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Abstract

Gradient-based meta-learning methods have primarily been applied to classical machine learning tasks such as image
classification. Recently, partial differential equation (PDE)-solving deep learning methods, such as neural operators, are starting
to make an important impact on learning and predicting the response of a complex physical system directly from observational
data. Taking the material modeling problems for example, the neural operator approach learns a surrogate mapping from the
loading field to the corresponding material response field, which can be seen as learning the solution operator of a hidden
PDE. The microstructure and mechanical parameters of each material specimen correspond to the (possibly heterogeneous)
parameter field in this hidden PDE. Due to the limitation on experimental measurement techniques, the data acquisition for
each material specimen is commonly challenging and may also be costly. This fact calls for the utilization and transfer of
existing knowledge to new and unseen material specimens, which corresponds to sampling efficient learning of the solution
operator of a hidden PDE with a different parameter field. Herein, we propose a novel meta-learning approach for neural
operators that can be seen as transferring the knowledge of solution operators between governing (unknown) PDEs with
varying parameter fields. Our approach is a provably universal solution operator for multiple PDE solving tasks, with a key
theoretical observation that underlying parameter fields can be captured in the first layer of neural operator models, in contrast
to typical final-layer transfer in existing meta-learning methods. As applications, we demonstrate the efficacy of our proposed
approach on PDE-based datasets and a real-world material modeling problem, illustrating that our method can handle complex
and nonlinear physical response learning tasks while greatly improving the sampling efficiency in unseen tasks.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Few-shot learning is an important problem in machine learning, where new tasks are learned with a very
limited number of labeled datapoints [1]. In recent years, significant progress has been made on few-shot learning
using meta-learning approaches [2—12]. Broadly speaking, given a family of tasks, some of which are used for
training and others for testing, meta-learning approaches aim to learn a shared multi-task representation that can
generalize across different training tasks and result in fast adaptation to new and unseen testing tasks. Meta-learning
learning algorithms have been successfully applied to the conventional machine learning problems such as image
classification, function regression and reinforcement learning; however, studies on few-shot learning approaches for
complex physical system modeling problems have been limited. The call of developing a few-shot learning approach
for complex physical system modeling problems, such as to learn the material response model from experimental
measurements, is just as acute, while the typical understanding of how multi-task learning should be applied on
this scenario is still nascent.

As a motivating example, we consider the scenario of new material discovery under the lab setting, where
the material model is built based on experimental measurements of the material’s responses subject to various
loads. Since the physical properties (e.g., the mechanical and structural parameters) in different material specimens
vary, the model learnt from the experimental measurements on one specimen would have large generalization
errors on other specimens. As a result, the data-driven model has to be trained repeatedly with a large number
of material specimens, making the learning process inefficient. Furthermore, experimental measurement acquisition
of these specimens is often challenging and expensive. In some problems, a large amount of measurements are
not even feasible. For example, in the design and testing of biosynthetic tissues, performing repeated loading
would potentially induce the cross-linking and permanent set phenomenon, which notoriously alter the tissue
durability [13]. Therefore, it is critical to learn the physical response model of a new specimen with a sample size as
small as possible. In addition, since many characterization methods to obtain underlying material mechanistic and
structural properties would require the use of destructive methods [14,15], in practice many physical properties are
not measured and can only be treated as hidden and unknown variables. In other words, we likely only have limited
access to the measurements on the complex system responses caused by the change of these physical properties.

Supervised operator learning methods are typically used to address this class of problems. They take a number
of observations on the loading field as input and try to predict the physical system response field as output,
corresponding to one underlying PDE (as one task). Herein, we consider the meta-learning of multiple complex
physical systems as tasks such that all these tasks are governed by a common PDE with different (hidden) physical
property or parameter fields. Formally, assume that we have a distribution p(7") over tasks, each task 77 ~ p(T)
corresponds to a hidden physical property field b"(x) € B(R%) that contains the task-specific mechanistic and
structural information in our material modeling example. On task 7", we have a number of observations on the
loading field g](x) € A(R%) and the corresponding physical system response field ul(x) € UR4) according to a
hidden parameter field " (x). Here, i is the sample index, B3, A and U are Banach spaces of function taking values
in R%, R% and R%, respectively. For task 7", our modeling goal is to learn the solution operator QZW AU,
such that the learnt model can predict the corresponding physical response field #(x) for any loading field g(x).!
Without transfer learning, one needs to learn a surrogate solution operator for each task only based on the data
pairs on this task, and repeat the training for every task. The learning procedure would require a relatively large
amount of observation pairs and training time for each task. Therefore, this physical-based modeling scenario raises
a key question: Given data from a number of parametric PDE solving (training) tasks with different unknown
parameters, how can one efficiently learn an accurate surrogate solution operator for a test task with new and
unknown parameters, with few data on this task®?

To address this question, we introduce the meta-learnt neural operator (MetaNO), a novel meta-learning approach
for transferring knowledge between neural operators as illustrated in Fig. 1, which can be seen as transferring the
knowledge of solution operators between governing (potentially unknown) PDEs with varying hidden parameter
fields. Our main contributions are:

1 Without ambiguity, in the following context we will neglect the subscript and denote QZ” as G" for notation simplicity.
2 In some meta-learning literature, e.g., [16], these small sets of labeled data pairs on a new task (or any task) is called the context, and
the learnt model will be evaluated on an additional set of unlabeled data pairs, i.e., the target.
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Fig. 1. The architecture of MetaNO based on an integral neural operator model.

e MetaNO is the first neural-operator-based meta-learning approach for multiple tasks, which not only preserves
the generalizability to different resolutions and input functions from the integral neural operator architecture,
but also improves sampling efficiency on new tasks—for comparable accuracy, MetaNO saves the number of
measurements required by ~90%.

e With rigorous operator approximation analysis, we made the key observation that the hidden parameter field
can be captured by adapting the first layer of the neural operator model. Therefore, our MetaNO is substantially
different from existed popular meta-learning approaches [5,10], since the later typically rely on the adaptation
of their last layers [12]. By construction, MetaNO serves as a provably universal solution operator for multiple
PDE solving tasks.

e On synthetic, benchmark, and real-world biological tissue datasets, the proposed method consistently outper-
forms existing non-meta transfer-learning baselines and other gradient-based meta-learning methods.

2. Background and related work

2.1. Hidden physics learning with neural networks

For many decades, physics-based PDEs have been commonly employed for predicting and monitoring complex
system responses. Then traditional numerical methods were developed to solve these PDEs and provide predictions
for desired system responses. However, three fundamental challenges usually present. First, the choice of governing
PDE laws is often determined a priori and free parameters are often tuned to obtain agreement with experimental
data, which makes the rigorous calibration and validation process challenging. Second, traditional numerical methods
are solved for specific boundary and initial conditions, as well as loading or source terms. Therefore, they are
not generalizable for other operating conditions and hence not effective for real-time prediction. Third, complex
PDE systems such as turbulence flows and heterogeneous materials modeling problems usually require a very fine
discretization, and are therefore very time-consuming for traditional solvers.

To provide an efficient surrogate model for physical responses, machine learning methods may hold the key.
Recently, there has been significant progress in the development of deep neural networks (NNs) for learning the
hidden physics of a complex system [17-25]. Among these methods, the neural operators show particular promises
in resolving the above challenges, which aim to learn mappings between inputs of a dynamical system and its state,
so that the network can serve as a surrogate for a solution operator [26—34].

