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Satellite microwave sensors are well suited for monitoring landscape freeze-thaw
(FT) transitions owing to the strong brightness temperature (TB) or backscatter
response to changes in liquid water abundance between predominantly frozen
and thawed conditions. The FT retrieval is also a sensitive climate indicator with
strong biophysical importance. However, retrieval algorithms can have difficulty
distinguishing the FT status of soils from that of overlying features such as snow
and vegetation, while variable land conditions can also degrade performance.
Here, we applied a deep learning model using a multilayer convolutional
neural network driven by AMSR2 and SMAP TB records, and trained on surface
(~0-5cm depth) soil temperature FT observations. Soil FT states were classified
for the local morning (6a.m.) and evening (6 p.m.) conditions corresponding to
SMAP descending and ascending orbital overpasses, mapped to a 9km polar
grid spanning a five-year (2016—-2020) record and Northern Hemisphere domain.
Continuous variable estimates of the probability of frozen or thawed conditions
were derived using a model cost function optimized against FT observational
training data. Model results derived using combined multi-frequency (1.4, 18.7,
36.5 GHz) TBs produced the highest soil FT accuracy over other models derived
using only single sensor or single frequency TB inputs. Moreover, SMAP L-
band (1.4 GHz) TBs provided enhanced soil FT information and performance
gain over model results derived using only AMSR2TB inputs. The resulting soil
FT classification showed favorable and consistent performance against soil FT
observations from ERA5 reanalysis (mean percent accuracy, MPA: 92.7%) and in
situ weather stations (MPA: 91.0%). The soil FT accuracy was generally consistent
between morning and afternoon predictions and across different land covers
and seasons. The model also showed better FT accuracy than ERAS5 against
regional weather station measurements (91.0% vs. 86.1% MPA). However, model
confidence was lower in complex terrain where FT spatial heterogeneity was likely
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beneath the effective model grain size. Our results provide a high level of precision
in mapping soil FT dynamics to improve understanding of complex seasonal
transitions and their influence on ecological processes and climate feedbacks, with
the potential to inform Earth system model predictions.
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1 Introduction

Landscape freeze-thaw (FT) retrievals from satellite microwave
remote sensing are well established as an effective proxy of
frozen temperature controls on the seasonality of hydro-ecological
processes (Zhang et al, 2004; McDonald and Kimball, 2006;
Parazoo et al, 2018). More than half of the global land
area is affected by seasonal freezing and thawing that can
profoundly affect surface energy budgets and hydrologic activity,
vegetation growth, and ecological trace gas dynamics (Kim et al.,
2017). Microwave sensors are uniquely capable of detecting and
monitoring FT transitions due to the strong microwave permittivity
response to changes in landscape liquid water abundance between
predominantly frozen and thawed states. The lower frequency
(i.e., ~ <Ku-band) microwave measurements available from many
operational polar-orbiting satellites are also insensitive to solar
illumination and atmospheric contamination, enabling consistent
observations in nearly all weather conditions.

Relatively long-term FT environmental data records have
been developed by exploiting similar overlapping satellite
microwave brightness temperature (TB) retrievals from the
Scanning Multichannel Microwave Radiometer (SMMR), Special
Sensor Microwave Imager (SSM/I), and Advanced Microwave
Scanning Radiometers (AMSR-E/2) (Jin et al., 2009; Kim et al,,
2017; Hu et al,, 2019). These records exploit higher frequency
(Ka-band) microwave channels that are more sensitive to the
surface skin-layer, whereas the NASA Soil Moisture Active Passive
(SMAP) (Entekhabi et al., 2010) and ESA Soil Moisture and Ocean
Salinity (SMOS) (Mecklenburg et al., 2016) satellite Earth missions
produce operational FT classification records from lower frequency
(L-band) TB retrievals that have greater characteristic sensitivity to
soil (~0-5 cm depth) conditions under low to moderate vegetation
cover (Rautiainen et al., 2016; Derksen et al., 2017; Roy et al., 2020).

FT classification algorithms have generally exploited the
magnitude of the observed TB difference from a FT reference state
to derive a discrete, categorical classification of the predominant
frozen or non-frozen condition at each time step (Kim et al,
2017); however, the simple binary nature of the retrieval limits
the potential information available and the utility of the data
for some applications (Bateni et al., 2013; Farhadi et al., 2015).
The sensitivity of FT retrievals to different landscape elements
is affected by the sensor frequency and polarization, with lower
frequency channels having larger characteristic sensitivity to deeper
vegetation, snow, and soil layers (Prince et al, 2018). However,
the classification algorithms and retrievals have had only limited
success in distinguishing soil conditions from the aggregate
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landscape FT signal (Bateni et al., 2013; Podest et al, 2014;
Chen et al., 2019; Hu et al., 2019). Most operational satellite FT
products were developed from single sensor observations (e.g.
AMSR, SMAP; Derksen et al., 2017; Kim et al., 2017) and represent
aggregate landscape FT conditions without distinguishing the
FT states of land components such as snow, vegetation, and
soil (Du et al, 2019; Mavrovic et al., 2023). The satellite FT
products generally met mission requirements for global accuracy,
but showed greater uncertainty during seasonal transitions, winter,
and complex landscape conditions (Kim et al., 2019). The lack
of differentiation and precision can limit capabilities for more
effective monitoring and better understanding of the complexity
of the FT transition and its biophysical linkages (Colliander et al.,
2012; Roy et al., 2020).

