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Satellite microwave sensors are well suited for monitoring landscape freeze-thaw

(FT) transitions owing to the strong brightness temperature (TB) or backscatter

response to changes in liquid water abundance between predominantly frozen

and thawed conditions. The FT retrieval is also a sensitive climate indicator with

strong biophysical importance. However, retrieval algorithms can have di�culty

distinguishing the FT status of soils from that of overlying features such as snow

and vegetation, while variable land conditions can also degrade performance.

Here, we applied a deep learning model using a multilayer convolutional

neural network driven by AMSR2 and SMAP TB records, and trained on surface

(∼0–5cm depth) soil temperature FT observations. Soil FT states were classified

for the local morning (6 a.m.) and evening (6 p.m.) conditions corresponding to

SMAP descending and ascending orbital overpasses, mapped to a 9 km polar

grid spanning a five-year (2016–2020) record and Northern Hemisphere domain.

Continuous variable estimates of the probability of frozen or thawed conditions

were derived using a model cost function optimized against FT observational

training data. Model results derived using combined multi-frequency (1.4, 18.7,

36.5 GHz) TBs produced the highest soil FT accuracy over other models derived

using only single sensor or single frequency TB inputs. Moreover, SMAP L-

band (1.4 GHz) TBs provided enhanced soil FT information and performance

gain over model results derived using only AMSR2TB inputs. The resulting soil

FT classification showed favorable and consistent performance against soil FT

observations from ERA5 reanalysis (mean percent accuracy, MPA: 92.7%) and in

situ weather stations (MPA: 91.0%). The soil FT accuracy was generally consistent

between morning and afternoon predictions and across di�erent land covers

and seasons. The model also showed better FT accuracy than ERA5 against

regional weather station measurements (91.0% vs. 86.1% MPA). However, model

confidence was lower in complex terrain where FT spatial heterogeneity was likely
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beneath the e�ectivemodel grain size. Our results provide a high level of precision

in mapping soil FT dynamics to improve understanding of complex seasonal

transitions and their influence on ecological processes and climate feedbacks, with

the potential to inform Earth system model predictions.
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1 Introduction

Landscape freeze-thaw (FT) retrievals from satellite microwave

remote sensing are well established as an effective proxy of

frozen temperature controls on the seasonality of hydro-ecological

processes (Zhang et al., 2004; McDonald and Kimball, 2006;

Parazoo et al., 2018). More than half of the global land

area is affected by seasonal freezing and thawing that can

profoundly affect surface energy budgets and hydrologic activity,

vegetation growth, and ecological trace gas dynamics (Kim et al.,

2017). Microwave sensors are uniquely capable of detecting and

monitoring FT transitions due to the strongmicrowave permittivity

response to changes in landscape liquid water abundance between

predominantly frozen and thawed states. The lower frequency

(i.e.,∼ ≤Ku-band) microwave measurements available from many

operational polar-orbiting satellites are also insensitive to solar

illumination and atmospheric contamination, enabling consistent

observations in nearly all weather conditions.

Relatively long-term FT environmental data records have

been developed by exploiting similar overlapping satellite

microwave brightness temperature (TB) retrievals from the

Scanning Multichannel Microwave Radiometer (SMMR), Special

Sensor Microwave Imager (SSM/I), and Advanced Microwave

Scanning Radiometers (AMSR-E/2) (Jin et al., 2009; Kim et al.,

2017; Hu et al., 2019). These records exploit higher frequency

(Ka-band) microwave channels that are more sensitive to the

surface skin-layer, whereas the NASA Soil Moisture Active Passive

(SMAP) (Entekhabi et al., 2010) and ESA Soil Moisture and Ocean

Salinity (SMOS) (Mecklenburg et al., 2016) satellite Earth missions

produce operational FT classification records from lower frequency

(L-band) TB retrievals that have greater characteristic sensitivity to

soil (∼0–5 cm depth) conditions under low to moderate vegetation

cover (Rautiainen et al., 2016; Derksen et al., 2017; Roy et al., 2020).

FT classification algorithms have generally exploited the

magnitude of the observed TB difference from a FT reference state

to derive a discrete, categorical classification of the predominant

frozen or non-frozen condition at each time step (Kim et al.,

2017); however, the simple binary nature of the retrieval limits

the potential information available and the utility of the data

for some applications (Bateni et al., 2013; Farhadi et al., 2015).

The sensitivity of FT retrievals to different landscape elements

is affected by the sensor frequency and polarization, with lower

frequency channels having larger characteristic sensitivity to deeper

vegetation, snow, and soil layers (Prince et al., 2018). However,

the classification algorithms and retrievals have had only limited

success in distinguishing soil conditions from the aggregate

landscape FT signal (Bateni et al., 2013; Podest et al., 2014;

Chen et al., 2019; Hu et al., 2019). Most operational satellite FT

products were developed from single sensor observations (e.g.

AMSR, SMAP; Derksen et al., 2017; Kim et al., 2017) and represent

aggregate landscape FT conditions without distinguishing the

FT states of land components such as snow, vegetation, and

soil (Du et al., 2019; Mavrovic et al., 2023). The satellite FT

products generally met mission requirements for global accuracy,

but showed greater uncertainty during seasonal transitions, winter,

and complex landscape conditions (Kim et al., 2019). The lack

of differentiation and precision can limit capabilities for more

effective monitoring and better understanding of the complexity

of the FT transition and its biophysical linkages (Colliander et al.,

2012; Roy et al., 2020).