Comparing with classical NNs, most notable advantages of neural operators are resolution independence and
generalizability to different input instances. Moreover, comparing with the classical PDE modeling approaches,
neural operators require only data with no knowledge of the underlying PDE. All these advantages make neural
operators promising tools to PDE learning tasks. Examples include modeling the unknown physics law of real-
world problems [35,36] and providing efficient solution operator for PDEs [26-28,37,38]. On the other hand,
data in scientific applications are often scarce and incomplete. Utilization of other relevant data sources could
alleviate such a problem, yet no existing work have addressed the transferability of neural operators. Through the
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meta-learning techniques, our work fulfills the demand of such a transfer setting, with the same type of PDE system
but different (hidden) physical properties.

2.2. Base model: Integral neural operators

We briefly introduce the integral neural operator model, which will be utilized as the base model of this
work. The integral neural operators, first proposed in [26] and further developed in [27-29,39] comprises of
three building blocks. First, the input function, g(x) € A, is lifted to a higher dimensional representation via
h(x,0) = Plglx) == P(x)[x,g(x)]" + p(x). P(x) € R6CT¥)*d% and p(x) € R% define an affine pointwise
mapping, which are often taken as constant parameters, i.e., P(x) = P and p(x) = p. Then, the feature vector
function h(x, 0) goes through an iterative layer block where the layer update is defined via the action of the sum
of a local linear operator, a nonlocal integral kernel operator, and a bias function: h(-, I + 1) = J;4[h(-, [)]. Here,

h(-,1),1 € {0,..., L}, is a sequence of functions representing values of the network at each hidden layer, taking
values in R% . 7,, ..., J; are nonlinear operator layers. In this work, we employ the implicit Fourier neural operator
(IFNO) as the base model® and take the iterative layers as J; = --- = J, = J, where
1
h(x,l +1)=J[h(x,D] := h(x,]) + Zo(Wh(x, D)+ FFIk(; v)] - FIRC, D) + e(x)). (2.1

F and F~! denote the Fourier transform and its inverse, respectively. ¢ € R% defines a constant bias, W € R% >4
is the weight matrix, and F[«(-; v)] := R is a circulant matrix that depends on the convolution kernel «. ¢ is an
activation function, which is often taken to be the popular rectified linear unit (ReLU) function. Finally, the output
u(-) € U is obtained through a projection layer, by mapping the last hidden layer representation (-, L) onto U/ as:
u(x) = QLh(-, L)(x) := Q2(x)0(Q1h(x, L) + q,(x)) + g,(x). Q1(x) € R, 0y(x) € RU*‘2, g,(x) € R
and g,(x) € R% are appropriately sized matrices and vectors that are part of the parameter set that we aim to
learn, which are often taken as constant parameters and will be denoted as Qi, Q», ¢, and ¢q,, respectively. In the
following, we denote the set of trainable parameters in the lifting layer as 6p, the set from the iterative layer block
as 07, and the set in the projection layer as 0.

The neural operator can be employed to learn an approximation for the solution operator, G. Given D =
{(g;,u ,<)}fv= 1» a labeled (context) set of observations, where the input {g;} C A is a set of independent and identically
distributed (i.i.d.) random fields from a known probability distribution @ on A, and u;(x) € U is the observed but
possibly noisy corresponding solution. Let {2 C R* be the domain of interest, we assume that all observations can
be modeled with a parametric PDE form:

Ko luil(x) = gi(x), x € 2. (2.2)
Herein, K is the operator representing the possibly unknown governing law, e.g., balance laws. Then, the system
response can be learnt by constructing a surrogate solution operator of Eq. (2.2): G[g; 6](x) = QOQ o (jg[)L o

Poplg1(x) ~ u(x), where parameter set 6 = [0p, 6;, 6] is obtained by solving the optimization problem:

N
in Lp(6) = mi C(Glg;: 01, u)l. 2.3
min Lp(6) := min ;[ (Glg;: 01, wi)] 23)
Here C denotes a properly defined cost functional which is often taken as the relative mean square error.
2.3. Gradient-based meta-learning methods

Traditionally, machine learning models are designed to address one single task by learning from the dataset
corresponding to such a task. Hence, its efficacy relies on the quality and abundance of available data. To improve the
learning efficacy in the small data regime, a significant body of work has tackled the challenge of few-shot learning
using transfer-learning or meta-learning approaches, with the basic idea of utilizing prior knowledge gained from
related (source) tasks to improve the learning performance on the target task. Among these two types of approaches,
the basic idea of transfer-learning is to train a model from the source task and then refine the pre-trained model in the
target task [40]. In comparison, meta-learning approaches aim to learn a generalizable representations that shared
across the different training tasks, which can accelerate learning of test tasks [5,41]. One of highly successful

3 We also point out that the proposed multi-task strategy is generic, and is hence also applicable to other neural operators [26-29,32].

4



L. Zhang, H. You, T. Gao et al. Computer Methods in Applied Mechanics and Engineering 417 (2023) 116280

meta-learning algorithms is Model Agnostic Meta-Learning (MAML) [5], which led to the development of a
series of related gradient-based meta-learning (GBML) methods [7,9,10,42]. Almost-No-Inner-Loop algorithm
(ANIL) [10] modifies MAML by freezing the final layer representation during local adaptation. Recently, theoretical
analysis [12] found that the driving force causing MAML and ANIL to recover the general representation is
the adaptation of the final layer of their models, which harnesses the underlying task diversity to improve the
representation in all directions of interest.

Beyond applications such as image classification and reinforcement learning, a few approaches have studied
hidden-physics learning under meta [43—46] or even transfer setting [47,48]. Among these meta-learning works,
[43,44] are designed for specific physical applications, while [45,46] focus on dynamics forecasting by learning the
temporal evolution information directly [45] or learning time-invariant features [46]. Hence, none of these works
have provided a generic approach nor theoretical understanding on how to transfer the multi-task knowledge between
a series of complex physical systems, such that all these tasks are governed by a common parametric PDE with
different physical parameters.

3. Meta-learnt neural operator

To transfer the multi-task knowledge between a series of complex systems governed by different hidden physical
parameters, we proposed to leverage the integral neural operator with a meta-learning setting. Before elaborating
our novel meta-learnt neural operator architecture, MetaNO, we formally state the transfer-learning problem setting
for PDE with different parameters.

Assume that we have a set of training tasks {7} such that 7" ~ p(T), and for each training task we have a set
of observations of loading field/respond field data pairs D7 := {(g!(x), u;’(x))}f\’:'7 1~ Each task can be modeled with
a parametric PDE form

Kpnolul1(x) = gl (x), x €, (3.1)

where b"(x) is the hidden task-specific physical parameter field for the common governing law. Given a new and
unseen test task, 7", and a (usually small) context set of labeled samples D' := {(g!**'(x), u}e“(x))}fv:t Tl on it, our
goal is to obtain the approximated solution operator model on the test task as Glg; 6. To provide a quantitative
metric of the performance for each method, we reserve a separate set of labeled samples on the test task as the
target set, and measure averaged relative errors of # on this set. In the few-shot learning context, we are particularly
interested in the small-sample scenario where N « N7,

3.1. A novel meta-learnt neural operator architecture

We now propose MetaNO, which applies task-wise adaptation only to the first layer, i.e., the lifting layer, with
the full algorithm outlined in Algorithm 1. We point out that MetaNO is substantially different from existed popular
meta-learning approaches such as MAML and ANIL, since the later rely on the adaptation of their last layer, as
shown in [12]. This property makes MetaNO more suitable for PDE solving tasks as will be discussed in theoretical
analysis below and confirmed in empirical evaluations of Section 4.

