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a b s t r a c t

Biological structural designs in nature, like hoof walls, horns, and antlers, can be used as

inspiration for generating structures with excellent mechanical properties. A common

theme in these designs is the small percent porosity in the structure, ranging from 1 to 5%.

In this work, the sheep horn was used as an inspiration due to its higher toughness when

loaded in the radial direction compared to the longitudinal direction. Under dynamic

transverse compression, we investigated the structure-property relations in low porosity

structures characterized by their two-dimensional (2D) cross-sections. A diverse design

space was created by combining polygonal tubules with different numbers of sides placed

on a grid with varying numbers of rows and columns. The volume fraction and the

orientation angle of the tubules were also varied. The finite element (FE) method was used

with a rate-dependent elastoplastic material model to generate the stress-strain curves

under plane-strain conditions. A gated recurrent unit (GRU) model was trained to predict

the structures’ stress-strain response and energy absorption under different strain rates

and applied strains. The parameter-based model uses eight discrete parameters to char-

acterize the design space and as inputs to the model. The trained GRUmodel can efficiently

predict the response of a new design in as little as 0.16 ms and allows rapid performance

evaluation of 128,000 designs in the design space. The GRU predictions identified high-

performance structures, and four design trends that affect the specific energy absorption

were extracted and discussed.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lightweight structures with high energy absorption capacity

are of high interest for multiple engineering applications.

Various structural elements found in animals and plants

could be used as inspiration to design novel structures that

can sustain impacts generated during collision [1e3]. The

process of evolution has created complex architectures in
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nature capable of handling low-to-medium velocity impacts

(up to 50 m/s). An example is the trabecular-honeycomb bio-

mimetic structure inspired by beetle elytra [4]. Rams see

impact velocities of around 5.5m/swhen fighting. Also, during

collisions, sheep horns can withstand a maximum impact

force of 3400 N [5]. The sheep hornmicrostructure has evolved

to sustain large dynamic forces without catastrophic failure

[6]. Similarly, the equine hoof sustains high impact loading

forces close to 9000Nwhile galloping [7]. The tubular structure
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is a common feature in equine hoofs and horns [8,9]. Such

structure contains arrays of long aligned tubules within the

bulk material, promoting energy absorption.

Biological materials and structures often exhibit excellent

energy absorption capabilities and inspire the design of new

energy absorbers. Bio-inspired structures have been used in

countless applications, including automobiles [10], protective

armors [11], and wings of aircraft [12]. Further, a variety of

materials have been used to manufacture bio-inspired struc-

tures, including polymers [13], aluminum alloy [10], fiber-

reinforced composites [14], and concrete [15]. Hence, study-

ing the structure-property relations of bio-inspired designs is

of great research and industrial interest. The exploration of

structure-property relations involves surveying many

different structural features at a given loading condition.

Various studies utilized optimization-based methods to

generate new designs for energy absorption and study the

structure-property relations [16e20]. However, a systematic

compilation of bio-inspired designs’ mechanical response and

energy absorption characteristics is lacking. In previous

studies, the responseof thehoof- andhorn-inspired structures

was studied at quasi-static loading [21]. Various types of de-

signs, including but not limited to composite laminates [21,22]

and tubular honeycomb structures [23], have been testedusing

experiments and finite element analyses (FEA) [24]. The pri-

mary objective of these evaluations was to obtain greater en-

ergy absorption or damage tolerance through crack deflection.

Further, it was shown by Sabet et al. [25] that the geometrical

arrangementof stiff andsoft phases cansignificantly influence

the overall properties of the composite structure.

Within the solid mechanics domain, neural network (NN)

models have been extensively used to predict stress-strain

response of composites [26e28], metals [29e31], and lattices

[32e34]. However, the use of NN models for studying bio-

inspired structures remains scarce. Existing studies have uti-

lized GANs to design porous structures using X-ray micro-

tomography images as input [35]. Apart from GANs, bio-

inspired structures have been designed using a conditional

variational autoencoder [36]. In most cases, either a specific

property [37] is predicted, or in an unsupervised deep learning

method, images or parameters of the structure are predicted

[38]. Previous works did not focus on predicting the full-field

temporal distribution of the stress field during the impact.