More sophisticated methods have been developed blending

multi-source information to enhance FT spatial resolution and

accuracy (Johnston et al., 2021; Zhong et al., 2022), to better

distinguish soil FT processes (Gao et al., 2018; Chen et al.,

2019), and to obtain more continuous and probabilistic FT

retrievals (Zwieback et al., 2012; Walker et al., 2022). Empirical

machine learning methods have shown particular promise for FT

classification (Li et al., 2022; Zhong et al., 2022). The resulting

models can provide an efficient means for blending multi-

scale and multi-source data as key predictors, while producing

favorable accuracy without the need for a priori assumptions

about the driving variables or physical processes involved. Unlike

physical retrieval algorithms and process model approaches,

machine-learning methods are also able to provide a robust best-

fit estimation of FT status with minimal bias. However, the

resulting model predictions may only be valid within the domain

and range of conditions defined by the available ground truth

observations used for model training. In addition, the machine

learning approaches currently used in FT classifications are mainly

derived from conventional shallow learningmethods (e.g., Random

Forest; Li et al., 2022; Zhong et al., 2022). Compared with more

sophisticated deep learning (DL) methods, the shallow learning

models typically have simple layered representations of the data

and rely on manually designed features; whereas, DL models

are characterized by successive layered data representations and

automatic feature extraction from the multi-dimensional images

(Schmidhuber, 2015). The DL methods have shown promise in

uncovering subtle or hidden patterns in multi-source geospatial

data sets (DeLancey et al., 2019), but have seen limited application

in addressing satellite FT classification problems.

In this study, we applied a DL framework to develop a

continuous daily record of near-surface soil FT conditions over
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the Northern Hemisphere (NH) and detailed the procedures of

data sampling, preparation, projection, and fusion for training and

validating the DL network. The DL method is a form of machine

learning employing a multi-layer convolutional neural network for

multi-level feature extraction and FT pattern recognition using

satellite observations and other geospatial data encompassing NH

land areas. The DL method was driven by satellite multi-frequency

TB observations from SMAP and AMSR2, and trained using daily

soil temperatures from sparse in situweather stationmeasurements

and gridded meteorological data from global reanalysis. The

resulting soil FT classification record is mapped to a 9 km

resolution NH polar grid consistent with the SMAP TB inputs,

and encompasses a five-year period (2016–2020) defined from

available overlapping SMAP and AMSR2 annual records. Unlike

other more established FT records that define a discrete binary

landscape FT classification, the DL soil FT classification provides

an additional continuous variable estimate of the probability of

frozen soil conditions for each grid cell. The primary objectives

of this study were to: (1) clarify the potential added value to the

DL data model of the SMAP L-band (1.41 GHz) TB observations

in determining soil FT conditions relative to the higher frequency

(18.7, 36.5 GHz) AMSR2TB inputs; and (2) assess the general

performance and accuracy of the estimated soil FT classification.

The following sections describe the data and DL method used

for the soil FT predictions, the resulting product performance

and validation assessment, and a summary of the key results and

their significance.

2 Methods

2.1 Data

The SMAP L-band (1.41 GHz) TB record used to derive

the soil FT classification in this study was obtained from the

SMAP radiometer twice-daily enhanced-resolution TB product

(https://nsidc.org/data/nsidc-0738/versions/2), which is provided

in a 9 km polar EASE-grid 2.0 projection (Brodzik et al., 2020).

Here, the Scatterometer Image Reconstruction (rSIR) interpolation

method originally developed for reconstructing images from raw

scatterometer or radiometer data is used to provide spatially

enhanced gridding of SMAP L1B radiometer half-orbit TB

retrievals (Long et al., 2023). The rSIR interpolation exploits the

increasing TB sampling from converging satellite polar orbital

swaths and provides enhanced (∼30 km) TB spatial resolution

relative to the SMAP native sampling footprint (Long et al., 2023).

The rSIR product is similar to other SMAP enhanced radiometer

half-orbit TB products posted to the same 9 km grid projection,

but derived using a different (Backus-Gilbert) spatial interpolation

method optimized for global operations (Chaubell et al., 2020).

Sampling from the sun-synchronous polar orbiting SMAP sensor

occurs at approximately two-day intervals for land areas above

45◦N, with consistent 6 p.m./a.m. local ascending/descending

orbital overpass sampling times for the vertical (V) and horizontal

(H) polarization TB retrievals. The SMAP rSIR period of record

used for processing extended from March 31, 2015 to January 1,

2021. To construct complete daily records for each a.m. and p.m.

TB time series, missing TB data between satellite swathes were gap-

filled using a weighted average of the two most recent adjacent TB

values within a five-day moving window, as:

Tmissing=Tprev∗
(

1−
Dprev

Dprev + Dnext

)

+Tnext∗(1−
Dnext

Dprev + Dnext
)

(1)

where Tmissing is the missing TB data being filled at a given

location and time step, Tprev is the most recent retrieval before the

missing data, Tnext is the most recent retrieval after the missing

data, Dprev is the number of days between Tmissing and Tprev, and

Dnext is the number of days between Tmissing and Tnext . If no TB

data was present within a given five-day window, the pixel was

then masked out to prevent gaps from being filled with data too

temporally distant.

AMSR2TB data were obtained for the 18.7 GHz and 36.5 GHz

channels, and V and H polarizations overlapping with the same

period of record as that of SMAP. The Japan Aerospace Exploration

Agency GCOM-W1 AMSR2 Level-3 gridded L1R TB data were

obtained in a consistent 10 km resolution global EASE-grid format

(Maeda et al., 2016). The AMSR2TB record includes twice-daily

coverage at higher latitudes owing to a relatively wide sensor swath

and consistent 1:30 a.m./p.m. local sampling from the satellite sun-

synchronous polar orbit. Missing AMSR2TB data were gap-filled in

the same manner as the SMAP data (above). The AMSR2 data were

then reprojected to the same 9 km polar EASE-grid 2.0 format as

the SMAP data using the Python LinearNDInterpolator program

available from the SciPy software package. A distance weighted

Barycentric interpolation method (Hofreither, 2021) was used to

provide a smooth reprojection of the data by considering all nearby

cells when calculating the values for each 9 km polar grid cell.

