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Abstract

The small matrix decomposition of the real-time path integral (SMatPI) allows
numerically exact and efficient propagation of the reduced density matrix (RDM) for
system-bath Hamiltonians. Its high efficiency lies in the small size of the SMatPI matrices
employed in the iterative algorithm, whose size is equal to that of the full RDM. By
avoiding the storage and multiplication of large tensors, the SMatPI algorithm is applicable
to multistate systems under a variety of conditions. The main computational effort is the
evaluation of path sums within the entangled memory length to construct the SMatPI
matrices. A number of methods are available for this task, each with its own favorable
parameter regime, but calculations with strong system-bath coupling and long memory at
low temperatures remain out of reach. The present paper evaluates the path sums by
binning the paths (in forward time only) based on their amplitudes, which depend on the
number and type of kinks they contain. The algorithm is very efficient, leading to a
dramatic acceleration of path sums and significantly extending the accessible memory
length in the most challenging regimes.
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1. Introduction

Quantum mechanical phenomena are ubiquitous and play a vital role in the dynamics of condensed
phase processes. In addition, quantum effects can inform the design of novel materials for solar energy
harvest and of architectures suitable for quantum information technology. The quest for novel technologies
has spurred a renewed interest in the development of robust, efficient and accurate methods for simulating
the quantum dynamics of large molecular aggregates and systems in condensed phase environments.

Numerically exact time-dependent wavefunction methods, most notably the multiconfiguration
time-dependent Hartree (MCTDH) method'-? and algorithms based on the density matrix renormalization
group®* (DMRG) are suitable for small- to medium-sized molecules and systems with a linear topology.
Simulating dynamical processes in liquids and biomolecules requires entirely different approaches that
generally rely on various assumptions and approximations. Many methods utilize classical trajectories,
which they either augment to capture quantum effects or combine with a quantum mechanical treatment for
select degrees of freedom. When all degrees of freedom are treated on the same footing on a single Born-
Oppenheimer potential surface, the linearized semiclassical initial value representation®® (LSC-IVR), also
known as Wigner dynamics’!?), the forward-backward semiclassical dynamics (FBSD) method!! and path
integral Liouville dynamics'? (PILD), use a quantized Boltzmann density in phase space to sample classical
trajectories, accounting for zero-point energy and quantum dispersion. The use of classical trajectories for
nonadiabatic dynamics (and more generally processes where a small system interacts with a large
environment) is more challenging, because the formulations of classical and quantum mechanics are not
readily compatible. A practical approach to nonadiabatic dynamics is offered by the mapping or MMST

Hamiltonian'3-'4

and its coordinate-momentum phase space formulation that uses constrained variables.!>-
16 These approaches convert a discrete system to a continuous Hamiltonian that can be treated by classical
trajectory-based methods, such as LSC-IVR and its more accurate symmetric quasiclassical windowing
model.!”!® Retaining the discrete nature of the system requires the interaction of local classical trajectories
with delocalized wavefunctions. The most straightforward such scheme is the Ehrenfest method,' which is

a mean field treatment that generally leads to poor results.?’ Trajectory surface hopping?!-?

provides an ad
hoc solution that addresses the most serious flaws of Ehrenfest’s approach, but fails to properly account for
decoherence from condensed phase environments.”* A rigorous alternative is offered by the quantum-
classical path integral**** (QCPI), in which classical trajectories interact consistently and unambiguously
with quantum paths of the discrete system (which are also local), eliminating the need for mean field
approximations or other assumptions. Another rigorous approach is based on the mixed quantum-classical

Liouville equation®*-?’

(MQCL); however, its numerical implementation does not converge easily, thus
MQCL is often used to obtain approximate results. Beyond classical trajectory-based methods, the centroid
molecular dynamics**3° (CMD) and ring-polymer molecular dynamics®'-3 (RPMD) approximations are
widely used for simulating the dynamics in complex many-body systems. These methods extend the
quantum-classical isomorphism** of the imaginary-time path integral formulation of quantum statistical
mechanics® to extract dynamical information, and have been successfully applied to many processes.
Additional possibilities arise when the small system of interest interacts with a “bath” of harmonic
degrees of freedom. The so-called system-bath Hamiltonian is widely employed as a simplified model for
studying the dissipative effects of condensed phase environments on the dynamics of the observed system,*®

and also for simulating the effects of environments composed of normal mode vibrations, lattice phonons,



and even complex, unstructured environments such as liquids when the latter collectively induce Gaussian
response.’’*® The path integral formulation of time-dependent quantum mechanics***° offers a unique
advantage in this case, allowing harmonic bath degrees of freedom to be integrated out analytically.*!
However, the resulting influence functional introduces memory effects that entangle the path integral
variables, resulting in multidimensional integrals that cannot be sampled by Monte Carlo methods because
the highly oscillatory nature of the quantum mechanical phase leads to a catastrophic sign problem, similar
to (but arguably worse than) the situation encountered in equilibrium calculations with identical fermions.**
44