Thus, the prediction of stress fields as a function of time is

the first objective of this study. Further, this paper aims to

develop a systematic framework to generate structures that

combine different design elements found in low-porosity

structures in nature, i.e., the study of the structures with

aligned tubuleswhose porosity is in the range of 1%e5% under

transverse dynamic compression.

The framework generates low-porosity structures with

constant cross-sections along the thickness direction by

randomly combining various design features such as tubule

shape, orientation, and in-plane arrangement. Once trained,

the NN can efficiently predict the mechanical performance of

new designs at a rate much faster than classical numerical

simulations, thus allowing rapid preliminary design selection

and trend identification. Therefore, the second objective of

this work is to develop a neural network (NN) model to

approximate the structure-property relations, linking the
input design parameters with loading conditions and the

mechanical performance of the structure. Structure-property

maps of the design space at different loading rates are iden-

tified, and design trends are discussed.

This paper is organized as follows. Section 2 presents an

overview of the numerical simulations, the input data pre-

processing, and the NN model's architecture. Section 3 in-

cludes the results obtained from the study and explores the

quality of NN predictions and the validity of the results. Sec-

tion 4 summarizes the outcomes and lists some possible

future directions for the bio-inspired structures.
2. Methods

2.1. Geometry generation and finite element analysis

The designs considered in this work are 3D structures con-

taining tubules with a constant cross-section. Hence, the de-

signs can be uniquely characterized by their 2D, in-plane

cross-sections, assuming the plane strain condition. A Python

script was developed to generate cross-sectional sketches in

the finite element (FE) analysis package Abaqus [39] for a given

volume fraction, tubule shape, tubule orientation, and the

arrangement of the tubules within the structure. The cross-

section of the bio-inspired structures studied in this work is

an 11-by-11 mm2 square, whereas all the tubules are confined

within a concentric square area of 10-by-10 mm2. The tubule

volume fraction was uniformly sampled from the range [1%,

10%]. In this work, we approximated the tubule cross-sections

by polygons of a different number of sides that were uniformly

sampled from the range [3,6], i.e., included triangles, squares,

pentagons, and hexagons. Additionally, rotation was applied

to the cross-sections, and the rotation angle was uniformly

sampled from the range [0, 360] degrees. Multiple tubules can

be present in the structure, and we placed them on a ny � nx
grid, where ny and nx denote the number of rows and columns,

respectively. However, all the tubules in a given configuration

have the same shape, and the designs with non-intersecting

tubules were considered valid. Other designs were excluded

from the analysis. The ny and nx were sampled in the range

[1,8]. Some selected structures in the design space are shown

in Fig. 1. All the structures were discretized with 4-node

bilinear plane-strain quadrilateral elements with reduced

integration. A nominal element edge length of 0.24 mm was

chosen for meshing.

The relationship between different structural designs and

energy absorption mechanisms seen in bones, teeth, and

horns is discussed by McKittrick et al. [40]. Further, they

discuss that when rams butt heads, the horns are loaded in

the transverse direction, which provides more energy ab-

sorption than in the longitudinal direction.

The Abaqus/Explicit dynamic simulation used a rate-

dependent elastic-plastic material model to capture the

structures’ response at varying strain rates. The strain rate

decomposition is given by Ref. [39]:

dε¼ dεel þ dεpl (1)

Using the definition of corotational measures, the inte-

grated form is given by Ref. [39]:
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Fig. 1 e Sample structures in the design space.
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ε¼ ε
el þ ε

pl (2)
Fig. 2 e Yield stress versus plastic strain at different strain

rates.
The elasticity is linear and isotropic defined using Young's
modulus, E, and Poisson's ratio, n. The flow rule is [39]:

de¼ de�pln (3)

where

n¼3
2

S
q

(4)

q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
S : S

r
(5)

and de�pl is the (scalar) equivalent plastic strain rate. The

plasticity required that the material satisfy a uniaxial-stress

plastic-strain-rate relationship. In case of rate dependence,

the uniaxial flow rate is defined as follows [39]:

_e
pl ¼h

�
q; epl; q

�
(6)

where e�pl is the equivalent plastic strain, q is the temperature,

and h is a known function. The overstress power lawmodel in

the rate-dependent material model is defined as follows [39]:

_e
pl ¼D

� q
so

� 1
�n

(7)

where D(q) and n(q) are user defined temperature-dependent

material parameters and s0ðepl; qÞ is the static yield stress.

