggesting different341

levels of modulation [41]. The two measures are correlated across the MT units, with informative units having342

higher Fano factors (correlation coefficient of 0.48, p < 0.008). To test whether the excess variability arises due343

to V1 modulation, we compared two models of MT activity. The first is based on the visual stimuli alone (“SR”);344

it resembles the V1 SR model, but includes stimulus drift direction (consistent with previous literature [39], drift345

direction did not have predictive power for the V1 units, see also [18], but has a strong effect on MT activity).346

The second model additionally conditions on the modulator estimated from the simultaneously recorded V1 units347

(“SR+V1 modulation”; Fig. 6B). The SR model provided a good fit for all MT units (Suppl. Fig. S6A), which is348

expected given that experimental stimuli were optimized to drive MT units. The inclusion of the V1-estimated349

modulator improved the fit for 73% of the MT units (measured as difference in pseudo-R2, see Methods; Fig. 6C).350

This effect is preferentially observed in task relevant units, which show a significantly larger model fit improvement351

relative to the uninformative units (t-test, p = 0.01 Fig. 6D). Interestingly, this relationship was present only352

if the estimated V1 modulator showed significant targeting structure (significant Spearman correlations between353

coupling and informativeness); the few outlier blocks without structured V1 targeting could not explain MT variance354

(Suppl. S15).355

The fact that both V1 and MT units are co-modulated as a function of their task informativeness is consistent356

with our theory, but does not exclude alternative patterns of information flow, such as top-down influences of MT357

on V1, or independent modulation of both areas from an external signal. To more directly address the nature of358

the modulation in MT we take advantage of a smaller set of MT population recordings (partly published in [18]).359

Despite the technical differences in recording procedure, this data recapitulates the same overall statistics, with360

60% of the MT units having a significant part of their variability explained by the V1-estimated modulator. When361

independently extracting a modulator from the joint MT population responses (“SR+MT modulation”), we find362

that this population model better explains individual unit responses than the SR model (in 72 out of 73 blocks,363

Suppl. S16). The extracted modulator has consistent statistics across stimulus contrast variations (in 72% of blocks;364

Suppl. S16) and has similar time constants as those separately extracted in V1 (mean 61ms, s.d. 20ms). Lastly,365

there is a significantly positive correlation between modulator coupling and informativeness across blocks (Pearson366

r = 0.24, p < 0.0001, Fig. 6E), suggesting that the same kind organization seen in V1 is qualitatively replicated367

in MT responses. Are these properties inherited from V1? We find that the cross-correlogram of the V1 and368

MT-extracted modulators is maximal at a time lag that is consistent with feedfoward propagation from V1 to MT369

(Fig. 6F), although additional data and finer temporal precision will be required to more definitively understand370

this relationship. Altogether, our analysis of MT responses supports the idea that the modulation of task-relevant371

neurons in V1 is passed on to task-informative neurons in MT, allowing the propagation of labeling information372

towards decision areas.373

3 Discussion374

Humans and animals are impressive in their ability to respond rapidly and precisely to a variety of sensory stimuli,375

but the neural mechanisms supporting this flexibility remain poorly understood. We have presented a novel theory for376

flexible information readout, which uses a modulatory signal to induce shared response fluctuations in task-relevant377

cells, accompanying the task-relevant information as it propagates through subsequent stages of neural processing,378

and guiding decisions. We uncovered evidence for this labeling scheme in neural recordings from primate areas379

V1 and MT, obtained while the animals switch between local orientation discrimination tasks at different spatial380

locations. In particular, targeted modulation in V1 is sufficient to decode stimulus identity from neural responses381

after observing only a few trials. We also found evidence for the propagation of this modulator to informative382

neurons in downstream area MT.383

The computational challenges faced by downstream circuits involved in decoding have been explored in seminal work384

by Shadlen and colleagues [30], who enumerated three potential factors that could reduce an animal’s behavioral385

performance compared to predictions of an optimal decoder (the “ideal observer”) operating on a hypothetical386

population of independent neurons: “suboptimally stimulated neurons” (in which the decoder includes irrelevant387