Numerically exact and stable methods for evaluating the real-time path integral were introduced in
the 1990s with the development of the quasi-adiabatic propagator path integral**° (QuAPI). A number of
further advances have led to methods that are highly efficient in particular regimes. In the special case of a
bath characterized by the Debye spectral density, the path sum may be evaluated efficiently by solving
hierarchical equations of motion®>! (HEOM). Further, the recent small matrix decomposition of the path
integral®*>* (SMatPI) eliminates the demanding tensor storage requirements of the original QuAPI
algorithm, allowing calculations in multistate systems and long memory. Recent SMatPI simulations of
energy flow in the bacterial light harvesting complex, which treated explicitly the excited states of 24
bacteriochlorophyll molecules, each with 50 intramolecular vibrational modes,° demonstrate the
suitability of the algorithm for addressing highly nontrivial questions in biological and condensed phase
processes. Since the SMatPI algorithm allows iterative propagation that involves the multiplication of small
matrices (of minimal size, equal to that of the target reduced density matrix of the system), the main cost
of the algorithm is the evaluation of the path sums over the entangled memory interval, which are utilized
to construct the SMatPI matrices.

The purpose of the present paper is to introduce the kink sum, an efficient algorithm for evaluating
the path sum in cases of strongly coupled baths that necessitate small time steps and induce long memory,
thus leading to astronomical numbers of paths that make this regime inaccessible to available approaches.
The key idea is the sparsity of path space in discrete systems, for which the weight of a path is closely
related to the number and type of state-to-state transitions or kinks. Unlike earlier methods that utilized path
selection based on the damping properties of the influence functional on forward-backward path pairs, the
kink sum exploits the properties of the system propagator to systematically build the relatively small subset
of contributing paths in forward time, which can be stored easily even when the memory is rather long and
subsequently combined to generate only those forward-backward path pairs that contribute to the path sum.
The kink sum algorithm is efficient and well-suited to strongly quantum mechanical regimes, where other
path integral decompositions fail to converge, thus increasing the range of processes amenable to
numerically exact treatment.

Section 2 presents an overview of the available path integral algorithms for system-bath
Hamiltonians and describes the QuAPI representation of the reduced density matrix (RDM), along with its
SMatPI decomposition. Section 3 shows that the set of paths consists of subsets with path weights that span
many orders of magnitude, determined by the number and type of off-site steps a path takes. In the case of
diagonal elements of the RDM for a two-level system (TLS), such steps form kinks, and these structures
suggest the name of the algorithm. Section 4 shows that the kink sum can be performed analytically for a
symmetric TLS, allowing one to easily assess the contribution from all paths in a subset containing a fixed
number of kinks. Section 5 discusses how the selected subsets of paths can be most economically combined
to form path pairs and to include the influence functional.
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Section 6 illustrates the kink sum with results on four model systems that are representative of
diverse physical situations: a symmetric TLS coupled to a bath with a very large reorganization energy,
characteristic of self-exchange electron transfer reactions; a strongly asymmetric TLS typical of proton or
energy transfer processes; the famous localization transition of a symmetric TLS at zero temperature; and
a three-dimer system whose time evolution exhibits multiple time scales. In all these cases the kink sum
converges easily, in spite of the very long memory. Last, a summary and some concluding remarks are given
in section 7.

2. Small matrix path integral (SMatPI) and path summing algorithms

In the conventional case where the system sites are coupled to a common harmonic bath, the
system-bath Hamiltonian is given by
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where
H, =ZZHy|¢f><(/’j| (22)

i=1 j=1

is the system Hamiltonian in the discrete (or DVR-discretized*) basis ¢,,i =1,...,n in which the position
operator is diagonal, i.e.,
§= . O-j|¢)j><¢j|5 (2.3)

Jj=1

and ¢, p, are the harmonic bath coordinates and momenta. A somewhat different situation is frequently

encountered in excitation energy transfer within molecular aggregates®’->°

composed of many interacting
units, where the electronic states of each unit are coupled to local harmonic baths consisting of
intramolecular vibrational degrees of freedom. In such situations the total Hamiltonian can be expressed in

system-bath form through a vector generalization® of Eq. (2.1) and (2.3),
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The vector system-bath Hamiltonian can be extended to include local, common and correlated baths, and
leads to a particularly simple expression for the influence functional.®® In order to keep the notation as
simple as possible, the path integral variables are written in scalar form throughout the rest of this paper.

