REVIEW Communicated by Jean-Pascal Pfister

Desiderata for Normative Models of Synaptic Plasticity

Colin Bredenberg

colin.bredenberg@mila.quebec

Center for Neural Science, New York University, New York, NY 10003, U.S.A., and
Mila-Quebec Al Institute, Montréal, QC H2S 3H1, Canada

Cristina Savin

cs5360@nyu.edu

Center for Neural Science, New York University, New York, NY 10003, U.S.A., and
Center for Data Science, New York University, New York, NY 10011, U.S.A.

Normative models of synaptic plasticity use computational rationales to
arrive at predictions of behavioral and network-level adaptive phenom-
ena. In recent years, there has been an explosion of theoretical work in
this realm, but experimental confirmation remains limited. In this review,
we organize work on normative plasticity models in terms of a set of
desiderata that, when satisfied, are designed to ensure that a given model
demonstrates a clear link between plasticity and adaptive behavior, is
consistent with known biological evidence about neural plasticity and
yields specific testable predictions. As a prototype, we include a detailed
analysis of the REINFORCE algorithm. We also discuss how new mod-
els have begun to improve on the identified criteria and suggest avenues
for further development. Overall, we provide a conceptual guide to help
develop neural learning theories that are precise, powerful, and experi-
mentally testable.

1 Introduction

Our identities change with time, gradually reshaping our experiences. We
remember, we associate, we learn. However, we are only beginning to un-
derstand how changes in our minds arise from underlying changes in our
brains. Of the many features of neural architecture that are altered over
time, from the biophysical properties of individual neurons to the cre-
ating or pruning of synapses between neurons, changes in the strength
of existing synapses remain the most prominent candidate for the neural
substrate of longitudinal perceptual and behavioral change (Magee &
Grienberger, 2020). Synaptic connections are easily modified, and these
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Figure 1: Spectrum of synaptic plasticity models. (a) By level of abstraction:
Mechanistic models show how detailed biophysical interactions produce ob-
served plasticity, phenomenological models concisely describe what changes
in experimental variables (e.g., before and after relative spike timing Af)
affect plasticity (AW), and normative models explain why the observed plastic-
ity implements capabilities that are useful to the organism. (b) Schematic illus-
trating the range of local variables that may be available for synaptic plasticity.
(c) Classes of objective functions: Reward-based learning involves general feed-
back about how well the organism or network performed; supervised objectives
specify explicit desired outcomes; unsupervised objectives do not require any
form of explicit feedback.

modifications can persist for extended periods of time (Bliss & Collingridge,
1993). Further, synaptic modification has been associated with many of the
brain’s critical adaptive functions, including memory (Martin et al., 2000),
experience-based sensory development (Levelt & Hiibener, 2012), operant
conditioning (Fritz et al., 2003; Ohl & Scheich, 2005), and compensation for
stroke (Murphy & Corbett, 2009) or neurodegeneration (Zigmond et al.,
1990). However, beyond these associations, it is often hard to establish a
precise link between plasticity and a certain adaptive behavior. In this re-
view, we distinguish “normative” modeling approaches from alternatives,
demonstrate why they show promise for establishing precise links between
mechanism and behavioral outcomes, and outline a set of desiderata that
articulate how recent progress on normative plasticity models strengthens
the link between plasticity and system-wide adaptive phenomena.
Plasticity models come in several flavors: phenomenological, mecha-
nistic, and normative models (see Figure la) (Levenstein et al., 2020)—
with the demarcation lines between them not always completely precise.
Broadly, phenomenological models focus on concisely describing what
happens in plasticity experiments with mathematical modeling; mecha-
nistic modeling adds to this project by explaining how plasticity dynam-
ics emerge from causal interactions between biophysical quantities. While
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Desiderata for Normative Models of Synaptic Plasticity 1247

phenomenological and mechanistic models articulate how synaptic plas-
ticity works, they do not explain why it exists in the brain, that is, what its
importance is for neural circuits, behavior, or perception. Answering this
question with any precision requires an appeal to normative modeling.

Normative models aim to answer this why question by connecting plas-
ticity to observed network-level or behavioral-level phenomena, includ-
ing memory formation (Hopfield, 1982; Lengyel et al., 2005; Savin et al.,
2014) and consolidation (Fusi et al., 2005; Clopath et al., 2008; Benna & Fusi,
2016), reinforcement learning (Frémaux & Gerstner, 2016), and represen-
tation learning (Oja, 1982; Hinton et al., 1995; Rao & Ballard, 1999; Toy-
oizumi et al., 2005; Savin et al., 2010). Guided by the intuition that plasticity
processes have developed on an evolutionary timescale to near-optimally
perform adaptive functions, normative plasticity theories are typically top-
down in that they begin with a set of prescriptions about how synapses
should modify in order to optimally perform a given learning-based func-
tion. Subsequently, with varying degrees of success, these theories attempt
to show that real biology matches or approximates this optimal solution.
Here, we review classical normative plasticity approaches and discuss ef-
forts to improve them.! To provide concrete examples of these principles
in action, in appendix C we describe the REINFORCE algorithm (Williams,
1992), explain how it can function as a normative plasticity model, and note
its successes and failures to match our desiderata.

2 Desiderata for Normative Models

One of the biggest challenges for normative models of synaptic plasticity
is their connection to biology: their predictions often tie biophysical phe-
nomenology with function in ways that are hard to access experimentally.
Therefore, it is a major challenge to identify how to improve normative
models with relatively limited access to experimental data confirming or
rejecting their predictions. In what follows, we articulate a set of desider-
ata that can serve as both an organizing tool for understanding the con-
tributions of recent normative plasticity modeling efforts and as a set of
intermediate objectives for the development of new models in the absence
of explicit experimental rejection or confirmation of older work. Norma-
tive plasticity models do not need to satisfy all desiderata to be useful.
For example, several seminal normative plasticity models fail to accommo-
date known facts about biology (e.g., Hopfield networks (Hopfield, 1982)
and Boltzmann machines (Ackley et al., 1985)). We argue that any norma-
tive plasticity model can be improved by making it conform more closely
to our desiderata. Each principle is desirable for some combination of the

'In the interest of conciseness, we discuss only long-term plasticity, not including
short-term plasticity.
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1248 C. Bredenberg and C. Savin

following reasons: first, it may help ensure that the plasticity model actu-
ally qualifies as normative; second, it may require a model to accommodate
known facts about biology; and third, it may ensure that models can be com-
pared to existing experimental literature and generate genuinely testable
experimental predictions. Most of these desiderata are relatively intuitive
and simple. However, it has proven incredibly difficult for existing mod-
els of any adaptive cognitive phenomenon—from sensory representation
learning, to associative memory formation, to reinforcement learning—to
satisfy all of them in tandem.

2.1 Improving Performance on a Specified Objective. Many popular
normative frameworks view neural plasticity as an approximate optimiza-
tion process (Lillicrap et al., 2020; Richards et al., 2019), wherein synaptic
modifications progressively reduce a scalar loss function. Within this per-
spective, the function of synaptic plasticity is to improve performance on
this objective.? Thus, the modeling process can be divided into two steps:
articulating an appropriate objective and subsequently demonstrating that
a synaptic plasticity mechanism improves performance.

Normative theories of synaptic plasticity developed to date usually in-
volve some combination of supervised, unsupervised, or reinforcement
learning objectives (see Figure 1c). The choice of objective function for a
neural system influences the resultant form and scope of applicability of
the model. For instance, supervised learning implies the existence of either
an internal (e.g., motor error signals (Gao et al., 2012; Bouvier et al., 2018)
or saccade information indicating that a visual scene has changed (Illing
et al., 2021)) or external teacher (e.g., zebra finch song learning (Fiete et al.,
2007)). Unsupervised teaching signals can be provided by prediction, as in
generative modeling frameworks (Fiser et al., 2010). This account of sensory
coding is popular for both its ability to accommodate normative plasticity
theories (Rao & Ballard, 1999; Dayan et al., 1995; Kappel et al., 2014; Isomura
& Toyoizumi, 2016; Bredenberg et al., 2021) and its philosophical vision of
sensory processing as a form of advanced model building, beyond simple
sensory transformations. Bayesian inference frameworks can also be useful
for systematically quantifying uncertainty about optimal synaptic param-
eter estimates and for adjusting learning rates accordingly (Kappel et al.,
2015; Aitchison et al., 2021; Jegminat et al., 2022). However, alternative per-
spectives on sensory processing exist, including those based on maximizing
the information about a sensory stimulus contained in a neural population
(Attneave, 1954; Atick & Redlich, 1990) subject to metabolic efficiency con-
straints (Tishby et al., 2000; Simoncelli & Olshausen, 2001), and those based

*It should be noted that this is the simplest way to characterize improved performance,
but not all formulations of learning easily fit into a simple optimization framework for
example, associative learning in Hopfield networks (Hopfield, 1982) or multi-agent rein-
forcement learning (Zhang et al., 2021).
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Desiderata for Normative Models of Synaptic Plasticity 1249

on contrastive methods (Oord et al., 2018; Illing et al., 2021), where a self-
supervising internal teacher encourages the neural representation of some
stimuli to grow closer together, while encouraging others to grow more
discriminable.

