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Abstract

An efficient, fully quantum mechanical real-time path integral method for including
the effects of static disorder in the dynamics of systems coupled to common or local
harmonic baths is presented. Rather than performing a large number of demanding
calculations for different realizations of the system Hamiltonian, the influence of the
bath is captured through a single evaluation of the path sum by grouping the system
paths into equivalence classes of fixed system amplitudes. The method is illustrated
with several analytical and numerical examples that show a variety of nontrivial
effects arising from the interplay among coherence, dissipation, thermal fluctuations
and geometric phases.
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The problem of simulating the dynamics of a small system interacting with a harmonic bath
continues to attract much attention. Besides offering the simplest model that accounts for dissipative
effects from condensed phase environments,!” system-bath Hamiltonians can describe the progression of
chemical processes along a reaction path,*> the contributions of intramolecular vibrations and lattice
phonons to tunneling dynamics,® vibronic effects in spectroscopy, charge and energy transfer in solution
or biomolecules,” as well as many other phenomena of interest to chemistry, physics, biology and
materials research. The ability of harmonic bath Hamiltonians to capture (qualitatively and often
quantitatively) the effects of complex, anharmonic media on the dynamics of the observed system rests on
the central limit theorem and forms the basis of the well-known Gaussian or linear response
approximation, which is well-known in classical statistical mechanics® and has been derived for quantum
mechanical environments® using path integral tools.

The path integral formulation of time-dependent quantum mechanics is intuitive and
particularly attractive for system-bath Hamiltonians because it allows any number of harmonic bath
degrees of freedom to be integrated out analytically, at zero or any finite temperature, giving rise to a
Gaussian influence functional'? that modifies the amplitude of the system. However, the influence
functional destroys the Markovian nature of the dynamics, introducing memory effects. Direct numerical
evaluation of the real-time path integral requires computing astronomical numbers of terms, leading to
exponentially increasing cost with the number of time steps, while Monte Carlo sampling techniques do
not provide a viable alternative because the highly oscillatory nature of the quantum phase leads to a
disastrous sign problem. 34

Early work introduced the quasi-adiabatic propagator path integral (QuAPI), which uses a
physically motivated partitioning of the propagator'’ along with optimal grids'® based on discrete variable
representations!” (DVR), and showed that the path integral expression for the reduced density matrix
(RDM) of the system can be decomposed into a series of tensor multiplications,'®! achieving linear
scaling with the total propagation time. The QuAPI tensors store the path integral variables over the
memory length LAz, where Az is the path integral time step. For a system of n states (or DVR grid
points), the iterative QuAPI algorithm formally requires the storage of n** elements. However, the
damping effect of the influence functional causes the vast majority of paths to carry exponentially small
weights in strongly dissipative regimes. Powerful filtering techniques have been developed for
eliminating unnecessary storage of the QuAPI tensors.?>* Further, the blip decomposition® offers a
systematic way of selecting the contributing forward-backward path pairs, along with an exponential
reduction of the number of terms within the memory interval. More recently, the time-evolving matrix
product operator (TEMPO) algorithm?® implemented singular value decomposition (SVD) techniques to
compress the QuAPI tensors, obtaining matrix product representations of path amplitudes whose
dimensions can be considerably smaller than n** in cases of underdamped dynamics. The quantum-
classical path integral?”** (QCPI), a rigorous formulation of quantum-classical dynamics that is applicable
to processes in anharmonic environments, also offers a numerically exact, fully quantum mechanical
algorithm for system-bath Hamiltonians, which is advantageous in situations with long memory.

Recent theoretical analysis®>° showed that the QuAPI tensors can be further decomposed
through a recursive shift of the entangled terms to longer time, until the entanglement of the path integral
variables becomes vanishingly small (typically upon exceeding the memory length and sometimes even
faster’'). This decomposition replaces the QuAPI tensor multiplication by 7 __ multiplications of
minimal-sized n° xn®> matrices, where r... 18 the path integral entanglement length. The resulting small
matrix path integral (SMatPI) algorithm is an exact, analytically derived decomposition that does not
employ tensor compression. By eliminating the QuAPI tensor storage, SMatPI calculations converge
easily in much larger systems and long-memory processes. The most demanding procedure is the
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numerical evaluation of the SMatPI matrices, which involves path sums within the memory length that
may be performed by any available method (for example, a full or filtered QuAPI sum, the blip sum,
TEMPO, QCPI, or the kink sum??). Propagation beyond the memory length is extremely efficient with the
SMatPI algorithm and adds almost negligible cost, making SMatPI the method of choice for propagation
of the RDM to long times.