neurons in computing its decision), “correlated noise” (which worsens performance since it cannot be averaged out388

by the decoder), and “pooling noise” (additional noise in downstream circuits, whose contribution appears to be389

small [42]). The first factor has likely been underestimated in experimental data, since the recorded neurons are390

typically not representative of the full population due to experimental biases. As such, our conclusions regarding391

the benefits of targeted modulation for downstream readout are likely understated. The second factor, correlated392

noise, can either facilitate or impede stimulus encoding [23]. In particular, differential correlations, such as those393

reported in mouse V1 [43], are information-limiting. They restrict the encoding benefits that would otherwise arise394

from increasing population size [33] (but might support coding robustness [44]). Irrespective of correlation structure,395

identifying appropriate decoding weights using regression requires many trials [45], so flexible decoding remains a396

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2021.02.23.432351doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432351
http://creativecommons.org/licenses/by/4.0/


problem. In contrast, although our modulator-induced correlations are also information limiting, their robustness397

to averaging enables the propagation of task relevance labels. Furthermore, their rapid time scale allows for the398

fast estimation of task-specific readouts. Finally, the changes introduced via the modulation are task-specific and399

ephemeral, allowing the circuit to instantly disengage from the task and revert to its original state, by reducing the400

strength of the modulator.401

Top-down attention can facilitate sensory encoding, and has been shown to selectively affect neural responses,402

including increases in mean response [10–12], decreases in response variability [46], and decreases in noise correla-403

tions [27; 46; 47], all of which increase the signal-to-noise ratio (SNR) of the local sensory representation. These404

benefits for encoding are distinct from the modulatory effects we have explored here. They operate on the time405

scale of task conditions (minutes) or stimulus presentations (seconds), whereas the modulator that we estimate here406

fluctuates on a time scale of tens of milliseconds or faster. In addition, while attentional gain boosts are tuning-407

specific [47–49], we do not find evidence that they are specific to task-informative units (Suppl. S7). Moreover, the408

estimated modulator coupling is unrelated to the strength of attentional changes of the mean, suggesting that it409

may arise from separate mechanisms. This is consistent with effects of superior colliculus (SC) inactivation [15], and410

results documenting a similar dissociation between increases in mean and improvements in behavior over learning411

in V4 [50]. In the context of our theory, we hypothesize that SC inactivation may selectively disrupt the strength or412

targeting of modulation, affecting the propagation of task-relevant information to decision areas, a prediction that413

can be tested experimentally.414

Our modulator is distinct from slow multiplicative, low-dimensional noise reported in other contexts [51; 52], which415

may serve other functional roles such as encoding uncertainty in visual areas. It is also distinct from gain changes416

due to fluctuations in attention which operate on the time scale of seconds [53]. Such signals are too slow to serve as417

a labeling mechanism of the type proposed here. Choice-related feedback signals have also been shown to modulate418

neural activity on a trial-by-trial basis, but they also occur on a slower time scale of several hundreds of milliseconds419

or seconds [54; 21]. The modulatory process of our theory does not replace, but coexists with these additional forms420

of gain modulation.421

Shared oscillatory structure induces low-dimensional covariability and has been proposed as a mechanism for binding422

information across neurons [55]. The “communication through coherence” (CTC) theory [56; 57] formalizes this idea423

in an encoding-decoding framework, in which a top-down oscillatory modulator projects to both encoding neurons424

with the same feature selectivity, and to the decoding network that needs to read them out. The modulators we’ve425

extracted from our population recordings fail to show significant periodic structure. Beyond this, the CTC theory426

differs from our own in two important ways. First, oscillations target feature-selective rather than task-informative427

neurons [56]. These could be the same for a detection task, but differ for a discrimination such as that used in our428

experiment. Second, the CTC decoder uses a fixed (as opposed to a modulator-dependent) threshold, which we’ve429

shown to be suboptimal. Overall, the CTC framework describes a fixed labeling strategy based on tuning properties,430

