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Keywords: transverse compression, we investigated the structure-property relations in low porosity
Bio-inspired structures characterized by their two-dimensional (2D) cross-sections. A diverse design
Structure-property relations space was created by combining polygonal tubules with different numbers of sides placed
Neural networks on a grid with varying numbers of rows and columns. The volume fraction and the
Specific energy absorption orientation angle of the tubules were also varied. The finite element (FE) method was used

with a rate-dependent elastoplastic material model to generate the stress-strain curves
under plane-strain conditions. A gated recurrent unit (GRU) model was trained to predict
the structures’ stress-strain response and energy absorption under different strain rates
and applied strains. The parameter-based model uses eight discrete parameters to char-
acterize the design space and as inputs to the model. The trained GRU model can efficiently
predict the response of a new design in as little as 0.16 ms and allows rapid performance
evaluation of 128,000 designs in the design space. The GRU predictions identified high-
performance structures, and four design trends that affect the specific energy absorption
were extracted and discussed.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

nature capable of handling low-to-medium velocity impacts
(up to 50 m/s). An example is the trabecular-honeycomb bio-
mimetic structure inspired by beetle elytra [4]. Rams see
impact velocities of around 5.5 m/s when fighting. Also, during
collisions, sheep horns can withstand a maximum impact
force of 3400 N [5]. The sheep horn microstructure has evolved
to sustain large dynamic forces without catastrophic failure
[6]. Similarly, the equine hoof sustains high impact loading
forces close to 9000 N while galloping [7]. The tubular structure

1. Introduction

Lightweight structures with high energy absorption capacity
are of high interest for multiple engineering applications.
Various structural elements found in animals and plants
could be used as inspiration to design novel structures that
can sustain impacts generated during collision [1-3]. The
process of evolution has created complex architectures in
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is a common feature in equine hoofs and horns [8,9]. Such
structure contains arrays of long aligned tubules within the
bulk material, promoting energy absorption.

Biological materials and structures often exhibit excellent
energy absorption capabilities and inspire the design of new
energy absorbers. Bio-inspired structures have been used in
countless applications, including automobiles [10], protective
armors [11], and wings of aircraft [12]. Further, a variety of
materials have been used to manufacture bio-inspired struc-
tures, including polymers [13], aluminum alloy [10], fiber-
reinforced composites [14], and concrete [15]. Hence, study-
ing the structure-property relations of bio-inspired designs is
of great research and industrial interest. The exploration of
structure-property relations involves surveying many
different structural features at a given loading condition.
Various studies utilized optimization-based methods to
generate new designs for energy absorption and study the
structure-property relations [16—20]. However, a systematic
compilation of bio-inspired designs’ mechanical response and
energy absorption characteristics is lacking. In previous
studies, the response of the hoof- and horn-inspired structures
was studied at quasi-static loading [21]. Various types of de-
signs, including but not limited to composite laminates [21,22]
and tubular honeycomb structures [23], have been tested using
experiments and finite element analyses (FEA) [24]. The pri-
mary objective of these evaluations was to obtain greater en-
ergy absorption or damage tolerance through crack deflection.
Further, it was shown by Sabet et al. [25] that the geometrical
arrangement of stiff and soft phases can significantly influence
the overall properties of the composite structure.

Within the solid mechanics domain, neural network (NN)
models have been extensively used to predict stress-strain
response of composites [26—28], metals [29—-31], and lattices
[32—34]. However, the use of NN models for studying bio-
inspired structures remains scarce. Existing studies have uti-
lized GANs to design porous structures using X-ray micro-
tomography images as input [35]. Apart from GANs, bio-
inspired structures have been designed using a conditional
variational autoencoder [36]. In most cases, either a specific
property [37] is predicted, or in an unsupervised deep learning
method, images or parameters of the structure are predicted
[38]. Previous works did not focus on predicting the full-field
temporal distribution of the stress field during the impact.

Thus, the prediction of stress fields as a function of time is
the first objective of this study. Further, this paper aims to
develop a systematic framework to generate structures that
combine different design elements found in low-porosity
structures in nature, i.e., the study of the structures with
aligned tubules whose porosity is in the range of 1%—5% under
transverse dynamic compression.