More sophisticated methods have been developed blending
multi-source information to enhance FT spatial resolution and
accuracy (Johnston et al, 2021; Zhong et al,, 2022), to better
distinguish soil FT processes (Gao et al, 2018; Chen et al,
2019), and to obtain more continuous and probabilistic FT
retrievals (Zwieback et al., 2012; Walker et al., 2022). Empirical
machine learning methods have shown particular promise for FT
classification (Li et al., 2022; Zhong et al., 2022). The resulting
models can provide an efficient means for blending multi-
scale and multi-source data as key predictors, while producing
favorable accuracy without the need for a priori assumptions
about the driving variables or physical processes involved. Unlike
physical retrieval algorithms and process model approaches,
machine-learning methods are also able to provide a robust best-
fit estimation of FT status with minimal bias. However, the
resulting model predictions may only be valid within the domain
and range of conditions defined by the available ground truth
observations used for model training. In addition, the machine
learning approaches currently used in FT classifications are mainly
derived from conventional shallow learning methods (e.g., Random
Forest; Li et al., 2022; Zhong et al,, 2022). Compared with more
sophisticated deep learning (DL) methods, the shallow learning
models typically have simple layered representations of the data
and rely on manually designed features; whereas, DL models
are characterized by successive layered data representations and
automatic feature extraction from the multi-dimensional images
(Schmidhuber, 2015). The DL methods have shown promise in
uncovering subtle or hidden patterns in multi-source geospatial
data sets (DeLancey et al.,, 2019), but have seen limited application
in addressing satellite FT classification problems.

In this study, we applied a DL framework to develop a
continuous daily record of near-surface soil FT conditions over
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the Northern Hemisphere (NH) and detailed the procedures of
data sampling, preparation, projection, and fusion for training and
validating the DL network. The DL method is a form of machine
learning employing a multi-layer convolutional neural network for
multi-level feature extraction and FT pattern recognition using
satellite observations and other geospatial data encompassing NH
land areas. The DL method was driven by satellite multi-frequency
TB observations from SMAP and AMSR2, and trained using daily
soil temperatures from sparse in situ weather station measurements
and gridded meteorological data from global reanalysis. The
resulting soil FT classification record is mapped to a 9km
resolution NH polar grid consistent with the SMAP TB inputs,
and encompasses a five-year period (2016-2020) defined from
available overlapping SMAP and AMSR2 annual records. Unlike
other more established FT records that define a discrete binary
landscape FT classification, the DL soil FT classification provides
an additional continuous variable estimate of the probability of
frozen soil conditions for each grid cell. The primary objectives
of this study were to: (1) clarify the potential added value to the
DL data model of the SMAP L-band (1.41 GHz) TB observations
in determining soil FT conditions relative to the higher frequency
(18.7, 36.5 GHz) AMSR2TB inputs; and (2) assess the general
performance and accuracy of the estimated soil FT classification.
The following sections describe the data and DL method used
for the soil FT predictions, the resulting product performance
and validation assessment, and a summary of the key results and
their significance.

2 Methods
2.1 Data

The SMAP L-band (1.41 GHz) TB record used to derive
the soil FT classification in this study was obtained from the
SMAP radiometer twice-daily enhanced-resolution TB product
(https://nsidc.org/data/nsidc-0738/versions/2), which is provided
in a 9km polar EASE-grid 2.0 projection (Brodzik et al., 2020).
Here, the Scatterometer Image Reconstruction (rSIR) interpolation
method originally developed for reconstructing images from raw
scatterometer or radiometer data is used to provide spatially
enhanced gridding of SMAP L1B radiometer half-orbit TB
retrievals (Long et al., 2023). The rSIR interpolation exploits the
increasing TB sampling from converging satellite polar orbital
swaths and provides enhanced (~30km) TB spatial resolution
relative to the SMAP native sampling footprint (Long et al., 2023).
The rSIR product is similar to other SMAP enhanced radiometer
half-orbit TB products posted to the same 9km grid projection,
but derived using a different (Backus-Gilbert) spatial interpolation
method optimized for global operations (Chaubell et al., 2020).
Sampling from the sun-synchronous polar orbiting SMAP sensor
occurs at approximately two-day intervals for land areas above
45°N, with consistent 6 p.m./a.m. local ascending/descending
orbital overpass sampling times for the vertical (V) and horizontal
(H) polarization TB retrievals. The SMAP rSIR period of record
used for processing extended from March 31, 2015 to January 1,
2021. To construct complete daily records for each a.m. and p.m.
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TB time series, missing TB data between satellite swathes were gap-
filled using a weighted average of the two most recent adjacent TB
values within a five-day moving window, as:

. Dyext
Dprev + Dyext
(1)

prev

D
prev
Tmissing:T * (1 - m) +Tnext*(1

where Tpjssing is the missing TB data being filled at a given
location and time step, Tpry is the most recent retrieval before the
missing data, Tpex is the most recent retrieval after the missing
data, Dpyey is the number of days between Typissing and Tpyey, and
Dyext is the number of days between Tiyissing and Tipexr. If no TB
data was present within a given five-day window, the pixel was
then masked out to prevent gaps from being filled with data too
temporally distant.

AMSR2 TB data were obtained for the 18.7 GHz and 36.5 GHz
channels, and V and H polarizations overlapping with the same
period of record as that of SMAP. The Japan Aerospace Exploration
Agency GCOM-W1 AMSR2 Level-3 gridded LIR TB data were
obtained in a consistent 10 km resolution global EASE-grid format
(Maeda et al., 2016). The AMSR2 TB record includes twice-daily
coverage at higher latitudes owing to a relatively wide sensor swath
and consistent 1:30 a.m./p.m. local sampling from the satellite sun-
synchronous polar orbit. Missing AMSR2 TB data were gap-filled in
the same manner as the SMAP data (above). The AMSR2 data were
then reprojected to the same 9 km polar EASE-grid 2.0 format as
the SMAP data using the Python LinearNDInterpolator program
available from the SciPy software package. A distance weighted
Barycentric interpolation method (Hofreither, 2021) was used to
provide a smooth reprojection of the data by considering all nearby
cells when calculating the values for each 9 km polar grid cell.

