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Abstract 

 

An efficient, fully quantum mechanical real-time path integral method for including 

the effects of static disorder in the dynamics of systems coupled to common or local 

harmonic baths is presented. Rather than performing a large number of demanding 

calculations for different realizations of the system Hamiltonian, the influence of the 

bath is captured through a single evaluation of the path sum by grouping the system 

paths into equivalence classes of fixed system amplitudes. The method is illustrated 

with several analytical and numerical examples that show a variety of nontrivial 

effects arising from the interplay among coherence, dissipation, thermal fluctuations 

and geometric phases.  
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 The problem of simulating the dynamics of a small system interacting with a harmonic bath 

continues to attract much attention. Besides offering the simplest model that accounts for dissipative 

effects from condensed phase environments,1-3 system-bath Hamiltonians can describe the progression of 

chemical processes along a reaction path,4-5 the contributions of intramolecular vibrations and lattice 

phonons to tunneling dynamics,6 vibronic effects in spectroscopy, charge and energy transfer in solution 

or biomolecules,7 as well as many other phenomena of interest to chemistry, physics, biology and 

materials research. The ability of harmonic bath Hamiltonians to capture (qualitatively and often 

quantitatively) the effects of complex, anharmonic media on the dynamics of the observed system rests on 

the central limit theorem and forms the basis of the well-known Gaussian or linear response 

approximation, which is well-known in classical statistical mechanics8 and has been derived for quantum 

mechanical environments9 using path integral tools. 

 The path integral formulation of time-dependent quantum mechanics10-11 is intuitive and 

particularly attractive for system-bath Hamiltonians because it allows any number of harmonic bath 

degrees of freedom to be integrated out analytically, at zero or any finite temperature, giving rise to a 

Gaussian influence functional12 that modifies the amplitude of the system. However, the influence 

functional destroys the Markovian nature of the dynamics, introducing memory effects. Direct numerical 

evaluation of the real-time path integral requires computing astronomical numbers of terms, leading to 

exponentially increasing cost with the number of time steps, while Monte Carlo sampling techniques do 

not provide a viable alternative because the highly oscillatory nature of the quantum phase leads to a 

disastrous sign problem.13-14  

Early work introduced the quasi-adiabatic propagator path integral (QuAPI), which uses a 

physically motivated partitioning of the propagator15 along with optimal grids16 based on discrete variable 

representations17 (DVR), and showed that the path integral expression for the reduced density matrix 

(RDM) of the system can be decomposed into a series of tensor multiplications,18-19 achieving linear 

scaling with the total propagation time. The QuAPI tensors store the path integral variables over the 

memory length L t , where t  is the path integral time step. For a system of n states (or DVR grid 

points), the iterative QuAPI algorithm formally requires the storage of 
2Ln  elements. However, the 

damping effect of the influence functional causes the vast majority of paths to carry exponentially small 

weights in strongly dissipative regimes. Powerful filtering techniques have been developed for 

eliminating unnecessary storage of the QuAPI tensors.20-24 Further, the blip decomposition25 offers a 

systematic way of selecting the contributing forward-backward path pairs, along with an exponential 

reduction of the number of terms within the memory interval. More recently, the time-evolving matrix 

product operator (TEMPO) algorithm26 implemented singular value decomposition (SVD) techniques to 

compress the QuAPI tensors, obtaining matrix product representations of path amplitudes whose 

dimensions can be considerably smaller than 
2Ln  in cases of underdamped dynamics. The quantum-

classical path integral27-28 (QCPI), a rigorous formulation of quantum-classical dynamics that is applicable 

to processes in anharmonic environments, also offers a numerically exact, fully quantum mechanical 

algorithm for system-bath Hamiltonians, which is advantageous in situations with long memory.  