Integrating Eq. (7) by the backward Euler method gives:

Depl ¼Dt h
�
q; epl; q

�
(8)

Eq. (8) can be inverted to obtain q as a function of e�pl at the

end of the increment. Hence, the uniaxial form is given by

Ref. [39]:

q¼s
�
epl

�
(9)

where s is obtained by inverting Eq. (8). Equations (1)e(9) are

used to define material behavior. At every increment when
the plastic flow is occurring, these equations are integrated

and solved for the state at the end of the increment. The

material properties of the base material chosen for the study

are similar to polycarbonate-acrylonitrile butadiene styrene

(PC-ABS). The Young's modulus and Poisson's ratio are 2.5 GPa

and 0.35, respectively. The strain-rate-dependent yield stress

versus plastic strain curves used to define the plastic region

are included in Fig. 2. However, the strains to failure are

tremendous in horns, as much as 80% [40,41]. The structures

considered in this study have low porosity. At large nominal

strains, most of the porosities would already be compressed.

Consequently, the stress response primarily arises from the

material's densification. This perspective is further reinforced

by the absence of damagemodeling in our study. Additionally,

conducting FE simulations up to high nominal strain would

demand considerably more time for input data generation for

the neural network. Hence, the maximum nominal strain

considered is 25%.
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In this study, the boundary conditions for impact loading

were approximated by sandwiching the structure between

two rigid plates, and the structures were subjected to dynamic

transverse compression. The bottom plate was held fixed, and

the top plate traveled downward with a constant velocity

determined by the user-defined strain rate. The nominal

strain rate was uniformly sampled from the range [0.45, 90.9]

s�1, corresponding to indenter velocity from the range [5, 1000]

m/s. The reaction force and displacement were measured at

the top rigid plate. All sidewalls were traction-free and were

free to deform. All simulations had a constant final displace-

ment of 2.25 mm, corresponding to 25% nominal compressive

strain along the y-axis. The reaction force and displacement at

the top plate, plastic dissipation, and elastic strain energy of

the porous structures were outputs of the FE simulations.

Fig. 3 depicts the FE model assembly and a typical deformed

structure at the end of dynamic compression. A total of 7196

simulations were conducted on an AMD Ryzen 7 5800H pro-

cessor with 8 cores. Depending on the applied impact velocity,

each simulation took about 5e30 min to complete.
2.2. Neural network for sequence prediction

2.2.1. Input data, data augmentation, and loss function
The input parameter range is described in Section 2.1. The

corresponding output arrays were obtained from the impact

simulations conducted in Abaqus/Explicit. The output arrays

were down sampled to 50-time steps for the efficiency of

neural network training. The inputs used in the model consist

of eight temporal information arrays. The first five arrays are

constant in time and correspond to the parameters used to

define the structure's geometry. The parameters include n: the

topology of the tubule (i.e., number of sides in a polygon), nx:

number of tubules evenly distributed in the x-direction, ny:

number of tubules evenly distributed in the y-direction, ao:

rotation angle for all the tubules in the structure, and vf: vol-

ume fraction of the individual tubule in each element created

by nx times ny elements in a 10-by-10mm2 grid. The remaining
Fig. 3 e FE model setup and results: (a) Typical structure with t

typical deformed structure showing von Mises stress.
three inputs are physics-informed temporal arrays described

as follows.

1. Current time value at each output time point.

2. Nominal compression strain at each output time point.

3. Nominal compression strain rate.

A standard scaler in Scikit-Learn normalized all the inputs

[42] before training. The scaler was fitted only to the training

data points to avoid information leakage [26]. The available

training data was increased using data augmentation. Corre-

sponding to each simulation conducted in Abaqus with 25%

final nominal strain, hundred final nominal strains in the

range [10%, 25%] were randomly sampled, and all inputs and

outputs were linearly interpolated to the selected final strain

level.