The above multi-frequency V and H polarized TB records from
SMAP and AMSR2 provided the only dynamic daily inputs to
the DL data model for the soil FT predictions. Additional model
inputs included a static global digital elevation model (Danielson
and Gesch, 2011) aggregated from the 1km native resolution to
the 9km polar EASE-grid 2.0 projection. A global land cover
map (Friedl et al., 2010) was used to identify and mask grid cells
dominated by large water bodies, permanent ice and snow, and
other non-soil areas from the model domain. Soil temperature data
from in situ weather station measurements (Table 1) and gridded
global meteorological reanalysis data were used for DL data model
training and validation of the soil FT predictions. Near surface
(0-5 cm depth) soil temperature measurements were obtained for
approximately 800 Northern Hemisphere (NH) weather stations
assembled from the Water and Climate Information System (USDA
Natural Resources Conservation Service, 2017), International
Soil Moisture Network (Dorigo et al., 2021), Global Terrestrial
Network for Permafrost (GTN-P, 2015), and Global Learning
and Observations to Benefit the Environment (GLOBE, 2021)
networks. The distribution of stations used in this study is shown
in Figure 1, although not all stations were active over the entire
study period. For each station location, only the shallowest soil
temperature readings (within 5cm depth) were selected, and as
close as possible to the SMAP 6a.m./p.m. local sampling times.
The location of each station measurement was assigned to the
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TABLE 1 Descriptions of the in-situ soil temperature data sets.
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Dataset name Description References Website
Global terrestrial network for permafrost Ground temperatures along 1-ha and 1 km? GTN-P, 2015 https://gtnp.arcticportal.org/
(GTN-P) Circumpolar active layer grids for Alaska and Canadian sites
monitoring network (CALM) database
Water and climate information system Soil climate data are collected at automated USDA Natural Resources https://www.nrcs.usda.gov/
Soil Climate Analysis Network (SCAN) sites Conservation Service, 2017
throughout the U.S.
International soil moisture network An international cooperation to establishand | Dorigo et al,, 2021 https://ismn.earth/en/dataviewer/
maintain a global in-situ soil moisture and
soil temperature database
Global learning and observations to benefit Daily monitoring of the atmosphere along Boger and Bagayoko, 2002 https://www.globe.gov/
the environment with soil temperature and moisture
150°0'0"W 180°0'0" 150°0'0"E
1 1 Il

3ooo:ollw ooololl

FIGURE 1

Shaded relief map showing the distribution of Northern Hemisphere weather station locations used in this study, which included in situ daily soil
temperature measurements for the 2016—2020 period. A total of 804 stations are represented.

30°0'0"E

nearest 9 km grid cell. If multiple stations were assigned to the same
grid cell, then the associated temperatures were spatially averaged
to produce a single representative value for the cell at each time
step. The a.m. and p.m. soil temperature measurements were then
classified into frozen and non-frozen categories using a constant
0°C FT threshold.
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The weather station soil temperature measurements reflect
actual ground conditions useful for model validation, but the
stations lack consistent sampling and are sparsely located. The
actual number of station measurements also varies over time
and may not be representative of the coarser model and satellite
footprints, which can introduce uncertainty. To compensate for
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the limitations of the sparse station network, we also included
gridded daily surface soil temperatures from ECMWF ERA5
global reanalysis data. ERA5 is a state-of-the-art model and data
reanalysis product produced globally in a 30 km resolution and
hourly time step (Hersbach et al., 2020). For this study, we used
the ERA5 daily 6a.m. and 6 p.m. Layer 1 (0-7cm depth) soil
temperatures. The ERA5 temperatures were reprojected to the
9km polar EASE-grid 2.0 projection using the same method as
the AMSR2 data. ERA5 temperatures were also converted to soil
FT categorical values following the same procedure used for the
in situ temperature processing. Because ERA5 is a model-based
product rather than a direct measurement, we assume that the
in situ soil temperature measurements at the station locations are
more robust for validation, although the station measurements also
have limitations, as noted above.

2.2 Model architecture and training

The DL data model we utilized for soil FT prediction
employs a multi-layer convolutional neural network architecture
called U-Net, originally developed for spatial image segmentation
and pattern recognition (Ronneberger et al., 2015). The U-Net
architecture consists of two parts: an encoder and a decoder. The
encoder generally employs down-sampling to decrease the spatial
dimension of the feature map and increase the number of feature
channels. On the other hand, the decoder utilizes up-sampling
to restore the spatial dimensions, and enrich feature details by
merging the low-level and high-level feature maps across layers
using concatenation operations (Ronneberger et al., 2015).

For the U-Net architecture used in our soil FT prediction model
(Figure 2), the encoder performs four down-sampling operations
via maximum-pooling on convolutional blocks, each of which is
defined by two sequences of a 2D convolution operation with 3 by 3
kernel size, followed by 2D batch normalization and leaky rectified
linear units (ReLU) activation (Eckle and Schmidt-Hieber, 2019).
The decoder performs four up-sampling operations via transposed
convolution on the convolutional blocks and four concatenation
operations performed through a skip connection. Finally, an output
classification map is generated via 2D convolution with 3 by 3
kernel size to represent the probabilities of freeze and thaw states
for each pixel at its original resolution. The primary difference
between our model and the standard U-Net is the inclusion of
spatial dropout layers at the end of each convolutional block after
up-sampling or down-sampling operations, with a dropout rate of
20% (Tompson et al., 2015). Dropout is used alongside strong L2
regularization (Neyshabur et al., 2014) to prevent over-saturation
of model weights, which is a particular concern due to the sparse
station temperature data used for model training. This approach
helps prevent overfitting in grid cells with station observations
and anomalous differences in predictions relative to surrounding
grid cells.