The above multi-frequency V and H polarized TB records from

SMAP and AMSR2 provided the only dynamic daily inputs to

the DL data model for the soil FT predictions. Additional model

inputs included a static global digital elevation model (Danielson

and Gesch, 2011) aggregated from the 1 km native resolution to

the 9 km polar EASE-grid 2.0 projection. A global land cover

map (Friedl et al., 2010) was used to identify and mask grid cells

dominated by large water bodies, permanent ice and snow, and

other non-soil areas from the model domain. Soil temperature data

from in situ weather station measurements (Table 1) and gridded

global meteorological reanalysis data were used for DL data model

training and validation of the soil FT predictions. Near surface

(0–5 cm depth) soil temperature measurements were obtained for

approximately 800 Northern Hemisphere (NH) weather stations

assembled from theWater and Climate Information System (USDA

Natural Resources Conservation Service, 2017), International

Soil Moisture Network (Dorigo et al., 2021), Global Terrestrial

Network for Permafrost (GTN-P, 2015), and Global Learning

and Observations to Benefit the Environment (GLOBE, 2021)

networks. The distribution of stations used in this study is shown

in Figure 1, although not all stations were active over the entire

study period. For each station location, only the shallowest soil

temperature readings (within 5 cm depth) were selected, and as

close as possible to the SMAP 6 a.m./p.m. local sampling times.

The location of each station measurement was assigned to the
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TABLE 1 Descriptions of the in-situ soil temperature data sets.

Dataset name Description References Website

Global terrestrial network for permafrost

(GTN-P) Circumpolar active layer

monitoring network (CALM) database

Ground temperatures along 1-ha and 1 km2

grids for Alaska and Canadian sites

GTN-P, 2015 https://gtnp.arcticportal.org/

Water and climate information system Soil climate data are collected at automated

Soil Climate Analysis Network (SCAN) sites

throughout the U.S.

USDA Natural Resources

Conservation Service, 2017

https://www.nrcs.usda.gov/

International soil moisture network An international cooperation to establish and

maintain a global in-situ soil moisture and

soil temperature database

Dorigo et al., 2021 https://ismn.earth/en/dataviewer/

Global learning and observations to benefit

the environment

Daily monitoring of the atmosphere along

with soil temperature and moisture

Boger and Bagayoko, 2002 https://www.globe.gov/

FIGURE 1

Shaded relief map showing the distribution of Northern Hemisphere weather station locations used in this study, which included in situ daily soil

temperature measurements for the 2016–2020 period. A total of 804 stations are represented.

nearest 9 km grid cell. If multiple stations were assigned to the same

grid cell, then the associated temperatures were spatially averaged

to produce a single representative value for the cell at each time

step. The a.m. and p.m. soil temperature measurements were then

classified into frozen and non-frozen categories using a constant

0◦C FT threshold.

The weather station soil temperature measurements reflect

actual ground conditions useful for model validation, but the

stations lack consistent sampling and are sparsely located. The

actual number of station measurements also varies over time

and may not be representative of the coarser model and satellite

footprints, which can introduce uncertainty. To compensate for
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the limitations of the sparse station network, we also included

gridded daily surface soil temperatures from ECMWF ERA5

global reanalysis data. ERA5 is a state-of-the-art model and data

reanalysis product produced globally in a 30 km resolution and

hourly time step (Hersbach et al., 2020). For this study, we used

the ERA5 daily 6 a.m. and 6 p.m. Layer 1 (0–7 cm depth) soil

temperatures. The ERA5 temperatures were reprojected to the

9 km polar EASE-grid 2.0 projection using the same method as

the AMSR2 data. ERA5 temperatures were also converted to soil

FT categorical values following the same procedure used for the

in situ temperature processing. Because ERA5 is a model-based

product rather than a direct measurement, we assume that the

in situ soil temperature measurements at the station locations are

more robust for validation, although the station measurements also

have limitations, as noted above.

2.2 Model architecture and training

The DL data model we utilized for soil FT prediction

employs a multi-layer convolutional neural network architecture

called U-Net, originally developed for spatial image segmentation

and pattern recognition (Ronneberger et al., 2015). The U-Net

architecture consists of two parts: an encoder and a decoder. The

encoder generally employs down-sampling to decrease the spatial

dimension of the feature map and increase the number of feature

channels. On the other hand, the decoder utilizes up-sampling

to restore the spatial dimensions, and enrich feature details by

merging the low-level and high-level feature maps across layers

using concatenation operations (Ronneberger et al., 2015).

For the U-Net architecture used in our soil FT predictionmodel

(Figure 2), the encoder performs four down-sampling operations

via maximum-pooling on convolutional blocks, each of which is

defined by two sequences of a 2D convolution operation with 3 by 3

kernel size, followed by 2D batch normalization and leaky rectified

linear units (ReLU) activation (Eckle and Schmidt-Hieber, 2019).

The decoder performs four up-sampling operations via transposed

convolution on the convolutional blocks and four concatenation

operations performed through a skip connection. Finally, an output

classification map is generated via 2D convolution with 3 by 3

kernel size to represent the probabilities of freeze and thaw states

for each pixel at its original resolution. The primary difference

between our model and the standard U-Net is the inclusion of

spatial dropout layers at the end of each convolutional block after

up-sampling or down-sampling operations, with a dropout rate of

20% (Tompson et al., 2015). Dropout is used alongside strong L2

regularization (Neyshabur et al., 2014) to prevent over-saturation

of model weights, which is a particular concern due to the sparse

station temperature data used for model training. This approach

helps prevent overfitting in grid cells with station observations

and anomalous differences in predictions relative to surrounding

grid cells.