The RDM of the system is obtained by tracing the density matrix with respect to all bath degrees
of freedom. At the time NAt, the elements of the RDM for the initial condition ‘sg > <s6 ‘ are
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where p, (0) is the initial density operator describing the bath, and the superscript (N0) indicates the final
and initial times (in units of the path integral time step). It is useful to consider the full #n* xn* RDM that
corresponds to all possible initial conditions. For brevity, this matrix is referred to as the RDM throughout
this paper. In the discretized path integral formulation, the RDM elements are given by sums of amplitudes,
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along all discrete forward-backward paths sy ..s; associated with the time points that separate short-time

propagators. Here K , . are the forward-backward system propagators and F' k'z are the QuAPI-discretized

influence functional factors.*

The path integral variables in Eq. (2.6) are fully entangled within the memory length induced by
the bath. The SMatPI decomposition®*->* disentangles the path integral variables by recursively shifting the
entanglement to longer time intervals. Specifically, the path sum for each auxiliary RDM matrix
R"?, r=2,3,... (with continuation, i.e. non-endpoint influence functional coefficients®’) is expressed as a
sum of matrix products that involve earlier auxiliary RDMs, as well as an entangled residual M,

20 21 10 20
R®® =M® . R ;M )’
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etc. It has been shown analytically®*>? that the residual decreases rapidly once the memory length has been

exceeded and thus can be dropped after some entanglement length »__, which in practice is equal to (but

may also be smaller than®*) the memory length induced by the bath. Discarding the negligible residual
MU=9 Jeads to the following expression of the auxiliary RDM at times longer than the entanglement

length:

RO — r'iMW,N—r) RV N=p 41, (2.8)

r=1

By construction, Eq. (2.8) is an exact decomposition of the path integral. The n° xn> SMatPI matrices
MY are given by the residuals (with proper influence functional coefficients suitable for

continuation®®) and involve fully entangled path sums within the entangled memory interval. With proper
influence functional boundary conditions, these auxiliary matrices give the desired full RDM p™*” .
To compute the SMatPI matrices, one must be able to evaluate the path sum within the

entanglement length by one of several available methods. The largest such calculation involves n* sums,

2(r,

each of which contains 7> terms:

RmV= 3 K, K. K K _F. . . (2.9)
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The simplest and most direct approach for evaluating Eq. (2.9) is to explicitly construct all forward-
backward path sequences s, s, .Sy - This is a straightforward task if the number of system states

2 Finax —12
and the entanglement parameter are reasonably small. For example, for n =2 the direct evaluation of the
path sum is extremely fast for » <10 and can be obtained with modest effort for entanglement lengths

up to approximately 7, =20 . Large values of 7,
exploit the damping role of the influence functional, implying that the vast majority of the paths leads to

. are accessible by applying filtering techniques, which
exponentially small contributions. Early work®-®? used Monte Carlo methods to obtain the statistically
significant path sequences (those with a weight larger than a specified threshold) for use in iterative QuAPI
calculations. Subsequent work®-* developed deterministic procedures for constructing the set of
contributing paths. Such procedures, which build the paths step-by-step, are free of Monte Carlo error but
require the storage of all retained forward-backward sequences, which often is impractical. The simplest
storage-free approach is to generate all sequences in a loop, immediately discarding forward-backward path
combinations if the product of system propagators (along with the single-step influence functional factors)
falls below the threshold, proceeding to evaluate the influence functional only for those that satisfy the
weight criteria.®% This procedure avoids the majority of effort for path sequences that make negligible
contributions, but the mere step of generating them restricts in practice the range of accessible 7, values.

It is formally possible to reduce the number of terms in the forward-backward path sum by
switching to the blip representation.®’ This involves performing a change of variables at each time point
from s, ,s, tothe “blip” and “sojourn” variables As, =s, —s,, 5, = %(s,: +s, ) . By exploiting the structure
of the influence functional, all sojourn variables are summed using efficient matrix multiplication,

effectively reducing the number of terms to (%I’l(}’l-f-l))
27 1)

Tinax

l, a number much smaller than the number
n of terms in the original coordinates. Thus, the blip transformation leads to an exponential
acceleration of the path sum. For example, with n =2 the total number of terms becomes 3™ ', which for
r... >>1 is a much smaller number than 4™ ' pushing the practical limit from »_ =20 to r__=25.