Model training and verification were conducted using soil
temperature based FT observations from data years 2017, 2018,
and 2019. The model soil FT predictions were also validated using
FT observations from years 2016 to 2020 that were excluded from
the model training. After each epoch, the resulting models were
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evaluated using a combination of data from different training
years, while the best performing model was selected for final
production. Both Binary Cross Entropy (BCE) and local-variational
cost functions (Ruby et al, 2020) were used to maximize the
performance of the model FT predictions against the observational
FT reference data used for model training. BCE is a standard
for binary classification problems such as FT predictions. It
takes the model’s predicted probabilities for frozen or thawed
conditions, compares them to the FT reference defined from
the observation training data, and then penalizes the neural
network based on the distance between the model predicted
and expected values. To obtain a probability distribution over
FT classes for each pixel, an activation function is applied to
the U-Net. The function normalizes the raw network outputs
(logits) into a probability distribution. The output of the model
is passed through a sigmoid activation function to produce
probabilities for each class channel. A probability map is produced
by normalization along each channel dimension and then selecting
the thawed class channel as the final product output. The
probability output of the FT classification can be interpreted
as a measure of the model uncertainty about the classification
decision. It indicates the model confidence or uncertainty in
the estimated surface soil FT conditions given the input satellite
observations and other ancillary data. This procedure pushes the
model predictions to be closer to 0 (indicating 0% likelihood
of thawed condition, signifying frozen) or 1 (100% likelihood
of thawed condition) when there is greater confidence in the
prediction and closer to 0.5 (representing an equal chance of
being classified as frozen or thawed) when the FT status is
uncertain. Therefore, in addition to the discrete binary (0 or 1) FT
classification, the resulting model provides a continuous variable
estimate, ranging between 0 and 1, of the probability of frozen or
thawed conditions.

The local-variation loss function spatially smooths the model
predictions by penalizing differing FT predictions between
neighboring grid cells. Local-variation loss is calculated by taking
the Li-norm of a grid cell and its neighbors vertically and
horizontally, and then summing the vertical and horizontal
components (Luo et al., 2016). This procedure was used to avoid
model overfitting for grid cells containing sparse in situ weather
station data in addition to the more continuous training data
provided from ERA5 reanalysis temperatures, which can lead to
these cells behaving differently from neighboring grid cells lacking
weather station data. A general assumption of this approach is that
a given grid cell will show similar soil FT behavior as neighboring
grid cells except in areas with large FT heterogeneity, which
commonly occurs in complex mountain terrain. A drawback of
the local-variation loss function is that it can impose excessive
smoothing of heterogeneous FT patterns by penalizing predictions
that differ from surrounding grid cells, which may degrade model
performance particularly in mountain regions. To counteract
potentially excessive smoothing, the local-variation loss function
was assigned a relatively low unitless weighting factor (0.1) to
lessen the overall smoothing effect. Model accuracy was evaluated
using the Matthews Correlation Coeflicient (MCC). The MCC
accounts for all four factors of the confusion matrix relative
to the respective number of positive and negative elements in
the data, allowing it to work even if there is a large class
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FIGURE 2
U-Net model architecture used in this study, where the blue boxes represent multi-channel feature maps with the number of channels labeled; the
white boxes represent the copied feature maps, and the arrows denote different types of operations performed as detailed in the legend (Conv2D for
2D convolution operation, and 3 x 3,2 x 2, and 1 x 1 for different kernel sizes).

imbalance (Boughorbel et al, 2017). The MCC was calculated
as follows:

TP+TN — FP+FN
(TP + FP)(TP + EN)(IN + FP)(IN + FN)

MCC = (2)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number
of false negatives. The MCC values range from 1 for perfectly
correlated predictions to —1 for perfectly uncorrelated predictions.
At the end of each training epoch, the model was saved whenever
a higher MCC score was achieved in relation to the validation
data. We also calculated the F1 score as follows, which combines
precision and recall into a single score for assessing the overall
performance of the U-Net:

2TP

Fl= ——7——
2TP + FP + FN

A3)

We trained five different DL data models using the same U-Net
architecture and training data, but with different combinations of
geospatial inputs to predict daily soil FT' conditions. Each model
was developed using a different set of satellite TB inputs designed
to clarify the relative utility of the different sensors and microwave
frequencies on the resulting model performance in relation to
soil FT observations from ERA5 reanalysis and in situ weather
station measurements. The five different models were developed
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using different combinations of TB inputs as follows: SMAP 1.4
GHz (model 1); AMSR2 18.7 GHz (model 2); AMSR2 36.5 GHz
(model 3); AMSR2 18.7 and 36.5 GHz (model 4); and combined
SMAP 1.4 GHz, AMSR2 18.7 and 36.5 GHz inputs (model 5). All
other ancillary geospatial inputs were consistent across models.
Differences in the resulting model performances in estimating
soil FT were used to gage the relative value and impact of the
different TB frequencies. The five models were developed and
tested for local morning (6 a.m.) conditions aligned with the SMAP
descending orbit TB inputs, and spanning all NH land areas. The
best performing model TB channels from the above comparison
were then used to train a similar model for predicting daily soil
FT conditions for the local evening (6 p.m.) period corresponding
with the SMAP ascending orbital overpass time. Here, both
the SMAP and AMSR a.m. (p.m.) TB records, which represent
different satellite overpass times, were used as model inputs to
estimate soil FT conditions in the morning (evening); whereas, the
model training was conducted using soil temperature observations
selected for local 6a.m. (6 p.m.) conditions corresponding with
the SMAP sampling times. Two different metrics were used for
evaluating the resulting model soil FT performance. For the model
daily binary FT outputs, the Mean Percent Accuracy (MPA) metric
was used to quantify the percentage of correct predictions to the
overall number of predictions made. For the model probabilistic
(i.e., probability of thawed conditions) outputs, the Brier score
metric was used to assess model performance. The Brier score
ranges between 0 and 1, where a lower score indicates greater
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accuracy. The Brier score is similar to the Mean Squared Error
in measuring how close a probabilistic prediction is to a true
classification and is calculated as:

1
B=—
N -

I

N
(P —Ti) (4)
=1
Where N is the number of predictions, P; is the predicted
probability at time i, T; is the true frozen or thawed (binary 0 or

1) value at time i.