This method generated training data points at the same

strain rate but different final nominal strain and increased the

total number of input data points from 7196 to 719,600. These

data points were divided into training (65%), validation (15%),

and testing datasets (20%).

The mean absolute error (MAE) has been employed as the

loss function in this study [43]. The loss function is defined as:

MAE ¼
PN
i¼1

jYi � bY ij
N

; (10)

where N, Yi, Ŷi denote the number of training data points,

ground-truth outputs, and the NN predictions, respectively.

The mean squared error (MSE) is chosen as a metric, which is

defined as:

MSE ¼
PN
i¼1

ðYi � bY iÞ2

N
: (11)

2.2.2. Neural network model
This study uses a recurrent neural network (RNN) model to

train the forwardmodel for output prediction. Specifically, the
wo rigid plates for dynamic transverse compression. (b) A
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Fig. 4 e Neural network architecture.
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gated recurrent unit (GRU)model is used. Thismodel has been

widely used to predict sequences [44e47]. Further, Abueidda

et al. [45] compared the performance of different RNN models

to predict the response of elastoplastic material undergoing

deformation under variable strain rates. Although the GRU

model ismore computationally expensive than the long short-

term memory (LSTM) model and the temporal convolutional

network (TCN) model, it predicts the output with lower error.

Based on the GRU model's demonstrated capabilities to pre-

dict the structures' response under complex deformation

histories, this study used the model to predict stress-strain

curves for the structures under dynamic transverse

compression.

The GRU-based model was implemented and tested in

Keras [48] with a TensorFlow [49] backend. The GRU model

comprises three stacked layers of 475 GRU units, each with

hyperbolic tangent (tanh) activation, leading to a model with

3.77 million trainable parameters. The NN architecture is

presented in Fig. 4. The loss function was minimized using an

Adam optimizer [50] with an initial learning rate of 1 � 10�3.

Themodel was trained for 150 epochs with a batch size of 600,

and training was repeated 10 times to obtain average training

time and model accuracy. The data set was shuffled and

partitioned in each training repetition, as described in Section

2.2.1. All training was conducted on Google Colab Pro þ using

GPU acceleration on Tesla V100 GPU.

2.3. Global optimization

Using the trained neural network, a Python script was devel-

oped to traverse the inputdesignspaceandevaluate theenergy

absorption performance. The input design space was divided
Fig. 5 e Highest and lowest SEA designs as predicted by the train

s, (c) highest SEA, 100 m/s, (d) lowest SEA, 100 m/s.
into grid points based on the first five input parameters

described in Section 2.2.1. Each grid point represents a unique

structure within the input design space based on five input

parameters. The specific energy absorption (SEA) was

computed for each grid point by calculating the area under the

load-displacement curve (calculated from the GRU model

predictions). Three design parameters: number of sides of the

polygon, nx and ny, could take discrete integer values within

their respective input range, whereas volume fraction and

angle offset were divided into 40 and 20 equally spaced in-

tervals, respectively. Hence, this method was used to analyze

the SEA for 128,000 structures within the input design space.

This process was repeated for five different values of the

indenter velocity (vy) within the range described in Section 2. A

similar process can be repeated at different equally spaced

intervals to obtain the performance of all the structures in the

input design space for a given final strain and the indenter

velocity.
3. Results and discussion

3.1. Validation of the neural network predictions

The best and the worst designs (as predicted by the trained

GRUmodel) at two different impact velocities (10 and 100m/s)

were validated by FE simulations to check the accuracy of the

GRU model predictions. Fig. 5 shows the best and the worst

designs at two different indenter velocities, specifically 10m/s

and 100 m/s. FE simulations were conducted to obtain the

ground-truth values of SEA under an applied plate velocity of

10 m/s (cases (a) and (b)) and 100 m/s (cases (c) and (d)) and a
ed GRUmodel: (a) highest SEA, 10m/s, (b) lowest SEA, 10m/

https://doi.org/10.1016/j.jmrt.2023.09.240
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Fig. 6 e Comparison of the FE-simulated and GRU-

predicted SEA values for the four validation design cases.