Evaluating which objective function (or functions) best explains the
properties of a neural system is hard: while some forms of objective function
may have discriminable effects on plasticity (e.g. supervised versus unsu-
pervised learning; Nayebi et al., 2020), others are even provably impossible
to distinguish (see appendix A). This motivates the idea that for a given
data set, it is plausible that one objective (£) can masquerade as another
(£). In some cases, complex objective functions can masquerade as simple
objectives, which may only be epiphenomenal. Take balancing excitatory
and inhibitory inputs as an example objective for a neuron: this could be a
goal on its own (Vogels et al., 2011) or a consequence of predictive coding
(Brendel et al., 2020). In other cases, philosophically distinct frameworks,
such as generative modeling, information maximization, or denoising may
simply produce similar synaptic plasticity modifications because the frame-
works often overlap heavily (Vincent et al., 2010) and may not be distin-
guishable on simple data sets without targeted experimental attempts to
disambiguate between them.

Having addressed many difficulties associated with choosing a good ob-
jective function, we now move to difficulties involved in demonstrating
that a particular synaptic plasticity rule decreases a chosen objective.’> How
could such a property be proven? For a particular plasticity rule to reduce
an objective £(W) that depends on synaptic weights W, we need to show
that the following principle holds:

LW + AW) < L(W)
= L(W+ AW) — L(W) < 0, 2.1)

for some update AW determined by the plasticity rule. If we accept the ad-
ditional supposition that AW is very small, we can employ the first-order
Taylor approximation (treating W as a flattened vector: L(W + AW) ~
LW) + g—vf,(W)TAW. Substituting this approximation into our reduction
criterion, we have after cancellation

ic

This shows that for small weight updates (slow learning rates), the in-
ner product between a synaptic learning rule AW and the gradient of the

’Some objectives (like reward functions) are best thought of as being maximized rather
than minimized. Without loss of generality, in such cases we can minimize the negative
reward function.
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1250 C. Bredenberg and C. Savin

selected loss function £(W) with respect to the weight change must be neg-
ative. The simplest way to ensure that this is true is for AW to equal a
small scalar A times the negative gradient of the loss (—A%(W)T%(W) =
—Al ;T/EV (W) < 0).* If this were true, plasticity would be guaranteed to im-
prove performance on the objective L.

Some studies show empirically that this inner product is negative (Lil-
licrap et al., 2016; Marschall et al., 2020). A pure empirical demonstration
that a learning algorithm aligns with the loss gradient on a particular task,
network architecture, and data set does not necessarily generalize to the
full range of relevant tasks. Moreover, trained networks are sensitive to hy-
perparameter choices, where small changes in simulated network parame-
ters can effect large qualitative differences in network behavior (Xiao et al.,
2021). Further, a battery of in silico simulations under a variety of different
parameter settings and circumstances rapidly begins to suffer the curse of
dimensionality, becoming almost as extensive as the collection of in vivo or
in vitro experiments that it is attempting to explain.

For this reason, many studies construct mathematical arguments as to
why equation 2.2 should hold for a given local synaptic plasticity rule by
demonstrating that it either is a stochastic approximation to the true gra-
dient (Williams, 1992; Spall, 1992) or maintains a negative inner product
under reasonable assumptions (Bredenberg et al., 2021; Dayan et al., 1995;
Ikeda et al., 1998; Meulemans et al., 2020). Mathematical analysis allows
one to know quite clearly when a particular plasticity rule will decrease a
loss function and identifies how plasticity mechanisms should change with
changes in the network architecture or environment. However, analysis is
often possible only under restrictive circumstances, and it is often neces-
sary to supplement mathematical results with empirical simulations in or-
der to demonstrate that the results extend to more general, more realistic
circumstances.

2.2 Locality. Biological synapses can only change strengths using local
chemical and electrical signals. “Locality” refers to the idea that a postulated
synaptic plasticity mechanism should only refer to variables that could be
conceivably available at a given synapse (see Figure 1b). Though locality
may seem like an obvious biological requirement, it presents a great mys-
tery: How does a system whose success or failure is determined by the joint
action of many neurons distributed across the entire brain, improve perfor-
mance through local changes? This is particularly puzzling, given that suc-
cessful machine learning algorithms—including backpropagation (Werbos,

‘A negative inner product can also be achieved by taking AW to be the negative loss
gradient premultiplied by any positive-definite matrix, which could be dependent on the
weights themselves. Updates of this form correspond to gradient descent with respect to
different metrics (Surace et al., 2020); special cases include altering the learning rates for
different parameters and natural gradient descent.
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Desiderata for Normative Models of Synaptic Plasticity 1251

1974; Rumelhart et al., 1985) (see appendix B), backpropagation through
time (Werbos, 1990), and real-time recurrent learning (Williams & Zipser,
1989)—need nonlocal propagation of learning signals.

Despite its importance as a guiding principle for normative theories of
synaptic plasticity, locality is a slippery concept, primarily because of our
limited understanding of the precise battery of biochemical signals avail-
able to a synapse and how those signals could be used to approximate
quantities required by theories. As such, locality has resisted mathemati-
cal formalization until very recently (Bredenberg et al., 2023). Because of
the complexities associated with assessing locality, normative theories typ-
ically declare success when some standard of plausibility is reached, where
derived plasticity rules roughly match the experimental literature (Payeur
etal., 2021) or only require reasonably simple functions of postsynaptic and
presynaptic activity that a synapse could hypothetically approximate (Oja,
1982; Gerstner & Kistler, 2002; Scellier & Bengio, 2017; Williams, 1992).

In normative models of synaptic plasticity, the need for locality is in per-
petual tension with the general need for some form of credit assignment
(Lillicrap et al., 2020; Richards et al., 2019), a mechanism capable of signal-
ing to a neuron that it is “responsible” for a network-wide error and should
modify its synapses to reduce errors. Depending on a network’s objective, a
system’s credit assignment mechanism could take a wide variety of forms,
some small number of which may only require information about the pre-
and postsynaptic activity of a cell (Oja, 1982; Pehlevan et al., 2015, 2017;
Obeid et al., 2019; Brendel et al., 2020), but many of which appear to require
the existence of some form of error (Scellier & Bengio, 2017; Lillicrap et al.,
2016; Akrout et al., 2019) or reward-based (Williams, 1992; Fiete et al., 2007;
Legenstein et al., 2010) signal.

The extent to which a credit assignment signal postulated by a nor-
mative theory meets the standards of locality depends heavily on the na-
ture of the signal. For instance, there is growing support for the idea that
neuromodulatory systems, distributing dopamine (Otani et al., 2003; Cal-
abresi et al., 2007; Reynolds & Wickens, 2002), norepinephrine (Martins &
Froemke, 2015), oxytocin (Marlin et al., 2015), and acetylcholine (Froemke
et al., 2013; Guo et al., 2019; Hangya et al., 2015; Rasmusson, 2000; Shinoe
et al.,, 2005) signals, can propagate information about reward (Guo et al.,
2019), expectation of reward (Schultz et al., 1997), and salience (Hangya
et al., 2015) diffusely throughout the brain to induce or modify synaptic
plasticity in their targeted circuits. Therefore, it may be reasonable for nor-
mative theories to postulate that synapses have access to global reward or
reward-like signals, without violating the requirement that plasticity be af-
fected only by locally available information (Frémaux & Gerstner, 2016).