3 Results

3.1 Ildentifying the best performing DL
data model

Table 2 shows the performance of the five DL data models
in relation to ERA5 and weather station temperature based
soil FT observations for the entire study period (2016-2020).
Overall, the single-frequency TB models performed worse than
the multi-frequency models. The model using only SMAP TB
inputs showed the lowest performance and accuracy against the
ERA5 reference but had the highest weather station accuracy
of all single frequency models. All of the models showed better
performance against the weather station observations than ERAS5,
indicating potential value of the satellite based soil FT classification
records to inform global land model predictions. The dual-channel
AMSR model performed better than the single frequency models,
but the combined AMSR+SMAP (18.7, 36.5, 1.4 GHz) model
showed the best performance of all models, with 3.5 and 2%
improvements over the dual channel AMSR model in relation
to the respective ERA5 and weather station observations. The
combined AMSR + SMAP model, developed for the p.m. period,
showed very similar performance to the a.m. results, and also
showed consistently greater accuracy than all other models tested.
These results imply that the SMAP L-band TB observations have a
different sensitivity to soil FT processes than the higher frequency
AMSR2 TB observations. Moreover, the combined multi-frequency
observations provide complementary information enabling the
highest soil FT performance.

3.2 Spatial and temporal consistency in
estimated soil FT characteristics

Daily soil FT conditions were estimated over the 2016-2020
study period using the best performing DL data models identified
from the above analysis, which incorporated multi-frequency
TB inputs from overlapping AMSR2 and SMAP sensor records.
Different DL data models were used for estimating morning
(6a.m.) and evening (6 p.m.) FT conditions from the collocated
orbital TB retrievals. The distribution of the estimated probability
of thawed (and frozen) soil conditions is shown in Figure 3 for four
selected days spanning the NH annual cycle. The probability of
thawed conditions ranges from 0 to 1 and is lower and less extensive
at higher latitudes and altitudes during early spring (March) and
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TABLE 2 Overall MPA (%) and Brier scores for the 2016—2020 study
period estimated between each DL data model and ERAS5 and weather
station derived soil FT observations.

Weather stations

MPA Brier
score

ERA5 100 N/A 85.0 N/A
SMAP 84.5 0.1038 89.4 0.0883
AMSRI18 89.5 0.07661 89.3 0.0880
AMSR36 87.9 0.0851 89.2 0.0892
AMSR18 + 36 90.0 0.0773 90.0 0.0890
AMSR + 92.9 0.0508 91.0 0.0769
SMAP (a.m.)
AMSR + 92.4 0.0581 91.1 0.0779
SMAP (p.m.)

The ERA5 record is compared against itself and the weather station observations as a baseline
for gaging model performance. The different DL data models were derived using SMAP 1.4
GHz (SMAP), AMSR2 18.7 GHz (AMSR18), AMSR2 36.5 GHz (AMSR36), AMSR2 18.5 and
36.5 GHz (AMSR18 + 36), and combined AMSR2 and SMAP (AMSR + SMAP) TB inputs for
morning (6 a.m.) conditions. The AMSR + SMAP results include both morning and evening
(6a.m./p.m.) periods. The best performing metrics are highlighted (in bold).

late fall (October) periods. In contrast, the probability of thawed
conditions is much greater and more extensive during mid-summer
(August). The results capture the large characteristic variation
in FT conditions across the domain, where higher latitudes and
alpine elevations show a generally higher probability of frozen
conditions. The probability of thawed soil conditions is greater at
lower latitudes and elevations, and along coastal margins where
soil conditions have greater exposure to moderating temperatures
and more transient frost events. Frozen (or thawed) conditions
may also occupy a smaller (larger) proportion of a given grid
cell in these areas, manifesting as a lower (higher) estimated
probability. Regions with complex terrain, including the Qinghai-
Tibetan Plateau and North American Rocky Mountain regions, also
show greater heterogeneity in FT conditions due to greater terrain,
land cover, and microclimate variability. The model confidence
and estimated probability of frozen or thawed conditions is also
generally lower in these areas due to the greater FT heterogeneity
relative to the coarse model grid.

The estimated mean annual duration (days) and interannual
variation (£1 SD, days yr~!) in frozen soil conditions over the NH
domain is shown in Figure 4. As expected, frozen soils persist over
a greater portion of the year at higher latitudes and elevations. The
frozen season spans the majority of the annual cycle across the
Arctic, including the Alaskan North Slope, Canadian Northwest
Territories, northern Scandinavia, and northeastern Eurasia. In
contrast, the frozen season covers less than half of the year in
the boreal regions of central and southwestern Alaska, Canada,
and Eurasia. Interannual variability (IAV) in the frozen season
is generally greater at lower latitudes and altitudes, and along
the boundaries of different major air masses and climate regimes.
For example, the northern Great Plains region of North America
shows relatively large frozen season IAV of up to 3 weeks or more,
consistent with frequent shifts in the boundaries between colder
polar and continental interior air masses, and warmer maritime
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1.0

FIGURE 3

The estimated probability of thawed soil conditions for four selected days over the 2016 seasonal cycle in the Northern Hemisphere; permanent
ice/snow and other non-soil areas outside of the model domain are shown in gray. The probability of thawed conditions ranges from low (0) to high
(1) and is lower at higher latitudes and altitudes during early spring (March) and late fall (October) periods; in contrast, the probability of thawed

conditions is much greater during mid-summer (August).

and temperate air masses that occur during seasonal transitions.
Significant frozen soil conditions also occur at lower latitudes and
are mainly concentrated in the Qinghai-Tibet Plateau and other
high elevation areas. More sporadic frozen soil conditions are also
located in mountainous areas in Northern Africa, Southern Europe,
and North America.