The present Letter addresses the computational challenges encountered when accounting for the
effects of static disorder on dynamical observables. In such situations one must perform a large number of
similar calculations, each with different values of the system’s site energies that are usually sampled from
a Gaussian distribution. When the parameters are such that a single propagation of the RDM is expensive,
obtaining such a statistical average may be computationally prohibitive.

It is shown that the cost of performing the path sum for each realization of the system’s site
energies can be alleviated by precomputing sums of influence functional components, which do not
depend on the system Hamiltonian. Since path amplitudes are products of system propagator elements
and influence functional factors, it appears that the former cannot be removed from the sum. However, by
exploiting the structure of the path integral, it is shown that the components associated with the system
Hamiltonian may be included after the influence functional terms have been summed. This is achieved by
grouping the paths into equivalence classes based on the adjacency matrix (i.e. the connectivity) of each
path. The method is ideally suited to the calculation of SMatPI matrices, in particular to the kink sum
algorithm,*? which allows efficient evaluation of the path sum with very long memory.

In the conventional case where the system sites are coupled to a common bath, the system-bath
Hamiltonian has the form
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is the Hamiltonian of the system, the discrete (or DVR-discretized) system operator is defined as
§:Z:‘Kj|(pj><(pj| (3)
=

and ¢, p, are the harmonic bath coordinates and momenta. A vector generalization of the system
operator®® allows local as well as correlated baths to be described by a system-bath Hamiltonian similar
to Eq. (1). The elements of the n” xn> RDM of the system for the initial condition ‘S(; > <sg ‘ are
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In the discretized path integral formulation,** the RDM elements are given by multidimensional sums of
amplitudes,
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along all discrete forward-backward paths sy ..s; associated with the time points that separate short-time

propagators. Here K . . are the forward-backward system propagator elments and F oy are the QuAPI-

discretized influence functlonal factors.
In each term in Eq. (5), the total system component along the forward path, K K

depends only on the number of times each pair of connected sites appears in the path (see Flgure 1). Asa
result, the set of paths can be divided into x# equivalence classes, each containing all the paths that in the

absence of coupling to a bath have the same amplitude.
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Fig. 1. Four paths with identical endpoints in a four-state system for N =8. The red and blue paths belong to
the same equivalence class. In each of these paths the propagator elements K,, and K, appear twice,
while the elements K,;, K,,, K;, and K,, appear once. In the absence of the influence functional, these
two paths have identical amplitudes. The green and magenta paths belong to different equivalence
classes. Top: paths vs. time. (For clarity, the fourth path is not shown here.) Bottom: path graphs, where

the vertices represent the system sites.

It follows that the influence functional factors can be summed within the memory interval
separately from the system propagators if the terms are grouped into u° forward-backward equivalence
classes based on path connectivity. Once the sum over all paths has been performed for each equivalence
class, the system propagators can be included according to the common system path amplitude of each
class, producing the desired RDM from which SMatPI matrices are computed. Thus, the equivalence
class formulation of the path integral (EqC-PI) expresses Eq. (5) for the RDM as a sum over the u’
equivalence classes that correspond to the forward and backward system paths,

P =35,5.G,, ©)
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where §, is the amplitude of any system path in equivalence class « and
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is the total influence functional for the particular class, which is the sum of influence functionals over the
and m, backward paths p, ; = {s;,s;H Sy }a E (Note that the

m, forward paths p, , = {S;S;—l Sy }

dependence of these quantities on the value of N has been suppressed for clarity.)
As an analytical example, consider a symmetric two-level system (TLS) described by the
Hamiltonian