Model training and verification were conducted using soil

temperature based FT observations from data years 2017, 2018,

and 2019. The model soil FT predictions were also validated using

FT observations from years 2016 to 2020 that were excluded from

the model training. After each epoch, the resulting models were

evaluated using a combination of data from different training

years, while the best performing model was selected for final

production. Both Binary Cross Entropy (BCE) and local-variational

cost functions (Ruby et al., 2020) were used to maximize the

performance of the model FT predictions against the observational

FT reference data used for model training. BCE is a standard

for binary classification problems such as FT predictions. It

takes the model’s predicted probabilities for frozen or thawed

conditions, compares them to the FT reference defined from

the observation training data, and then penalizes the neural

network based on the distance between the model predicted

and expected values. To obtain a probability distribution over

FT classes for each pixel, an activation function is applied to

the U-Net. The function normalizes the raw network outputs

(logits) into a probability distribution. The output of the model

is passed through a sigmoid activation function to produce

probabilities for each class channel. A probability map is produced

by normalization along each channel dimension and then selecting

the thawed class channel as the final product output. The

probability output of the FT classification can be interpreted

as a measure of the model uncertainty about the classification

decision. It indicates the model confidence or uncertainty in

the estimated surface soil FT conditions given the input satellite

observations and other ancillary data. This procedure pushes the

model predictions to be closer to 0 (indicating 0% likelihood

of thawed condition, signifying frozen) or 1 (100% likelihood

of thawed condition) when there is greater confidence in the

prediction and closer to 0.5 (representing an equal chance of

being classified as frozen or thawed) when the FT status is

uncertain. Therefore, in addition to the discrete binary (0 or 1) FT

classification, the resulting model provides a continuous variable

estimate, ranging between 0 and 1, of the probability of frozen or

thawed conditions.

The local-variation loss function spatially smooths the model

predictions by penalizing differing FT predictions between

neighboring grid cells. Local-variation loss is calculated by taking

the L1-norm of a grid cell and its neighbors vertically and

horizontally, and then summing the vertical and horizontal

components (Luo et al., 2016). This procedure was used to avoid

model overfitting for grid cells containing sparse in situ weather

station data in addition to the more continuous training data

provided from ERA5 reanalysis temperatures, which can lead to

these cells behaving differently from neighboring grid cells lacking

weather station data. A general assumption of this approach is that

a given grid cell will show similar soil FT behavior as neighboring

grid cells except in areas with large FT heterogeneity, which

commonly occurs in complex mountain terrain. A drawback of

the local-variation loss function is that it can impose excessive

smoothing of heterogeneous FT patterns by penalizing predictions

that differ from surrounding grid cells, which may degrade model

performance particularly in mountain regions. To counteract

potentially excessive smoothing, the local-variation loss function

was assigned a relatively low unitless weighting factor (0.1) to

lessen the overall smoothing effect. Model accuracy was evaluated

using the Matthews Correlation Coefficient (MCC). The MCC

accounts for all four factors of the confusion matrix relative

to the respective number of positive and negative elements in

the data, allowing it to work even if there is a large class
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FIGURE 2

U-Net model architecture used in this study, where the blue boxes represent multi-channel feature maps with the number of channels labeled; the

white boxes represent the copied feature maps, and the arrows denote di�erent types of operations performed as detailed in the legend (Conv2D for

2D convolution operation, and 3 × 3, 2 × 2, and 1 × 1 for di�erent kernel sizes).

imbalance (Boughorbel et al., 2017). The MCC was calculated

as follows:

MCC =
TP∗TN − FP∗FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and FN is the number

of false negatives. The MCC values range from 1 for perfectly

correlated predictions to−1 for perfectly uncorrelated predictions.

At the end of each training epoch, the model was saved whenever

a higher MCC score was achieved in relation to the validation

data. We also calculated the F1 score as follows, which combines

precision and recall into a single score for assessing the overall

performance of the U-Net:

F1 =
2TP

2TP + FP + FN
(3)

We trained five different DL data models using the same U-Net

architecture and training data, but with different combinations of

geospatial inputs to predict daily soil FT conditions. Each model

was developed using a different set of satellite TB inputs designed

to clarify the relative utility of the different sensors and microwave

frequencies on the resulting model performance in relation to

soil FT observations from ERA5 reanalysis and in situ weather

station measurements. The five different models were developed

using different combinations of TB inputs as follows: SMAP 1.4

GHz (model 1); AMSR2 18.7 GHz (model 2); AMSR2 36.5 GHz

(model 3); AMSR2 18.7 and 36.5 GHz (model 4); and combined

SMAP 1.4 GHz, AMSR2 18.7 and 36.5 GHz inputs (model 5). All

other ancillary geospatial inputs were consistent across models.

Differences in the resulting model performances in estimating

soil FT were used to gage the relative value and impact of the

different TB frequencies. The five models were developed and

tested for local morning (6 a.m.) conditions aligned with the SMAP

descending orbit TB inputs, and spanning all NH land areas. The

best performing model TB channels from the above comparison

were then used to train a similar model for predicting daily soil

FT conditions for the local evening (6 p.m.) period corresponding

with the SMAP ascending orbital overpass time. Here, both

the SMAP and AMSR a.m. (p.m.) TB records, which represent

different satellite overpass times, were used as model inputs to

estimate soil FT conditions in the morning (evening); whereas, the

model training was conducted using soil temperature observations

selected for local 6 a.m. (6 p.m.) conditions corresponding with

the SMAP sampling times. Two different metrics were used for

evaluating the resulting model soil FT performance. For the model

daily binary FT outputs, the Mean Percent Accuracy (MPA) metric

was used to quantify the percentage of correct predictions to the

overall number of predictions made. For the model probabilistic

(i.e., probability of thawed conditions) outputs, the Brier score

metric was used to assess model performance. The Brier score

ranges between 0 and 1, where a lower score indicates greater
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accuracy. The Brier score is similar to the Mean Squared Error

in measuring how close a probabilistic prediction is to a true

classification and is calculated as:

B =
1

N

N
∑

i=1

(Pi − Ti)
2 (4)

Where N is the number of predictions, Pi is the predicted

probability at time i, Ti is the true frozen or thawed (binary 0 or

1) value at time i.