Similar as in other meta-learning approaches [49-52], the MetaNO algorithm consists of two phases: (1) a meta-
train phase which learns shared iterative layers parameters 6; and projection layer parameters 6p from training tasks;
(2) a meta-test phase which transfers the learned knowledge and rapidly learning surrogate solution operators for
unseen test tasks with unknown physical parameter field, where only a few labeled samples are provided. In the
meta-train phase, a batch {’T”}f:, of H tasks is drawn from the training tasks set, with a context set of N7 numbers
of labeled loading field/response field data pairs, D" := {(g;’(x), u;’(x))}f":'7 ,» provided on each task. Then, we seek
the common iterative (6;) and projection (0p) parameters, and the task-wise lifting parameters 6, by solving the
optimization problem:

H
{07 }L,. 07,051 = argmin Y Lp((6}.6;,00]). (3.2)
ORI, .01.00) =1

Then, in the meta-test phase, we adapt the knowledge to a new and unseen test task 7', with limited data on the
« . test . .
context set D' = {(g!*(x), ul™(x))}- Cf on this task. In particular, we fix the common parameters 6; and 6},

5
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Algorithm 1 MetaNO
Meta-Train Phase:
Input: a batch {7“’7},]”:l of training tasks and labeled data pairs D7 := {(g?(x), u?(x))}IN:n , on each task.
Output: common parameters 67 and 6, across all tasks.
1. Initialize 6;, 69, and {9;’,};’:1.

2. Solve for [{6"}/L,, 6}, 631 from the optimization problem in Eq. (3.2).

Meta-Test Phase:

Input: a test task 7' and few labeled data pairs D'**' := {(g{**'(x), uEeSt(x))}[N:‘ eft on it.

Output: the task-wise parameter 65" and the corresponding surrogate PDE solution operator
Glg: [05°*, 07, 0511(x) for the test task.

3. Solve for the lift layer parameter 9}?51’* from the optimization problem in Eq. (3.3).

4. (For cases with large N and/or small N"), fine tune all parameters on the test task.

then solve for the task-wise parameter 65 via:

05" = argmin Lpes([05, 0, 05)). (3.3)

test
gP

One can then fine tune all test task parameters [0, 6;, 6] for further improvements. Finally, the surrogate PDE
solution operator on the test task is obtained as:

Glg: 6™, 67, 0p110x) = Qg o (Jop)" o Pyens [€1(x).

and will be evaluated on a reserved target data set on the test task.

3.2. Universal solution operator

To see the inspiration of the proposed architecture, without loss of generality, we assume that the underlying task

parameter field " (x), modeling the physical property field, is normalized and satisfying Hb"(x) - I;(x)” 20 <1
L(

forall n € {1,..., H}, where b := E7u~pc[b"]. Denoting F,[b] :== Kp[u] as a function from physical parameter
fields B to loading fields A, we take the Fréchet derivative of F with respect to b — b and obtain:
Knlu) = Fulb) + DF,[Bb" — b) + o |b" — b )

Substituting the above formulation into Eq. (3.1) yields:
Fu b1+ DF1b1(b" — b) ~ g].

Denoting F[b"] .= [1, b" —5] and Fz[u?] = [.7:”7[3], D]—'uq[Z]], we can reformulate Eq. (3.1) into a more generic
form: 1 L

Fi[b"1(x) - Foluil(x) = g/(x), x € 0. (3.4)

Note that this parametric PDE form is very general and applicable to many science and engineering applications —
besides our motivating example on material modeling, other examples include the monitoring of tissue degeneration
problems [13], the detection of subsurface flows [53], the nondestructive inspection in aviation [54], and the
prediction of concrete structures deterioration [55], etc.

In the following, we show that MetaNOs are universal solution operators for the multi-task PDE solving problem
in Eq. (3.4), in the sense that they can approximate a fixed point method to a desired accuracy. For simplicity, we
consider a 1D domain {2 C R, and scalar-valued functions F[b"], F z[u;’]. These functions are assumed to be
sufficiently smooth and measured at uniformly distributed nodes x = {xi, x2,..., Xy}, with F{[b"](x;) # O for
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all n and j. Then, Eq. (3.4) can be formulated as an implicit system of equations:
Folu1(x1) — g/ (x1)/F1[b"1(x1)
HU™; G)) = : =0, (3.5)
Falul1(x ) — g/ (xs)/ F116"1(x m)

where U™ = [u](x)), ..., u] (x))] is the solution we seek, G? = [g)x1)/F1[b"1(x1), ..., g/ xm)/F1[b")(x )]
is the reparameterized loading vector, and G := [g/(x1), g/ (x2), ..., g/ (xy)] is the original loading vector. Here,
we notice that all task-specific information is encoded in Gi and can be captured in the lifting layer parameter.
Therefore, when seeing Eq. (3.5) as an implicit problem of U"* and G?, it is actually independent of the task
parameter field b", i.e., this problem is task-independent. In the following, we refer to Eq. (3.5) without the task
index, as H(U*; G), for notation simplicity.

To solve for U* from the nonlinear system H(U™; G) =0, a popular approach would be to use fixed-point
iteration methods such as the Newton-Raphson method. With an initial guess of the solution (denoted as U?), the
process is repeated to produce successively better approximations to the roots of Eq. (3.5), from the solution of
iteration / (denoted as U') to that of / + 1 (denoted as U'*!) as:

Ut = U — (VHU'; G))"'"HU; G) := U' + R(U', G), (3.6)

until a sufficiently precise value is reached. In the following, we show that as long as Assumptions 1 and 2 hold,
i.e., there exists a converging fixed point method, then MetaNO can be seen as an resemblance of the fixed point
method in Eq. (3.6) and hence acts as an universal approximator of the solution operator for Eq. (3.4).

Assumption 1. There exists a fixed point equation, U = U + R(U, G) for the implicit of problem in Eq. (3.5),
such that R : R2M > RM is a continuous function satisfying R(U, G) = 0 and |R(U, G) — R(U, G)”IZ(RM) <

m||U U | 2(gmy for any two vectors U,U € R™. Here, m > 0 is a constant independent of G.

Assumption 2. With the initial guess U’ = [x,...,xyl, the fixed-point iteration vt = U+ R(U], G)
(I=0,1,...) converges, i.e., for any given ¢ > 0, there exists an integer L such that

IU" — U*|lpgmy <&, VI>L,
for all possible input instances G € RM and their corresponding solutions U*.

Intuitively, Assumptions 1 and 2 ensure the hidden PDEs to be numerically solvable with a converging iterative
solver, which is a typical required condition of numerical PDE solving problems. Then, we have our universal
approximation theorem as below. The main result of this theorem is to show that for any desired accuracy ¢ > 0,
one can find a sufficiently large L > 0 and sets of parameters 07 = {9,@, 01,00}, such that the resultant MetaNO
model acts as a fixed point method with the desired prediction for all tasks and samples.

Theorem 1 (Universal Approximation). Given Assumptions 1-2, let the activation function o for all iterative kernel
integration layers be the ReLU function, and the activation function in the projection layer be the identity function.
Then for any ¢ > 0, there exist sufficiently large layer number L > 0 and feature dimension number d, > 0,
such that one can find a parameter set for the multi-task problem, 0" = [0}, 61, 00], such that the corresponding
MetaNO model satisfies

|25, 0 (T 0 Py 00, 6" — U7

<e¢

’

for all loading instance G" € RM and tasks.

We now provide the detailed proof for Theorem 1, based on Assumptions | and 2. Intuitively, these assumptions
mean the underlying implicit problem is solvable with a converging fixed point method. This condition is a basic
requirement by numerical PDEs, and it generally holds true in many applications governed by nonlinear and complex
PDEs, such as in our three experiments.