Recent theoretical analysis29-30 showed that the QuAPI tensors can be further decomposed 

through a recursive shift of the entangled terms to longer time, until the entanglement of the path integral 

variables becomes vanishingly small (typically upon exceeding the memory length and sometimes even 

faster31). This decomposition replaces the QuAPI tensor multiplication by 
maxr  multiplications of 

minimal-sized 
2 2n n  matrices, where 

maxr  is the path integral entanglement length. The resulting small 

matrix path integral (SMatPI) algorithm is an exact, analytically derived decomposition that does not 

employ tensor compression. By eliminating the QuAPI tensor storage, SMatPI calculations converge 

easily in much larger systems and long-memory processes. The most demanding procedure is the 
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numerical evaluation of the SMatPI matrices, which involves path sums within the memory length that 

may be performed by any available method (for example, a full or filtered QuAPI sum, the blip sum, 

TEMPO, QCPI, or the kink sum32). Propagation beyond the memory length is extremely efficient with the 

SMatPI algorithm and adds almost negligible cost, making SMatPI the method of choice for propagation 

of the RDM to long times. 

The present Letter addresses the computational challenges encountered when accounting for the 

effects of static disorder on dynamical observables. In such situations one must perform a large number of 

similar calculations, each with different values of the system’s site energies that are usually sampled from 

a Gaussian distribution. When the parameters are such that a single propagation of the RDM is expensive, 

obtaining such a statistical average may be computationally prohibitive.  

It is shown that the cost of performing the path sum for each realization of the system’s site 

energies can be alleviated by precomputing sums of influence functional components, which do not 

depend on the system Hamiltonian. Since path amplitudes are products of system propagator elements 

and influence functional factors, it appears that the former cannot be removed from the sum. However, by 

exploiting the structure of the path integral, it is shown that the components associated with the system 

Hamiltonian may be included after the influence functional terms have been summed. This is achieved by 

grouping the paths into equivalence classes based on the adjacency matrix (i.e. the connectivity) of each 

path. The method is ideally suited to the calculation of SMatPI matrices, in particular to the kink sum 

algorithm,32 which allows efficient evaluation of the path sum with very long memory.  

In the conventional case where the system sites are coupled to a common bath, the system-bath 

Hamiltonian has the form 
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is the Hamiltonian of the system, the discrete (or DVR-discretized) system operator is defined as  
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and ,i iq p  are the harmonic bath coordinates and momenta. A vector generalization of the system 

operator33 allows local as well as correlated baths to be described by a  system-bath Hamiltonian similar 

to Eq. (1). The elements of the 2 2n n  RDM of the system for the initial condition 0 0s s− +
 are  
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In the discretized path integral formulation,34 the RDM elements are given by multidimensional sums of 

amplitudes, 
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along all discrete forward-backward paths 
0Ns s   associated with the time points that separate short-time 

propagators. Here 
1k ks s

K + +
−

 are the forward-backward system propagator elments and 
k k

kk

s s
F  




 are the QuAPI-

discretized influence functional factors.35           

 In each term in Eq. (5), the total system component along the forward path, 
1 1 0, ,N Ns s s s

K K+ + + +
−

, 

depends only on the number of times each pair of connected sites appears in the path (see Figure 1). As a 

result, the set of paths can be divided into   equivalence classes, each containing all the paths that in the 

absence of coupling to a bath have the same amplitude. 

      

 
 

Fig. 1.  Four paths with identical endpoints in a four-state system for 8N = . The red and blue paths belong to 
the same equivalence class. In each of these paths the propagator elements 11K  and 12K  appear twice, 
while the elements 13 14 34, ,K K K  and 44K  appear once. In the absence of the influence functional, these 
two paths have identical amplitudes. The green and magenta paths belong to different equivalence 
classes. Top: paths vs. time. (For clarity, the fourth path is not shown here.) Bottom: path graphs, where 
the vertices represent the system sites.  

 

 It follows that the influence functional factors can be summed within the memory interval 

separately from the system propagators if the terms are grouped into 
2  forward-backward equivalence 

classes based on path connectivity. Once the sum over all paths has been performed for each equivalence 

class, the system propagators can be included according to the common system path amplitude of each 

class, producing the desired RDM from which SMatPI matrices are computed. Thus, the equivalence 

class formulation of the path integral (EqC-PI) expresses Eq. (5) for the RDM as a sum over the 
2  

equivalence classes that correspond to the forward and backward system paths, 
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where S  is the amplitude of any system path in equivalence class   and  
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is the total influence functional for the particular class, which is the sum of influence functionals over the 

m+
 forward paths  1 0p i N N i

s s s +
+

+ + +

−=  and m−
 backward paths  1 0p j N N j

s s s −
−

− − −

−= . (Note that the 

dependence of these quantities on the value of N has been suppressed for clarity.)   