Locality as a desideratum serves as a heuristic stand-in for the require-
ment that a normative model must be eventually held to the standard of
experimental evidence. This is not to say that normative models cannot pos-
tulate neural mechanisms that have not yet been observed experimentally.
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1252 C. Bredenberg and C. Savin

However, for such an exercise to be constructive, the theory should clearly
articulate how it deviates from the current state of the experimental field
and how these deviations can be tested (see section 2.7; see appendix C for
a concrete example of this process).

2.3 Architectural Plausibility. The learning algorithm implemented by
a plasticity model can require specific architectural motifs to existin a neural
circuit in order to deliver reward, error, or prediction signals. These might
include diffuse neuromodulatory projections (see Figure 4b) or neuron-
specific top-down synapses onto apical dendrites (Richards & Lillicrap,
2019). Such architectural features are required for the learning algorithm
in question and are known to exist in a wide range of cortical areas. How-
ever, normative plasticity models should not depend on circuit features that
have been demonstrated not to exist in the modeled system, because spu-
rious architectural features can be used to “cheat” at achieving locality by
postulating unrealistic credit assignment mechanisms (see appendix B). In
what follows, we highlight several particularly important architectural mo-
tifs that have been the focus of recent work.

Unlike the deterministic rate-based models typically used in machine
learning, neurons communicate through discrete action potentials, with
variability due to, for example, synaptic failures or task-irrelevant inputs
(see Figure 2a; Faisal et al., 2008). Normative theories that employ rate-
based activations (Bredenberg et al., 2020; Scellier & Bengio, 2017) or as-
sume that the input-output function of neurons is approximately linear
(Oja, 1982) may not extend to this more realistic discrete, stochastic, and
highly nonlinear setting. Further, such theories inherently produce plastic-
ity rules that ignore the precise relationship between pre- and postsynaptic
spike times and will consequently be unable to capture spike-timing-
dependent plasticity (STDP) phenomenology. Fortunately, learning rules
that were originally formulated using rate-based models have subsequently
been extended to spiking network models to great effect by leveraging
methods that use stochasticity or explicit approximations to enable credit
assignment through nondifferentiable spikes (Bohte et al., 2002; Pfister et al.,
2006; Huh & Sejnowski, 2018; Shrestha & Orchard, 2018; Bellec et al., 2018;
Neftci et al., 2019). Reward-based Hebbian plasticity based on the REIN-
FORCE algorithm (see appendix C) (Williams, 1992) has been generalized
to stochastic spiking networks (Pfister et al., 2006), while real-time recur-
rent learning approximations (Murray, 2019) and predictive coding meth-
ods (Rao & Ballard, 1999) have subsequently been extended to deterministic
spiking networks (Bellec et al., 2020; Brendel et al., 2020). Therefore, a lack
of a generalization to spiking networks is not necessarily a death knell for
anormative theory, but many theories lack either an explicit generalization
to spiking or a clear relationship to STDP, and the mathematical formalism
that defines these methods may require significant modification to accom-
modate the change.
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Figure 2: Architecture and scalability considerations for normative models.
(a) Features of biological networks: separation of excitatory and inhibitory neu-
ron populations, stochastic and spiking input-output functions for individ-
ual neurons, and multilayer, recurrent connectivity. (b) Mechanics of temporal
credit assignment: eligibility traces store information about coactivity through-
out time locally to a synapse and subsequently modify synaptic connections
when paired with feedback information, either online or offline. (c) Increasing
complexity in stimuli (left) and task structure (right). Different sensory features
(e.g., visual, auditory, or spatial information) can all be made more naturalistic
by matching real-world statistics. Task complexity can be modulated by increas-
ing the number of action options (1) and sequential state (s) transitions required
to achieve its goals or by introducing different forms of uncertainty.

Real biological networks have a diversity of cell types with different neu-
rotransmitters and connectivity motifs. At the bare minimum, a normative
model should be able to accommodate Dale’s law (see Figure 2a), which
stipulates that the neurotransmitters released by a neuron are either ex-
citatory or inhibitory but not both (O’Donohue et al., 1985). Though this
might seem like a simple principle, enforcing Dale’s principle can seriously
damage the performance of artificial neural networks without careful ar-
chitectural considerations (Cornford et al., 2021). Furthermore, the mathe-
matical results of many canonical models of synaptic modification rely on
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1254 C. Bredenberg and C. Savin

symmetric connectivity between neurons, including Hopfield networks
(Hopfield, 1982), Boltzmann machines (Ackley et al., 1985), contrastive Heb-
bian learning (Xie & Seung, 2003), and predictive coding (Rao & Ballard,
1999). This symmetry is partially related to the symmetric connectivity re-
quired by the backpropagation algorithm (see appendix B). Symmetric con-
nectivity means that the connection from neuron A to neuron B must be the
same as the reciprocal connection from neuron B to neuron A. It inherently
violates Dale’s law, because it means that entirely excitatory and entirely
inhibitory neurons can never be connected to one another: the positive sign
for one synapse and the negative sign for the reciprocal connection violates
symmetry. Some models, such as Hopfield networks (Sompolinsky & Kan-
ter, 1986) and equilibrium propagation (Ernoult et al., 2020) have been ex-
tended to demonstrate that moderate deviations from symmetry can exist
and still preserve function. Further, a recent mathematical reformulation of
predictive coding has demonstrated that interlayer symmetric connectivity
is not necessary (Golkar et al., 2022). Therefore, recent results indicate that
many canonical models believed to depend on symmetric connectivity can
be improved on.

Many early plasticity models, including Oja’s rule (Oja, 1982) and per-
ceptron learning (Rosenblatt, 1958), as well as more modern model recur-
rent network models focused on learning temporal tasks (Murray, 2019), are
designed to greedily optimize layer-wise objectives, and their mathematical
justifications do not generalize to multilayer architectures. Though greedy
layer-wise optimization may be sufficient for some forms of unsupervised
learning (Illing et al., 2021), it is not clear how such greedy methods would
be able to support many complex supervised or reinforcement learning
tasks humans are known to learn (Lillicrap et al., 2020) that involve coordi-
nating sensorimotor transformations across cortical areas (but see Zador,
2019). Generalizing layer-local learning to multilayer objective functions
has been the focus of much recent work: many multilayer models can be
seen as generalizations of perceptron learning (Bengio, 2014; Hinton et al.,
1995; Rao & Ballard, 1999), with other models such as those derived from
similarity matching (Pehlevan et al., 2017) or Bienenstock-Cooper-Munro
theory (Bienenstock et al., 1982; Cooper, 2004; Intrator & Cooper, 1992) re-
ceiving similar treatment (Obeid et al., 2019; Halvagal & Zenke, 2023). We
will refer to this form of multilayer signal propagation as “spatial” credit
assignment, and will refer to relaying information across time as “tempo-
ral” credit assignment (see Figure 2b and section 2.4). As we will discuss
in the next section, models that do not support temporal credit assignment
are not able to account for learning in inherently sequential tasks.

2.4 Temporal Credit Assignment. Because so many learned biologi-
cally relevant tasks involving temporal decision making (Gold & Shadlen,
2007) or working memory (Compte et al., 2000; Wong & Wang, 2006; Gan-
guli et al., 2008) inherently leverage information from the past to inform
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Desiderata for Normative Models of Synaptic Plasticity 1255

future behavior and because neural signatures associated with these tasks
exhibit rich recurrent dynamics (Brody et al., 2003; Shadlen & Newsome,
2001; Mante et al., 2013; Sohn et al., 2019), many aspects of learning in
the brain require a normative theory of synaptic plasticity that works in
recurrent neural architectures and provides an account of temporal credit
assignment.

As it currently stands, the majority of normative synaptic plasticity
models focus on spatial credit assignment, which presents distinct chal-
lenges when compared to temporal credit assignment (Marschall et al.,
2020). In fact, many theories that provide a potential solution to spatial
credit assignment do so by requiring networks to relax to a steady state
on a timescale much faster than inputs (Hopfield, 1982; Scellier & Bengio,
2017; Bredenberg et al., 2020; Xie & Seung, 2003; Ackley et al., 1985), which
effectively prevents networks from having the rich, slow, internal dynam-
ics required for many temporal motor (Hennequin et al., 2012) and work-
ing memory (Wong & Wang, 2006) tasks. Other methods appear to be
agnostic to the temporal properties of their inputs but have not yet been
combined with existing plasticity rules that perform approximate tempo-
ral credit assignment within local microcircuits (Murray, 2019; Bellec et al.,
2020).