Table 1 e Computational cost for GRU training, inference,
and FE simulations.

GRU training GRU inference FE simulation

Time 5192.9s 1.63 � 10�4s 5e30 mins1

1 Depends on the impact velocity of the rigid plate. A lower impact

speed leads to a longer solution time due to the small time step

size used in the explicit analysis.
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final axial strain of 0.25. The comparison of the FE-simulated

and GRU-predicted SEA values are shown in Fig. 6. As can be

seen from the results, the trained GRU is highly accurate for

the two impact velocities tested, and the predicted SEA values

fall within 5% of their respective ground truth values. This

result provides confidence in applying the trained model for

further inference tasks.

3.2. Predicting stress-strain curves and energy outputs

The number of input data points used in training was decided

based on the prediction accuracy measured using the value of

the loss function. In this study, the percentage of total input

data was incremented to train the neural networkmodel until

similar prediction accuracy was observed. Further, the

average response of the GRUmodel was measured by training

the model 10 times after shuffling the data before each

training iteration. The loss function value corresponding to

the increasing amount of training data is shown in Fig. 7a.

Further, a typical training history is also presented in Fig. 7b.
Fig. 7 e Convergence plot for GRU model training process: (a) Sca

total data is used in training. (b) Scaled mean absolute error evo

MAE computed on the variables scaled by the standard scaler.
The average training and inference times for the GRU model

and the average FE simulation time are reported in Table 1.

After training the NN, the NN predictions were compared

to the ground truths obtained from FE simulations, ranked by

the percentile of MAE for each output array. The model with

median MAE.

Among the 10 training repetitions, the median model (one

that gives the median overall MAE among the 10 training

repetitions)was used to generate the plots shown in Fig. 8. The

final MAE for this model is 6.07 � 10�3. The amount of data

required for training was chosen by checking.

The loss function value for different percentages of input

data in Fig. 7a shows that the loss increases as the percentage

of the input data is decreased compared to the reference (80%

data). Hence, we chose 80% of the data as input for training.

Further, it could be inferred from Fig. 7b that no major over-

fitting has occurred. The statistical distribution of MAEs is

shown in Fig. 8. From the first three columns, up to the 75%

percentile, we could see that the GRU model can closely pre-

dict the FE simulation results for stress-strain curves, plastic

dissipation, and elastic strain energy. Even in the worst case,

the GRU model correctly predicts the general shape of the FE-

simulated stress-strain curve.

In the current study, the cross-section image of the struc-

ture has been parameterized using five design variables.

These variables are then used as inputs in the GRU model.

Another valid approach is to encode the cross-sectional im-

ages of the design via an autoencoder before training the GRU

model. This approach was used in the work of He et al. [44] for

exploring the structure-property relations of thin-walled lat-

tices. However, training the autoencoder can take additional
led mean squared error when a different percentage of the

lution during training. Note that the MAE shown here is the

https://doi.org/10.1016/j.jmrt.2023.09.240
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Fig. 8 e Comparison of ground truths and GRU predictions for the data set, ranked by percentile of MAE to provide a

representative sampling. Here, MAE is ranked independently for each of the four output arrays.

Fig. 9 e MAE vs input test data parameters (geometric parameters and loading condition).
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Fig. 10 e Structure-property relations at an impact velocity vy ¼ 100 m/s and final axial strain of 0.25. The highest and

lowest SEA designs are highlighted in solid red pentagons.
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computational resources and is unnecessary when discrete

parameter values can parameterize the current design space.

Hence, in this work, we used the design parameters to

describe the designs instead of the autoencoder. However,

judging from the comparison with FE data shown in Fig. 8, the

prediction accuracy is high even with this simplified appr-

oach.