The mean seasonal progression in NH frozen soil extent
derived from the a.m. FT classification record is also plotted
in Figure 4. Here, frozen soil conditions range from respective
annual maximum to minimum extents between January and July.
The fall (October-December) and spring (March-May) seasonal
transitions coincide with rapid changes in frozen area. The summer
minimum extent of frozen soil conditions is less than the area of
continuous permafrost cover across the Arctic (e.g., Zhang et al,
2008) because the FT classification is more representative of the
surface of the seasonally thawed soil, or active layer, overlying the
deeper permafrost layer. The IAV in the seasonal maximum frozen
area extent averages +0.88 percent of the classified NH land area,
excluding permanent ice and snow, and other non-soil areas. The
TAV is also generally larger (£1.03%) during the spring and fall
transition periods. The seasonal progression of the non-frozen soil
area is also represented by the dark gray color in the same plot.
The spatial extent of thawed soils exceeds the frozen area in all
months of the year over the Northern Hemisphere. Non-frozen soil
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conditions extend over nearly all of the NH domain in mid-summer
(Jul-Aug) but contract to cover a minimum of approximately 60%
of the NH in late winter (Jan-Feb), and mainly in the lower latitudes
where frost events are infrequent.

The spatial pattern of the difference in the estimated mean
annual frozen period derived from the soil FT classification records
for the morning (6 a.m.) and evening (6 p.m.) periods is presented
in Figure 5. The mean absolute difference (days yr=!) in the frozen
soil season duration estimated from the a.m. and p.m. records is
24 (SD = 20) days, which is small compared to the frozen season
length. The a.m. classification shows a generally longer frozen
season than the p.m. classification over more than 77% of the
domain, consistent with the characteristic diurnal cycles of mid-day
thermal maximums and nighttime minimums. However, a reversed
pattern of longer p.m. than a.m. frozen seasons occurs across much
of the Arctic, northern Europe, western Eurasia, and the Qinghai-
Tibetan Plateau. These regions have generally low statured shrub
and grassland vegetation, where the daily FT cycle under minimal
snow cover may be reversed due to insulating nighttime cloud
cover and associated seasonal and diurnal changes in solar radiation
loading and surface energy exchange (Ross et al., 1996; Lakshmi
etal., 2001). The reversed diurnal pattern may also be an artifact of
greater regional model uncertainty due to the abundance of small
water bodies in the high northern latitudes and their contaminating
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FIGURE 4

represented by the dark gray shading in the same plot.

g £ g
Month

Estimated mean annual duration (days) in frozen soil conditions from 2015 to 2020, where large water bodies, permanent ice and other masked areas
are shown in white and gray (top left). The associated interannual variation (IAV = +1 temporal SD, days yr~!) in the frozen season is presented,
where areas with low variability (<45 days yr—') or infrequent frost events are shown in gray (top right). The seasonal progression in the estimated
mean proportional (%) frozen soil extent over the NH domain, excluding non-soil areas, is also shown (bottom) as derived from the a.m. soil FT
record, where the mean frozen area is shaded light gray, and the IAV in frozen area is shown in black; the proportional non-frozen area is

g ¢

influence on the TB observations over land (Du et al., 2016, 2023;
Kim et al., 2019).

The seasonal progression in the estimated probability of frozen
soil conditions is shown with collocated in situ daily air and
soil temperature measurements at selected tundra, boreal forest
and grassland monitoring sites spanning a latitudinal climate and
vegetation gradient (Figure 6). The selected sites are part of the
AmeriFlux tower network (Novick et al., 2018) and are independent
from the model training and validation. The estimated frozen soil
conditions closely track the soil temperature seasonal progression
indicated from the site measurements, ranging between annual
maximum and minimum probabilities from late winter to summer.
Surface air temperatures at the sites show greater variability
and a larger dynamic range that is both colder in winter and
warmer in summer than the observed soil temperatures. The
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greater soil temperature stability is consistent with the larger
soil heat capacity than air and the effects of thermal buffering
from insulating winter snow cover at the sites. The probability
of frozen soil conditions is nearly 100% in late winter and
early spring prior to seasonal thawing and corresponding with
frozen soil temperature measurements that are near seasonal lows.
Relatively rapid warming and thawing of soils during the spring
onset coincides with a large drop in the estimated frozen soil
probability. The spring thaw transition begins earlier and includes
more transient thaw and refreeze events at the temperate grassland
site. In contrast, the spring thaw transition occurs later at the
boreal and tundra sites. The estimated probability of frozen soil
conditions is higher and more temporally stable in late winter and
early spring at the Arctic tundra site, consistent with the colder
and more stable conditions preceding spring onset. In contrast, the
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FIGURE 5
Difference in estimated mean annual frozen period (days) derived
from the 6a.m. and 6 p.m. soil FT records (a.m.-p.m.).

temperate grassland site shows a lower and more variable frozen
soil probability coincident with soil temperature measurements
that persist near the 0°C FT threshold.