 As an analytical example, consider a symmetric two-level system (TLS) described by the 

Hamiltonian  

 

 ( )1 2 2 1Ĥ    = −  +     (8) 

 

which serves as the paradigm of coherent tunneling between the two sites 
1 2,  . Since the two site 

energies are identical in this case, there are only two independent propagator elements. For a path integral 

time step t , these are  
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Table 1.  Equivalence classes vs. the (even) number N of path integral steps for a symmetric TLS with identical, 

fixed endpoints. The columns show the composition of the path amplitude and the cardinality of each 

class, along with the total contribution to the diagonal element of the propagator 0
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Consider a path that starts and ends on state 1. For propagation to N time steps there are 12N −  

discrete paths. Because the endpoints are identical, state changes must come in pairs, and since the two 

diagonal propagator elements have equal values, the amplitude of a path is determined by the number of 

hops, dividing the set of paths into equivalence classes. It is straightforward to obtain the cardinality of 

each equivalence class by determining the number of paths that hop between the two sites once, twice, 

etc. Table 1 shows the equivalence classes with their cardinalities, as well as the composition and 

amplitude of paths in each class, for an even value of the path length N. In the absence of coupling to a 

bath, the influence functional along each path is equal to unity, thus G m m   + − + −
=  and therefore 
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which is recognized as the squared modulus of the propagator at the time N t . It is easy to show that the 

total sum of amplitudes for the propagator equals cos( )N t , which agrees with the exact value 
2cos ( )N t  for the probability to remain on site 

1 .  

For an asymmetric TLS (
11 22K K ) the number of equivalence classes is 1

2
( 1)( 2) 2N N− − + .  

The number of equivalence classes grows rapidly as the number of states increases. The classification of 

paths increases computer storage and may eventually become impractical, but for systems of a few states 

the approach described in this Letter offers a very efficient way of averaging dynamical results over a 

large number of Hamiltonian parameters.  

Numerical evaluation of path sums can be performed by a number of methods, but generally the 

computational demands grow rapidly with the total number of time steps. Propagation to long times must 

be performed by iterative algorithms, which rely on the finite length of bath-induced memory. The most 

efficient iterative method is the SMatPI algorithm, which involves repeated multiplication of small, 
2 2n n  matrices. Even though the path integral variables in Eq. (5) are entangled within the memory 

length induced by the bath, the SMatPI decomposition29-30 disentangles them recursively, expressing the 

amplitude as a sum of small matrix products,  
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where ( , )N N r−
M  are the 2 2n n  SMatPI matrices. Eq. (11) is, by construction, an exact decomposition of 

the path integral. The key idea in the SMatPI propagation algorithm is that the elements of these matrices 

decrease rapidly with the index (i.e. time) separation r and may be dropped beyond some entanglement 

length 
maxr , which in practice is equal to (but may also be smaller than) the memory length induced by the 

bath. Dropping the negligible residual leads to the following expression of the RDM at times longer than 

the entanglement length: 
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Typically, the SMatPI propagation algorithm is so fast that propagation to very long times occurs in 

negligible time in comparison with the costly generation of the SMatPI matrices from the values of the 

RDMs within the memory interval, as given by Eq. (5) for 
maxN r .  

It is straightforward to group the system paths into equivalence classes in order to compute the 

RDMs required to construct SMatPI matrices. According to Equations (6) and (7), the summation with 

respect to system paths over the memory length (which is the most demanding part of a SMatPI 

calculation) does not include system components, and by adopting a suitable factorization of system-bath 

propagators that removes endpoint effects from the influence functional this sum needs to be performed 

and stored only once for each value of N. To obtain dynamical results that are statistically averaged with 

respect to static disorder, one samples disorder values according to the chosen (usually Gaussian) 

distribution, generating a series of system Hamiltonians. For each such Hamiltonian, RDMs are calculated 

by combining the precomputed influence functional sums after multiplying with the system amplitude 

pertaining to each equivalence class, as described in Eq. (6). SMatPI matrices are then generated from 

these RDMs according to the standard SMatPI procedure.  
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A few numerical examples help illustrate the algorithm, along with some nontrivial effects 

induced by static disorder on model systems. The states of the system Hamiltonian are coupled to a 

harmonic bath (or to separate baths) described by a spectral density of the common Ohmic form, 

 
c/1

2
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   −
=                                                               (13) 