Here, we prove that the MetaNO is universal, i.e., given a fixed point method satisfying Assumptions 1 and 2,
one can find parameter sets 6”7 whose output approximates U™* to a desired accuracy, ¢ > 0, foralln =1,..., H
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tasks. For the task-wise parameters, with a slight abuse of notation, we denote P7 € R“M*g+M aq the
collection of the pointwise weight matrices at each discretization point in x for the nth task, and p" € R%M
for the bias in the lifting layer. Then, for the parameters shared among all tasks, in the iterative layer we denote
C = [c(x1),...,c(xy)] € R%M a5 the collection of pointwise bias vectors ¢(x;), W € R >dn for the local
linear transformation, and R = F[k(-; v)] € CH**M ¢ ChxdnxM for the Fourier coefficients of the kernel «. For
simplicity, here we have assumed that the Fourier coefficient is not truncated, and all available frequencies are used.
Then, for the projection layer we seek Q) € RéeMxhM =0, ¢ RuMxdoM g =~ c RIOM and g, € R%M. For the
simplicity of notation, in this section we organize the feature vector H € R% in a way such that the components
corresponding to each discretization point are adjacent, i.e., H = [H(x), ..., H(x))] and H(x;) € R%.
We point out that under this circumstance, the (discretized) iterative layer can be written as

1 -
JUHMO) =HO) + 7o (WHD) +Re(FLUR - Far(HD) +C)

—H() + %o (VH() + C),

with
B M—1 M—1 M—1 T
i 2it(M—DA
> Rup+ W Rypyexp(2Z2) . 3R,y exp(BEUDAM)
n=0 n=0 n=0
M-1 M-1 M-1
' 2in(M=2)A
ZR”+‘ exp(z’”ﬁx") ZRn+l +Ww e ZRn+1 exp(W)
V :=Re =0 =0 n=0
M—1 M—1 M—1
2im(M—1)A 2im(M—2)A
ZRH-H CXP(W) ZR11+1 CXP(W) . ZRn-H + W
L n=0 n=0 n=0 .

Here, R € CM*d>di with R; € C%* being the component associated with each discretization point x; € yx,
V e RaMxdiM ¢ c RWM W = W W@ ---@®W isad,M x d,M block diagonal matrix formed by
W e R%*dn F . and .FZL denote the discrete Fourier transform and its inverse, respectively. By further taking
Ry =---=Ry =W =0, ad, xd, matrix with all its elements being zero, it suffices to show the universal
approximation property for an iterative layer as follows:

1 -
JHD) = H()+ o (VHa) n c)

where V := 1jy . ® V with V € R%*% and 1;,, ,; being an m by n all-ones matrix.
For the proof of this main theorem, we need the following approximation property of a shallow neural network,
with its detailed proof provided in [39]:

Lemma 1. Given a continuous function T : R*™ s RM and a non-polynomial and continuous activation function
o, for any constant &€ > 0 there exists a shallow neural network model T := So (BX + A) such that

”T(X) - ’f-(X)”ZZ(]RM) S é, VX € RZM,

for sufficiently large feature dimension d > 0. Here, S € RM*dM B ¢ RIM2M g A € RM gre matrices/vectors
which are independent of X.

We now proceed to the proof of Theorem 1:

Proof. Since all U™* satisfies Assumptions 1-2, for any ¢ > 0, we first pick a sufficiently large integer L such

that the Lth layer iteration result of this fixed point formulation satisfies |UL — U"*|| 2wMy < 5 for all tasks. By
taking & := 5% in Lemma 1, there exists a sufficiently large feature dimension d and one can find § € RM>dM
B e RIMX2M and A ¢ R such that R(U", G") := So(B[U", G"]T + A) satisfies
=1 A =1 =1 =T A me
IRU", G)—-RU", G )||z2(]RM) =||RWU",G)— So(BU",G']" + A)”lZ(RM) <¢ =m»

8
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where m is the contraction parameter of R, as defined in Assumption 1. By this construction, we know that S has
independent rows. Denoting d := d+1 > 0, there exists the right inverse of S, which we denote as ST € R¢~D¥xM
such that

SS*T =1y, STS=1Ig

where I, is the M by M identity matrix, i(zz—l) yisa d—1)M by (d — 1)M block matrix with each of its element
being either 1 or 0. Hence, for any vector Z € R(J — 1)M, we have a(IN((;_,)MZ) = IN(‘;_,)MU(Z). Moreover, we note
that S has a very special structure: from the ((i — 1)(5 — 1)+ 1)th to the (i(c? —1))th column of §, all nonzero elements
are on its ith row. Correspondingly, we can also choose S* to have a special structure: from the ((i — 1)(3 —1)4+1th
to the (i(d — 1))th row of S*, all nonzero elements are on its ith column. Hence, when multiplying S* with U, there
will be no entanglement between different components of U. That means, St can be seen as a pointwise weight
function.

We now construct the parameters of MetaNO as follows. In this construction, we choose the feature dimension
as dj, :== dM. With the input [U°, G"] € R*™ for the lift layer we set

st 0]:[S+ 0 St 0 ... St OTGRthsz

PW:IIM"'@[O p’|=|o D' 0 D" ... 0 D

repeated for M times
and p" := 0 € R%M_ Here, D" := diag[1/F([b"1(x1), ..., 1/F{[b"](xy)]. As such, the initial layer of feature is
then given by

H©0) = P'([U°, G"") = 1.y @ [STU°, D'G"" = 11411, @ [STU°, G'1" € RYM,

Here, we point out that P" and p” can be seen as pointwise weight and bias functions, respectively.
Next we construct the shared iterative layer [J, by setting

I yuB/M|[LS 0 - Li; A
V= |: (d—l)llél / i| [ 0 L[M:| , V= l[M,M] RV, and C = I[M,l] ® |: (dBI)M i|

Note that V is independent of 7, and falls into the formulation of V, by letting Ry = V and R, = Ry = -+ =
Ry = W = 0. For the [ + 1th layer of feature vector, we then arrive at

1 -
H(+1)=H()+ 1o (VH(I) n c)

=H() + <]M ® [S;;S 1(:4]) o ((LM,I] ® [B{)M}> (lll,Ml ® |:g ;}ﬂ) HDO+ 1y ® [3}) ,

Al Al Al A1
where H(l) = [hy, h,, ..., h,y, ,, h,,,]" denotes the (spatially discretized) hidden layer feature at the [th iterative

Al
layer of the MetaNO. Subsequently, we note that the second part of the feature vector, h,; € RM, satisfies
20 =0 .
=-=hy;=G, VI=0,....,.L-1Vj=1,....M

Al ~
Hence, the first part of the feature vector, h,; | € RU=DM " satisfies the following iterative rule:
altl N N N . )
hiy = by + S*So(BIShy,_, G"T"+A), V=0, L—1,Vj=1,.. M,

and

Al+1 ~l+1 ~l+1

hy =h; =--=hy
Finally, for the projection layer Q, we set the activation function in the projection layer as the identity function,
Q1 = I, u (the identity matrix of size dyM), Q2 = [S,0] € RM*4M g, = 0 € R4 and g, := 0 € RM.
Denoting the output U" := QQQ o (Jy, Yoo ng([UO, G"|"), we now show that U” can approximate U"* with a

9
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desired accuracy ¢:
) L L s
10" = U < 1U" = U llpgmy + 1U" = U |l p@m)
~L & .
< ISh{ = U"|lp@m, + 3 (by Assumption 2)
B! L-1 5cai! L-1 g €
<|IShy, —U""|pgm) + RSk, ,G)—RU"", G)lpgwm, + 5
AL—1 L1 A ALl o~ AL-1 ~
<|IShy, —U""|pgm)+ IIR(Shy ,Gb)—R(Sh, ,Gb)l2gm,

AL—1 -1 = e
+ |R(Sh, ,Gb) —RWU"", Gb)|2wmy + 3
me

AL—1
<+ m)||Shf _ UL—1||12(]RM) + m + % (by Lemma 1 and Assumption 1)
<" dtm A amP A EmE Y+ L
~2(1+m)t 2
e €
<-+-=¢ 0
=3 + > e