New algorithms do provide potential solutions to temporal credit assign-
ment through either explicit approximation of real-time recurrent learning
(Marschall et al., 2020; Bellec et al., 2020; Murray, 2019), by leveraging prin-
ciples from control theory (Gilra & Gerstner, 2017; Alemi et al., 2018; Meule-
mans et al., 2022), or by leveraging principles of stochastic circuits that are
fundamentally different from traditional explicit gradient-based calculation
methods (Bredenberg et al., 2020; Miconi, 2017). Many use what is called
“eligibility traces” (Izhikevich & Desai, 2003; Gerstner et al., 2018; see Fig-
ure 2b)—a local synaptic record of coactivity—to identify associations be-
tween rewards and neural activity that may have occurred much further
in the past. We suggest that these models capture something fundamental
about learning across time and that much work remains to combine these
with spatial learning rules to construct normative models of full spatiotem-
poral learning.

2.5 Learning during Behavior. The relationship between learning
and behavior can vary widely depending on the experimental context
(see Figure 2b): learning-related changes can occur concomitantly with ac-
tion (Bittner et al., 2015; Sheffield et al., 2017; Grienberger & Magee, 2022)
(“online” learning), during brief periods of quiescence between trials
(Pavlides & Winson, 1989; Bonstrup et al., 2019; Liu et al., 2021), or over pe-
riods of extended sleep (Gulati et al., 2017; Eschenko et al., 2008; Girardeau
et al., 2009) (“offline” learning). Therefore, whether a normative plasticity
model uses offline or online learning should be determined by the experi-
mental context.
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1256 C. Bredenberg and C. Savin

However, many classical algorithms—especially those that support mul-
tilayer spatial credit assignment (Ackley et al., 1985; Xie & Seung, 2003;
Dayan et al., 1995)—are constrained to modeling only offline learning, be-
cause they require distinct training phases, during at least one phase of
which activity of neurons is driven for learning, rather than performative
purposes; these algorithms have begun to be extended to online learn-
ing only recently. For instance, algorithms such as Wake-Sleep (Hinton
et al.,, 1995; Dayan et al., 1995) have been adapted such that the second
phase becomes indistinguishable from perception (Bredenberg et al., 2020;
Ernoult et al., 2020). Other recent models allow for simultaneous multiplex-
ing of top-down learning signals and bottom-up inputs (Greedy et al., 2022),
which enables online learning. These results suggest that future work may
fruitfully adapt existing offline algorithms to provide good models of ex-
plicitly online learning in the brain.

2.6 Scalability in Dimensionality and Complexity. Models of brain
learning need to be able to scale to handle the full complexity of the prob-
lems a given model organism has to solve. However, this is a point that
can be difficult to verify: How can we guarantee that adding more neurons
and more complexity will not make a particular collection of plasticity rules
more effective? As a case study, consider REINFORCE (Williams, 1992), an
algorithm that for the most part satisfies our other desiderata for normative
plasticity for the limited selection of tasks in naturalistic environments that
are explicitly rewarded (see appendix C). However, though REINFORCE
demonstrably performs better than its precursor weight perturbation (Jabri
& Flower, 1992), as the dimensionality of its stimuli, the number of neurons
in the network and the delay time between neural activity and reward in-
crease, the performance of the algorithm decays rapidly both analytically
and in simulations (Werfel et al., 2003). This is primarily caused by the high
variance of gradient estimates provided by the REINFORCE algorithm and
is only partially ameliorated by methods that reduce its variance (Breden-
berg et al., 2021; Ranganath et al., 2014; Mnih & Gregor, 2014; Miconi, 2017).
Thus, adding more complexity to the network architecture actually impairs
learning.

We do not mean to imply that all normative plasticity algorithms should
be demonstrated to meet human-level performance or even that they
should match state-of-the-art machine learning methods. Machine learning
methods profit in many ways from their biological implausibility, and the
human brain itself has orders of magnitude more neural units and synapses
than have ever been simulated on a computer, all of them capable of pro-
cessing totally in parallel. Therefore, direct comparison to the human—or
any other—brain is also not fair. We propose the far softer condition that
as the complexity of input stimuli and tasks increases, within the range
supported by current computational power, plasticity rules derived from
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Figure 3: Testing normative theories. (a) Normative plasticity theories can be
assessed through four different experimental lenses centered on individual neu-
rons, circuits of collectively recorded neurons, the training signals delivered
to a circuit, and the organism’s overall behavior over the course of learning.
(b) Different normative plasticity theories postulate different levels of detail for
the feedback signals received by individual neurons.

normative theory should continue to perform well in both simulation and,
preferably, analytically.

Complexity is multifaceted, and involves features of both stimulus and
task (see Figure 2c). Even stimuli with very high-dimensional structure can
fail to capture critical features of naturalistic stimuli, which can be much
more difficult to learn from; for instance, existing plasticity models have
great difficulty scaling to naturalistic image data sets (Bartunov et al., 2018).
Further, in natural environments, rewards are often provided after long se-
quences of complex actions; supervised feedback is sparse, if present at all;
and an organism’s self-preservation often requires navigating both uncer-
tainty and complex multi-agent interactions. Modern reinforcement learn-
ing algorithms are only just beginning to make progress with some of these
difficulties (Kaelbling et al., 1998; Arjona-Medina et al., 2019; Raposo et al.,
2021; Hung et al., 2019; Zhang et al., 2021), but as yet there are no norma-
tive plasticity models that describe how any of the human capabilities used
to solve these problems could be learned through cellular adaptation. This
suggests that scaling the ability of normative models to handle both com-
plex stimuli and task structures is a major avenue of improvement for future
methods.

2.7 Generating Testable Predictions. Testable predictions can be de-
fined via several different experimental lenses, at the level of (1) individual
neurons or synapses, (2) populations of neurons, (3) the feedback mecha-
nisms that shape learning in neural circuits, and (4) learning at a behav-
ioral level (see Figure 3a). Accurately distinguishing one mechanism from
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1258 C. Bredenberg and C. Savin

another will likely require a synthesis of experiments spanning all four
lenses.

2.7.1 Individual Neurons. Experiments that focus on individual neurons,
including paired-pulse stimulation (Markram et al., 1997), mechanistic
characterizations of plasticity (Graupner & Brunel, 2010), pharmacological
explorations of neuromodulators that induce or modify plasticity (Bear &
Singer, 1986; Reynolds & Wickens, 2002; Froemke et al., 2007; Gu & Singer,
1995), and characterization of local dendritic or microcircuit properties me-
diating plasticity (Froemke et al., 2005; Letzkus et al., 2006; Sjostrom &
Héusser, 2006) form the bulk of the classical literature underlying phe-
nomenological and mechanistic modeling. These studies characterize what
information is locally available at synapses and what can be done with
that information, as well as which properties of cells can be altered in an
experience-dependent fashion.

Existing normative theories differ in the nature of their predictions for
plasticity at individual neurons. Reward-modulated Hebbian theories re-
quire that feedback information be delivered by a neuromodulator like
dopamine, serotonin, or acetylcholine (Frémaux & Gerstner, 2016) and that
this feedback modulates plasticity at the local synapse by changing the
magnitude or sign of plasticity depending on the strength of feedback. In
contrast, some unsupervised normative theories require no feedback mod-
ulation of plasticity (Pehlevan et al., 2015, 2017), and others argue that
detailed feedback information arrives at the apical dendritic arbors of pyra-
midal neurons to modulate plasticity, which is also partially supported in
the hippocampus (Bittner et al., 2015, 2017) and cortex (Larkum et al., 1999;
Letzkus et al., 2006; Froemke et al., 2005; Sjostrom & Héusser, 2006).