The framework generates low-porosity structures with
constant cross-sections along the thickness direction by
randomly combining various design features such as tubule
shape, orientation, and in-plane arrangement. Once trained,
the NN can efficiently predict the mechanical performance of
new designs at a rate much faster than classical numerical
simulations, thus allowing rapid preliminary design selection
and trend identification. Therefore, the second objective of
this work is to develop a neural network (NN) model to
approximate the structure-property relations, linking the

input design parameters with loading conditions and the
mechanical performance of the structure. Structure-property
maps of the design space at different loading rates are iden-
tified, and design trends are discussed.

This paper is organized as follows. Section 2 presents an
overview of the numerical simulations, the input data pre-
processing, and the NN model's architecture. Section 3 in-
cludes the results obtained from the study and explores the
quality of NN predictions and the validity of the results. Sec-
tion 4 summarizes the outcomes and lists some possible
future directions for the bio-inspired structures.

2. Methods
2.1. Geometry generation and finite element analysis

The designs considered in this work are 3D structures con-
taining tubules with a constant cross-section. Hence, the de-
signs can be uniquely characterized by their 2D, in-plane
cross-sections, assuming the plane strain condition. A Python
script was developed to generate cross-sectional sketches in
the finite element (FE) analysis package Abaqus [39] for a given
volume fraction, tubule shape, tubule orientation, and the
arrangement of the tubules within the structure. The cross-
section of the bio-inspired structures studied in this work is
an 11-by-11 mm? square, whereas all the tubules are confined
within a concentric square area of 10-by-10 mm? The tubule
volume fraction was uniformly sampled from the range [1%,
10%). In this work, we approximated the tubule cross-sections
by polygons of a different number of sides that were uniformly
sampled from the range [3,6], i.e., included triangles, squares,
pentagons, and hexagons. Additionally, rotation was applied
to the cross-sections, and the rotation angle was uniformly
sampled from the range [0, 360] degrees. Multiple tubules can
be present in the structure, and we placed them on a n, x ny
grid, where n, and n, denote the number of rows and columns,
respectively. However, all the tubules in a given configuration
have the same shape, and the designs with non-intersecting
tubules were considered valid. Other designs were excluded
from the analysis. The n, and n, were sampled in the range
[1,8]. Some selected structures in the design space are shown
in Fig. 1. All the structures were discretized with 4-node
bilinear plane-strain quadrilateral elements with reduced
integration. A nominal element edge length of 0.24 mm was
chosen for meshing.

The relationship between different structural designs and
energy absorption mechanisms seen in bones, teeth, and
horns is discussed by McKittrick et al. [40]. Further, they
discuss that when rams butt heads, the horns are loaded in
the transverse direction, which provides more energy ab-
sorption than in the longitudinal direction.

The Abaqus/Explicit dynamic simulation used a rate-
dependent elastic-plastic material model to capture the
structures’ response at varying strain rates. The strain rate
decomposition is given by Ref. [39]:

de = de + de?' (1)

Using the definition of corotational measures, the inte-
grated form is given by Ref. [39]:
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Fig. 1 — Sample structures in the design space.
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The elasticity is linear and isotropic defined using Young's
modulus, E, and Poisson's ratio, ». The flow rule is [39]:

de=de P'n (3)
where
38

n=s q 4)
3

a=\/3 S:S (5)

and de P! is the (scalar) equivalent plastic strain rate. The
plasticity required that the material satisfy a uniaxial-stress
plastic-strain-rate relationship. In case of rate dependence,
the uniaxial flow rate is defined as follows [39]:

&' =nh(q.e"0) ®)

where e P!is the equivalent plastic strain, #is the temperature,
and h is a known function. The overstress power law model in
the rate-dependent material model is defined as follows [39]:

ép‘:D(%&)" )

where D(f) and n(f) are user defined temperature-dependent

material parameters and oo(é”,0) is the static yield stress.
Integrating Eq. (7) by the backward Euler method gives:
Ae” =Ath(q,e",0) 8)

Eq. (8) can be inverted to obtain q as a function of e P! at the
end of the increment. Hence, the uniaxial form is given by
Ref. [39]:

q=7(e") ©)

where 7 is obtained by inverting Eq. (8). Equations (1)—(9) are
used to define material behavior. At every increment when

the plastic flow is occurring, these equations are integrated
and solved for the state at the end of the increment. The
material properties of the base material chosen for the study
are similar to polycarbonate-acrylonitrile butadiene styrene
(PC-ABS). The Young's modulus and Poisson's ratio are 2.5 GPa
and 0.35, respectively. The strain-rate-dependent yield stress
versus plastic strain curves used to define the plastic region
are included in Fig. 2. However, the strains to failure are
tremendous in horns, as much as 80% [40,41]. The structures
considered in this study have low porosity. At large nominal
strains, most of the porosities would already be compressed.
Consequently, the stress response primarily arises from the
material's densification. This perspective is further reinforced
by the absence of damage modeling in our study. Additionally,
conducting FE simulations up to high nominal strain would
demand considerably more time for input data generation for
the neural network. Hence, the maximum nominal strain
considered is 25%.

