

Initiating Search

August 21, 2024, 12:17 PM

 References:

Advanced Search:

Author Name: Saint-Louis, Carl Jacky

Search Tasks

Task	Search Type	View
Returned Reference Results (14)	<input checked="" type="checkbox"/> References	View Results
Exported: Viewed Reference Detail	<input checked="" type="checkbox"/> References	View Detail

Copyright © 2024 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reference Detail

[View in CAS SciFinder](#)

Molecular design of a novel thiophene-derived o-nitrobenzyl photolabile protecting group with visible light-absorption for the synthesis of hydroxamic acids

By: Adjei-Sah, Ophelia Asantewaa; Campbell, Albert D. Jr.; [Saint-Louis, Carl J.](#)

0 Substances • 0 Reactions • 0 Citations

Chemoselectivity is a significant barrier that synthetic chemists face while synthesizing organic mols. As a remedy, protective groups (PGs) are used during chem. reactions to prevent highly reactive functional groups from interfering with other functional groups within the same mol. However, as the number of comparable PGs within a mol. increases, it becomes more difficult to remove individual PGs using typical methods such as acidic and basic conditions. PGs have also been used in the synthesis of hydroxamic acids (HAs), a class of organic compounds known for their potential use as precursors for anticancer drugs such as Trichostatin A, a powerful tumor cell inhibitor. Despite their widespread use, HAs are challenging to synthesize and purify due to their high reactivity and the formation of numerous polysubstituted byproducts during the synthetic process. In this study, we use ortho- nitrobenzyl (o-NB) photolabile protecting groups (PPGs) derived from thiophene to solve the problem of HA synthesis and purification. This is a preferable method because it requires only visible light to deprotect these PPGs. However, most o-NB PPGs absorb in the UV region of the electromagnetic spectrum, making them unsuitable for use in biol. systems. Herein, we designed and synthesized a visible light-absorbing thiophene-based o-NB PPG that absorbs in the visible region of the spectrum while avoiding the challenges associated with HA synthesis and purification. To demonstrate the stability of our o-NB PPG, we will selectively deprotect classic PGs using traditional methods without cleaving the HA moiety. With this method, visible light will be used to cleave and generate HA in high yields, with a diagnostic fluorescent byproduct used to quantify the amount of HA formed.

Conference

Source

Abstracts of Papers, ACS Spring 2024, New Orleans, LA, United States

Pages: No pp. given

Conference; Article

2024

CODEN: 70AZN7

[Check Kennesaw Holdings](#)

[View all Sources in CAS SciFinder](#)

Database Information

AN: 2024:1100771

CAplus

Company/Organization

Chemistry and Biochemistry

Kennesaw State University

Kennesaw 30066

United States

Publisher

American Chemical Society

Language

English