Independent of the exact feedback mechanism, models differ in how
temporal associations are formed. Algorithms related to REINFORCE as-
sume that local synaptic eligibility traces integrate over time fluctuations
in coactivity of the post- and presynaptic neuron local to a synapse. These
postulated eligibility traces are stochastic, summing gaussian fluctuations
in activity (Miconi, 2017) that consequently produce temporal profiles sim-
ilar to Brownian motion. In contrast, methods based on approximations to
real-time recurrent learning propose eligibility traces that are determinis-
tic records of coactivity whose time constants are directly connected to the
dynamics of the neuron itself (Bellec et al., 2020), while other hybrid ap-
proaches predict eligibility traces that are deterministic but are related more
to predicted task timescale than the dynamics of the cell (Roth et al., 2018).
Though there do exist known cellular processes that naturally track coac-
tivity, like NMDA receptors (Bi & Poo, 1998), and that store traces of this
coactivity longitudinally, like CaMKII (Graupner & Brunel, 2010), how the
properties of these known biophysical quantities relate to the predictions of
various normative theories, and whether there are other biological alterna-
tives remains unclear.

d-a]0118/008U/NPa )W }98.Ip//:dNY WOol) papeojumoq

0 & 009U/6G08.ET/SHTL/LIIENP

20z 1snbny og uo 3senb Aq ypd-| 291



Desiderata for Normative Models of Synaptic Plasticity 1259

2.7.2 Neural Circuits. The functional effects of plasticity and their re-
lationship to behavior manifest most directly at the level of neural pop-
ulations (Marschall & Savin, 2023). Determining how circuits encode
task-relevant information and affect motor actions requires methods that
record large groups of neurons, such as 2-photon calcium imaging, multi-
electrode recordings, fMRI, EEG, and MEG, as well as methods that ma-
nipulate large populations, like optogenetic (Rajasethupathy et al., 2016)
stimulation.

First, a population-level lens is useful for evaluating hypotheses about
the nature of the objective function, where one starts by training neural net-
works on a battery of objectives and tests which objective produces the clos-
est correspondence between neural activity in the model and that recorded
in the brain. This approach has been used in the ventral (Yamins et al., 2014;
Yamins & DiCarlo, 2016) and dorsal (Mineault et al., 2021) visual streams,
as well as in auditory cortex (Kell et al., 2018) and medial entorhinal cor-
tex (Nayebi et al., 2021). Often changes in artificial neural network activity
throughout time are sufficient to determine the objective optimized by the
network as well as its learning algorithm (Nayebi et al., 2020), an approach
that could also potentially be applied to recorded neural activity over
learning.

Second, circuit recordings could test predictions about the existence of
different phases of the dynamics, as required by some normative models.
For instance, the Wake-Sleep algorithm (Dayan et al., 1995) proposes that
neural circuits should spend extended periods of time (e.g., during dream-
ing) generating similar activity patterns to those evoked by natural stim-
ulus sequences. There is plenty of room for experiments to more clearly
map predictions and components of similar normative models onto well-
documented neural phenomena, such as sleep or potentially replay phe-
nomena (Girardeau et al., 2009; Eschenko et al., 2008).

Finally, some algorithms make specific predictions about inhibitory mi-
crocircuitry. Impression learning, for instance, suggests that a population
of inhibitory interneurons could gate the influence of apical and basal den-
dritic inputs to the activity of pyramidal neurons (Bredenberg et al., 2021),
and some learning algorithms propose that top-down error signals are par-
tially computed by local inhibitory interneurons (Sacramento et al., 2017;
Greedy et al., 2022). Therefore, to completely distinguish different theories,
it may be necessary to analyze the connectivity and plasticity between small
groups of different cell types. Because circuit recording and manipulation
methods often sacrifice temporal resolution (Hong & Lieber, 2019) and have
difficulty inferring biophysical properties of individual synapses and cells,
these methods are best used in concert with single neuron studies to jointly
tease apart the multilevel predictions of various normative models.

2.7.3 Feedback Mechanisms. The most direct way to distinguish norma-
tive plasticity algorithms is on the basis of the nature of their feedback
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1260 C. Bredenberg and C. Savin

mechanisms (see Figure 3b). Though no feedback is necessary for some
unsupervised algorithms, like Oja’s rule, any form of supervised or rein-
forcement learning will require some form of top-down feedback. How-
ever, across models, the level of precision of feedback varies considerably.
The simplest feedback is scalar, conveying reward (Williams, 1992), state
fluctuation (Payeur et al., 2021), or context (e.g., saccade; Illing et al., 2021)
or attention (Roelfsema & Ooyen, 2005; Pozzi et al., 2020) information. Be-
yond this, the space of proposed mechanisms expands considerably: back-
propagation approximations like feedback alignment (Lillicrap et al., 2016)
and random-feedback online learning (RFLO) (Murray, 2019) propose that
random error feedback between layers of neurons can provide a sufficient
learning signal, whereas algorithms based on control theory propose that
low-rank or partially random projections carrying supervised error signals
are sufficient (Gilra & Gerstner, 2017; Alemi et al., 2018). Other algorithms
propose even more detailed feedback, with individual neurons receiving
precise, carefully adapted projections carrying learning-related informa-
tion. These algorithms propose that top-down projections to apical den-
drites (Urbanczik & Senn, 2014) or local interneuron neurons (Bastos et al.,
2012) perform spatial credit assignment, but the nature of this signal can dif-
fer considerably across different algorithms. It could be a supervised target,
carrying information about what the neuron state “should” be to achieve a
goal (Guerguiev et al., 2017; Payeur et al., 2021), or it could be a prediction
of the future state of the neuron (Bredenberg et al., 2021).

So far, different feedback mechanisms have received only partial sup-
port. For example, acetylcholine projections to auditory cortex could sub-
serve a form of reward-based learning: they modulate perceptual learning
(Froemke et al., 2013) and display a diversity of responses related to both
reward and attention (Hangya et al., 2015), but contrary to simple reward-
based learning algorithms, these response properties adapt over the course
of learning in concert with auditory cortex (Guo et al., 2019). This suggests
that while traditional models of reward-modulated Hebbian plasticity may
be correct to a first approximation, a more detailed study of the adaptive
capabilities of neuromodulatory centers may be necessary to update the
theories.

While a growing number of studies indicate that projections to apical
synapses of pyramidal neurons do play a role in inducing plasticity and
that these projections themselves are also plastic (i.e., nonrandom; Bittner
etal.,, 2015, 2017), very little is known about the nature of the signal—a crit-
ical component for distinguishing several different theories. In the visual
system, presentation of unfamiliar images without any form of reward or
supervision can modify both apical and basal dendrites throughout time
(Gillon et al., 2021), and in the hippocampus, apical input to CA1 pyramidal
neurons while animals acclimatize to new spatial environments is sufficient
to induce synaptic plasticity (Bittner et al., 2015, 2017). There is further ev-
idence for explicit motor error signals carried by climbing fiber pathways

d-a]0118/008U/NPa )W }98.Ip//:dNY WOol) papeojumoq

€ 009U/6G08.ET/SYTL/LIENP

20z ¥snbny og uo 3senb Aq jpd-} 2910



Desiderata for Normative Models of Synaptic Plasticity 1261

in the cerebellar system being used for plasticity (Gao et al., 2012; Bouvier
etal., 2018).

In biofeedback training settings, animals can selectively control the fir-
ing rates of individual neurons to satisfy arbitrary experimental conditions
for reward (Fetz, 2007), suggesting the existence of highly flexible credit
assignment systems, which are not constrained by evolutionary predeter-
mination.® Other brain-computer interface (BCI) experiments more directly
quantify the limits of this flexibility. In particular, animals have been shown
to adapt more easily to BCI decoder perturbations that occur within the
manifold of neural activity, relative to outside of manifold perturbations
(Sadtler et al., 2014), which may be reflective of constraints on the credit
assignment system (Feulner & Clopath, 2021) (but see Humphreys et al.,
2022; Payeur et al., 2023). Moreover, recent evidence suggests that apical
dendrites may receive precise learning signals in the retrosplenial cortex
during BCI tasks (Francioni et al., 2023), which could underlie these remark-
able capabilities.

2.7.4 Behavior. In much the same way that psychophysical studies of hu-
man or animal responses define constraints on what the brain’s percep-
tual systems are capable of, behavioral studies of learning can do quite
a lot to describe the range of phenomena that a model of learning must
be able to capture, from operant conditioning (Niv, 2009), to model-based
learning (Doll et al., 2012), rapid language learning (Heibeck & Markman,
1987), unsupervised sensory development (Wiesel & Hubel, 1963), or con-
solidation effects (Stickgold, 2005). Behavioral studies can also outline key
limitations in learning, which are perhaps reflective of the brain’s learn-
ing algorithms—for example, the brain’s failure to perform certain types of
adaptation after critical periods of plasticity (Wiesel & Hubel, 1963).