In cases of near-classical, strongly dissipative environments (large system-bath coupling, low-
frequency modes, moderate-to-high temperature), the blip decomposition exploits the exponential decrease
in the path weight with increasing number of blips, leading to an exponential reduction of the number of
terms. Only the surviving forward-backward blip configurations (rather than the full path sequences) need
to be generated, accounting for all spin-sojourn influence functional interactions between blips through
iterative matrix multiplication.®” Since the required number of blips tends to be small in strongly dissipative
regimes, the blip decomposition can converge rapidly even with 7 >100 in such situations.

Another option suitable for strongly coupled, low-frequency baths is offered by the quantum-
classical path integral*** (QCPI), a rigorous quantum-classical methodology applicable to complex
anharmonic environments. QCPI captures the effects of the bath through classical trajectories that interact
locally with system paths, and offers an exact, fully quantum mechanical approach to system-bath
Hamiltonians. It has been shown that the dissipative effects associated with classical decoherence
processes®® can be fully included in appropriately augmented system propagators,® such that the remaining
path sum must account only for the quantum mechanical component of the bath-induced memory, and even
the latter can be partially incorporated through a dynamically consistent scheme.” As a result, the QCPI
time step can be considerably larger and convergence is achieved with shorter memory. Recent work”!
showed that in spite of small Monte Carlo errors, QCPI may be employed for efficient calculation of SMatPI
matrices.



A different approach’ takes advantage of the structure of the influence functional to express the
forward-backward path amplitude in the form of a matrix product state” (MPS). Formally, the size (“bond

dimension”) of the resulting matrices increases exponentially with following the number of paths, but

Tinax >
is kept much smaller by utilizing singular value decomposition (SVD) to compress the matrices. A high
level of compression is feasible under weak system-bath coupling, reflecting the enormous redundancy of
the QuAPI tensor and making the time-evolving matrix product operator (TEMPO) method’ an excellent
approach for constructing the SMatPI matrices in small systems with favorable parameters.®® However,
strong coupling and multi-state systems quickly lead to large bond dimensions, and since SVD scales as
the third power of matrix size, the computational cost (storage and number of operations) of TEMPO

becomes prohibitive in such situations.

3. Paths and kinks

To address these challenges, the present paper introduces a systematic and efficient procedure for
dramatically reducing the number of paths employed in the calculation of the RDM, thus allowing
evaluation of the path sum over long entanglement intervals in regimes that are unfavorable to the
approaches discussed in the previous section. Unlike earlier methods that were based on the weights of
forward-backward path pairs, the present approach focuses on the much smaller set of paths along the
forward time direction. Path weights are therefore based on properties of the system Hamiltonian alone,
although additional benefits deriving from the influence functional contribute to the efficiency of the
method at a later stage.

Consider the set of discrete forward paths over a length of » time steps, where the largest value of
r is the entanglement length (or, if the dynamical process is short-lived, the entire propagation length). The
wavefunction that evolves from the state

Sy > (i.e. the propagator) of the isolated system is given by the
(single) path sum

O-/l O-n
(I’O) = e cee
P = K K 3.1)
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Eq. (3.1) is the forward-time analogue of the RDM in Eq. (2.5). To compute the value of ‘PE"OS) , one needs
to add the amplitudes of the n’~' paths that span the time points O,...,. The amplitudg of a path is
determined by the number of short-time propagator factors K, the number of K, factors, the number of
K, factors, etc. In general, there are n(n+1)/2 distinct propagator elements, although symmetry may
reduce this number. (For example, in a symmetric TLS there are only two propagator elements, because
K,, =K,,.) The number m(n,r) of possible values for the total path amplitude is equal to the number of
connected graphs with n vertices (see Figure 1). In general, this number grows rapidly with » and/or 7 .
Thus, the set of paths is divided into m(n,r) equivalence classes, each of which consists of all paths that
have the same amplitude. It follows that the paths within each equivalence class interfere constructively,
while paths that belong to different equivalence classes may interfere constructively or destructively.
Suppose all short-time propagator elements have different values and (without loss of generality)
that K|, has the largest modulus. The path with the largest weight, equal to (K " )r , 1is the one that has all
coordinates equal to o,, and the corresponding equivalence class contains a single element. On the other



hand, if all diagonal propagator elements have the same value (as in a cyclic system with identical site
energies), then the equivalence class of largest weight includes n paths. The next equivalence class is
obtained by replacing a single K, factor by the short-time propagator of next-to-largest magnitude
(preserving the connected topology that characterizes a path). If this propagator element can be inserted at
any of the » time intervals, it generates an equivalence class with » paths. Inserting multiple short-time
propagators of smaller magnitudes leads to large numbers of paths with rapidly decreasing weights. As r
increases, so does the number of equivalence classes, some of which contain huge numbers of paths, each
of a very small weight. Whether or not such subsets contribute substantially to the desired path sum depends
on the balance between a path’s weight and the cardinality of the subset. As one sums the paths grouped
into equivalence classes with decreasing path weights, the contributions go through a maximum and
subsequently decay rapidly.