 

where   indicates the system-bath coupling strength and the maximum of Eq. (13) is at 
c . The 

reorganization energy of a TLS coupled to a common bath, and also of each monomer in a molecular 

aggregate, is equal to 
c2  . Static disorder is included by averaging the RDMs computed for a large 

number of system Hamiltonians whose diagonal elements (the site energies) are given by the normal 

distribution with mean values equal to those of the target system and standard deviation  , 
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Static asymmetry can lead to highly asymmetric configurations, which necessitate a small time 

step and often require the inclusion of long memory. However, asymmetry values in the wings of the 

distribution enter with small coefficients and thus small deviations from converged results tend to be 

irrelevant. In each case, convergence with respect to the path integral parameters was verified. The 

calculations were performed with the SMatPI code,36 with the SMatPI matrices computed using the kink 

sum algorithm, which takes advantage of the large spread of path weights (reflecting the number and type 

of kinks they contain) to bin the paths, leading to a dramatic acceleration of the path sum that allows 

calculations with very long memory.32 

In the case of a TLS, only the energy difference between the two diagonal elements is physically 

meaningful, thus the average could be calculated using a one-dimensional quadrature. However, larger 

systems require the evaluation of multidimensional integrals. Further, the set of system parameters may 

be available from molecular dynamics data on a non-uniform grid. For these reasons the test results are 

most suggestive if the averages are computed using a noisy algorithm. The SMatPI results for the state 

population 1 11,11P =  were averaged with respect to static disorder by sampling the distribution using 

10000 Monte Carlo passes, i.e. a total of 10000n  realizations of the system Hamiltonian. 

 As a first example, consider a symmetric TLS with the Hamiltonian given in Eq. (8) with 

11 22 0H H= = , where the two states are coupled to a common low-frequency bath with 0.2 =  and 

c 2 =  . It is assumed that only state 1  is populated at 0t =  and that the bath is initially in thermal 

equilibrium at a low temperature specified by 5 = . Besides offering an excellent and simple model 

for studying the effects of a dissipative environment on tunneling dynamics, such a system characterizes 

the energy transfer dynamics in a molecular dimer, where each bath mode is the difference of the 

corresponding monomer normal mode coordinates.37-40 If the electronic coupling is 500 1cm− , with the 

chosen scaled parameters the peak of the spectral density is at 1000 1cm− , and the temperature is 144 K. 

The total reorganization energy between the two states is 400 1cm− .  

Converged results for the RDM were obtained with  0.1t = , max 15r L= = . The populations 

were followed until the average value for 2   reaches equilibrium, which involves 1000 time steps 

(although a shorter interval is shown). Figure 2 shows the evolution of 1P  for several different realizations 

of the system Hamiltonian, where the energy difference between the diagonal elements 
11 22H H−  varies 

between 10  . In the absence of static disorder, the populations exhibit damped oscillatory dynamics. 

The symmetric TLS ( 11 22 0H H− = ) displays the most pronounced tunneling oscillations. As the energy 
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bias 11 22H H−  is increased on the positive side, 1P  decays to smaller values that reflect the equilibrium 

Boltzmann population. When 11 22H H−  is negative, 1  is the more stable of the two states, thus its 

population remains near unity. Figure 2 also shows the averaged state population for three values of static 

disorder, described by  =  , 2 =   and 3 =  , and compares to the time evolution of this 

population for the symmetric TLS. Since   describes the spread of each of the two site energies, the 

standard deviation of the energy gap 11 22H H−  is  2 . Because the distribution of energy difference is 

symmetric, the long-time value of the average population must be equal to 0.5, and the Monte Carlo-

averaged SMatPI results capture this value with impressive accuracy. It is seen that increasing disorder 

quenches the oscillatory component and prolongs the decay of 1P  to its equilibrium value. The averaged 

state population oscillates about positive values that shift higher with increasing  . Furthermore, the 

oscillation peaks are shifted to shorter times, reflecting the larger value (blue shift) of the tunneling 

splitting with increasing asymmetry.  