These existing experimental results stand as (often unmet) targets for
normative theories of plasticity, but in addition, normative theories them-
selves suggest further studies that may test their predictions. In particular,
manipulation of learning mechanisms may have predictable effects on ani-
mals’ behavior, as seen when acetylcholine receptor blockage in mouse au-
ditory cortex prevented reward-based learning in animals (Guo et al., 2019)
and nucleus basalis stimulation during tone perception longitudinally im-
proved animals” discrimination of that tone (Froemke et al., 2013). Other
algorithms have as-yet-untested predictions for behavior; for instance, ex-
perimentally increasing the influence of top-down projections should bias
behavior toward commonly occurring sensory stimuli according to both
predictive coding (Rao & Ballard, 1999; Friston, 2010) and impression learn-
ing (Bredenberg et al., 2021). For other detailed feedback algorithms (see
Figure 3b), manipulating top-down projections may disrupt learning but

*Thisis a challenge for normative plasticity models that predefine the outputs of the
circuit and approximately backpropagate errors from these outputs.
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1262 C. Bredenberg and C. Savin

would have a much more unstructured deleterious effect on perceptual
behavior.

Overall, each experimental lens has its own advantages and disadvan-
tages. Single-neuron studies are excellent for identifying the locally avail-
able variables that affect plasticity, circuit-level studies can help narrow
down the objectives that shape neural responses and identify traces of of-
fline learning, studies of feedback mechanisms can distinguish among dif-
ferent algorithms that postulate different degrees of precision in their feed-
back and in complexity of the teaching signal, and studies of behavior can
place boundaries on what can be learned, as well as serve as a readout for
manipulations of the mechanisms underlying learning. Each focus alone is
insufficient to distinguish among all existing normative models, but in con-
cert they show promise for identifying the neural substrates of adaptation.

3 Conclusion

Normative models of plasticity are compelling because of their potential
to connect our brains’ capacity for adaptation to their constituent synap-
tic modifications. Generating good theories is a critical part of the scientific
process, but finding ways to close the loop by testing key predictions of new
normative models has proved extraordinarily difficult. In this perspective,
we have illustrated some of the sources of this difficulty, have shown how
recent work has progressed on these fronts, and have identified ways for-
ward for future models.

The core of a normative plasticity model is its plasticity rule, which
dictates how a model synapse modifies its strength. To be a normative
model—to explain why the plasticity mechanism is important for the
organism—there must be a concrete demonstration that this plasticity rule
supports adaptation critical for system-wide goals like processing sensory
signals or obtaining rewards (see section 2.1). However, this system-wide
goal must be achieved using only local information (see section 2.2). These
two needs of a normative plasticity model are the fundamental source of
tension: it is very difficult to demonstrate that a proposed plasticity rule is
both local and optimizes a system-wide objective (see appendix B). Insuf-
ficient or partial resolution of this fundamental tension produces norma-
tive models that satisfy the other desiderata to a lesser degree; namely, they
struggle to map accurately onto neural hardware (see section 2.3) or han-
dle complex temporal stimuli and tasks online (see sections 2.4 to 2.6). To
provide a case study of how our desiderata come to be satisfied (or not)
in practice, we have included a tutorial for the REINFORCE algorithm in
appendix C.

In this review, we have organized emerging theories according to how
they satisfy and improve on our desiderata, as well as by how they can
be tested. Theoreticians can use our desiderata (see section 2.1 to 2.6) and
Table 1 as guides for where theoretical development is needed in order
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1264 C. Bredenberg and C. Savin

Table 2: Examples of Testable Predictions for Normative Plasticity Models.

Algorithm Testable Predictions
REINFORCE Reward signals modulate plasticity
(Williams, 1992) Stochastic eligibility traces
Oja (Oja, 1982) Exclusively Hebbian plasticity
Pred. Coding Feedforward propagation of prediction errors
(Rao & Ballard, 1999) Approx. symmetric feedback connectivity
Wake-Sleep Offline generative replay driven by top-down inputs
(Dayan et al., 1995) Top-down predictive inputs drive bottom-up plasticity
Approx. Gradient Neuron-specific top-down errors drive plasticity
(Lillicrap et al., 2016; Smooth eligibility traces

Akrout et al., 2019)
Equil. Prop. The sign of plasticity changes
(Scellier & Bengio, 2017) while receiving instructive feedback
Target Prop. Top-down target inputs drive bottom-up plasticity

(Bengio, 2014)

to render normative models more biologically accurate and easier to test,
while experimentalists can use the summary of their experimental predic-
tions (see Table 2) to identify tests that distinguish different normative mod-
els from one another in specific neural systems. Even if existing algorithms
prove not to be implemented exactly in the brain, they can provide key in-
sights into how local synaptic modifications can produce valuable improve-
ments in both behavior and perception for an organism. It seems sensible to
use these algorithms as a springboard to produce more biologically realistic
and powerful theories.

As the diversity of the experimental preparations suggests, there are in-
creasingly strong arguments for several fundamentally different plasticity
algorithms instantiated in different areas of the brain and across different
organisms, subserving different functions. It is quite likely that many plas-
ticity mechanisms work in concert to produce learning as it manifests in our
perception and behavior. It is our belief that well-articulated normative the-
ories can serve as the building blocks of a conceptual framework that tames
this diversity and allows us to understand the brain’s tremendous capacity
for adaptation.

Appendix A: The Unidentifiability of an Objective

In this section we illustrate why the choice of objective function for a nor-
mative plasticity model is never uniquely determined by data. We consider
two situations: the system has already settled to its optimal setting of its
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Desiderata for Normative Models of Synaptic Plasticity 1265

weights, W*, and in the second we are able to observe the system’s plastic-
ity update AW.

A.1 Unidentifiability Based on an Optimum. Suppose that some set-
ting of synaptic weights W* minimizes an objective function £: L(W*) <
L(W) YW. We might be tempted to argue that because W* minimizes £, £
must be the objective that the system is minimizing. However, an infinite
variety of alternative objectives shares the same minimum. To see this, take
anew objective £ = o (L(W)) for any differentiable, monotonically increas-
ing function o (). Then we have

LW*) < L(W) YW (A1)
= 0 (L(WY)) <o (L(W)) YW (A.2)
= L(W*) < £(W) YW, (A.3)

where the second equality follows from the order preservation property of
o (-). This means that W* also minimizes £, that is, we will be unable to
arbitrate between whether the system is “attempting” to minimize £ or £
on the basis of the optimized network state given by W*.

A.2 Unidentifiability Based on an Update Rule. Suppose instead that
we were able to observe the adaptive plasticity mechanism of a system and
were able to verify that it really does decrease an objective function £, that
is, by equation 2.2,

%(W)TAW <0OVW. (A.4)

We might now be tempted to argue that by observing the plasticity rule
itself, AW, we will be better able to assert that the system, by virtue of con-
sistently decreasing £, is “attempting” to minimize £. However, the exact
same family of alternative objectives will also be minimized (£ = o (L(W))
for any differentiable, monotonically increasing function o (-)). To see this,

we observe

j—‘i’(W)TAW <0VW (A5)
do(L(W)) dL &
~EW) T W) AW < 0vW (A.6)
L . .

= N(W) AW < 0 YW, (A7)

where the first implication follows from the fact that o () is differentiable
and increasing (it has strictly positive derivative), and the second implica-
tion follows from the chain rule. This implies that plasticity rules (AW) and
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1266 C. Bredenberg and C. Savin

trained neural circuits (W*) can at most partially constrain the space of vi-
able objective functions the system could be minimizing.