ﬁ:_h9(|¢’1><¢2|+|¢2><¢1|) ®)

which serves as the paradigm of coherent tunneling between the two sites ¢,, @, . Since the two site
energies are identical in this case, there are only two independent propagator elements. For a path integral
time step Az, these are

K, =K,, =cosQAt, K, =isinQA¢. ©)

Table 1. Equivalence classes vs. the (even) number N of path integral steps for a symmetric TLS with identical,
fixed endpoints. The columns show the composition of the path amplitude and the cardinality of each

class, along with the total contribution to the diagonal element of the propagator <(p] ‘e'iH"‘N'A’ ‘(pl> .
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Consider a path that starts and ends on state 1. For propagation to N time steps there are 2"~
discrete paths. Because the endpoints are identical, state changes must come in pairs, and since the two
diagonal propagator elements have equal values, the amplitude of a path is determined by the number of
hops, dividing the set of paths into equivalence classes. It is straightforward to obtain the cardinality of
each equivalence class by determining the number of paths that hop between the two sites once, twice,
etc. Table 1 shows the equivalence classes with their cardinalities, as well as the composition and
amplitude of paths in each class, for an even value of the path length N. In the absence of coupling to a
bath, the influence functional along each path is equal to unity, thus G, , =m, m, and therefore
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which is recognized as the squared modulus of the propagator at the time NAz. It is easy to show that the
total sum of amplitudes for the propagator equals cos(NQA¢), which agrees with the exact value
cos’(NQA?) for the probability to remain on site ¢, .

For an asymmetric TLS (K|, # K,,) the number of equivalence classes is (N —1)}(N —2)+2.
The number of equivalence classes grows rapidly as the number of states increases. The classification of
paths increases computer storage and may eventually become impractical, but for systems of a few states
the approach described in this Letter offers a very efficient way of averaging dynamical results over a
large number of Hamiltonian parameters.

Numerical evaluation of path sums can be performed by a number of methods, but generally the
computational demands grow rapidly with the total number of time steps. Propagation to long times must
be performed by iterative algorithms, which rely on the finite length of bath-induced memory. The most
efficient iterative method is the SMatPI algorithm, which involves repeated multiplication of small,
n® xn® matrices. Even though the path integral variables in Eq. (5) are entangled within the memory
length induced by the bath, the SMatPI decomposition®*~** disentangles them recursively, expressing the
amplitude as a sum of small matrix products,
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where MW" are the n* xn®> SMatPI matrices. Eq. (11) is, by construction, an exact decomposition of
the path integral. The key idea in the SMatPI propagation algorithm is that the elements of these matrices
decrease rapidly with the index (i.e. time) separation » and may be dropped beyond some entanglement
length 7, which in practice is equal to (but may also be smaller than) the memory length induced by the
bath. Dropping the negligible residual leads to the following expression of the RDM at times longer than
the entanglement length:
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Typically, the SMatPI propagation algorithm is so fast that propagation to very long times occurs in
negligible time in comparison with the costly generation of the SMatPI matrices from the values of the
RDMs within the memory interval, as given by Eq. (5) for N<r,__ .

It is straightforward to group the system paths into equivalence classes in order to compute the
RDMs required to construct SMatPI matrices. According to Equations (6) and (7), the summation with
respect to system paths over the memory length (which is the most demanding part of a SMatPI
calculation) does not include system components, and by adopting a suitable factorization of system-bath
propagators that removes endpoint effects from the influence functional this sum needs to be performed
and stored only once for each value of N. To obtain dynamical results that are statistically averaged with
respect to static disorder, one samples disorder values according to the chosen (usually Gaussian)
distribution, generating a series of system Hamiltonians. For each such Hamiltonian, RDMs are calculated
by combining the precomputed influence functional sums after multiplying with the system amplitude
pertaining to each equivalence class, as described in Eq. (6). SMatPI matrices are then generated from
these RDMs according to the standard SMatPI procedure.