Yield Stress [MPa]

—— Strain Rate 0.1s7*
30 —— Strain Rate 157!
—— Strain Rate 10s™*

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Plastic Strain

Fig. 2 — Yield stress versus plastic strain at different strain
rates.
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In this study, the boundary conditions for impact loading
were approximated by sandwiching the structure between
two rigid plates, and the structures were subjected to dynamic
transverse compression. The bottom plate was held fixed, and
the top plate traveled downward with a constant velocity
determined by the user-defined strain rate. The nominal
strain rate was uniformly sampled from the range [0.45, 90.9]
s~1, corresponding to indenter velocity from the range [5, 1000]
m/s. The reaction force and displacement were measured at
the top rigid plate. All sidewalls were traction-free and were
free to deform. All simulations had a constant final displace-
ment of 2.25 mm, corresponding to 25% nominal compressive
strain along the y-axis. The reaction force and displacement at
the top plate, plastic dissipation, and elastic strain energy of
the porous structures were outputs of the FE simulations.
Fig. 3 depicts the FE model assembly and a typical deformed
structure at the end of dynamic compression. A total of 7196
simulations were conducted on an AMD Ryzen 7 5800H pro-
cessor with 8 cores. Depending on the applied impact velocity,
each simulation took about 5—30 min to complete.

2.2. Neural network for sequence prediction

2.2.1. Input data, data augmentation, and loss function

The input parameter range is described in Section 2.1. The
corresponding output arrays were obtained from the impact
simulations conducted in Abaqus/Explicit. The output arrays
were down sampled to 50-time steps for the efficiency of
neural network training. The inputs used in the model consist
of eight temporal information arrays. The first five arrays are
constant in time and correspond to the parameters used to
define the structure's geometry. The parameters include n: the
topology of the tubule (i.e., number of sides in a polygon), n,:
number of tubules evenly distributed in the x-direction, ny:
number of tubules evenly distributed in the y-direction, d,:
rotation angle for all the tubules in the structure, and vy vol-
ume fraction of the individual tubule in each element created
by n, times n, elements in a 10-by-10 mm? grid. The remaining

three inputs are physics-informed temporal arrays described
as follows.

1. Current time value at each output time point.
2. Nominal compression strain at each output time point.
3. Nominal compression strain rate.

A standard scaler in Scikit-Learn normalized all the inputs
[42] before training. The scaler was fitted only to the training
data points to avoid information leakage [26]. The available
training data was increased using data augmentation. Corre-
sponding to each simulation conducted in Abaqus with 25%
final nominal strain, hundred final nominal strains in the
range [10%, 25%] were randomly sampled, and all inputs and
outputs were linearly interpolated to the selected final strain
level.

This method generated training data points at the same
strain rate but different final nominal strain and increased the
total number of input data points from 7196 to 719,600. These
data points were divided into training (65%), validation (15%),
and testing datasets (20%).

The mean absolute error (MAE) has been employed as the
loss function in this study [43]. The loss function is defined as:

> Yi— Y

iz

= 1
MAE N (10)
where N, Y;, Y; denote the number of training data points,
ground-truth outputs, and the NN predictions, respectively.
The mean squared error (MSE) is chosen as a metric, which is
defined as:

MSE=2 (11)

2.2.2. Neural network model
This study uses a recurrent neural network (RNN) model to
train the forward model for output prediction. Specifically, the

S, Miscs
(Avg: 75%)
+7.859e+01
+7.264e+01
+6.670e 01
—1 +6.076c+01
+5.482e+01
- +4,887e+01
+4.293e+01
+3.699e+01
+3.104e+01
12.510e 101
+1.916e+01
+1.321e+01
~- +7.271e+00

(a)

(b)

Fig. 3 — FE model setup and results: (a) Typical structure with two rigid plates for dynamic transverse compression. (b) A

typical deformed structure showing von Mises stress.
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Fig. 4 — Neural network architecture.

gated recurrent unit (GRU) model is used. This model has been
widely used to predict sequences [44—47]. Further, Abueidda
et al. [45] compared the performance of different RNN models
to predict the response of elastoplastic material undergoing
deformation under variable strain rates. Although the GRU
model is more computationally expensive than the long short-
term memory (LSTM) model and the temporal convolutional
network (TCN) model, it predicts the output with lower error.
Based on the GRU model's demonstrated capabilities to pre-
dict the structures' response under complex deformation
histories, this study used the model to predict stress-strain
curves for the structures under dynamic
compression.