4. Empirical evaluation

In this section, we demonstrate the empirical effectiveness of the proposed MetaNO approach. Specifi-
cally, we conduct experiments on a synthetic dataset from a nonlinear PDE solving problem, a benchmark
dataset of heterogeneous materials subject to large deformation, and a real-world dataset from biological tis-
sue mechanical testing. We compare the proposed method against competitive GBML methods as well as
two non-meta transfer-learning baselines. All of the experiments are implemented using PyTorch with Adam
optimizer, and performed on a workstation with two 2.2 GHz 24-core CPUs and eight NVIDIA Tesla T4
GPUs. For a fair comparison, for each algorithm, we tune the hyperparameters, including the learning rate from
{0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}, the decay rate from {0.5, 0.7, 0.9}, the weight decay parameter from
{0.01, 0.001, 0.0001, 0.00001, 0.000001}, and the inner loop learning rate for the baseline GBML methods (MAML
and ANIL) from {0.01, 0.001, 0.0001, 0.00001, 0.000001}, to minimize the error on a separate validation dataset. In
all experiments we decrease the learning rate with a ratio of learning rate decay rate every 100 epochs. A detailed
description of each baseline method is provided in Appendix A.

In all experiments, we considered the averaged relative error, ||#; prea — Uil 20/ @il 22> @8 the error metric.
We repeat each experiment for 5 times, and report the averaged relative errors and their standard errors.

4.1. Example 1: Synthetic data sets and ablation study

We first consider the PDE-solution-finding problem of the Holzapfel-Gasser—Ogden (HGO) model [56], which
describes the deformation of hyperelastic, anisotropic, and fiber-reinforced materials. In this example, the goal is
to find its displacement field u : [0, 1]*> — R? under different boundary loadings. The specimen is assumed to be
subject to a uniaxial tension 7),(x) on the top edge (see Fig. 2(a)). Therefore, we take the input function g(x) as
the padded traction loading field, and the output function as the corresponding displacement field.

Data Generation. To generate training and test samples, the Holzapfel-Gasser—Ogden (HGO) model [56] was
employed to describe the constitutive behavior of the material in this example, with its strain energy density function
given as:

R A
ki ko (S())? k(S 2 E I -1 InJ
T g, (ExP ((S@)) + exp (e (S(-e))) - )+6(1—2v)( > " >

Here, (-) denotes the Macaulay bracket, and the fiber strain of the two fiber groups is defined as:

Ly(@) = 1 4 [I4(@) — 1]

S(a) = >
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Fig. 2. Problem setup of example 1: the synthetic data sets. (a) A unit square specimen subject to uniaxial tension with Neumann-type
boundary condition. (b) & (c) Visualization of an instances of the loading field 7)(x), and the corresponding ground-truth solutions u"(x)
from the in-distribution and out-of-distribution tasks, showing the solution diversity across different tasks, due to the change of underlying
hidden material parameter set.

where k; and k, are fiber modulus and the exponential coefficient, respectively, E is the Young’s modulus for
the non-fibrous ground matrix, and v is the Poisson ratio. Moreover, 1, = tr(C) is the first invariant of the right
Cauchy—Green deformation tensor C = FTF, F is the deformation gradient, and J is related with F such that
J = detF. For the fiber group with angle direction  from the reference direction, 74(cr) = n’(a)Cn(cx) is the
fourth invariant of the right Cauchy—Green tensor C, where n(a) = [cos(a), sin(a)]”. To generate samples for
different specimens, different specimens (tasks) correspond to different material parameter sets, {k;, k2, E, v, o}.
To investigate the performance of MetaNO in few-shot learning, we generate 59 training and one validation
tasks, as well as five in-distribution (ID) test tasks by sampling different physical parameters ki, ks, E, v, o
from the same uniform distribution. To further evaluate the generalizability when the physical parameters of test
tasks are outside the training regime, we also generate two out-of-distribution (OOD) test tasks with physical
parameters from different distributions. For the training tasks, the validation task, and the in-distribution (ID)
test task, their physical parameters are sampled from: ki, k, ~ U[0.1, 1], E ~ U[0.55,1.5], v ~ U[0.01, 0.49],
and o ~ U[n/10, w/2]. For the two out-of-distribution (OOD) test tasks, we sample their parameters following
ki, ko ~ U[1,1.9], E ~ U[1.5,2] UU[0.5,0.55], v ~ U[0.01,0.49],* and @ ~ U[r/2,37/4] U [0, /10]. To
generate the high-fidelity (ground-truth) dataset, we sampled 500 different vertical traction conditions T,(x) on
the top edge from a random field, following the algorithm in [36,58]. T, (x) is taken as the restriction of a 2D
random field, ¢(x) = F~'(y"2F(I"))(x), on the top edge. Here, I'(x) is a Gaussian white noise random field
on R?, y = (wf + w%)’z represents a correlation function, and w;, w, are the wave numbers on x and y
directions, respectively. Then, for each sampled traction loading, we solved the displacement field on the entire
domain by minimizing potential energy using the finite element method implemented in FEniCS [59]. In particular,
the displacement field was approximated by continuous piecewise linear finite elements with triangular mesh, and
the grid size was taken as 0.025. The finite element solution was interpolated onto y, a structured 41 x 41 grid
which will be employed as the discretization in our neural operators. The distribution of training and ID/OOD tasks
are demonstrated in Fig. 3, where one can see that the first OOD task (denoted as “OOD Task1”) corresponds to
a stiffer material sample and smaller deformation for each given loading, while the second OOD task (denoted as
“O0D Task2”) generates a softer material sample and larger deformation. For each training task, we generate 500
data pairs D" = {(g], uf)}fg({, by sampling the vertical traction loading from a Gaussian random field. Then,
the corresponding ground-truth displacement field is obtained using the finite element method implemented in
FEniCS [59]. For test tasks, we train with N'' = {2, 4,8, 12, 20, 100, 300} numbers of labeled data pairs (the

v

4 Here we sample both ID and OOD tasks from the same range of v, due to the fact that [0.01, 0.49] is the range of Poisson ratio for
common materials [57].
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Fig. 3. Distribution of physical parameters of different tasks in example 1, and the resultant magnitude of material response, ||u"(x)ll;2(0),
on an exemplar loading instance shown in Fig. 2(b).

context set), and evaluate the model on a reserved dataset with 200 data pairs (the target set) on each test task. An
8-layer IFNO is employed as the base model.

Ablation Study. We first conduct an ablation study on 4 variants of the proposed algorithm: (1) to use the full
meta-train and meta-test phases as in Algorithm 1 (denotes as “MetaNO”); (2) to perform steps 1-3 of Algorithm 1,
such that only the lifting layer is adapted in the meta-test phase (denotes as “MetaNO—"); (3) to apply task-wise
adaptation only to the iterative layers instead of the lift layer in both meta-train and meta-test phases (denoted as
“MetaMid”); (4) to apply task-wise adaptation only to the projection layer instead of the lift layer in both meta-train
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Fig. 4. Results of the ablation study on example 1: the synthetic data set. Comparison on test errors in the in-distribution test, when using
the full context set (N7 = 500) on training tasks and different sizes of context set (N'**) on test tasks.

Table 1

A comparison of the computational costs (in seconds) and test errors (in relative L? norm) of MetaNO and
MetaNO—, in the ablation study on example 1. Here, the total time of MetaNO— includes the Meta-Train Phase
(Steps 1 and 2) and the step of solving for %™ in the Meta-Test Phase (Step 3), and the total time of MetaNO
includes all steps of both the Meta-Train and Meta-Test Phases (Steps 1-4).