while our theory proposes modulatory labeling adapted to task structure.431

Some tasks, such as the context-dependent sensory evidence integration experiments by Mante and Sussillo [16], can432

achieve flexibility through the reorganization of late decision stages. We believe these mechanisms cannot explain433

flexibility in a low-level sensory discrimination task as presented here. First, numerical experiments using our434

hierarchical model demonstrate that it is particularly hard to achieve good performance in our task when adapting435

the readout alone. In addition, the recurrent dynamics supporting task switching are trained through extensive436

optimization [16] and although several proposals exist for the biological implementations of such learning [58], all437

require vast amounts of task experience. A final distinction is that our approach does not rely on an explicit438

context cue: the task relevance of sensory features is communicated solely through task feedback. Overall, multiple439

mechanisms for task-specific readout are likely to coexist in the brain and be engaged in a context dependent manner.440

Our theory is agnostic to the source of the modulator and the circuit mechanisms underlying its task-specific441

targeting, but some previous studies provide potential clues. Changes in noise correlations across tasks could arise442

through either local circuit dynamics [24] or top-down mechanisms [21; 59], and later propagate to downstream443

regions. Given the sparsity of top-down connections relative to the full population size (at least, in V1), the444

reorganization of noise correlations likely needs to involve local recurrent dynamics, potentially taking advantage445

of its topographic organization. If this kind of spatially localized modulation was indeed an organizing principle of446

neural activity, it would predict that flexible decoding is most effective for tasks relying on sensory features that447

are localized in some brain area. Consistent with this idea, Nienborg and Cumming found that V1 neurons’ choice448

probability was significantly larger for orientation discrimination than for disparity discrimination, suggesting that449

V1 shows decision-related activity only if the task features are localized in the columnar organization [34]. Moreover,450

in a task involving higher order features, Koren et al. found neural variability was high in V4, but not V1 suggesting451

that the modulator could target later stages of processing depending on the task [60]. Regarding the physiological452

origins of our modulator, one potential source for low dimensional broadcast signals could be thalamic nuclei that453

integrate sensory and top-down information [61; 62]. Alternatively, it may be possible to eliminate the need for a454

copy of the modulator at the readout stage, by estimating the signal directly from the observable correlations in455
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population activity.456

The lack of a biologically plausible theory of neural decoding is a fundamental shortcoming in our current under-457

standing of neural computation. Resolving the puzzle of how sensory information is routed through brain regions458

and extracted to perform specific tasks is critical for the study of sensory and cognitive dysfunction, including clinical459

applications such as brain-computer interfaces (BCI) [63]. Moreover, flexible task-dependent information routing460

poses a fundamental obstacle for the development of adaptive artificial intelligence systems. Our work provides a461

novel framework for solving this problem, supported by both physiological data and computational theory.462

4 Methods463

Theoretical framework for decoding from a neural population464

We simulated a binary discrimination task analogous to the experiment, which requires discriminating stimuli s = 0
from s = 1 on the basis of the activity of a population of N neurons. Neural responses are modeled as Poisson draws
with a stimulus-dependent firing rate, which is itself modulated by a time-varying noisy signal, mt, shared across
neurons:

kn,t(s,mt) ∼ Poisson (λn(s) exp (cnmt)) , (4)

where λn(s) is the stimulus response function of the neuron, and t indexes time within a stimulus presentation. The465

modulator mt is 1-dimensional i.i.d. Gaussian noise with zero mean and variance σ2
m; the nonlinearity exp(·) ensures466

that the final firing rate is positive. The degree of modulation is neuron specific, parametrized by modulation467

weights cn, which we take to be proportional to the n-th neuron’s ability to discriminate the two stimuli, c =468

| log(λn(1)) − log(λn(0))|. We normalize responses by the expected increase in mean rate due to the modulator,469

exp
(

σ2
mc2n
2

)
to compensate for systematic differences in mean firing rate due to modulation. The relative modulator470

strength is defined as the ratio between modulator-induced and stimulus-induced variance.471