The GRU-based model was implemented and tested in
Keras [48] with a TensorFlow [49] backend. The GRU model
comprises three stacked layers of 475 GRU units, each with
hyperbolic tangent (tanh) activation, leading to a model with
3.77 million trainable parameters. The NN architecture is
presented in Fig. 4. The loss function was minimized using an
Adam optimizer [50] with an initial learning rate of 1 x 1073,
The model was trained for 150 epochs with a batch size of 600,
and training was repeated 10 times to obtain average training
time and model accuracy. The data set was shuffled and
partitioned in each training repetition, as described in Section
2.2.1. All training was conducted on Google Colab Pro + using
GPU acceleration on Tesla V100 GPU.

transverse

2.3. Global optimization
Using the trained neural network, a Python script was devel-

oped to traverse the input design space and evaluate the energy
absorption performance. The input design space was divided

(a) (b)

into grid points based on the first five input parameters
described in Section 2.2.1. Each grid point represents a unique
structure within the input design space based on five input
parameters. The specific energy absorption (SEA) was
computed for each grid point by calculating the area under the
load-displacement curve (calculated from the GRU model
predictions). Three design parameters: number of sides of the
polygon, n, and ny, could take discrete integer values within
their respective input range, whereas volume fraction and
angle offset were divided into 40 and 20 equally spaced in-
tervals, respectively. Hence, this method was used to analyze
the SEA for 128,000 structures within the input design space.
This process was repeated for five different values of the
indenter velocity (vy) within the range described in Section 2. A
similar process can be repeated at different equally spaced
intervals to obtain the performance of all the structures in the
input design space for a given final strain and the indenter
velocity.

3. Results and discussion
3.1 Validation of the neural network predictions

The best and the worst designs (as predicted by the trained
GRU model) at two different impact velocities (10 and 100 m/s)
were validated by FE simulations to check the accuracy of the
GRU model predictions. Fig. 5 shows the best and the worst
designs at two different indenter velocities, specifically 10 m/s
and 100 m/s. FE simulations were conducted to obtain the
ground-truth values of SEA under an applied plate velocity of
10 m/s (cases (a) and (b)) and 100 m/s (cases (c) and (d)) and a

(c) (d)

Fig. 5 — Highest and lowest SEA designs as predicted by the trained GRU model: (a) highest SEA, 10 m/s, (b) lowest SEA, 10 m/

s, (c) highest SEA, 100 m/s, (d) lowest SEA, 100 m/s.
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Fig. 6 — Comparison of the FE-simulated and GRU-
predicted SEA values for the four validation design cases.

final axial strain of 0.25. The comparison of the FE-simulated
and GRU-predicted SEA values are shown in Fig. 6. As can be
seen from the results, the trained GRU is highly accurate for
the two impact velocities tested, and the predicted SEA values
fall within 5% of their respective ground truth values. This
result provides confidence in applying the trained model for
further inference tasks.

3.2. Predicting stress-strain curves and energy outputs

The number of input data points used in training was decided
based on the prediction accuracy measured using the value of
the loss function. In this study, the percentage of total input
data was incremented to train the neural network model until
similar prediction accuracy was observed. Further, the
average response of the GRU model was measured by training
the model 10 times after shuffling the data before each
training iteration. The loss function value corresponding to
the increasing amount of training data is shown in Fig. 7a.
Further, a typical training history is also presented in Fig. 7b.

0.040

0.035 \

A
54
o
w
=

Loss (Scaled
o o o
o (=] o
2 R N
w o w

/

0.010 e —

0.005

10 20 30 40 50 60 70 80
Percentage of data included in training (%]

(a)

Table 1 — Computational cost for GRU training, inference,

and FE simulations.

GRU training GRU inference

FE simulation

Time 5192.9s 1.63 x 10~ %s 5—30 mins’

! Depends on the impact velocity of the rigid plate. A lower impact
speed leads to a longer solution time due to the small time step
size used in the explicit analysis.