A few numerical examples help illustrate the algorithm, along with some nontrivial effects
induced by static disorder on model systems. The states of the system Hamiltonian are coupled to a
harmonic bath (or to separate baths) described by a spectral density of the common Ohmic form,

J(w)=LrEwe ™ (13)

where & indicates the system-bath coupling strength and the maximum of Eq. (13) is at @,. The
reorganization energy of a TLS coupled to a common bath, and also of each monomer in a molecular
aggregate, is equal to 2&hw, . Static disorder is included by averaging the RDMs computed for a large
number of system Hamiltonians whose diagonal elements (the site energies) are given by the normal
distribution with mean values equal to those of the target system and standard deviation o,
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Static asymmetry can lead to highly asymmetric configurations, which necessitate a small time
step and often require the inclusion of long memory. However, asymmetry values in the wings of the
distribution enter with small coefficients and thus small deviations from converged results tend to be
irrelevant. In each case, convergence with respect to the path integral parameters was verified. The
calculations were performed with the SMatPI code,*® with the SMatPI matrices computed using the kink
sum algorithm, which takes advantage of the large spread of path weights (reflecting the number and type
of kinks they contain) to bin the paths, leading to a dramatic acceleration of the path sum that allows
calculations with very long memory.*

In the case of a TLS, only the energy difference between the two diagonal elements is physically
meaningful, thus the average could be calculated using a one-dimensional quadrature. However, larger
systems require the evaluation of multidimensional integrals. Further, the set of system parameters may
be available from molecular dynamics data on a non-uniform grid. For these reasons the test results are
most suggestive if the averages are computed using a noisy algorithm. The SMatPI results for the state
population F, = p,,, were averaged with respect to static disorder by sampling the distribution using
10000 Monte Carlo passes, i.e. a total of 10000# realizations of the system Hamiltonian.

As a first example, consider a symmetric TLS with the Hamiltonian given in Eq. (8) with
H, =H, =0, where the two states are coupled to a common low-frequency bath with &=0.2 and
@, =2Q . It is assumed that only state ¢, is populated at =0 and that the bath is initially in thermal
equilibrium at a low temperature specified by #Qf =5. Besides offering an excellent and simple model
for studying the effects of a dissipative environment on tunneling dynamics, such a system characterizes
the energy transfer dynamics in a molecular dimer, where each bath mode is the difference of the
corresponding monomer normal mode coordinates.’”*° If the electronic coupling is 500cm™, with the
chosen scaled parameters the peak of the spectral density is at 1000 cm ™', and the temperature is 144 K.
The total reorganization energy between the two states is 400 cm™ .

Converged results for the RDM were obtained with QAz=0.1, 7, =L =15. The populations
were followed until the average value for o <2 reaches equilibrium, which involves 1000 time steps
(although a shorter interval is shown). Figure 2 shows the evolution of £, for several different realizations
of the system Hamiltonian, where the energy difference between the diagonal elements H,, — H,, varies
between +10A€Q). In the absence of static disorder, the populations exhibit damped oscillatory dynamics.
The symmetric TLS (H,, — H,, =0) displays the most pronounced tunneling oscillations. As the energy

H,=H,+As, P(As)=

12 12 1

(14)



bias H,, —H,, is increased on the positive side, F, decays to smaller values that reflect the equilibrium
Boltzmann population. When H,, —H,, is negative, ¢, is the more stable of the two states, thus its
population remains near unity. Figure 2 also shows the averaged state population for three values of static
disorder, described by o =#Q, o=21Q and o =3hQ, and compares to the time evolution of this
population for the symmetric TLS. Since o describes the spread of each of the two site energies, the
standard deviation of the energy gap |H n—H 22| is /2. Because the distribution of energy difference is
symmetric, the long-time value of the average population must be equal to 0.5, and the Monte Carlo-
averaged SMatPI results capture this value with impressive accuracy. It is seen that increasing disorder
quenches the oscillatory component and prolongs the decay of F, to its equilibrium value. The averaged
state population oscillates about positive values that shift higher with increasing o . Furthermore, the
oscillation peaks are shifted to shorter times, reflecting the larger value (blue shift) of the tunneling
splitting with increasing asymmetry.
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Fig.2. Time evolution of A and effects of static disorder for a symmetric TLS coupled to a
harmonic bath with £=0.2, o, =2aQ at a temperature 7S =5 . The top panel shows
the populations for values of H,, — H,, (in units of #Q)) that range between +107Q) . The
bottom panels show averaged values for o =1,2 and 3, along with the population in the
absence of static disorder. The right panel shows the same results over short times.