Given this modulated Poisson encoding model, an ideal observer decides the stimulus based on the sign of the log472

odds ratio, which reduces to comparing a weighted linear combination of the observed neural spike counts against a473

modulator-dependent time-varying threshold (see also [9]):474

∑
n

a(opt)n knt > q(opt)(mt), (5)

with weights
a(opt)n = log(λn(1))− log(λn(0)), (6)

and time-varying threshold
c(opt)(mt) = −

∑
n

exp(mtcn) [λn(1)− λn(0)] . (7)

The modulator-guided heuristic decoder assumes access to the modulator mt and the neural responses knt, and
learns approximate decoding weights based on co-fluctuations of the two within a trial:∣∣∣a(MG)

n

∣∣∣ = 1

T

∑
t

mtkn,t. (8)

The sign of the decoding weight is separately estimated by comparing responses to the two stimuli (trial feedback;475

see also [9] and Suppl. S10).476

The sign-only decoder subtracts the summed responses of two subpopulations (i.e., a linear decoder with weights
±1):

a(SO)
n = sign(λn(1)− λn(0)). (9)

Hierarchical information propagation with learned stochastic modulation477

We use a 4 layer artificial neural network that maps an image stimulus with 3136 pixels into categories, corresponding478

to 10 digits or different orientations. The first encoding layer includes neurons with fixed Gabor receptive fields.479

The modulator affects encoding neurons through coupling terms cn, which modulate the neuron’s responses:

h
(0)
n,t = exp

(
w(0)

n s+mtcn

)
, (10)
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where h
(0)
n,t is the activity of neuron n in the encoding layer, w

(0)
n are the weights from the input to this neuron.

Neurons in the top layer include a multiplicative gain gn ≥ 0:

h
(2)
n,t = gnReLU

(
w(2)

n h
(1)
t + b(2)n

)
, (11)

where b
(2)
n is a neuron-specific bias, optimized together with the weights w

(2)
n during pre-training. The gain gn is

learned using the MG correlation rule:

gn =
1

T

∑
t

mth
(2)
n,t(s), (12)

where h
(2)
n,t(s) denotes the activity at time t of neuron n in the last processing layer, in response to stimulus s.480

There are three stages of learning. 1) Pre-training optimizes all network weights to natural image statistics using a481

digit classification task (locally placed MNIST digits [37] with image presentation and pixel specific i.i.d. additive482

Gaussian noise), while mt = 0 and gn = 1. 2) Learn an orientation discrimination readout from the neural responses483

of the fixed pretrained network (10 categories), when the input consists of single, local oriented gratings at various484

positions (14x14 positions). 3) Optimize the modulator targeting for an orientation discrimination task at one fixed485

task location, in the presence of distractors. The task involves binary discrimination of two oriented gratings with486

distractor gratings at other locations. At the fast time scale t, the modulator varies with 100 time points per stimulus487

presentation, i.i.d. mt ∼ N (0, 0.1), which drives gain changes in the last layer (Eq. 12). At the slow scale (stimulus488

presentations) m = 1 and the coupling strengths cn are optimized by backpropagation.489

We compare the performance of our model (“stochastic modulator”, 2560 parameters for backpropagation, 7840490

parameters including MG gain adjustment) to three controls: 1) full retraining of all connections (“weight retraining”,491

256690 parameters), 2) retraining the decision layer weights (“decision layer retraining”, 78410 parameters), 3) all492

network weights are fixed, but the modulator is active mt = 1, but constant, and the modulator coupling cn are493

optimized for the task (“deterministic modulator”, 2560 parameters). In the first two approaches mt = 0 and gn = 1.494

Population recordings in V1 and single units from MT495

In experiments by Ruff and Cohen [18], two adult male rhesus monkeys performed a motion direction change detection496

task on one out of 2− 3 oriented drifting gratings at high or low contrast on a screen. The task-relevant grating is497

indicated by a few instructional stimulus presentations, selected randomly for each block within the session (3 − 6498

blocks per session). Most recording sessions analyzed use a 10 by 10 microelectrode array (Blackrock Microsystems)499

in area V1 and a recording chamber with access to area MT, allowing simultaneous recordings in the two areas500