The average training and inference times for the GRU model
and the average FE simulation time are reported in Table 1.

After training the NN, the NN predictions were compared
to the ground truths obtained from FE simulations, ranked by
the percentile of MAE for each output array. The model with
median MAE.

Among the 10 training repetitions, the median model (one
that gives the median overall MAE among the 10 training
repetitions) was used to generate the plots shown in Fig. 8. The
final MAE for this model is 6.07 x 1072, The amount of data
required for training was chosen by checking.

The loss function value for different percentages of input
data in Fig. 7a shows that the loss increases as the percentage
of the input data is decreased compared to the reference (80%
data). Hence, we chose 80% of the data as input for training.
Further, it could be inferred from Fig. 7b that no major over-
fitting has occurred. The statistical distribution of MAEs is
shown in Fig. 8. From the first three columns, up to the 75%
percentile, we could see that the GRU model can closely pre-
dict the FE simulation results for stress-strain curves, plastic
dissipation, and elastic strain energy. Even in the worst case,
the GRU model correctly predicts the general shape of the FE-
simulated stress-strain curve.

In the current study, the cross-section image of the struc-
ture has been parameterized using five design variables.

These variables are then used as inputs in the GRU model.
Another valid approach is to encode the cross-sectional im-
ages of the design via an autoencoder before training the GRU
model. This approach was used in the work of He et al. [44] for
exploring the structure-property relations of thin-walled lat-
tices. However, training the autoencoder can take additional

—— Training set
0.12 Validation set

et ————————

0 20 40 60 80 100 120 140
Training epoch

(b)

Fig. 7 — Convergence plot for GRU model training process: (a) Scaled mean squared error when a different percentage of the
total data is used in training. (b) Scaled mean absolute error evolution during training. Note that the MAE shown here is the

MAE computed on the variables scaled by the standard scaler.


https://doi.org/10.1016/j.jmrt.2023.09.240
https://doi.org/10.1016/j.jmrt.2023.09.240

JOURNAL

OF MATERIALS RESEARCH AND TECHNOLOGY 2023;27:767—779

25th percentile 50th percentile 75th percentile Worst
1200
—_ 800 - 800
% 1000 600 1
- 600 600 1
o 800
= 400 1
L 600 400 400
c
S 400
5 200 200 1 200 A
8 200 1 === Ground truth === Ground truth === Ground truth === Ground truth
o« ol = Pred, MAE=0.57 oA = Pred, MAE=0.76 oA = Pred, MAE=1 0 = Pred, MAE=17
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
— 500 A
3 m Ground truth 600 - m Ground truth 1500 | —— Ground truth 2000 4 == Ground truth
— e Pred, MAE=0.3 === Pred, MAE=0.44 we= Pred, MAE=0.67 w Pred, MAE=19
= 4004 1250 A
Qo 1500
T 300 400 -
o
a 1000 A
0 200 A
b 200 4
5 100 A 500 -
wn
5
a0 0 A 0 A
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
£ 125 1 1207 1501 1001
3
5 100 804 80 1
< 100 4
[ i 60 - 60 -
p- 75
©
“ 504 40+ 40 -
3 50 -
S 251 —— Ground truth 207 —— Ground truth —— Ground truth 20+ —— Ground truth
< 04 === Pred, MAE=0.082 o4 === Pred, MAE=0.11 o4 === Pred, MAE=0.15 04 === Pred, MAE=3.6
w T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time steps Time steps Time steps Time steps

Fig. 8 — Comparison of ground truths and GRU predictions for the data set, ranked by percentile of MAE to provide a
representative sampling. Here, MAE is ranked independently for each of the four output arrays.

Relative Error (%)

Relative Error (%)

254  y=9.26e-04x+1.33e-01 o 254e =-1.24e-03x+1.34e-01 251 _ y=-2.99e-03x+1.42e-01
R?=1.13e-04 ) g R?=8.63e-04 R?=4.93e-03
2.0 * 204 *® 2.01 s
8 8
1512 1.51 *
° Il ﬂ
1.04 1.0
0.5 0.5
0.0 0.0 1
3.0 3:5 4.0 4.5 5.0 5.5 6.0 2 4 6 8
Shape ny
2.5 ! 4 __ y=-6.09e-03x+1.29e-01 2.5 y=-1.56e-03x+1.30e-01 251 _ Yy=1.89e-04x+1.20e-01 .
I R?=2.47e-06 R?=9.42e-05 R?=2.51e-03 @
‘ 2.0 .