The frost-free season indicated by the estimated low probability
in frozen soil conditions spans the summer months and has the
shortest duration at the Arctic tundra site, is intermediate at the
boreal forest site, and has the longest duration at the temperate
grassland site. The fall onset in frozen soil conditions indicated
from the temperature measurements coincides with a persistent
increase in estimated frozen soil probability from the summer
minimum, which begins first at the tundra site, extending to the
boreal site, and occurring last at the grassland site. The probability
of frozen soil conditions shows a general increasing trend into the
winter season coinciding with the continued cooling of soil and
air temperatures after initial freezing. The soils persist near 0°C
longer than the overlying air temperatures during the fall freeze
transition, which may reflect the influence of thermal buffering
from latent heat release during soil ice formation and the arrival
of seasonal snow cover (Kane et al, 2001; Zhang et al., 2018).
The grassland site shows a relatively low, but temporally varying
probability of frozen soil conditions during the fall transition
coinciding with a persistence of soil temperatures near 0°C and
transient thaw and refreeze events extending into the winter season.
The tundra site shows a relatively early, but variable increase
in frozen soil conditions in mid-August, which precedes the
arrival of a more stable frozen season by October. Frozen soil
probabilities during this period, while elevated relative to summer
lows, remain low (near 50%) compared with the winter months
and coincide with soil temperature measurements above 0°C, but
with transient frost events indicated from the air temperature
measurements. The tundra site also shows greater variability in
frozen soil probabilities during the summer season; the larger
variability and uncertainty in the model predictions reflects the
topographic complexity of the surrounding landscape at this site,
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which is located in the foothills of the Alaskan Brooks Range. Here,
the greater microclimate and FT spatial heterogeneity encompassed
by the coarse (9 km resolution) model grid cell may be different
from local site conditions represented from a single weather station.

3.3 Validation against ERAS and weather
station observations

The spatial performance of the DL soil FT classification in
relation to the FT reference data from ERA5 and the weather
station network (WS) is shown in Figure 7. The estimated DL
performance pattern is similar between the MPA and Brier score
metrics, although a lower Brier score indicates better performance.
The estimated DL performance is also similar against both ERA5
and the weather station observations. As expected, the highest
accuracy occurs in lower latitude regions where FT events are a rare
occurrence. Similar high accuracy levels occur over the polar high
latitudes where the frozen season is relatively stable and occupies
a larger portion of the annual cycle. The performance is lower,
but still favorable over northern temperate and boreal regions,
which have longer FT transitional seasons. Lower performance
is indicated over portions of central and eastern North America,
with slightly lower accuracy indicated from ERAS5 than the weather
station observations in these areas. These areas are characterized
by dynamic weather and seasonal climate variations affecting
snowmelt and soil FT processes that are difficult to capture from
global climate models (Morcrette et al., 2018; Dutra et al,, 2021).
Relatively low accuracy also occurs over high elevation areas and
complex terrain, including the Rocky Mountains and Qinghai-
Tibetan Plateau. The lower apparent skill in these regions is
consistent with the greater spatial complexity in FT' conditions,
which may be below the effective resolution of both the soil FT
classification and the sparse station observations, and the global
reanalysis data used for DL training and validation (Liu et al., 2020).

The mean annual and seasonal performance of the DL
estimated soil FT classification record is summarized in Table 3.
Overall, the MPA of the DL results in relation to the ERA5 (and
WS) reference data ranged from 90.1 (83.1) percent in winter to
97.9 (98.9) percent in summer, and 91.5 (91.2) percent during the
spring and fall transition seasons. Differences in model accuracy
between a.m. and p.m. conditions were minimal and within 1.6
(1.0) percent of each other across all seasons. The model accuracy
was also mostly similar against both ERA5 and WS observations,
although the apparent product performance was approximately 8%
lower against the WS observations in winter compared to the ERA5
reference data. The mean annual accuracy of the model soil FT
classification was 92.7 (91.0) percent over the entire NH domain.
The model accuracy was similar among different land covers,
including forest (91.1%) and non-forest (90.6%) types. The model
accuracy was slightly lower, but still favorable against the ERA5
(87.8%) and WS (90.5%) observations when only grid cells with a
significant number (>5 days yr~!) of FT events were considered.
The apparent accuracy of the DL soil FT product is higher than
reported (accuracy 80% to 90.3%) from other similar satellite FT
records derived from SMAP (Derksen et al., 2017) or AMSR (Kim
et al,, 2017) TB records. Additional assessment also confirms high
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FIGURE 6
Estimated daily probability (%) of frozen soil conditions at 6 a.m. local time over selected year 2018 for three Ameriflux site locations spanning a
latitudinal, climate, and vegetation gradient. The top plot represents Arctic tundra (Imnavait Creek, AK, 69.6063N, —149.3041W); the middle plot is
boreal evergreen needleleaf forest (Fairbanks AK, 64.8663N, —147.8555W); and the bottom plot is northern temperate grassland (Rosemount MN,
44.6781, —93.0723W). The satellite based frozen soil probabilities represent the 9 km resolution grid cell overlying each site location, relative to
corresponding mean daily air and surface (2 cm depth) soil temperatures from the local site measurements. The horizontal dashed line depicts the
0°C threshold between pure liquid water and ice.

consistency between the DL and ERA5 annual results with F1 score
0.905. The model accuracy is also higher than the apparent ERA5
accuracy when both are compared to the WS soil FT data. These
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results indicate that the product provides a relatively high level of
accuracy and consistency between a.m. and p.m. conditions, across
seasons, and over the NH domain. The product also provides better
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FIGURE 7

Mean Annual Accuracy (%)

Pattern of estimated mean percent accuracy of DL based soil FT predictions for the study period (2016—-2020) indicated from ERA5 (top left) and NH
weather station soil temperature records (top right); Brier Scores indicating similar probabilistic soil FT accuracy are also shown against ERAS (lower
left) and weather station network (lower right) observations for the same period. Here, warmer colors denote better model performance.

0.05

0.00

TABLE 3 Mean annual and seasonal percent accuracy and Brier scores (shown in parentheses) between model estimated soil FT and ERAS5 and Weather

Station (WS) observations.

Spring (MAM) Summer (JJA) Fall (SON) Winter (DJF)
ERAS5 WS ERAS ERAS ERAS
ERA 100 86.1 100 83.0 100 942 100 89.4 100 73.3
U-Netam. 93.0 90.9 927 90.2 98.6 992 912 922 89.3 82.6 (0.12)
(0.05) (0.06) (0.05) (0.07) (0.01) (0.01) (0.06) (0.06) (0.08)
U-Net p.m. 923 911 913 90.5 97.2 98.7 903 91.9 90.9 83.6 (0.12)
(0.06) 0.07) (0.06) (0.07) (0.03) (0.01) (0.07) (0.06) 0.07)

The U-Net (model 5) performance is summarized for a.m. and p.m. conditions. Soil FT estimates from ERA5 are also assessed against the in situ WS observations for reference.

soil FT accuracy than an advanced global model reanalysis system
against regional WS network observations for the period examined.