3 Results

3.1 Identifying the best performing DL
data model

Table 2 shows the performance of the five DL data models

in relation to ERA5 and weather station temperature based

soil FT observations for the entire study period (2016–2020).

Overall, the single-frequency TB models performed worse than

the multi-frequency models. The model using only SMAP TB

inputs showed the lowest performance and accuracy against the

ERA5 reference but had the highest weather station accuracy

of all single frequency models. All of the models showed better

performance against the weather station observations than ERA5,

indicating potential value of the satellite based soil FT classification

records to inform global land model predictions. The dual-channel

AMSR model performed better than the single frequency models,

but the combined AMSR+SMAP (18.7, 36.5, 1.4 GHz) model

showed the best performance of all models, with 3.5 and 2%

improvements over the dual channel AMSR model in relation

to the respective ERA5 and weather station observations. The

combined AMSR + SMAP model, developed for the p.m. period,

showed very similar performance to the a.m. results, and also

showed consistently greater accuracy than all other models tested.

These results imply that the SMAP L-band TB observations have a

different sensitivity to soil FT processes than the higher frequency

AMSR2TB observations. Moreover, the combinedmulti-frequency

observations provide complementary information enabling the

highest soil FT performance.

3.2 Spatial and temporal consistency in
estimated soil FT characteristics

Daily soil FT conditions were estimated over the 2016–2020

study period using the best performing DL data models identified

from the above analysis, which incorporated multi-frequency

TB inputs from overlapping AMSR2 and SMAP sensor records.

Different DL data models were used for estimating morning

(6 a.m.) and evening (6 p.m.) FT conditions from the collocated

orbital TB retrievals. The distribution of the estimated probability

of thawed (and frozen) soil conditions is shown in Figure 3 for four

selected days spanning the NH annual cycle. The probability of

thawed conditions ranges from 0 to 1 and is lower and less extensive

at higher latitudes and altitudes during early spring (March) and

TABLE 2 Overall MPA (%) and Brier scores for the 2016–2020 study

period estimated between each DL data model and ERA5 and weather

station derived soil FT observations.

ERA Weather stations

MPA Brier
score

MPA Brier
score

ERA5 100 N/A 85.0 N/A

SMAP 84.5 0.1038 89.4 0.0883

AMSR18 89.5 0.07661 89.3 0.0880

AMSR36 87.9 0.0851 89.2 0.0892

AMSR18+ 36 90.0 0.0773 90.0 0.0890

AMSR+
SMAP (a.m.)

92.9 0.0508 91.0 0.0769

AMSR+
SMAP (p.m.)

92.4 0.0581 91.1 0.0779

The ERA5 record is compared against itself and the weather station observations as a baseline

for gaging model performance. The different DL data models were derived using SMAP 1.4

GHz (SMAP), AMSR2 18.7 GHz (AMSR18), AMSR2 36.5 GHz (AMSR36), AMSR2 18.5 and

36.5 GHz (AMSR18+ 36), and combined AMSR2 and SMAP (AMSR+ SMAP) TB inputs for

morning (6 a.m.) conditions. The AMSR + SMAP results include both morning and evening

(6 a.m./p.m.) periods. The best performing metrics are highlighted (in bold).

late fall (October) periods. In contrast, the probability of thawed

conditions ismuch greater andmore extensive duringmid-summer

(August). The results capture the large characteristic variation

in FT conditions across the domain, where higher latitudes and

alpine elevations show a generally higher probability of frozen

conditions. The probability of thawed soil conditions is greater at

lower latitudes and elevations, and along coastal margins where

soil conditions have greater exposure to moderating temperatures

and more transient frost events. Frozen (or thawed) conditions

may also occupy a smaller (larger) proportion of a given grid

cell in these areas, manifesting as a lower (higher) estimated

probability. Regions with complex terrain, including the Qinghai-

Tibetan Plateau andNorth American RockyMountain regions, also

show greater heterogeneity in FT conditions due to greater terrain,

land cover, and microclimate variability. The model confidence

and estimated probability of frozen or thawed conditions is also

generally lower in these areas due to the greater FT heterogeneity

relative to the coarse model grid.

The estimated mean annual duration (days) and interannual

variation (±1 SD, days yr−1) in frozen soil conditions over the NH

domain is shown in Figure 4. As expected, frozen soils persist over

a greater portion of the year at higher latitudes and elevations. The

frozen season spans the majority of the annual cycle across the

Arctic, including the Alaskan North Slope, Canadian Northwest

Territories, northern Scandinavia, and northeastern Eurasia. In

contrast, the frozen season covers less than half of the year in

the boreal regions of central and southwestern Alaska, Canada,

and Eurasia. Interannual variability (IAV) in the frozen season

is generally greater at lower latitudes and altitudes, and along

the boundaries of different major air masses and climate regimes.

For example, the northern Great Plains region of North America

shows relatively large frozen season IAV of up to 3 weeks or more,

consistent with frequent shifts in the boundaries between colder

polar and continental interior air masses, and warmer maritime
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FIGURE 3

The estimated probability of thawed soil conditions for four selected days over the 2016 seasonal cycle in the Northern Hemisphere; permanent

ice/snow and other non-soil areas outside of the model domain are shown in gray. The probability of thawed conditions ranges from low (0) to high

(1) and is lower at higher latitudes and altitudes during early spring (March) and late fall (October) periods; in contrast, the probability of thawed

conditions is much greater during mid-summer (August).

and temperate air masses that occur during seasonal transitions.

Significant frozen soil conditions also occur at lower latitudes and

are mainly concentrated in the Qinghai-Tibet Plateau and other

high elevation areas. More sporadic frozen soil conditions are also

located inmountainous areas in Northern Africa, Southern Europe,

and North America.