Appendix B: Why Can’t the Brain Do Explicit Gradient Descent? _______

We have provided one surefire way to decrease an objective function by
modifying the parameters of a neural network—simply take small steps in
the direction of the gradient of the loss (see section 2.1). To appreciate the
challenges faced by theories of normative plasticity, it's important to un-
derstand why a biological system could not do this. In this section we pro-
vide a simplified argument as to why gradient descent within multilayer
neural networks produces parameter updates, thus failing our most crit-
ical desideratum for a normative plasticity theory (see section 2.2). More
detailed arguments for multilayer neural networks can be found here (Lil-
licrap et al., 2020), and descriptions of why gradient descent becomes even
more implausible for recurrent neural networks trained with either back-
propagation through time (Werbos, 1990) or real-time recurrent learning
(Williams & Zipser, 1989) can be found here (Marschall et al., 2020).

The weight transport problem is the most basic reason that gradient de-
scent is implausible for neural networks. Suppose that we have a stimulus-
dependent network response, r(W™") = f(Ws), where ris an N x 1 vector
and W is an N x N° weight matrix mapping stimuli s into responses after
a pointwise nonlinearity f(-). This network response is decoded into a net-
work output, o( W, s) = W (W), where W isa 1 x N vector mapping
network responses into a scalar output. Now suppose for simplicity that
our loss for a single stimulus example is given by

L= (6-oW"s)). (B.1)

N[ =

This objective is trying to bring the stimulus-dependent network response
o(W, s) close to the target output 6 and is zero if and only if 0 = 6. A reason-
able hypothesis would be that the gradient of this objective function with
respect to a synaptic weight, WZ’, will produce a parameter update that is

local: we will see that this is not true. Taking the gradient, we have
G] 19
QWi L= E Wi

ij ij

(6— oW, 5))* (B.2)

A 0 in
=(—-0) W o(W™,s) (B.3)
1]
= (06— o) W™ i f:(W"s) (B.4)
Coawn

= (06— 0) W™ f/(W™s)s;. (B.5)
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/ ; R(r,s) R(r,s) .
wout NS P W 2
é é f(Wman

Figure 4: Weight transport and REINFORCE. (a) Traditional gradient descent
propagates a credit assignment signal (6 — 0))W?* to each neuron r;. How this
pathway could have access to W? is unclear: this is the weight transport prob-
lem. (b) REINFORCE resolves the weight transport problem by projecting a
scalar reward signal R(r, s) to all synapses. (c) By correlating this reward with
fluctuations in neural activity, neurons can approximate the true gradient.

Breaking down this final update, we can see three terms: an error, (6 — 0),
the neuron’s output weight W9, and an approximately Hebbian term
f{(W"s)s;, which requires only a combination of pre- and postsynaptic ac-
tivity. One might be tempted to organize the plasticity rule into an error
feedback signal received by the neuron, scaled by a neuron-specific synap-
tic weight W%, and then combined with Hebbian coactivity to produce a
synaptic update (see Figure 4a). This would have the form of a three-factor
plasticity rule (Frémaux & Gerstner, 2016), combining weighted feedback
with pre- and postsynaptic activity. However, the weight transport prob-
lem is as follows: W' provides the strength of a synapse in the feedfor-
ward pathway. How could it possibly come to be that a feedback learning
pathway would have access to the same synaptic weight? The answer is
that there is no evidence for such a system of weight sharing across feed-
forward and feedback pathways in the brain, though there are many hy-
potheses about how such a system could in theory be approximated by a
normative plasticity algorithm. This problem becomes more pronounced in
multilayer networks, where the error signal must be propagated through
many interconnected connectivity layers.

It is also worth noting two key differentiability assumptions inherent
in this approach. For one, we assume not only that the loss function £
is differentiable, but that some “error calculating” part of the brain does
differentiate it. This requires knowledge of what the desired network out-
put 6 should be, which for many real-world tasks is not possible. Second,
we assume that the network activation function f(-) is differentiable. Since
neurons typically emit binary spikes, this differentiability assumption is
not necessarily valid, though several modern methods have circumvented
this problem by using either stochastic neuron models (Williams, 1992;
Dayan & Hinton, 1996) or clever optimization tricks (Bellec et al., 2020). In
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1268 C. Bredenberg and C. Savin

subsequent sections, we describe one canonical algorithm that employs
clever tricks to circumvent the weight transport problem.

Appendix C: REINFORCE

In this section, we provide a mathematical tutorial on the REINFORCE
learning algorithm (Williams, 1992), a mechanism for updating the param-
eters in a stochastic neural network for reinforcement learning objective
functions. Its chief advantages are twofold. First, it only requires you to
be able to evaluate an objective function (the reward received on any given
trial), not the gradient of the objective function with respect to the param-
eters (see Figure 4b). This is very useful in situations in which the rela-
tionship between rewards and network outputs is not clear to an agent, as
would be the case in many reinforcement learning scenarios. Second, un-
der a broad range of biologically reasonable assumptions about a neural
network architecture, the parameter updates produced by this algorithm
are local, meaning the information required for a parameter update would
reasonably be available to a synapse in the brain. This algorithm produces
updates that are within the class of reward-modulated Hebbian plasticity
rules. The chief disadvantage of this algorithm is its comparative data inef-
ficiency relative to backpropagation. In practice, far more data samples (or,
equivalently, much lower learning rates) will be required to produce the
same improvements in performance compared to backpropagation (Werfel
etal., 2003).

The REINFORCE algorithm and minor variations appear in different
fields with different names. It is useful to keep track of these alterna-
tive names because they all use roughly the same derivation, with some
improvements or field-specific modifications. In machine learning, the
algorithm is often referred to as node perturbation (Richards et al., 2019;
Lillicrap et al., 2020; Werfel et al., 2003), because it involves correlating fluc-
tuations in neuron (node) activity with reward signals. In computational
neuroscience, it is sometimes called 3-factor or reward-modulated Hebbian
plasticity (Frémaux & Gerstner, 2016), though REINFORCE is only one
of several algorithms referred to by these blanket terms. In reinforcement
learning, REINFORCE is often treated as a member of the more general
class of policy gradient (Sutton & Barto, 2018) methods, which can be used
to train any parameterized stochastic agent through reinforcement. Policy
gradient methods need not commit to a neural network architecture and
are consequently not always local. Finally, very similar methods are used
for fitting variational Bayesian models and are in these contexts referred
to as either black box variational inference (Ranganath et al., 2014) or neural
variational inference (Mnih & Gregor, 2014).

In what follows, we provide a brief derivation of the REINFORCE learn-
ing algorithm for a one-layer feedforward neural network. We then discuss
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Desiderata for Normative Models of Synaptic Plasticity 1269

the many extensions of the algorithm as well as its strengths and limitations
as a normative plasticity model.

C.1 Network Model. Most neural networks used in machine learning
are deterministic. However, neurons in biological systems fluctuate across
trials and stimulus presentations, so modeling them as stochastic is often
more appropriate. It will turn out that these fluctuations can be used to pro-
duce parameter updates in a way that a deterministic system could not.

First, we assume that there are stimuli drawn from some stimulus dis-
tribution, p(s), and we will define the neural network response to a given
stimulus drawn from this distribution as

r= f(W"s) + o, (C1)

where the 7 is the source of random fluctuations, which, for simplicity, is
drawn from a standard normal distribution (N(0, 1)). In this equation, s is
an N; x 1 vector, W” is an N, x N; matrix, f(-) is the tanh nonlinearity, and
nis an N, x 1 vector.

This equation defines a conditional probability distribution, p(r|s; W")
~ N(f(W's), o2). There is an interesting point here: neuron activities are
now samples from this conditional probability distribution, and so we can
study how neurons behave on average by taking expectations over the
probability distribution.

For simplicity and clarity, we restrict ourselves to this neural architecture
for our derivation, but the basic principles apply more generally to a variety
of noise sources and neural architectures (see section 3).

C.2 Defining the Objective. We assume that our goal is to maximize
some instantaneous reward R(r, s) on average across many different sam-
ples of R(r, s) and s. This allows us to write our objective function O(W™)
as

OW") = /R(r, s)p(rls; Wi")p(s)drds. (C2)

In practice, this integral might be analytically impossible to integrate, but
we can always approximate it (because it is an expectation) using samples
from p(r|s; W) and p(s) as an empirical average over K samples r; and s;:

K
O(W™) ~ % > ORE®,s®). (C.3)
k=0

Procedurally, this would amount to sampling s and r each K times, calcu-
lating the reward for each trial, and taking an average.
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1270 C. Bredenberg and C. Savin

C.3 Taking the Gradient. Now that we have our objective function, we
can evaluate its derivative with respect to a particular synapse Wi’} in the

network:

JOW™")

TwWE = W o [ R optis: Wyp(s)ards )

= /R(r, s)[ W”' p(xls; Wl”):| p(s)drds. (C.5)

We could theoretically stop here and evaluate aw'” =0 p(rls; W™) explicitly.