(multiunit activity, details in [18]).501

Two stimuli were positioned to drive the MT unit similarly and one stimulus was positioned outside of the MT502

RF. Within a block, changes in one out of the three stimuli had to be reported. In each trial, gratings flash on503

(200ms) and off (200-400ms) at the same orientation (repeated, stimulus 0) until a change occurs at an unknown504

time (target, stimulus 1). Stimuli vary in both contrast and orientation, randomly interleaved. We analyzed 67505

blocks of 20 recording sessions across two monkeys where the task-relevant stimulus was positioned in the RF of506

the population (relevant tasks) and 20 blocks of 20 sessions where the stimulus outside of the RF was task-relevant507

(control task). Control and relevant task blocks were interleaved within a session. Neural populations may overlap508

across sessions.509

We analyze 21− 109 trials per block, where the monkey either detected the target (hit) or failed to detect it (miss).510

We discard trials where the monkey did not finish the task in a hit or miss and trials where one of the distractors511

changed orientation. This yields an average of 54 trials per block, each with several stimulus repeats and completed512

by a target presentation (s = 1, orientation-change). We only include blocks with a minimum of 20 valid trials (77513

out of 90 blocks), as numerical simulations suggest 20 trials to be the minimum necessary to estimate informativeness514

reliably. Varying this criterion does not qualitatively change the results. The first stimulus in a trial was always515

removed to eliminate adaptation effects [27]. We only include units whose response to either one of the stimuli516

(presented individually) was at least 10% larger than baseline, to avoid inclusion of noise channels. On average 88517

units (∼ 90%) in a block showed stimulus modulation for one of the two stimuli placed within the MT RF (min 52,518

max 95). We further exclude units with a Fano factor > 5 standard deviations above the population average as this519

suggested especially many/diverse neurons in the unit and firing rates < 1Hz (in total 0− 3 units were excluded per520

block).521

MT population recordings522

An additional set of sessions (14 sessions with a total of 73 task blocks) in the same task had either exclusively MT523

recordings (24 channel probes) or simultaneous V1 and MT recordings, with stimuli placed to optimally drive the524
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MT units (but not necessarily V1).525

Informativeness of a unit526

The informativeness of a unit is quantified by d
′
=

∣∣∣∣ µ0−µ1√
0.5(σ2

0+σ2
1)

∣∣∣∣ where µ0 and σ2
0 , µ1 and σ2

1 are the means527

and variances of a unit’s responses to the task-relevant stimulus 0 and stimulus 1, respectively. We compute528

informativeness across all stimulus presentations in behaviorally correct trials of the same block. Significance is529

assessed w.r.t. a null-distribution of d′ values, constructed by comparing mean and variance of random subsets of530

stimulus 0 responses (p=0.01).531

SR model532

Stimulus effects are modeled with Linear-Nonlinear Poisson (LNP), taking into account effects of repeated stimulus
presentations of stimulus 0, time varying in 50ms time bins and the effects of contrast (V1) or contrast+direction
(MT). Orientation is not one of the stimulus dimensions as it does not change during the repeated stimulus pre-
sentation. Responses to target stimulus 1 are used only to compute informativeness and for decoding. Stimuli are
parametrized by a one-hot encoding vector with 4 time-windows during 200ms stimulus presentation; this yields
8 stimulus dimensions for the contrast-specific V1 model, with one additional dimension indicating the stimulus
drift direction in MT. We add one after-stimulus dimension to capture potential delayed effects of the stimulus
presentation, and an offset for base firing:

kn,t ∼ Poisson (exp (βnst)) (13)

with spike counts measurements kn. Parameters βn are obtained by maximizing the log-likelihood of the data,
separately for each block:

L(βn) =
∑
t

−(βnst)
Tkn,t + exp(1Tβnst) + αβn

Tβn. (14)

The extended MT SR model includes the (normalized) V1 modulator as an additional predictive variable.533