MetaNO— MetaNO
Ntest Step 3 Step 4 Total time Test error Total time Test error

2 24 25 45636 11.70% + 14.01% 45661 11.72% + 14.02%

4 48 49 45660 291% £ 0.90% 45709 2.93% £ 0.90%

8 93 98 45705 2.07% £ 0.53% 45803 2.08% £ 0.53%
12 141 147 45753 1.94% £ 0.56% 45900 1.92% £ 0.55%
20 223 247 45835 1.82% £ 0.41% 46082 1.80% £ 0.39%

100 976 1025 46588 1.56% £ 0.35% 47613 1.46% £ 0.26%
300 2116 2282 47728 1.53% £ 0.34% 50010 1.27% £ 0.15%

and meta-test phases (denoted as “Metalast”). We study if the successful “adapting last layers” strategy of MAML
and ANIL in image classification problems would apply for our PDE solving problem. Besides these four settings,
we also report the few-shot learning results with five baseline methods: (1) Learn a neural operator model only
based on the context data set of the test task (denoted as “Single”); (2) Pretrain a neural operator model based
on all training task data sets, then fine-tune it based on the context test task data set (denoted as “Pretrainl”); (3)
Pretrain a single neural operator model based on the context data set of one training task, then fine-tune it based on
the context test task data set (denoted as “Pretrain2”); To remove the possible dependency on the pre-training task,
in this baseline we randomly select five training tasks for the purpose of pretraining and report the averaged results.
(4) MAML, and (5) ANIL. For all experiments we use the full context data set on each training task (N" = 500).

As shown in Fig. 4, MetaNO— and MetaNO are both able to quickly adapt with few data pairs — to achieve a
test error below 5%, “Single” and the two transfer-learning baselines (“Pretrainl”, “Pretrain2”) require 100+ data
pairs, while MetaNO— and MetaNO requires only 4 data pairs. On the other hand, MetaMid, Metal.ast, MAML and
ANIL have similar performance. They all require 100 data pairs to achieve a < 5% test error. In particular, when
using only 4 data pairs on the target task, “MetaNO—""has 2.91% +0.90% relative test error, while “MetaMid” and
“MetaLast” have 58.41% £9.92% and 43.99% + 11.36% relative test errors, respectively. This observation verifies
our finding on the multi-task parametric PDE solution operator learning problem, where one should adapt the first
layer, not the middle layers or the last ones. A detailed comparison on the computational time and test errors of these
“MetaNO—" and “MetaNO” is provided in Table 1. Herein, the total time of MetaNO— includes the Meta-Train
Phase (Steps 1 and 2) and the step of solving for 05 in the Meta-Test Phase (Step 3) of Algorithm 1, and the total
time of MetaNO includes all steps of both the Meta-Train and Meta-Test Phases (Steps 1-4). Since the Meta-Train
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Fig. 5. Results on example 1: the synthetic data set. Top: The relative test error results showing the effect of varying training task context
set sizes N € {50, 100, 200, 500}. Bottom: The relative error of MetaNO and MAML in in-distribution and out-of distribution tests.

Phase took the majority of training time (45612 seconds), although “MetaNO” requires an additional fine-tuning
step, its computational cost is of a similar scale as “MetaNO—". When comparing the test errors, we can see that
the additional fine-tune step only improves the performance in the larger-sample regime (when N'*' > 100). This
fact shows that when given sufficient training context sets, adapting the first layer can capture the underlying task
diversity so further fine-tuning may not be needed, especially in the small data regime.

Effect of Varying Training Context Set Sizes. In this study, we investigate the effect of different training task
context sizes N7 = {50, 100, 200, 500} on four meta-learnt models: MetaNO, MetaNO—, MAML, and ANIL. The
comparison on test errors are demonstrated in the top plot of Fig. 5. Here, MetaNO— and MetaNO did not have
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(a) Benchmark dataset: Visualization of solution across tasks  (b) Prediction of N*s={2,8}  (c) Comparison between methods
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Fig. 6. Results on example 2: the benchmark (Mechanical MNIST [60]) dataset. (a) The visualization of different tasks, their underlying
microstructure field b7, and the corresponding ground-truth solution. (b) Prediction results based on few samples (N'**' =2 and N = 8)
on a test task. (¢) Comparison of MetaNO and five baseline methods.
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any inner loop updates. All parameters from all training tasks are optimized together. In MAML and ANIL we use
half of the context set for inner loop updates (support set) and the other half for outer loop updates (target set). One
can see that when N < 20, MetaNO— and MetaNO have similar performance and consistently beat MAML and
ANIL for both context set sizes. With the increase of N'*, the fine-tuning strategy on the test context set becomes
more helpful where we see MetaNO becomes more accurate than MetaNO— and MAML beats ANIL. Such effect is
more evident on small training context set cases. Perhaps unsurprisingly, with the training task context size varying
from 50 to 500, all methods have improved performance with decreasing relative test errors (with the same colors
for the same methods across different context dataset). In addition, as the context set size in the test task grows,
fine-tuning will gradually have better performance as MetaNO and MAML beats MetaNO— and ANIL, respectively.
Overall, in all combinations of N7 and N'**', MetaNO achieves the best performance among all models.

In-Distribution and Out-Of-Distribution Tests. On bottom Fig. 5, we demonstrate the relative test error of
MetaNO against MAML in both ID and OOD tasks. We can see that test errors of these three tasks are at a
similar scale as the error on training tasks. The error from OOD taskl is comparable to the averaged ID test task
error, while the error from OOD task2 is much larger, as expected by the data property: due to the fact that the
solutions in OOD taskl generally have smaller magnitude and hence its solution operator lies more in a linear
regime, which makes the solution operator learning task easier. Probably due to the fact that the solutions in OOD
taskl generally have smaller magnitude and hence its solution operator lies more in a linear regime, which makes
the solution operator learning task easier. In all three cases, MetaNO outperforms MAML, hence validating the
good generalization performance of MetaNO.

4.2. Example 2: Benchmark mechanical MNIST datasets

We further test MetaNO and five baseline methods on benchmark Mechanical MNIST [60]. Mechanical MNIST is
a benchmark dataset of heterogeneous material undergoing large deformation, modeled by the Neo-Hookean material
with a varying modulus converted from the MNIST bitmap images [60]. It contains 70,000 heterogeneous material
specimens, and each specimen is governed by the Neo-Hookean material with a varying modulus converted from
the MNIST bitmap images. On each specimen, we have 32 loading/response data pairs on a 27 x 27 structured grid,
under the uniaxial extension, shear, equibiaxial extension, and confined compression load scenarios, respectively.’

Data Generation and Settings. Here in, we randomly select one specimen corresponding to hand-written number
0 and 2 — 9 respectively as training tasks. Then, among the specimens corresponding to 1, we randomly select
six specimens: one for validation and the rest five as the test tasks. Visualization of the ground-truth solutions
corresponding to one common loading from different tasks is provided in Fig. 6(a), together with the underlying
(hidden) microstructure pattern which determines the parameter set b”. On the meta-train phase, we use the full
context data set of all 32 samples for each training task. On the meta-test phase, we reserve 20 data pairs on

5 We have excluded small deformation samples with the maximum displacement magnitude < 0.1.
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the test task as the target set for evaluation, then train each model under the few-shot learning setting with
N'™t'={2,4,8, 12} labeled data pairs as the context set. All approaches are developed based on an 32-layer IFNO
model.