Fig. 1. Graphs showing two 10-step paths that start and ends on site 1 in a system of 8 sites, represented
by hollow black circles. Filled circles and lines indicate elementary path segments. Burgundy
circles indicate diagonal short-time propagator elements, while red, orange and yellow lines
correspond to propagator elements connecting nearest-, next-nearest-neighbor and distant sites,
respectively. The left graph shows a path consisting of the sequence 1-2-4-3-7-6-1-4-8-6-1, while
the right graph shows the path 1-1-2-3-3-3-4-3-2-1-1.

For small time steps, off-diagonal elements of the propagator for discrete Hamiltonians have much
smaller values than diagonal elements, regardless of the site energy values. Off-diagonal elements may also
vary significantly in value, depending primarily on the coupling elements in the system Hamiltonian. These
facts imply that the contribution of a path to the wavefunction value is governed by the number and type of
off-diagonal propagator factors, which correspond to transitions between states. In the case of a symmetric
TLS with s, =s,, paths hop between the two states an even number of times, forming an integer number
of (tight or loose) kinks, where each kink includes two off-diagonal short-time propagator elements (see
Figure 2 in the next section). In multistate systems, kinks are segments where a path departs from a state
@, at a particular instant, travels to another state or to several other states, and eventually returns to @,
after two or more time steps. Paths containing multiple kinks make exponentially small contributions to the
path sum for the wavefunction, Eq. (3.1). To calculate the value of the wavefunction at rAf, one must sum
the amplitudes of all paths that contribute to the desired accuracy. This task can be achieved by sorting the
paths according to the number/type of kinks they contain. In multistate systems it is not necessary to bin
the paths into all possible equivalence classes, although doing so offers some benefits.”* Instead, one may
group together paths of similar weights, generating a small number of bins that store the coordinates of the
contained paths.



Before proceeding to make these ideas suitable for evaluation of the RDM that contains influence
functional factors, it is instructive to discuss the simplest and most common example, a symmetric TLS.

4. Analytical example: symmetric two-level system

As an example, consider a symmetric TLS described by the Hamiltonian

A

H, =-1Q(|¢,) (@, |+ |2 ){o)]) (4.1)

The focus is on evaluation of the wavefunction at the time rA¢ with initial and final conditions set at the
first site, W}, = (¢ |e™"*""|¢,) . Since the two site energies are identical in the case of a symmetric TLS,
there are only two independent propagator elements, with values

K, =K,, =cosQAt, K, =isinQAr . (4.2)

In this case each kink contains two K, factors. Fig. 2 shows various arrangements of paths with zero, one
and two kinks.

Fig. 2. Some representative discretized paths fora TLS over N =10 time steps. Violet: path with
no kinks. Blue: representative paths with one kink. Red: representative paths with two
kinks.

There is a single kink-free path whose contribution is equal to (X,,)". The number of paths with
one kink is given by the number of possible arrangements of two K, elements over » time steps, i.e. is
equal to

| L 43
2) 21r=2)° “3)

Each such path has an amplitude equal to K/, K}, . Similarly, the number of paths with amplitude equal to
K/ 'K} is given by the number of arrangements of four off-diagonal propagator elements over 7 steps,



etc. Figure 4 shows the number of paths with a particular number of off-diagonal propagator elements as a
function of path length. Table 1 shows the equivalence classes, their cardinalities, the amplitude of a path
in each equivalence class, and the total contribution of an equivalence class, for an even value of 7 .

The sum of amplitudes along all paths is thus given by

(cos QAt)r*2 (isin QAt)2 + ot

!
PO =(cosQAr) + _r
4(r—4)!

21(r—2)!
+---+(isinQAt)r

cosQAr) " (isinQAr)’
(e isnan’

It is easy to see that the terms in Eq. (4.4) are the even powers in the Taylor expansion of the binomial
(cosQAr +isinQAt)’, and therefore the sum is equal to

Pl = %[(cos QA +isinQAt) +(cos QAf —isin QAt)rJ = cosrQA? (4.5)

which is recognized as the exact result for the diagonal element of the system propagator at the time rAf.
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Fig. 3. Number of discrete paths with 3-6 off-diagonal elements as a function of the number r of time steps.