However, in the same way that we can approx1mate O(Wi") as an em-
pirical average over samples, we would like to be able to approximate
our derivative as an average. To do this requires us to keep our loss in
the form of an expectation ¢ over p(rls; W™)p(s). We notice a convenient
identity: w”’ —p(r|s; W) = w'" exp(log p(r|s; W) = [ 2= W log p(r|s; W™)]

p(xls; W), Wthh is a simple apphcatlon of the chain rule Inserting this
identity into the above equation, we get

ao(wm)
3W§.’]7 /R(r s)[

8W’” log p(x]s; Wl”):| p(x[s; Wi”)p(s)drds (C.6)

—_

K
9 .
- Z r®, s®y | — log p(r(k)ls(k); W™y 1. (C.7)
par (')Wi’]1

><

Though this is an approximation, we note that by the law of large numbers,
we can improve its accuracy arbitrarily by increasing our number of sam-
ples K. In practice, however, taking K = 1 will prove to be the most straight-
forward way to get an update that is local in time; although such an update
will still on average match the true gradient exactly, its high variance can
lead to very inefficient learning.

We have left the derivation completely general up until this point. Dif-
ferent choices of p(r|s; W) will produce different updates. Our particular
choice gives

N,
a .
awm log p(r|5 Wl") — Wm Z i — fi(wlﬂs))Z +C (CS)
1] i=0
) i . .
7 n=0 3W
Fora icul ioht Wit NS el

particular weight Wl.]_, W= 0if i # I, so we have
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Wm ———log p(r|s; W) = 1 (r; — fi(Ws)) f{ (Ws)s;. (C.10)

Plugging this equation into equation C.4 gives the following parameter
update:

K
m 1 1« ‘ ) W k
AW} oc ZR(r<k>, s®) [;(r? "= fi(W"s®)) £ (Ws®)s! >]

8 O(wzn)

c11
8Wll‘l ( )

If we want to update all of our parameters simultaneously using paral-
lelized matrix operations, we can write this as an outer product:

K
AWi”a%ZR(r k>)[ @® — f(winsk @f/(Wi”s("))] s®T (C.12)

where © denotes a Hadamard (elementwise) vector product. Interestingly,
the %(r — f(W'"s)) term here is exactly equal to 2.

C.4 Why Don’t We Need the Derivative of the Loss? One way of in-
terpreting this parameter update is that neural units are correlating fluc-
tuations in their neural activity with the rewards received to approximate

BR ) (see Figure 4c). To see this, first notice that

1 ) )
E [b[—z(r— f(W™s)) © f’(wms)] sT] =0, (C.13)
o p(ls)
for any constant b, because E[r— f(W™ s)] e = 0. If we take b=

E [R(I‘, s)]p (r[s)”
pected value:

then we can rewrite the gradlent without changing its ex-

dO(W™) ) .
"o - [R5 -ERe: s)],,@‘s))[ - ﬁ(wms))ﬂ(wms)sj}
x p(r|s; W™)p(s)drds (C.14)
f —Cov(R(r, s), 1; ) [f{(W™s)s;] p(s)ds, (C.15)

where Cov(R(r,s),1;)= [(R—E [R]pes)) (ti — E [1i] 1)) p(xls)dr is  the
stimulus-conditioned covariance between network firing rates and reward.
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1272 C. Bredenberg and C. Savin

The sample-based parameter update is therefore using the fluctuations in
neural activity to compute this covariance.

C.5 Biological Plausibility Assessment. Now that we have derived
REINFORCE, we can examine its qualities as a normative plasticity the-
ory. First, we ask: Is this algorithm “local” (see section 2.2)? The gradi-
DOW™")

oW
in an environment with stimuli s, firing rates r, and rewards R(r, s) by
R(r,s) [ % (r; — fi(W™"s)) f/(W™s)s;]. To decide whether this could be a plas-
ticity rule implemented (or, more realistically, approximated) by a biological
system, we need to think about what pieces of information a synapse would
have to have available.

First, the synapse needs s;, which amounts to just the presynaptic in-
put, a common feature of any Hebbian synaptic plasticity rule. Second, the
synapse needs %(r,‘ — fi(Ws)) f[(Wi"s). % is a constant, and so can be ab-
sorbed into the learning rate. r; is the postsynaptic firing rate, which is also
a common feature of any Hebbian plasticity rule. (W"s); is the current in-
jected into the postsynaptic neuron, and f;(-) and f/(-) are both monotonic
functions of this current, so it is quite conceivable that these values could be
approximated by a biochemical process. Third, every synapse needs access
to the scalar reward value received on a given trial, R(r, s). This is the most
“nonlocal” information involved in the parameter update; however, there
exist many theories about how neuromodulatory systems in the brain can
deliver information about reward diffusely to many synapses and induce
plasticity (see section 2.2). To achieve this locality, we have implicitly as-
sumed that we are performing gradient descent with respect to a Euclidean
metric (Surace et al., 2020); using different metrics corresponds to premulti-
plying the full weight update vector AW by a positive-definite matrix. The
locality results discussed here hold if this positive definite matrix is diago-
nal, but otherwise nonlocal interactions may be introduced.

We have already demonstrated that REINFORCE is able to perform ap-
proximate gradient descent for reinforcement learning objective functions.
This in itself makes the algorithm very promising as a normative plasticity
model (see section 2.1). Its chief advantage is that it does not require de-
tailed knowledge of the reward function R(r, s) (i.e., how to differentiate
it), which means that an animal could simply receive a reward from its en-
vironment and relay that reward signal diffusely to its synapses. However,
this also restricts the types of objectives that could plausibly be learned by
a neural system. Unsupervised learning objectives like the ELBO require
detailed knowledge of every neural activity of every neuron in the circuit
in order to be calculable, and there is no evidence for downstream neural
circuits that perform such calculations. Therefore, even though in principle
REINFORCE can be used to train a neural network on any objective, explicit
reinforcement is much more plausible than other alternatives.

ent for a particular synapse, can be approximated with samples
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We have only provided a derivation for a single-layer, rate-based neu-
ral network with additive gaussian noise, but REINFORCE extends quite
readily to multilayer (Williams, 1992), spiking (Frémaux et al., 2013), and
recurrent networks (Miconi, 2017) without any loss of locality. This indi-
cates that the algorithm is both architecture-general (see section 2.3) and
can handle temporal environmental structure (see section 2.4). Further, be-
cause a weight update can be calculated in a single trial, animals could use
it to learn online (see section 2.5). The biggest point of failure for REIN-
FORCE is that it scales poorly with high complexity in stimuli or task, large
numbers of neurons, or prolonged delays in receipt of reward (Werfel et al.,
2003; Fiete, 2004; Bredenberg et al., 2021). The greater the number of neu-
rons that contribute to reward and the higher the complexity of the reward
function, the harder it becomes to estimate the correlation between a sin-
gle neuron and reward, which is a prerequisite for the algorithm’s function.
Thus, though the algorithm is an unbiased estimator of the gradient, it can
still be so variable an estimate as to be effectively useless in complex con-
texts. This suggests that if animals exploit the principles of REINFORCE to
update synapses, it is likely an approach paired with other algorithms or
hybridized in a way that allows for better scalability.

The last way to assess REINFORCE is on the basis of how it can be tested
(see section 2.7). The simplest way to test this algorithm is by examining
whether scalar reward-like signals (i.e., R(r, s)) have a multiplicative effect
on local plasticity in a circuit. At a single-neuron level, this corresponds
to identifying neuromodulators that affect plasticity. At a feedback level,
this corresponds to identifying neuromodulatory systems that project to the
circuit in question and observing whether their stimulation or silencing im-
proves or blocks circuit-level plasticity or behavioral learning performance,
respectively. These steps do not identify REINFORCE as the only possibil-
ity, but they narrow down the field of possibilities considerably, removing
all candidate algorithms that either do not require any feedback or require
more detailed feedback signals (see Figure 3a).
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