Strain rate

Fig. 9 — MAE vs input test data parameters (geometric parameters and loading condition).

773


https://doi.org/10.1016/j.jmrt.2023.09.240
https://doi.org/10.1016/j.jmrt.2023.09.240

774

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2023;27:767—-779

22

21

SEA [mJ/m?3]
= = N
(o] [(=} o

fury
~

16

15

ty

0.030 -,

Sl

Poro

0 20000 40000

60000

80000 100000

Design index

Fig. 10 — Structure-property relations at an impact velocity v, = 100 m/s and final axial strain of 0.25. The highest and

lowest SEA designs are highlighted in solid red pentagons.

computational resources and is unnecessary when discrete
parameter values can parameterize the current design space.
Hence, in this work, we used the design parameters to
describe the designs instead of the autoencoder. However,
judging from the comparison with FE data shown in Fig. 8, the
prediction accuracy is high even with this simplified appr-
oach.

The scatter plots connecting the input data and the cor-
responding prediction error, along with linear curve fits, were
utilized to identify potential correlations. It was observed that,
in general, there is no discernible pattern relating the input
parameters to the prediction errors, as evidenced by the low R?
fitting values. However, a concentration of cases with pre-
diction errors greater than 2% is observed in Fig. 9. These cases
are concentrated in hexagonal vacancies (shape = 6) with one
column (n, = 1) and five rows (n, = 5), a void volume fraction of
4.1%, an initial rotation angle of 0.82 radians, and a strain rate

of 72.22 s~1. However, those cases only constitute 0.0062% of
the total prediction cases.

3.3. Structure-SEA map
The Python script described in Section 2.3 was used to calcu-
late SEA from the stress-strain curve predicted by the NN at
each design point. Each structure could be represented by a
unique design index defined using the first five input param-
eters to the NN as described in Section 2.2.1. Finally, the
scatter plots for SEA at each design surveyed in the grid search
for two different impact velocities are plotted in Figs. 10 and
11, which show a structure-property map for this chosen
design space.

Using the scatter plot shown in Fig. 10, we could identify the
best and worst designs regarding specific energy absorption
within the input design space for the given loading condition
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Fig. 11 — Structure-property relations at an impact velocity v, = 10 m/s and final axial strain of 0.25. The highest and lowest

SEA designs are highlighted in solid red pentagons.
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highlighted in solid red pentagons.

and final strain. These two points are also highlighted in Fig. 10.
Further, the same Python code described in Section 2.3 could be
used to plot the SEA for structures with various constraints. For
example, Fig. 12 shows the distribution of SEA for structures
with a volume fraction of porosity between 4.5% and 5%.

3.4. Design trends and observations

The structure-energy absorption maps shown in Section 3.3
are useful for obtaining an overview of the entire design
space. However, additional design insights could be drawn
from the map to guide future design work.

1. At the same volume fraction of porosity within the struc-
ture, final strain, and indenter velocity exceeding 100 m/s,
arranging the pores vertically results in optimal energy
absorption. By contrast, the lowest energy absorption is
achieved when the porosity is concentrated at the center.
The structure illustrated in Fig. 13 emerged as the most
efficient design for SEA, according to the SEA map depicted
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in Fig. 10. Conversely, the structure in Fig. 14 demonstrated
the lowest SEA. The structure with maximum SEA (Fig. 13)
has a porosity of close to 1%, whereas the one with mini-
mum SEA (Fig. 14) has a porosity closer to 5%. In both in-
stances, we observe a higher stress band that originates at
the structure's corners and radiates toward its center dur-
ing compression. In essence, the presence of material in
areas of high stress is crucial for achieving a higher SEA. In
the case of the structure in Fig. 13, only a few pores are
present within the high-stress region. On the other hand,
the structure illustrated in Fig. 14 has its entire porosity at
the center, resulting in diminished load-carrying capacity
and a lower SEA.