 

 

 

Fig. 2.  Time evolution of 1P  and effects of static disorder for a symmetric TLS coupled to a 

harmonic bath with 0.2 = , c 2 =   at a temperature 5 = . The top panel shows 

the populations for values of 11 22H H−  (in units of  ) that range between 10  . The 

bottom panels show averaged values for 1,2 and 3 = , along with the population in the 

absence of static disorder. The right panel shows the same results over short times.  

 

 The next example involves a model of excitation energy transfer in a molecular heterodimer.7,41-42 

The excited states of the two monomers have energies that differ by 1520cm −=  and are coupled by a 

parameter equal to 152cm− = . The vibrational modes of each monomer constitute a harmonic bath 

modeled by an Ohmic spectral density with 1

c 520cm −= . The displacement between the ground and 

excited potential surfaces leads to a reorganization energy, chosen as 12080cm −= , which corresponds 

to 2 = . The dimer is at a temperature 300KT = , i.e. 0.25 = . Within the single excitation 

subspace, the energy transfer process is described by an asymmetric TLS Hamiltonian, 
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( )0

1 1 1 2 2 1Ĥ       = −  +                                               (15) 

 

where 10 =  . The static disorder is assumed to have a standard deviation 1260cm −= , i.e. 5 = 

. Because of the large reorganization energy, the system is in the activated regime for practically all 

arrangements of the donor/acceptor energies. The energy transfer process is assumed to start with 

excitation of the higher-energy monomer from the ground state by a Franck-Condon process. 

 The strong system-bath coupling, along with the large asymmetry of many TLS configurations 

that contribute for the chosen value of static disorder, necessitate a small time step and require the 

inclusion of long memory. Converged results were obtained with 0.02t =  and max 35r = . For the 

majority of sampled site energies, equilibrium was reached after approximately 70000 path integral time 

steps.  

 Figure 3 shows the population of the initially excited state as a function of time for site energies 

within 2  (
1 2 10     −   ) from the site energy gap of the bare system. For 10 = −   

the TLS becomes symmetric and the long-time population becomes equal to 0.5. For even more negative 

values of   (not shown in the figure) the initially populated state has a lower energy, leading to 

equilibrium population values that exceed 0.5. Again, the broad range of energy gaps sampled by the 

function modeling static disorder leads to a wide spread of behaviors. When the energy gap is increased, 

the equilibrium population becomes smaller; further, the potential crossing point is lowered, leading to 

faster dynamics.43 Conversely, a decrease of the energy gap leads to a larger donor equilibrium population 

but slower energy transfer.  

 The variety of time scales and long-time values implies that a significant number of system 

configurations must be sampled in order to obtain converged results. This is made clear in the right panel 

of Fig. 3, which shows the Gaussian distribution of energy gap values and the corresponding populations 

at a short time, an intermediate time, and at equilibrium. It is seen that these values are largest in the left 

wing of the distribution and continue to increase as the sampling function attains even smaller values.  

Converged results for the populations, averaged with respect to static disorder with 10000 Monte Carlo 

passes, i.e. 20000 Monte Carlo points, are shown in the left panel of Fig. 3.  

 

 

     
  

Fig. 3.  Time evolution of 1P  and effect of static disorder in a model heterodimer with electronic coupling 
152cm− =  at room temperature. The vibrational modes of the monomers are modeled by harmonic 

baths with c 520 =
1cm−
 and excited-ground reorganization energies equal to 12080cm −= . The left 

panel shows (in units of  )  the populations for values of   that range between 1520cm− , as well 

as the averaged population for 1260cm −= . The black line in the right panel shows the Gaussian 

distribution of the energy gap and the red, green and blue lines show the values of the populations at 

three time instants, 200t = , 600 and 1400. It is seen that the distribution of population values is 

steeply skewed toward the left wing of the Gaussian distribution of energy gaps.  
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 Last, consider the transfer of excitation energy in a trimeric aggregate within the normal mode 

approximation to the vibrations of each monomer. The electronic coupling is characterized by the 

parameter J, and the excited state of each monomer is displaced relative to the ground state, giving rise to 

exciton-vibration coupling. Within the single-excitation manifold, the energy transfer process is described 

by the Frenkel exciton Hamiltonian.44 In the absence of static disorder the monomers are assumed 

identical. Depending on the structure and relative orientation of the three monomers, the electronic 

coupling can be positive or negative.42,45-46 The initial excitation is placed on one of the monomers.  