Results. Besides the diversity of tasks as seen in Fig. 6(a), notice that we also have a small number of training
tasks (H = 9), and a relatively small training context set size (N7 = 32). All these facts make the transfer learning
on this benchmark dataset challenging. We present the results in Fig. 6(b) and (c). The neural operator model learned
by MetaNO again outperforms the baseline single/transfer learning models and the state-of-the-art GBML models.
Our MetaNO model achieves 15% error when using only 2 labeled data pair on the test task, while the Single model
has high errors due to overfitting. This fact highlights the importance of learning across multi-tasks: when the total
number of measurements on each specimen is limited, it is necessary to transfer the knowledge across specimens.
Moreover, while MetaNO—, MAML, and ANIL all have a similar performance in this example, the fine-tuning
step in MetaNO seems to substantially improve the accuracy, especially when N'' gets larger. This observation is
consistent with previous finding on varying training task context sizes.

4.3. Example 3: Application on real-world data sets

We now take a step further to demonstrate the performance of our method on a real-world physical response
dataset, which is not generated by solving PDEs. We consider the problem of learning the mechanical response of
multiple biological tissue specimens from DIC displacement tracking measurements. We measure the biaxial loading
of tricuspid valve anterior leaflet (TVAL) specimens from a porcine heart, such that each specimen (as a task)
corresponds to a different region of the leaflet. Due to material heterogeneity of biological tissues, these specimens
contain different mechanical and structural properties. However, these properties are generally not observable
without damaging the tissue. Therefore, this example provides a proof-of-principle demonstration that how MetaNO
applies to learning tasks where the governing equations and physical properties are both unknown, and the dataset
has unavoidable measurement noise.

Data Generation. We now briefly provide the data generation procedure for the tricuspid valve anterior leaflet
(TVAL) response modeling example. To generate the data, we firstly followed the established biaxial testing
procedure, including acquisition of a healthy porcine heart and retrieval of the TVAL [61,62]. Then, we sectioned
the leaflet tissue and applied a speckling pattern to the tissue surface using an airbrush and black paint [63—65]. The
painted specimen was then mounted to a biaxial testing device (BioTester, CellScale, Waterloo, ON, Canada). To
generate samples for each specimen, we performed 7 protocols of displacement-controlled testing to target various
biaxial stresses: Pj; : Popo ={1:1,1:0.66,1:0.33,0.66:1,0.33:1,0.05:1,1:0.1}. Here, P;; and P, denote
the first Piola—Kirchhoff stresses in the x- and y-directions, respectively. Each stress ratio was performed for three
loading/unloading cycles. Throughout the test, images of the specimen were captured by a CCD camera, and the load
cell readings and actuator displacements were recorded at 5 Hz. After testing, the acquired images were analyzed
using the digital image correlation (DIC) module of the BioTester’s software. The pixel coordinate locations of the
DIC-tracked grid were then exported and extrapolated to a 21 by 21 uniform grid. In this example, we have the
DIC measurements on 16 specimens, with 500 data pairs of loadings and material responses from the 7 protocols
on each specimen. These specimens are divided into three groups: 12 for the purpose of meta-train, 1 for validation,
and 3 for test. This reflects a common challenge in scientific applications, we not only have limited samples per
task, the number of available training tasks is also limited. To demonstrate the diversity of these specimens due to
the material heterogeneity in biological tissues, in Fig. 7 we plot the processed displacement field of two exemplar
training specimens and the validation and test specimens. For each model, the results are reported as the average
of all 3 test tasks.

Results. Herein, we aim to model the tissue response by learning a neural operator mapping the boundary
displacement loading to the interior displacement field on each tissue specimen. We use 13 specimens for training
and validation with context size N7 = 500, and provide the test results as the average on the rest 3 specimens.
With a 4-layer IFNO as the base model, we train each model based on N'**' € [2, 300] samples, and then evaluate
the performance on another 200 samples. The results are provided in Fig. 8. MetaNO performs the best among all
the methods across all N'**, beating MAML and ANIL by a significant margin. Interestingly, MAML and ANIL
did not even beat the “Pretrainl” method, possibly due to the low efficacy of the adapting last layers strategy and
the small number of training tasks.
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Fig. 7. Visualization of the processed dataset in example 3: learning the biological tissue responses. Subject to the same loading instance,
different columns show the corresponding ground-truth solutions u”(x) from different tasks, showing the solution diversity across different
tasks due to the change of underlying hidden material parameter field.
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Fig. 8. Comparison of MetaNO and five baseline methods in example 3: learning the biological tissue responses. This example features
measurement noise and a small number of available tasks.

5. Summary and future directions

In this paper, we have proposed MetaNO, the first neural-operator-based meta-learning approach that is designed
to achieve good transferability in learning complex physical system responses. In particular, we focused on the
scenario that the physical responses of different systems can be modeled by a common parametric PDE, and the
behavior of each system (specimen) is governed by a different underlying parameter field. Then, based on the
observed data from several known systems, the goal was to efficiently learn a surrogate model, which acts as the
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surrogate solution operator for the hidden PDE, for a new and unseen system. Comparing with existed transfer-
learning techniques, we have shown that our MetaNO features a novel first layer adaption architecture, which is
theoretically motivated and shown to be a universal solution operator for multiple parametric PDE solving tasks. We
have further demonstrated the effectiveness of our proposed MetaNO algorithm on various synthetic, benchmark,
and real-world datasets, showing promises with significant improvement in sample efficiency over baseline methods.
Although in this work we focus on material modeling problems in experiments, the proposed approach is a
machine learning model that can handle different PDEs with heterogeneous coefficients, which is common in physics
problems and not limited in material modeling. For example, another suitable example is climate modeling, where
cities responses, temperature exposures, and impacts are all heterogeneous, resulting in different parameters in the
PDE model. Here, we chose material as the application mainly due to the availability of data. For future work, we
will investigate the applicability of the proposed approach to other scientific domains. Moreover, we point out that
the universal approximator property of the MetaNO relies on the assumption that all systems are governed by a
common parametric PDE. As such, a set of common characteristic solution operator features can be obtained from
the training tasks in the form of the common layer parameters, and then can be utilized to accelerate the learning
efficacy in the test task. Therefore, we anticipate the method to suffer from performance deterioration when handling
the transferability between different types of PDEs, e.g., when all training tasks are to solve diffusion problems
but the test task is on an advection problem. It would be an interesting future direction of extending the proposed
MetaNO to handle such a challenging scenario. In this paper, we employed the implicit Fourier neural operator [39]
as the base model. As another natural extension, one might consider the proposed meta-learning approach based
on other types of neural operators and neural networks, such as the graph neural operators [26,29] and the general
graph neural networks [66,67]. As such, the model will be capable to handle measurements from unstructured grid
points and domains, which be valuable for applications with complex and possibly evolving domain geometries.
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Appendix A. Formulation of baseline methods

In this section, we discuss each baseline methods in details and how they are used in our experiments. A meta-
learning baseline in our problem setting would be to apply MAML and ANIL to a neural operator architecture.
Here we formally state the implementation of ANIL and MAML for the problem described above, and they will
serve as the baseline meta-based methods in our empirical experiments.