4 Summary and conclusion

We developed a continuous daily classification record of
surface (0-5cm depth) soil freeze-thaw dynamics spanning all
Northern Hemisphere land areas and informed from satellite
multifrequency TB observations from SMAP and AMSR?2 as key
model drivers. A deep learning (DL) method employing a novel
U-Net neural network architecture and trained on integrated
soil temperature observations from ERA5 global reanalysis and
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Northern Hemisphere weather stations was used to estimate
twice-daily (6a.m./p.m. local time) soil FT conditions. Unlike
other satellite-based FT records that commonly represent a
bulk landscape FT retrieval, the DL results are specific to FT
conditions in the surface soil layer by being trained specifically
on soil temperature observations and effectively exploiting TB
observations with different but complimentary sensitivity to soil
conditions and other landscape FT elements.

A comparison of different DL data models developed using
both single frequency and multifrequency TB inputs from AMSR2
and SMAP showed the best performance and accuracy was achieved
by combining AMSR + SMAP inputs. The DL performance
was similar between morning (a.m.) and evening (p.m.) periods,
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while the combined multi-frequency TB observations produced the
highest soil FT accuracy and consistency. These results indicate that
the SMAP L-band (1.4 GHz) TB observations provide additional
value over higher frequency (18.7, 36.5 GHz) measurements from
AMSR?2 for the soil FT predictions. Moreover, all of the resulting
DL predictions showed better accuracy and performance against
the weather station observations than ERA5, indicating potential
value of the satellite-based soil FT classification records to inform
earth system model predictions.

The resulting daily soil FT classification record is posted to a
9 km Northern Hemisphere polar EASE-Grid projection consistent
with the SMAP rSIR spatially enhanced TB inputs (Brodzik et al.,
2020). The product includes a simple binary FT classification
similar to other established satellite microwave FT classification
records (e.g., Derksen et al., 2017; Kim et al, 2017); however,
the product also includes a continuous variable estimate of the
probability of frozen or thawed soil conditions, which may be
more suitable for some applications, including data assimilation
(Farhadi et al.,, 2015). The resulting soil FT classification effectively
distinguishes soil from other landscape elements, which may
enable better precision and understanding of soil FT controls
on other biophysical processes, including soil decomposition and
greenhouse gas emissions (Kurganova et al., 2007), surface runoff
(Wang et al.,, 2009), soil erosion and permafrost stability (Guo
et al., 2018; Zhang et al,, 2021). The data record contains soil
FT predictions for local morning (6a.m.) and evening (6 p.m.)
conditions extending from data years 2016 through 2020. Potential
continuity of the data record is enabled from ongoing operations of
the NASA SMAP and JAXA AMSR2 missions. However, product
performance may degrade as the classification record extends
further away from the initial model training period, which may
require periodic model retraining involving a progressively longer
data record to maintain a consistent high level of performance.

The soil FT classification record developed from this study
shows relatively high accuracy and stable performance over the NH
domain and across seasons. The estimated accuracy against soil FT
observations from ERA5 reanalysis and the regional WS network
exceeded 90% for both a.m. and p.m. predictions. The seasonal
variation in product accuracy was small (i.e., within 8%), indicating
stable model performance. The product accuracy is also favorable
and largely consistent across different land cover types, which
differs from other satellite microwave FT retrievals that have shown
degraded performance in forests (Kim et al., 2019; Walker et al,,
2022). Overall, these results indicate a high level of accuracy and
consistent performance relative to other established FT products.
However, the model was trained on FT estimates derived from
soil temperature observations using a static 0°C threshold to
distinguish between frozen and thawed conditions, whereas the
actual freezing point of soil water may occur at lower temperatures
depending on the type and concentration of dissolved solutes
(e.g., Pardo et al., 2020). The product also shows lower accuracies
over complex mountain regions such as the Rocky Mountains
and Qinghai-Tibetan Plateau. The lower accuracy in these regions
partially reflects the relatively coarse (~30km) resolution of the
satellite TB inputs and ERA5 temperatures used for model training
and validation. The available WS network also used for model
training and validation is particularly sparse in the high northern
latitudes and likely fails to capture the large microclimate and FT
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spatial heterogeneity in these regions. The use of local variation
loss to prevent model overfitting when attempting to blend the
relatively sparse weather station observations with the full ERA5
coverage may also produce excessive smoothing of temperatures
in regions with complex terrain, leading to a loss of detail in
the FT predictions. While the sparse distribution of available
weather stations limits the model performance, particularly over
complex terrain, continuing performance and spatial resolution
enhancements in the reanalysis data used for model training
may enable additional gains in model accuracy. For example,
the latest generation ERA5-Land reanalysis provides enhanced
(9km) spatial gridding (Munoz-Sabater et al, 2021) that may
improve model training over complex terrain and land cover
areas. The model performance may also benefit from the use of
other available land parameters as model inputs, including satellite
observational records of snow cover extent, soil moisture, and land
surface temperature.

The U-Net architecture adapted for this study leverages
the relative strengths of this method for image segmentation
tasks. The method used in this study is similar to the
U-Net the addition of
dropout layers. Other U-Net variations may further enhance

original architecture, except for
model performance. Other network architectures, such as
transformers, offer particular strengths in image recognition
(Dosovitskiy et al, 2020) and segmentation (Chen et al,
2021; Strudel et al,, 2021). These alternate architectures may
allow for different training methods that avoid limitations
from local variation loss and the network to generalize

more efficiently.
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