The mean seasonal progression in NH frozen soil extent

derived from the a.m. FT classification record is also plotted

in Figure 4. Here, frozen soil conditions range from respective

annual maximum to minimum extents between January and July.

The fall (October–December) and spring (March–May) seasonal

transitions coincide with rapid changes in frozen area. The summer

minimum extent of frozen soil conditions is less than the area of

continuous permafrost cover across the Arctic (e.g., Zhang et al.,

2008) because the FT classification is more representative of the

surface of the seasonally thawed soil, or active layer, overlying the

deeper permafrost layer. The IAV in the seasonal maximum frozen

area extent averages ±0.88 percent of the classified NH land area,

excluding permanent ice and snow, and other non-soil areas. The

IAV is also generally larger (±1.03%) during the spring and fall

transition periods. The seasonal progression of the non-frozen soil

area is also represented by the dark gray color in the same plot.

The spatial extent of thawed soils exceeds the frozen area in all

months of the year over the Northern Hemisphere. Non-frozen soil

conditions extend over nearly all of the NHdomain inmid-summer

(Jul-Aug) but contract to cover a minimum of approximately 60%

of the NH in late winter (Jan-Feb), andmainly in the lower latitudes

where frost events are infrequent.

The spatial pattern of the difference in the estimated mean

annual frozen period derived from the soil FT classification records

for the morning (6 a.m.) and evening (6 p.m.) periods is presented

in Figure 5. The mean absolute difference (days yr−1) in the frozen

soil season duration estimated from the a.m. and p.m. records is

24 (SD ± 20) days, which is small compared to the frozen season

length. The a.m. classification shows a generally longer frozen

season than the p.m. classification over more than 77% of the

domain, consistent with the characteristic diurnal cycles of mid-day

thermal maximums and nighttimeminimums. However, a reversed

pattern of longer p.m. than a.m. frozen seasons occurs across much

of the Arctic, northern Europe, western Eurasia, and the Qinghai-

Tibetan Plateau. These regions have generally low statured shrub

and grassland vegetation, where the daily FT cycle under minimal

snow cover may be reversed due to insulating nighttime cloud

cover and associated seasonal and diurnal changes in solar radiation

loading and surface energy exchange (Ross et al., 1996; Lakshmi

et al., 2001). The reversed diurnal pattern may also be an artifact of

greater regional model uncertainty due to the abundance of small

water bodies in the high northern latitudes and their contaminating
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FIGURE 4

Estimated mean annual duration (days) in frozen soil conditions from 2015 to 2020, where large water bodies, permanent ice and other masked areas

are shown in white and gray (top left). The associated interannual variation (IAV = ±1 temporal SD, days yr−1) in the frozen season is presented,

where areas with low variability (<±5 days yr−1) or infrequent frost events are shown in gray (top right). The seasonal progression in the estimated

mean proportional (%) frozen soil extent over the NH domain, excluding non-soil areas, is also shown (bottom) as derived from the a.m. soil FT

record, where the mean frozen area is shaded light gray, and the IAV in frozen area is shown in black; the proportional non-frozen area is

represented by the dark gray shading in the same plot.

influence on the TB observations over land (Du et al., 2016, 2023;

Kim et al., 2019).

The seasonal progression in the estimated probability of frozen

soil conditions is shown with collocated in situ daily air and

soil temperature measurements at selected tundra, boreal forest

and grassland monitoring sites spanning a latitudinal climate and

vegetation gradient (Figure 6). The selected sites are part of the

AmeriFlux tower network (Novick et al., 2018) and are independent

from the model training and validation. The estimated frozen soil

conditions closely track the soil temperature seasonal progression

indicated from the site measurements, ranging between annual

maximum andminimum probabilities from late winter to summer.

Surface air temperatures at the sites show greater variability

and a larger dynamic range that is both colder in winter and

warmer in summer than the observed soil temperatures. The

greater soil temperature stability is consistent with the larger

soil heat capacity than air and the effects of thermal buffering

from insulating winter snow cover at the sites. The probability

of frozen soil conditions is nearly 100% in late winter and

early spring prior to seasonal thawing and corresponding with

frozen soil temperature measurements that are near seasonal lows.

Relatively rapid warming and thawing of soils during the spring

onset coincides with a large drop in the estimated frozen soil

probability. The spring thaw transition begins earlier and includes

more transient thaw and refreeze events at the temperate grassland

site. In contrast, the spring thaw transition occurs later at the

boreal and tundra sites. The estimated probability of frozen soil

conditions is higher and more temporally stable in late winter and

early spring at the Arctic tundra site, consistent with the colder

and more stable conditions preceding spring onset. In contrast, the
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FIGURE 5

Di�erence in estimated mean annual frozen period (days) derived

from the 6 a.m. and 6 p.m. soil FT records (a.m.-p.m.).

temperate grassland site shows a lower and more variable frozen

soil probability coincident with soil temperature measurements

that persist near the 0◦C FT threshold.

The frost-free season indicated by the estimated low probability

in frozen soil conditions spans the summer months and has the

shortest duration at the Arctic tundra site, is intermediate at the

boreal forest site, and has the longest duration at the temperate

grassland site. The fall onset in frozen soil conditions indicated

from the temperature measurements coincides with a persistent

increase in estimated frozen soil probability from the summer

minimum, which begins first at the tundra site, extending to the

boreal site, and occurring last at the grassland site. The probability

of frozen soil conditions shows a general increasing trend into the

winter season coinciding with the continued cooling of soil and

air temperatures after initial freezing. The soils persist near 0◦C

longer than the overlying air temperatures during the fall freeze

transition, which may reflect the influence of thermal buffering

from latent heat release during soil ice formation and the arrival

of seasonal snow cover (Kane et al., 2001; Zhang et al., 2018).