Red, green, blue and violet show the number of paths with 3,4,5 and 6 off-diagonal factors. The solid
black line shows the number of all possible paths.

Table 1.
ival ber of ber of
equivatence fumbero fumbero path amplitude cardinality total contribution
class K, factors K, factors
1 r 0 (cos QAL)" 1 (cos QAL)"
"2 (i 2 rt rt cos’ > QAtsin’® QA?
2 r—2 2 (cos QA?)" " (isin QA?) 2(r-2)! 2(r—2)!
i 4 rt ! cos”* QAtsin® QA
3 r—4 4 (cos QAr) " (isin QA?) 4(r—4)! 41(r— 4!
1r+1 0 r (isin QA?)” 1 (-1)? sin” QA?
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Since |sin QAt| <« |cos QAt| as At — 0, the contribution of a path to the total amplitude decreases
monotonically and rapidly as the number of kinks increases. However, the binomial coefficient that gives
the number of paths with « kinks also increases rapidly with « at first, reaching its maximum at x =1r,
and subsequently decreases again in a symmetric fashion. Figure 4 (left panel) shows the absolute value of
the path amplitude and number of paths as a function of the number of kinks at the time ¢=5Q" with
=100 (such that Ar=0.05Q7"). The total contribution of all paths with the same number of kinks is
shown in the right panel of Figure 4. Table 2 shows the corresponding numerical values for paths with
contribution greater than 10™*. The simplest path that remains on state ¢, at all times contributes to the
amplitude a value slightly smaller than unity. One-kink paths add to a large negative contribution. Two-
kink paths have very small individual amplitudes (~10~) but the total contribution of nearly four million
such paths exceeds unity. As the number of kinks is increased, individual path amplitudes drop off rapidly,
but their number increases, leading to significant contributions to the wavefunctionup to x =8. With k¥ >9
kinks the path amplitude is so small that the large number of such paths no longer compensates, making
collective contributions that are corrections smaller than 107 . If one is interested in computing the total
amplitude through four decimal places, including paths with ten or more kinks is entirely unnecessary.
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100%™ q 10"
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4 8 12 16 0o 2 4 6 & 10 12 14 16
number of kinks number of kinks

Fig. 4. Left: Path amplitude (blue) and subset cardinality (red) as a function of the number of kinks with the parameters
given in the text. Right: Total contribution from all paths with the same number of kinks. Note the large
contributions of each group of paths in relation to the net sum, i.e. the wavefunction value, 0.28366.

Table 2. Path amplitude, number of paths and overall contribution to the probability of remaining in the state ¢, as a function of
the number of kinks for £ =5Q7" with » =100, Af=0.05Q".

# of kinks path amplitude # of paths contribution
0 +0.882451 1 +0.88245
1 -2.2098E-03 4,950 -10.93856
2 +5.5337E-06 3,921,225 +21.69906
3 -1.3857E-08 1.1921E09 -16.51881
4 +3.4701E-11 1.8609E11 +6.45752
5 -8.6898E-14 1.7310E13 -1.50424
6 +2.1761E-16 1.0504E15 +0.22858
7 -5.4493E-19 4.4187E16 -0.02408
8 +1.3646E-21 1.3459E18 +0.00184
9 -3.4172E-24 3.0665E19 -0.00010
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With the chosen parameters, the largest contribution comes from two-kink paths. If » were to be
increased for a fixed total time, the contributions of paths with more kinks would increase. If the time step
is decreased for a fixed value of r, the weights of paths with a given number of kinks decreases, leading to
faster convergence of the series, but the total propagation time reached is shorter.

Summing all the contributions with up to x =9 gives the approximate wavefunction value 0.28366.

This value is in excellent agreement with the exact result W3” =cos5 .

5. Forward-backward paths and influence functional

Propagation of a system’s wavefunction involves the set of O paths whose weights are larger than
a chosen threshold. The RDM includes forward-backward path pair combinations with amplitudes that are
augmented by influence functional factors. While the array of Q paths is usually manageable, the set of
contributing forward-backward paths often exceeds realistically available computer storage. Rather than
constructing and storing forward-backward path pairs, the kink algorithm combines the set of forward paths
with the (same) set of backward paths. However, the number Q° of forward-backward paths that enter the
double sum may be prohibitively large. Fortunately, for reasons that are discussed below, the forward-
backward path sum usually converges with a much smaller number of terms.