MAML. The MAML algorithm proposed in [5] aims to find an initialization, 5, across all tasks, so that new
tasks can be learnt with very few gradient updates and examples. First, a batch {’7"7};’=1 of H tasks are drawn from
the training task set. For each task 77, the context set of loading field/response field data pairs D" is split to a
support set of samples, S7, which will be used for inner loop updates, and a target set of samples, Z7, for outer
loop updates. Then, for the inner loop, let 670 := 6 and "' be the task-wise parameter after ith gradient update.
During each inner loop update, the task-wise parameter is updated via

o7 =" — @V, L@, forn=1,..., H, (A.1)
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where Lgn(6771) is the loss on the support set of the nth task, and « is the step size. After m inner loop updates,
the initial parameter 0 is updated with a fixed step size §:

H
0«6 — ,Bvéljmeta(é), where the meta-10ss Lpe(0) = Z Lzn(6T™). (A.2)
n=I
Then, on the test task, 7%, an inner loop adaptation is performed based on few labeled samples D't until
convergence, and the approximated solution operator model is obtained on the test task as G[g; 0'%'].
ANIL. In [10], ANIL was proposed as a modified version of MAML with inner loop updates only for the final
layer. The inner loop update formulation of Eq. (A.1) is modified as

05 =05 — Vi1 Lan@3 ™, forn=1,.... H, (A3)

where %’i is the task-wise parameter on the final (projection) layer after ith gradient update. Then, the same outer
loop updates are performed following Eq. (A.2).
Single/Pretrainl/Pretrain2. We also implemented 3 non-meta-learning baseline approaches.

e Single: Learn a neural operator model only based on the context data set of the test task.

e Pretrainl: Pretrain a neural operator model based on all training task data sets, then fine-tune it based on the
context test task data set.

e Pretrain2: Pretrain a single neural operator model based on the context data set of one training task, then
fine-tune it based on the context test task data set. To remove the possible dependency on the pre-training
task, in this baseline we randomly select five training tasks for the purpose of pretraining and report the
averaged results.

Appendix B. Training details

In the following we briefly describe the hyperparameter settings employed in running of each algorithm. The
code and the processed datasets will be publicly released at Github for readers to reproduce the experimental results.

B.1. Example 1: Synthetic data sets

Base model: As the base model for all algorithms, we construct an architecture for IFNO [39] as follows. First,
the input loading field instance g(x) € A is lifted to a higher dimensional representation via lift layer P[g](x),
which is parameterized as a 1-layer feed forward linear layer with width (3, 32). Then for the iterative layer in
Eq. (2.1), we implement F “NFlk(; v)] - Flh(, D]1(x) with 2D fast Fourier transform (FFT) with input channel
and output channel widths both set as 32 and the truncated Fourier modes set as 8. The local linear transformation
parameter, W, is parameterized as a 1-layer feed forward network with width (32, 32). In the projection layer, a
2-layer feed forward network with width (32, 128, 2) is employed. To accelerate the training procedure, we apply
the shallow-to-deep training technique to initialize the optimization problem. In particular, we start from the NN
model with depth L = 1, train until the loss function reaches a plateau, then use the resultant parameters to initialize
the parameters for the next depth, with L = 2, L = 4, and L = 8. In the synthetic experiments, we set the layer
depth as L = 8.

MetaNO: During the meta-train phase, we train for the task-wise parameters 6}, and the common parameters 6;
and 6 on all 59 training tasks, with the context set of 500 samples on each task. After meta-train phase, we load
0 and 0¢ and the averaged 0} among all 59 tasks as initialization, then tune the hyperparameters based on the
validation task. In particular, the 500 samples on the validation task is split into two parts: 300 samples are reserved
for the purpose of training (as the context set) and the rest 200 samples are used for evaluation (as the target set).
Then we train for the lift layer on the validation task, and tune the learning rate, the decay rate, and the weight
decay parameter for different context set sizes (N'*'), to minimize the loss on the target set. Based on the chosen
hyperparameters, we perform the test on the test task by training for the lift layer on different numbers of samples
on its context set, then evaluate and report the performance based on its target set. We repeat the procedure on the
test task with selected hyperparameters with five different random seeds, and calculate means and standard errors
for the resultant test errors on target set.
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MAML & ANIL: For MAML and ANIL, we use the same architecture as the base model, and also split the
training tasks for the purpose of training (59 tasks) and validation (1 task) as in MetaNO. During the meta-train
phase, for each task we randomly split the available 500 samples to two sets: 250 samples in the support set used for
inner loop updates, and the rest in the target set for outer loop updates. During the inner loop update, we train for the
task-wise parameter with one epoch, following the standard settings of MAML and ANIL [5,10]. Then, the model
hyperparameters, including the learning rate, weight decay, decay rate, and inner loop learning rate, are tuned. In the
meta-test phase, we load the initial parameter and train for all parameters (in MAML) or the last-layer parameters
(in ANIL) until the optimization algorithm converges. Similar as in MetaNO, we first tune the hyperparameters on
the validation task, then evaluate the performance on the test task.

B.2. Example 2: Mechanical MNIST

Base model: As the base model for all algorithms, we construct two IFNO architectures, for the prediction of
u, and u,, the displacement fields in the x- and y-directions, respectively. On each architecture, the input loading
field instance g(x) € A is mapped to a higher dimensional representation via a lifting layer P[g](x) parameterized
as a 1-layer feed forward linear layer with width (4, 64). Then for the iterative layer in Eq. (2.1), we set the number
of truncated Fourier mode as 13, and parameterize the local linear transformation parameter, W, as a 1-layer feed
forward network with width (64, 64). In the projection layer, a 2-layer feed forward network with width (64, 128,
1) is employed. In this example we also apply the shallow-to-deep technique to accelerate the training, and set the
layer depth as L = 32.

MetaNO: During the meta-train phase, we train for the task-wise parameters 6}, and the common parameters 6;
and O¢ on all 9 training tasks, with the context set of 32 samples on each task. After the meta-train phase, we load
0; and 6y and the averaged 6, among all 9 tasks as initialization, then train 0, on the validation task. In particular,
the 32 samples on the validation task is split into two parts: 12 samples are reserved for the purpose of training (as
the context set) and the rest 20 samples are used for the purpose of evaluation (as the target set). Then we train
the lift layer on the validation task, and tune the learning rate, the decay rate, and the weight decay parameter for
different context set sizes (N'), to minimize the loss on the target set. Based on the chosen hyperparameters, we
perform the meta-test phase on the test task by training for the lift layer on different numbers of samples on its
context set, then evaluate and report the performance based on its target set. We repeat the procedure with different
5 random seeds on each of the 5 test tasks, and calculate means and standard errors for the resultant test errors on
the target set.

MAML & ANIL: For MAML and ANIL, we use the same architecture as the base model. During the meta-train
phase, for each task we randomly split the available 32 samples to two sets: 16 samples in the support set used for
inner loop updates, and the rest in the target set for outer loop updates. During the inner loop update, we also follow
the standard settings of MAML and ANIL [5,10], and tune the hyperparameters following the same procedure as
elaborated above for Example 1.

B.3. Example 3: Experimental measurements on biological tissues

Base model: As the base model, we first construct the lifting layer as a 1-layer feed forward linear layer with
width (4, 16). Then for the iterative layer in we keep 8 truncated Fourier modes and parameterize the local linear
transformation parameter, W, a 1-layer feed forward network with width (16, 16). In the projection layer, a 2-layer
feed forward network with width (16, 64, 1) is employed. We construct two 4-layer IFNO architectures, for the
prediction of u, and u,, the displacement fields in the x- and y-directions, respectively.

MetaNO: During the meta-train phase, we train for the task-wise parameters 6, and the common parameters 6;
and 6p on all 12 tasks, with the context set of 500 samples on each task. After meta-train phase, we load 6; and
6o and the averaged 6, among all 12 tasks as initialization, then tune the hyperparameters based on the validation
task. In particular, the 500 samples on the validation task is divided into two parts: 300 samples are reserved for the
purpose of training (as the context set) and the rest 200 samples are used for evaluation (as the target set). Based on
the chosen hyperparameters, we perform the test on the test tasks by training for the lift layer on different numbers
of samples on its context set, then evaluate the performance based on its target set.
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MAML & ANIL: For MAML and ANIL, we use the same architecture as the base model, and also split the
training tasks for the purpose of training and validation as in MetaNO. During the meta-train phase, for each task we
randomly split the available 500 samples to two sets: 250 samples in the support set used for inner loop updates, and
the rest in the target set for outer loop updates. During the inner loop update, we train for the task-wise parameter
with one epoch, following the standard settings of MAML and ANIL [5,10].
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