The grassland site shows a relatively low, but temporally varying

probability of frozen soil conditions during the fall transition

coinciding with a persistence of soil temperatures near 0◦C and

transient thaw and refreeze events extending into the winter season.

The tundra site shows a relatively early, but variable increase

in frozen soil conditions in mid-August, which precedes the

arrival of a more stable frozen season by October. Frozen soil

probabilities during this period, while elevated relative to summer

lows, remain low (near 50%) compared with the winter months

and coincide with soil temperature measurements above 0◦C, but

with transient frost events indicated from the air temperature

measurements. The tundra site also shows greater variability in

frozen soil probabilities during the summer season; the larger

variability and uncertainty in the model predictions reflects the

topographic complexity of the surrounding landscape at this site,

which is located in the foothills of the Alaskan Brooks Range. Here,

the greater microclimate and FT spatial heterogeneity encompassed

by the coarse (9 km resolution) model grid cell may be different

from local site conditions represented from a single weather station.

3.3 Validation against ERA5 and weather
station observations

The spatial performance of the DL soil FT classification in

relation to the FT reference data from ERA5 and the weather

station network (WS) is shown in Figure 7. The estimated DL

performance pattern is similar between the MPA and Brier score

metrics, although a lower Brier score indicates better performance.

The estimated DL performance is also similar against both ERA5

and the weather station observations. As expected, the highest

accuracy occurs in lower latitude regions where FT events are a rare

occurrence. Similar high accuracy levels occur over the polar high

latitudes where the frozen season is relatively stable and occupies

a larger portion of the annual cycle. The performance is lower,

but still favorable over northern temperate and boreal regions,

which have longer FT transitional seasons. Lower performance

is indicated over portions of central and eastern North America,

with slightly lower accuracy indicated from ERA5 than the weather

station observations in these areas. These areas are characterized

by dynamic weather and seasonal climate variations affecting

snowmelt and soil FT processes that are difficult to capture from

global climate models (Morcrette et al., 2018; Dutra et al., 2021).

Relatively low accuracy also occurs over high elevation areas and

complex terrain, including the Rocky Mountains and Qinghai-

Tibetan Plateau. The lower apparent skill in these regions is

consistent with the greater spatial complexity in FT conditions,

which may be below the effective resolution of both the soil FT

classification and the sparse station observations, and the global

reanalysis data used for DL training and validation (Liu et al., 2020).

The mean annual and seasonal performance of the DL

estimated soil FT classification record is summarized in Table 3.

Overall, the MPA of the DL results in relation to the ERA5 (and

WS) reference data ranged from 90.1 (83.1) percent in winter to

97.9 (98.9) percent in summer, and 91.5 (91.2) percent during the

spring and fall transition seasons. Differences in model accuracy

between a.m. and p.m. conditions were minimal and within 1.6

(1.0) percent of each other across all seasons. The model accuracy

was also mostly similar against both ERA5 and WS observations,

although the apparent product performance was approximately 8%

lower against theWS observations in winter compared to the ERA5

reference data. The mean annual accuracy of the model soil FT

classification was 92.7 (91.0) percent over the entire NH domain.

The model accuracy was similar among different land covers,

including forest (91.1%) and non-forest (90.6%) types. The model

accuracy was slightly lower, but still favorable against the ERA5

(87.8%) and WS (90.5%) observations when only grid cells with a

significant number (>5 days yr−1) of FT events were considered.

The apparent accuracy of the DL soil FT product is higher than

reported (accuracy 80% to 90.3%) from other similar satellite FT

records derived from SMAP (Derksen et al., 2017) or AMSR (Kim

et al., 2017) TB records. Additional assessment also confirms high
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FIGURE 6

Estimated daily probability (%) of frozen soil conditions at 6 a.m. local time over selected year 2018 for three Ameriflux site locations spanning a

latitudinal, climate, and vegetation gradient. The top plot represents Arctic tundra (Imnavait Creek, AK, 69.6063N, −149.3041W); the middle plot is

boreal evergreen needleleaf forest (Fairbanks AK, 64.8663N, −147.8555W); and the bottom plot is northern temperate grassland (Rosemount MN,

44.6781, −93.0723W). The satellite based frozen soil probabilities represent the 9 km resolution grid cell overlying each site location, relative to

corresponding mean daily air and surface (2 cm depth) soil temperatures from the local site measurements. The horizontal dashed line depicts the

0◦C threshold between pure liquid water and ice.

consistency between the DL and ERA5 annual results with F1 score

0.905. The model accuracy is also higher than the apparent ERA5

accuracy when both are compared to the WS soil FT data. These

results indicate that the product provides a relatively high level of

accuracy and consistency between a.m. and p.m. conditions, across

seasons, and over the NH domain. The product also provides better
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FIGURE 7

Pattern of estimated mean percent accuracy of DL based soil FT predictions for the study period (2016–2020) indicated from ERA5 (top left) and NH

weather station soil temperature records (top right); Brier Scores indicating similar probabilistic soil FT accuracy are also shown against ERA5 (lower

left) and weather station network (lower right) observations for the same period. Here, warmer colors denote better model performance.

TABLE 3 Mean annual and seasonal percent accuracy and Brier scores (shown in parentheses) between model estimated soil FT and ERA5 and Weather

Station (WS) observations.

Annual Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)

ERA5 WS ERA5 WS ERA5 WS ERA5 WS ERA5 WS

ERA 100 86.1 100 83.0 100 94.2 100 89.4 100 73.3

U-Net a.m. 93.0

(0.05)

90.9

(0.06)

92.7

(0.05)

90.2

(0.07)

98.6

(0.01)

99.2

(0.01)

91.2

(0.06)

92.2

(0.06)

89.3

(0.08)

82.6 (0.12)

U-Net p.m. 92.3

(0.06)

91.1

(0.07)

91.3

(0.06)

90.5

(0.07)

97.2

(0.03)

98.7

(0.01)

90.3

(0.07)

91.9

(0.06)

90.9

(0.07)

83.6 (0.12)

The U-Net (model 5) performance is summarized for a.m. and p.m. conditions. Soil FT estimates from ERA5 are also assessed against the in situWS observations for reference.

soil FT accuracy than an advanced global model reanalysis system

against regionalWS network observations for the period examined.