The scatter plots connecting the input data and the cor-

responding prediction error, along with linear curve fits, were

utilized to identify potential correlations. It was observed that,

in general, there is no discernible pattern relating the input

parameters to the prediction errors, as evidenced by the low R2

fitting values. However, a concentration of cases with pre-

diction errors greater than 2% is observed in Fig. 9. These cases

are concentrated in hexagonal vacancies (shape ¼ 6) with one

column (nx ¼ 1) and five rows (ny¼ 5), a void volume fraction of

4.1%, an initial rotation angle of 0.82 radians, and a strain rate
Fig. 11 e Structure-property relations at an impact velocity vy ¼
SEA designs are highlighted in solid red pentagons.
of 72.22 s�1. However, those cases only constitute 0.0062% of

the total prediction cases.

3.3. Structure-SEA map

The Python script described in Section 2.3 was used to calcu-

late SEA from the stress-strain curve predicted by the NN at

each design point. Each structure could be represented by a

unique design index defined using the first five input param-

eters to the NN as described in Section 2.2.1. Finally, the

scatter plots for SEA at each design surveyed in the grid search

for two different impact velocities are plotted in Figs. 10 and

11, which show a structure-property map for this chosen

design space.

Using the scatter plot shown in Fig. 10,we could identify the

best and worst designs regarding specific energy absorption

within the input design space for the given loading condition
10 m/s and final axial strain of 0.25. The highest and lowest

https://doi.org/10.1016/j.jmrt.2023.09.240
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Fig. 12 e SEA versus Design Index for porosity volume fraction from 4.5% to 5%. The highest and lowest SEA designs are

highlighted in solid red pentagons.
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andfinal strain.These twopointsare alsohighlighted inFig. 10.

Further, thesamePythoncodedescribed inSection2.3 couldbe

used toplot theSEA for structureswithvarious constraints. For

example, Fig. 12 shows the distribution of SEA for structures

with a volume fraction of porosity between 4.5% and 5%.

3.4. Design trends and observations

The structure-energy absorption maps shown in Section 3.3

are useful for obtaining an overview of the entire design

space. However, additional design insights could be drawn

from the map to guide future design work.

1. At the same volume fraction of porosity within the struc-

ture, final strain, and indenter velocity exceeding 100 m/s,

arranging the pores vertically results in optimal energy

absorption. By contrast, the lowest energy absorption is

achieved when the porosity is concentrated at the center.

The structure illustrated in Fig. 13 emerged as the most

efficient design for SEA, according to the SEAmap depicted
Fig. 13 e Initial structure (left) with highest predicted SEA and s
in Fig. 10. Conversely, the structure in Fig. 14 demonstrated

the lowest SEA. The structure with maximum SEA (Fig. 13)

has a porosity of close to 1%, whereas the one with mini-

mum SEA (Fig. 14) has a porosity closer to 5%. In both in-

stances, we observe a higher stress band that originates at

the structure's corners and radiates toward its center dur-

ing compression. In essence, the presence of material in

areas of high stress is crucial for achieving a higher SEA. In

the case of the structure in Fig. 13, only a few pores are

present within the high-stress region. On the other hand,

the structure illustrated in Fig. 14 has its entire porosity at

the center, resulting in diminished load-carrying capacity

and a lower SEA.

2. The orientation of polygonal tubules affects the energy ab-

sorption in low-porosity structures. This behavior can be

observed inFig. 15,which illustrates twostructureswith the

same square-shaped porosity volume fraction but different

angleoffsets.Whensubjected to similar loading conditions,

Fig. 15b exhibits 4% higher energy absorption compared to

Fig. 15a as validated by FE simulations. The GRU-predicted
tress distribution at 12.5% and 25% nominal strain (right).

https://doi.org/10.1016/j.jmrt.2023.09.240
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Fig. 14 e Initial structure (left) with lowest predicted SEA and stress distribution at 12.5% and 25% nominal strain (right).

Fig. 15 e Effect of orientation on energy absorption under transverse compression for constant volume fraction: (a) Structure

absorbing less energy. (b) Structure absorbing more energy. (c) Predicted trend as the angle offset is varied.