Modulated SR model534

We use the framework of Poisson Linear Dynamical Systems (PLDS, [25; 20]), to model the temporal dependencies535

within a trial while treating different trials as independent. The modulator terms of the PLDS are shared across536

the population and influence each unit’s activity through a linear mapping function C (equivalent in meaning to the537

coupling c in the theory). This joint model has the form:538

kt ∼ Poisson(exp(Cmt +Bst)) (15)

mt+1 = Amt + ϵ

ϵ ∼ N (0,Q)

m0 ∼ N (0,Q0)

(16)

where the modulator mt at time t (within a trial across both stimulus presentation and inter-stimulus windows), is539

D-dimensional and the mapping C is N×D, with latent dimensionality D ≪ N . Parameter A implicitly defines the540

modulator’s time constant (τ = − 1
log(A) , for 1d latents), while Q,Q0 define the noise covariance of the modulator.541

The full model is fitted to data using the EM algorithm with a Laplace approximation for the E step (see [25]);542

latent dimensionality is determined by model comparison (D = 0− 4).543

Models validation and comparison544

All models are 10-fold cross-validated, with model quality evaluated by 1) log-likelihood of test data (or the corre-545

sponding leave one neuron out predictions from [64] for the PLDS, averaging over latent posterior uncertainty by546

sampling), 2) variance explained by the model and 3) the pseudo-R2 [65] which gives “the fraction of the maximum547

potential log-likelihood gain (relative to the null model) achieved by the tested model” logL(ŷ)−logL(ȳ)
logL(y)−logL(ȳ) , where ŷ is548

the estimation of the hypothesized model and ȳ is the null model. The null of the SR model had no stimulus-related549

dimensions with average firing as the only explanatory variable. The SR model served as null for the PLDS.550

For a fraction of the population the SR model ( 30% of neurons) does not improve prediction over a constant rate551

model, suggesting that those neurons are not modulated by the stimulus. As expected, informative neurons show552
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significant improvements in fit quality from the SR model relative to the null (only 5% of informative neurons do553

not show improvements).554

Modulator targeting555

For Fig. 2G we computed the rank of each modulator coupling in its own block-specific population and compare556

the distribution of significantly informative to uninformative units. In Fig. 2H-J we used partial correlations to557

test for a relationship between unit’s modulator coupling and task-informativeness in each block not explained by558

differences in overall firing rate. Specifically, we report the Spearman correlation between residual informativeness559

(after linearly regressing firing rate) and modulator coupling.560

Modulator strength561

When assessing the overall modulation strength, both the mapping C and the modulator variance need to be562

considered jointly (as scaling up the mapping and decreasing the variance leaves results unchanged). We quantify563

the overall modulator strength as the variance of the modulator multiplied by the coupling norm
√∑

n C
2
n. The564

relative modulation strength is obtained by comparing to the stimulus drive, given by
∑

n,i V ar(siBn,i) for each565

neuron n, where i indicates the stimulus dimension.566

Linking behavioral choice to neural activity567

We compute the difference in target-response between trials with correct target detection and those where the monkey568

missed the target, normalized by their variance | µ1−µ2√
0.5∗(σ2

1+σ2
2)
| where µ1,2 and σ2

1,2 are the means and variances of569

activity corresponding to the two choices, respectively. This provides an estimate of how involved a unit was in570

the choice of the animal. To asses the relationship with modulator strength we use a partial correlation with two571

covariates, firing rate and informativeness (by multivariate linear regression).572

Decoding573

We train each decoder on data that includes a balanced number of stimulus 0/1 presentations at high and low574

contrast, varying the size of the training set from the minimum 4 (one for each stimulus-contrast pair) to all575

available data. Decoder performance is tested on held out data. The optimal decoder uses maximum likelihood576

estimates (as in theory, with a 200ms decoding window), but based on estimated instead of ground truth parameters.577

It uses a constant threshold which is optimized on the training data. This is known to be suboptimal (Eq. 2), but is578

more robust to the noise in the data and therefore performs better in the limited data regime. The modulator-guided579

(MG) decoder estimates readout weights by taking the inner product between the unit’s activity and the modulator580

values (Eq. 8, using 50ms bins), with signs determined from trial-level feedback, and a constant threshold.581
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