 If the exciton-vibration coupling is neglected, the dynamics of excitation energy transfer does not 

depend on the sign of the electronic coupling. However, recent work47-48 found that the time evolution of 

electronic populations is much slower in the case of a trimer with 0J  . This finding was explained48 by 

the presence of a conical intersection between the ground and excited adiabatic states of this trimer, which 

leads to geometric phases that can significantly affect the dynamics.49-51 The appearance of a conical 

intersection that involves the ground state is the consequence of electronic frustration,47 the formation of a 

pair of degenerate states which are created because it is not possible to accommodate alternating signs in 

the wavefunction of a system with an odd number of units. The population of the initially excited state is 

shown in Figure 4 for a model trimer with vibrational baths characterized by the electronic coupling 
1350cmJ −=  , spectral density peak at 1

c 1750cm −=  and monomer reorganization energy 1050 1cm−  at 

a temperature 100 K. The calculations were performed with / 0.125J t =  and max 8, 30r L= = . Two 

distinct time scales are readily identified in the trimer with 0J  . The early rapid decay is identical in the 

two trimers, but soon the population of the frustrated dimer switches to a much slower relaxation.  

 

 
Fig. 4.  Time evolution of 1P  and effect of static disorder on the energy transfer in a model trimer with 

electronic coupling 1350cmJ −=  at 100 K. The vibrational modes of the monomers are 

modeled by harmonic baths with c 1750 =
1cm−
 and excited-ground reorganization energies 

equal to 11050cm −= . Results are shown for three values of the disorder parameter, 

175,350 = and 700
1cm−
. Top: 1350cmJ −= . Bottom: 1350cmJ −= − . The inset shows the 

conical intersection in the case of 0J  .   

 

 Figure 4 also investigates the effects of static disorder in model trimers with opposite signs of J. 

With 0J  , the main effect of disorder is to shift the excited state population to higher values, in line 

with what was observed in Fig. 2 for a symmetric TLS. With 0J   this trend is observed less 

prominently at short times, and is reversed after the onset of the slow decay. Static disorder breaks the 

symmetry of the trimer, lifting the degeneracy of electronic states. As the difference in electronic energies 

of the excited monomer increases, a gap develops between the adiabatic potential surfaces, gradually 

eliminating the slow kinetic component and leading to smoother energy transfer curves.  
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 The acceleration attained through the EqC-PI formulation is most significant in the case of small 

systems with long memory (where the cost of each individual path sum tends to be high and the number 

of equivalence classes is relatively small) and increases linearly with the number of Hamiltonian 

realizations. For the numerical examples presented in this Letter, the gain in comparison to averaging the 

results of separate SMatPI calculations varied from approximately a factor of 65 (in the case of a trimer 

with max 8r = ) to 3500 (in the case of a TLS with max 35r = ).  

In summary, it was shown that the effects of static disorder on the dynamics of a system coupled 

to one or multiple harmonic baths can be efficiently calculated via numerically exact real-time path 

integral methods, without computing the costly sum with respect to system paths for each realization of 

system Hamiltonians. This is achieved by grouping the discrete paths of the system into equivalence 

classes based on path connectivity, which are characterized by a common product of system propagators. 

By circumventing the need for performing a large number of expensive calculations to sample the desired 

distribution, the EqC-PI approach introduced in this Letter enables the inclusion of static disorder in 

accurate simulations that would otherwise be infeasible. While the numerical examples presented varied 

only the site energies, a variation of off-diagonal elements may be included without any modifications. 

The method is ideally suited to the efficient SMatPI propagation, in particular the kink sum algorithm, 

which may be used to treat very long memory in strongly coupled system-bath Hamiltonians.  

The numerical examples presented reveal a wealth of nontrivial trends in the averaged results, 

such as upward or downward shifts of population curves, blue shifts and damping of oscillatory 

components, and significant changes of equilibration times and rates. Much further work is needed to 

characterize these intriguing effects, which are relevant to the dynamics of many experimentally studied 

systems. The algorithm presented in this Letter will facilitate such studies.  

Last, the method is not restricted to system-bath Hamiltonians, and may be used in connection 

with any type of environment, provided the influence functional can be numerically evaluated (either by 

quantum mechanical52 or by semiclassical53 methods).  
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