Fig. 16 e Pearson correlation coefficient between SEA and

geometric variables at two different indenter velocities.
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trend of how the tubule orientation angle affects the SEA is

shown in Fig. 15c for square porosity. The prediction shows

a sinusoidal variation,which is reasonable, as the top-down

projected load-bearing area (area unaffected by porosity)

varies in a sinusoidal fashion (see Fig. 15c).

3. The structure with maximum and minimum SEA depends

upon the volume fraction of the porosity. Further, it is also

affected by the strain rate and the orientation of polygonal

porosity, as shown in Fig. 5. For example, the red marks in

Figs. 10, Fig. 11, and Fig. 12 show different structures

(design index) with maximum and minimum SEA.

4. The Pearson correlation coefficient is calculated to assess

the relationship between SEA and different geometric pa-

rameters, as seen in Fig. 16. Both cases show a strong

negative correlation between SEA and volume fraction,

indicating that increasing porosity volume fraction gener-

ally leads to decreasing SEA. The correlation coefficients for

angle offset are close to zero, consistent with the sinusoidal

nature of the trend observed in Fig. 15c. The orientation of

pores was found to cause a significant variation in the SEA,

with a difference close to 4%. Hence, to obtain correct con-

clusions using correlation analysis, it is necessary to employ

exploratory grid search methods to identify select designs
that exhibit a high SEA. The number of pores in the x-di-

rection is negatively correlated to SEA, while the number of

pores in the y-direction is positively correlated. Apart from

that, a minor correlation is observed for other variables.

https://doi.org/10.1016/j.jmrt.2023.09.240
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4. Conclusions and future work

In this work, a parametric framework was developed to

generate bio-inspired low-porosity designs with tubules of

various shapes, orientations, and in-plane arrangements. The

structures were made from PC-ABS with rate-dependent

elastoplastic behavior. FE simulations were conducted to

obtain the stress-strain curves of the structures at different

impact velocities during transverse loading. Using the FE

simulation data, a GRU model was trained to predict the

stress-strain curve for low-porosity bio-inspired structures

under dynamic transverse compression loading. Data

augmentation techniques were implemented to reduce the

number of simulations required using Abaqus.

The trained NN model could make accurate predictions

(MAE: 6.07� 10�3) for SEA of all the structures across a range of

final strains and strain rates. Further, the trained neural

network was used to survey the entire design space with

128,000 structures at each strain rate. Overall, the trained

model NN was able to generate all the performance pre-

dictions extremely efficiently, even on low-end laptops. The

stress-strain response for each structure could be predicted in

0.16ms. Hence, it renders itself a suitable guide in preliminary

design stages to quickly survey designs for more detailed

analyses.

Using the predictions of the trained NN, key observations

were made and summarized below.

� The SEA maps generated using grid search based on geo-

metric variables facilitated the identification of several

design trends obtained from the trained NN model.

� Our study delved deep into the influences of porosity

arrangement, volume fraction, strain rate, and orientation

on the SEA. Two standout findings were:

e Varying the orientations of pores can result in approxi-

mately 4% difference in SEA.

e Vertical arrangement of pores at the same volume

fraction led to greater SEA.

� The SEA maps, beyond their immediate application,

contribute to understanding the effect of geometric pa-

rameters on SEA under varying loading conditions.

� The Pearson correlation analysis augmented the study by

drawing connections between different geometric param-

eters and the SEA.

e The results indicated a strong negative correlation be-

tween SEA and porosity volume fraction, while minor

correlations were observed for other variables.

e The minor correlation between the variables reinforces

the need to utilize exploratory grid searches to identify

select configurations that exhibit higher SEA under given

loading conditions.

In future work, gradients of the GRU model could be uti-

lized to define an inverse design problem and generate new

designs. In the current work, periodic boundary conditions

were not enforced on the representative volume when

comparing different structures. The effect of enforcing peri-

odic boundary conditions could also be explored in future

work. Lastly, the structures analyzed in this study using FEA
were not compared against the experimental results, a key

limitation of the current work. Hence, an experimental vali-

dation of the FE simulation model would provide further in-

sights into the model accuracy and the energy absorption

capabilities of the low-porosity structures.
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