. The orientation of polygonal tubules affects the energy ab-

sorption in low-porosity structures. This behavior can be
observedin Fig. 15, which illustrates two structures with the
same square-shaped porosity volume fraction but different
angle offsets. When subjected to similar loading conditions,
Fig. 15b exhibits 4% higher energy absorption compared to
Fig. 15a as validated by FE simulations. The GRU-predicted

22222222222222
AL -

Fig. 13 — Initial structure (left) with highest predicted SEA and stress distribution at 12.5% and 25% nominal strain (right).
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trend of how the tubule orientation angle affects the SEA is
shown in Fig. 15c for square porosity. The prediction shows
a sinusoidal variation, which is reasonable, as the top-down
projected load-bearing area (area unaffected by porosity)
varies in a sinusoidal fashion (see Fig. 15c).

. The structure with maximum and minimum SEA depends
upon the volume fraction of the porosity. Further, it is also
affected by the strain rate and the orientation of polygonal
porosity, as shown in Fig. 5. For example, the red marks in
Figs. 10, Fig. 11, and Fig. 12 show different structures
(design index) with maximum and minimum SEA.

. The Pearson correlation coefficient is calculated to assess
the relationship between SEA and different geometric pa-
rameters, as seen in Fig. 16. Both cases show a strong
negative correlation between SEA and volume fraction,
indicating that increasing porosity volume fraction gener-
ally leads to decreasing SEA. The correlation coefficients for
angle offset are close to zero, consistent with the sinusoidal
nature of the trend observed in Fig. 15c. The orientation of
pores was found to cause a significant variation in the SEA,
with a difference close to 4%. Hence, to obtain correct con-
clusions using correlation analysis, it is necessary to employ
exploratory grid search methods to identify select designs

that exhibit a high SEA. The number of pores in the x-di-
rection is negatively correlated to SEA, while the number of
pores in the y-direction is positively correlated. Apart from
that, a minor correlation is observed for other variables.
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Fig. 16 — Pearson correlation coefficient between SEA and
geometric variables at two different indenter velocities.
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4, Conclusions and future work

In this work, a parametric framework was developed to
generate bio-inspired low-porosity designs with tubules of
various shapes, orientations, and in-plane arrangements. The
structures were made from PC-ABS with rate-dependent
elastoplastic behavior. FE simulations were conducted to
obtain the stress-strain curves of the structures at different
impact velocities during transverse loading. Using the FE
simulation data, a GRU model was trained to predict the
stress-strain curve for low-porosity bio-inspired structures
under dynamic transverse compression loading. Data
augmentation techniques were implemented to reduce the
number of simulations required using Abaqus.

The trained NN model could make accurate predictions
(MAE: 6.07 x 10~3) for SEA of all the structures across a range of
final strains and strain rates. Further, the trained neural
network was used to survey the entire design space with
128,000 structures at each strain rate. Overall, the trained
model NN was able to generate all the performance pre-
dictions extremely efficiently, even on low-end laptops. The
stress-strain response for each structure could be predicted in
0.16 ms. Hence, it renders itself a suitable guide in preliminary
design stages to quickly survey designs for more detailed
analyses.

Using the predictions of the trained NN, key observations
were made and summarized below.

e The SEA maps generated using grid search based on geo-
metric variables facilitated the identification of several
design trends obtained from the trained NN model.

e Our study delved deep into the influences of porosity
arrangement, volume fraction, strain rate, and orientation
on the SEA. Two standout findings were:

— Varying the orientations of pores can result in approxi-
mately 4% difference in SEA.

— Vertical arrangement of pores at the same volume
fraction led to greater SEA.

e The SEA maps, beyond their immediate application,
contribute to understanding the effect of geometric pa-
rameters on SEA under varying loading conditions.

e The Pearson correlation analysis augmented the study by
drawing connections between different geometric param-
eters and the SEA.

— The results indicated a strong negative correlation be-
tween SEA and porosity volume fraction, while minor
correlations were observed for other variables.

— The minor correlation between the variables reinforces
the need to utilize exploratory grid searches to identify
select configurations that exhibit higher SEA under given
loading conditions.

In future work, gradients of the GRU model could be uti-
lized to define an inverse design problem and generate new
designs. In the current work, periodic boundary conditions
were not enforced on the representative volume when
comparing different structures. The effect of enforcing peri-
odic boundary conditions could also be explored in future
work. Lastly, the structures analyzed in this study using FEA

were not compared against the experimental results, a key
limitation of the current work. Hence, an experimental vali-
dation of the FE simulation model would provide further in-
sights into the model accuracy and the energy absorption
capabilities of the low-porosity structures.

Data availability

The data and source code that support the findings of this
study can be found at: https://github.com/Jasiuk-Research-
Group.
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