First, amplitudes multiply in the forward-backward pair. As a result, combining a forward path of
the smallest retained weight with a backward path of comparable amplitude will lead to a contribution that
is by far smaller than the desired accuracy in the RDM. Phrased differently, the O x QO matrix of forward-
backward paths is fairly sparse. The arrangement of paths into equivalence classes, or in merged such
subsets that form bins, allows the treatment of only those forward-backward combinations expected to make
an appreciable contribution to the sum, avoiding a double loop over all Q° terms. Convergence is easily
checked by increasing the number of forward-backward bin combinations.

Second, the influence functional decreases the weights of forward-backward path combinations to
values far below those of the bare system. Consider the paths over a large number of time steps with a small
number of kinks. In the vast majority of forward-backward path combinations, the kinks of the forward and
backward paths will not align, leading to multiple blip intervals that lead to an exponential decrease of the
pair’s weight. This damping implies that bins whose overall contribution may be important in the absence
of a bath can amount to negligible corrections once the influence functional is included, effectively
increasing the path selection threshold and decreasing the number Q of retained sequences. For example,
the analysis presented in the previous subsection suggests that paths with up to nine kinks must be included
for the given parameters, but when computing the RDM in the presence of system-bath coupling one may
find that bins with up to four or five kinks are sufficient.

6. Illustrative examples

This section illustrates the use of the kink sum algorithm in the evaluation of the SMatPI matrices
with several examples. In all cases the system states are coupled to common or local baths described by an
Ohmic spectral density,
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J(w)=1réwe ™ (6.1)
where ¢ indicates the system-bath coupling strength and @, is a cutoff frequency.

(i) Symmetric (self-exchange) electron transfer model

Simulating the dynamics of charge transfer processes often provides a serious challenge. This is so
because such processes are frequently characterized by a large reorganization energy, which necessitates a
small time step and gives rise to long memory. The surrounding medium may contain strongly coupled
high-frequency modes, which are primarily in their ground state even at ambient temperatures, generating
significant quantum effects. Because of the long quantum memory, the blip series does not converge rapidly
under such conditions. This regime has generally been inaccessible to numerically exact methods.

Figure 5 shows results for a model symmetric electron transfer pair, described by the system
Hamiltonian

[:[0 :_hQ(|¢1><¢2|+|¢2><¢1|) (6.2)

whose states are coupled to a common Ohmic bath representative of a molecular solvent or biological
medium through the position operator given by Eq. (2.3) with o, =0,0, =2 at an inverse temperature
hQB =0.5. The bath parameters are £ =2, o, =20Q, such that the strongest coupled modes are in their
respective ground states (%@, =10). The bath is initially in equilibrium with the donor (state ¢, ). The
solvent reorganization A =80AQ is very large, such that a very small time step QA7 =0.01 is required for
convergence of the path integral. Accurate results with the kink sum algorithm were easily obtained for
entanglement lengths up to =70, which is adequate for convergence, using paths containing up to 5
off-diagonal short-time propagator elements over the time points 1,...,» —1. The path sum was restricted to
forward-backward combinations containing at most seven K, factors. The RDM was propagated for a
total of N =250000 steps, providing results up to €2 =2500.
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Fig. 5. RDM eclements for a model charge transfer reaction. The donor-acceptor pair is coupled to an Ohmic bath
with £ =2, @, =20Q at an inverse temperature Q3 = 0.5 . Top left: donor population over 200000 path
integral time steps. Kink-SMatPI results are shown for 7, =16,20,50 and 70. The SMatPI matrices

max

employed paths containing up to 5 off-diagonal propagator elements over the time points 1,...,7, —1.

As seen in the top left panel of Fig. 5, if shorter memory is used to construct the SMatPI matrices,
the donor population does not equilibrate properly, eventually reaching long-time populations that are much
higher than 0.5. Similarly, longer-memory calculations with SMatPI matrices obtained using an inadequate
number of blips cause the population to decay too rapidly. Note that differences among unconverged results
(top right panel) are very small during early times and could easily be ignored, leading to a false perception
of convergence. Also, a much faster decay is observed at very short times, before the population settles into
exponential dynamics.

The bottom panel of Fig. 5 shows the imaginary part of the off-diagonal element of the RDM. Off-
diagonal RDM elements arise from quantum superpositions, and their imaginary components are related to
instantaneous population derivatives.” In the case of a TLS,”® QImp,(¢) gives the time derivative of
p,,(¢) and thus decays to zero on the same time scale as the donor population. As shown in the right bottom
panel, this function displays a clear plateau characteristic of the reactive flux at short times, following some
early highly nonmonotonic behavior.