4 Summary and conclusion

We developed a continuous daily classification record of

surface (0–5 cm depth) soil freeze-thaw dynamics spanning all

Northern Hemisphere land areas and informed from satellite

multifrequency TB observations from SMAP and AMSR2 as key

model drivers. A deep learning (DL) method employing a novel

U-Net neural network architecture and trained on integrated

soil temperature observations from ERA5 global reanalysis and

Northern Hemisphere weather stations was used to estimate

twice-daily (6 a.m./p.m. local time) soil FT conditions. Unlike

other satellite-based FT records that commonly represent a

bulk landscape FT retrieval, the DL results are specific to FT

conditions in the surface soil layer by being trained specifically

on soil temperature observations and effectively exploiting TB

observations with different but complimentary sensitivity to soil

conditions and other landscape FT elements.

A comparison of different DL data models developed using

both single frequency and multifrequency TB inputs from AMSR2

and SMAP showed the best performance and accuracy was achieved

by combining AMSR + SMAP inputs. The DL performance

was similar between morning (a.m.) and evening (p.m.) periods,
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while the combinedmulti-frequency TB observations produced the

highest soil FT accuracy and consistency. These results indicate that

the SMAP L-band (1.4 GHz) TB observations provide additional

value over higher frequency (18.7, 36.5 GHz) measurements from

AMSR2 for the soil FT predictions. Moreover, all of the resulting

DL predictions showed better accuracy and performance against

the weather station observations than ERA5, indicating potential

value of the satellite-based soil FT classification records to inform

earth system model predictions.

The resulting daily soil FT classification record is posted to a

9 kmNorthern Hemisphere polar EASE-Grid projection consistent

with the SMAP rSIR spatially enhanced TB inputs (Brodzik et al.,

2020). The product includes a simple binary FT classification

similar to other established satellite microwave FT classification

records (e.g., Derksen et al., 2017; Kim et al., 2017); however,

the product also includes a continuous variable estimate of the

probability of frozen or thawed soil conditions, which may be

more suitable for some applications, including data assimilation

(Farhadi et al., 2015). The resulting soil FT classification effectively

distinguishes soil from other landscape elements, which may

enable better precision and understanding of soil FT controls

on other biophysical processes, including soil decomposition and

greenhouse gas emissions (Kurganova et al., 2007), surface runoff

(Wang et al., 2009), soil erosion and permafrost stability (Guo

et al., 2018; Zhang et al., 2021). The data record contains soil

FT predictions for local morning (6 a.m.) and evening (6 p.m.)

conditions extending from data years 2016 through 2020. Potential

continuity of the data record is enabled from ongoing operations of

the NASA SMAP and JAXA AMSR2 missions. However, product

performance may degrade as the classification record extends

further away from the initial model training period, which may

require periodic model retraining involving a progressively longer

data record to maintain a consistent high level of performance.

The soil FT classification record developed from this study

shows relatively high accuracy and stable performance over the NH

domain and across seasons. The estimated accuracy against soil FT

observations from ERA5 reanalysis and the regional WS network

exceeded 90% for both a.m. and p.m. predictions. The seasonal

variation in product accuracy was small (i.e., within 8%), indicating

stable model performance. The product accuracy is also favorable

and largely consistent across different land cover types, which

differs from other satellite microwave FT retrievals that have shown

degraded performance in forests (Kim et al., 2019; Walker et al.,

2022). Overall, these results indicate a high level of accuracy and

consistent performance relative to other established FT products.

However, the model was trained on FT estimates derived from

soil temperature observations using a static 0◦C threshold to

distinguish between frozen and thawed conditions, whereas the

actual freezing point of soil water may occur at lower temperatures

depending on the type and concentration of dissolved solutes

(e.g., Pardo et al., 2020). The product also shows lower accuracies

over complex mountain regions such as the Rocky Mountains

and Qinghai-Tibetan Plateau. The lower accuracy in these regions

partially reflects the relatively coarse (∼30 km) resolution of the

satellite TB inputs and ERA5 temperatures used for model training

and validation. The available WS network also used for model

training and validation is particularly sparse in the high northern

latitudes and likely fails to capture the large microclimate and FT

spatial heterogeneity in these regions. The use of local variation

loss to prevent model overfitting when attempting to blend the

relatively sparse weather station observations with the full ERA5

coverage may also produce excessive smoothing of temperatures

in regions with complex terrain, leading to a loss of detail in

the FT predictions. While the sparse distribution of available

weather stations limits the model performance, particularly over

complex terrain, continuing performance and spatial resolution

enhancements in the reanalysis data used for model training

may enable additional gains in model accuracy. For example,

the latest generation ERA5-Land reanalysis provides enhanced

(9 km) spatial gridding (Muñoz-Sabater et al., 2021) that may

improve model training over complex terrain and land cover

areas. The model performance may also benefit from the use of

other available land parameters as model inputs, including satellite

observational records of snow cover extent, soil moisture, and land

surface temperature.

The U-Net architecture adapted for this study leverages

the relative strengths of this method for image segmentation

tasks. The method used in this study is similar to the

original U-Net architecture, except for the addition of

dropout layers. Other U-Net variations may further enhance

model performance. Other network architectures, such as

transformers, offer particular strengths in image recognition

(Dosovitskiy et al., 2020) and segmentation (Chen et al.,

2021; Strudel et al., 2021). These alternate architectures may

allow for different training methods that avoid limitations

from local variation loss and the network to generalize

more efficiently.
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