The next example involves a model of excitation energy transfer in a molecular heterodimer.”#!4?

The excited states of the two monomers have energies that differ by £=520cm™ and are coupled by a
parameter equal to 7ZQ=52cm™ . The vibrational modes of each monomer constitute a harmonic bath
modeled by an Ohmic spectral density with @, =520cm™ . The displacement between the ground and
excited potential surfaces leads to a reorganization energy, chosen as A =2080cm™", which corresponds
to &=2. The dimer is at a temperature 7 =300K, i.e. 7QF=0.25. Within the single excitation
subspace, the energy transfer process is described by an asymmetric TLS Hamiltonian,
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where £ =104 . The static disorder is assumed to have a standard deviation o =260cm™ , i.e. o =510
. Because of the large reorganization energy, the system is in the activated regime for practically all
arrangements of the donor/acceptor energies. The energy transfer process is assumed to start with
excitation of the higher-energy monomer from the ground state by a Franck-Condon process.

The strong system-bath coupling, along with the large asymmetry of many TLS configurations
that contribute for the chosen value of static disorder, necessitate a small time step and require the
inclusion of long memory. Converged results were obtained with QA7 =0.02 and r_, =35. For the
majority of sampled site energies, equilibrium was reached after approximately 70000 path integral time
steps.

Figure 3 shows the population of the initially excited state as a function of time for site energies
within 220 (|Ag|=|Ag, — Ag,|<10hQ) from the site energy gap of the bare system. For Ag =—10/Q
the TLS becomes symmetric and the long-time population becomes equal to 0.5. For even more negative
values of Ag (not shown in the figure) the initially populated state has a lower energy, leading to
equilibrium population values that exceed 0.5. Again, the broad range of energy gaps sampled by the
function modeling static disorder leads to a wide spread of behaviors. When the energy gap is increased,
the equilibrium population becomes smaller; further, the potential crossing point is lowered, leading to
faster dynamics.* Conversely, a decrease of the energy gap leads to a larger donor equilibrium population
but slower energy transfer.

The variety of time scales and long-time values implies that a significant number of system
configurations must be sampled in order to obtain converged results. This is made clear in the right panel
of Fig. 3, which shows the Gaussian distribution of energy gap values and the corresponding populations
at a short time, an intermediate time, and at equilibrium. It is seen that these values are largest in the left
wing of the distribution and continue to increase as the sampling function attains even smaller values.
Converged results for the populations, averaged with respect to static disorder with 10000 Monte Carlo
passes, i.e. 20000 Monte Carlo points, are shown in the left panel of Fig. 3.
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Fig. 3. Time evolution of A and effect of static disorder in a model heterodimer with electronic coupling
hQ=52cm™ at room temperature. The vibrational modes of the monomers are modeled by harmonic
baths with @, =520 em™ and excited-ground reorganization energies equal to A =2080cm™ . The left
panel shows (in units of 7#Q) the populations for values of A¢ that range between +520cm™ , as well
as the averaged population for o =260cm™ . The black line in the right panel shows the Gaussian
distribution of the energy gap and the red, green and blue lines show the values of the populations at
three time instants, Q¢ =200, 600 and 1400. It is seen that the distribution of population values is
steeply skewed toward the left wing of the Gaussian distribution of energy gaps.



Last, consider the transfer of excitation energy in a trimeric aggregate within the normal mode
approximation to the vibrations of each monomer. The electronic coupling is characterized by the
parameter J, and the excited state of each monomer is displaced relative to the ground state, giving rise to
exciton-vibration coupling. Within the single-excitation manifold, the energy transfer process is described
by the Frenkel exciton Hamiltonian.** In the absence of static disorder the monomers are assumed
identical. Depending on the structure and relative orientation of the three monomers, the electronic
coupling can be positive or negative.***>¢ The initial excitation is placed on one of the monomers.

If the exciton-vibration coupling is neglected, the dynamics of excitation energy transfer does not
depend on the sign of the electronic coupling. However, recent work*’-*® found that the time evolution of
electronic populations is much slower in the case of a trimer with J >0 . This finding was explained*® by
the presence of a conical intersection between the ground and excited adiabatic states of this trimer, which
leads to geometric phases that can significantly affect the dynamics.*>! The appearance of a conical
intersection that involves the ground state is the consequence of electronic frustration,*” the formation of a
pair of degenerate states which are created because it is not possible to accommodate alternating signs in
the wavefunction of a system with an odd number of units. The population of the initially excited state is
shown in Figure 4 for a model trimer with vibrational baths characterized by the electronic coupling
J =4350cm™, spectral density peak at @, =1750cm™ and monomer reorganization energy 1050cm™ at
a temperature 100 K. The calculations were performed with |J|t/2=0.125 and r,, =8, L=30. Two
distinct time scales are readily identified in the trimer with J >0 . The early rapid decay is identical in the
two trimers, but soon the population of the frustrated dimer switches to a much slower relaxation.
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Fig. 4. Time evolution of P, and effect of static disorder on the energy transfer in a model trimer with
electronic coupling |J|=350cm™ at 100 K. The vibrational modes of the monomers are
modeled by harmonic baths with @, =1750 cm™' and excited-ground reorganization energies
equal to A=1050cm™. Results are shown for three values of the disorder parameter,
o =175,350 and 700cm™ . Top: J =350cm™ . Bottom: J=-350cm™. The inset shows the
conical intersection in the case of J >0.

Figure 4 also investigates the effects of static disorder in model trimers with opposite signs of J.
With J <0, the main effect of disorder is to shift the excited state population to higher values, in line
with what was observed in Fig. 2 for a symmetric TLS. With J >0 this trend is observed less
prominently at short times, and is reversed after the onset of the slow decay. Static disorder breaks the
symmetry of the trimer, lifting the degeneracy of electronic states. As the difference in electronic energies
of the excited monomer increases, a gap develops between the adiabatic potential surfaces, gradually
eliminating the slow kinetic component and leading to smoother energy transfer curves.
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The acceleration attained through the EqC-PI formulation is most significant in the case of small
systems with long memory (where the cost of each individual path sum tends to be high and the number
of equivalence classes is relatively small) and increases linearly with the number of Hamiltonian
realizations. For the numerical examples presented in this Letter, the gain in comparison to averaging the
results of separate SMatPI calculations varied from approximately a factor of 65 (in the case of a trimer
with 7 =8)to 3500 (in the case of a TLS with 7, =35).

In summary, it was shown that the effects of static disorder on the dynamics of a system coupled
to one or multiple harmonic baths can be efficiently calculated via numerically exact real-time path
integral methods, without computing the costly sum with respect to system paths for each realization of
system Hamiltonians. This is achieved by grouping the discrete paths of the system into equivalence
classes based on path connectivity, which are characterized by a common product of system propagators.
By circumventing the need for performing a large number of expensive calculations to sample the desired
distribution, the EqC-PI approach introduced in this Letter enables the inclusion of static disorder in
accurate simulations that would otherwise be infeasible. While the numerical examples presented varied
only the site energies, a variation of off-diagonal elements may be included without any modifications.
The method is ideally suited to the efficient SMatPI propagation, in particular the kink sum algorithm,
which may be used to treat very long memory in strongly coupled system-bath Hamiltonians.

The numerical examples presented reveal a wealth of nontrivial trends in the averaged results,
such as upward or downward shifts of population curves, blue shifts and damping of oscillatory
components, and significant changes of equilibration times and rates. Much further work is needed to
characterize these intriguing effects, which are relevant to the dynamics of many experimentally studied
systems. The algorithm presented in this Letter will facilitate such studies.

Last, the method is not restricted to system-bath Hamiltonians, and may be used in connection
with any type of environment, provided the influence functional can be numerically evaluated (either by
quantum mechanical® or by semiclassical®* methods).
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