(ii) Exothermic energy transfer model

The second example is representative of excitation energy transfer in a model heterodimer. The
excited states of the monomers are coupled by the parameter —4#Q and have energies that differ by the
asymmetry parameter & =104Q according to the Frenkel exciton Hamiltonian®7"-7
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Fig. 6. Donor population in a strongly exothermic charge transfer reaction modeled by an asymmetric TLS coupled
to an Ohmic bath with £ =2, @, =10Q at an inverse temperature #QS =0.25 . The asymmetry parameter
is 10n€) . The lines show SMatPI results with QAs=0.02 and 7, =10-35. For r,,, =10 and 15 the

max

SMatPI matrices were computed from the full QuAPI path sum, while the kink sum algorithm was used for
7o = 20 =35 . The markers show kink sum results with QA¢ =0.01, verifying convergence with respect to
time step value.

Energy transfer follows excitation of the first monomer from the ground state via a Franck-Condon process.
The two excited states are coupled to local baths with £=2, @, =10Q at an inverse temperature
hQp =0.25, such that both the system and the strongest coupled modes are at a moderately low
temperature ( fe = ho,f =2.5). The bath reorganization energy of each unit is 4042 .

Figure 6 shows SMatPI results obtained using a path integral time step QAr=0.02 over
entanglement lengths ranging from 7, =10 to 7, =35. Convergence with respect to the time step was
confirmed through calculations with QA7 =0.01. For . =10-15 the results computed with the kink sum
algorithm are in agreement with those obtained with the full, unfiltered QuAPI path sum method. The donor

population converges with =35.

r;nax

(iii) TLS localization

It is well-known® that a symmetric TLS coupled to a high-frequency (@, >> Q) Ohmic bath at
zero temperature undergoes a transition to a localized phase when the coupling to the bath exceeds the
critical value & =1. The TLS Hamiltonian is given by Eq. (6.2) and the system operator has o, =1, 0, =1
. The TLS states are coupled to a common Ohmic bath with parameters @, =10Q2, £=1.5. At zero
temperature, these parameters represent a highly quantum mechanical regime.
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Fig. 7. Localization transition as a function of temperature in a symmetric TLS strongly coupled to an Ohmic
bath. The SMatPI results were obtained with QAz =0.02 and r,,, =20-100 with matrices computed
with the kink sum algorithm with up to 5 off-diagonal propagator elements. Results are shown at zero
temperature and also for 72 =1 and 0.5.

Figure 7 shows the time evolution of the initially populated state with the bath in its ground state
and also at two temperatures specified by #QfF =1 and #Qf3 =0.5. The SMatPI matrices were computed
using the kink sum algorithm with entanglement lengths up to =100, using a path integral time step
QAt =0.02. The calculations employed the kink sum algorithm with 4-5 off-diagonal propagator elements,
which result in a very small number of paths in comparison with the total number of 2°* =1.6x10% paths
that enter the sum for the RDM. At zero temperature the converged population remains constant after a
minor short-time drop, in excellent agreement with analytical treatments®® and earlier path integral
calculations.®®”? However, finite temperature is seen to rapidly destroy localization, causing the population
to decay, even though the bath modes that are most strongly coupled to the TLS are still at a very low
temperature (7o, =10 and 5, respectively).

(iv) Transport in a three-dimer model with multiple time scales

Last, the kink sum algorithm is applied to a model of transport in a cluster of three molecular dimers
in a linear arrangement (see Figure 8) , with a total of six electronic states. The system Hamiltonian is given
by

H, ==1|o )] + o) (0: |+ )u ) = (| 02) (0] + |02 Yoy [) + hc. (6:4)

where —7€Q is the intra-dimer electronic coupling, —J is the inter-dimer coupling, and h.c. denotes the
hermitian conjugate. The inter-dimer coupling parameter is chosen as J =0.14Q. The electronic state of
each monomer is strongly coupled to its own vibrational bath modeled by an Ohmic spectral density with
parameters £ =2, o, =10€) at a temperature 7Qf =0.25, which is intermediate for the bath (7w, =2.5

). Only state ¢, is initially populated. The three characteristic frequencies @, =10€2=100J / &, which span
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two orders of magnitude, give rise to multiple time scales that are observed in the RDM evolution and
which necessitate long-time propagation with a small time step.

SMatPI results are shown in Figures 8 and 9 over N =500000 path integral time steps of length

OAr =0.02. Convergence was obtained with entanglement length 7, —=25. The SMatPI matrices were
efficiently computed with the kink sum algorithm. The full set of forward-backward paths with these
parameters involves 6 =8x10™ terms.

The three characteristic frequencies, each separated from the next by an order of magnitude, are
readily identified in the population dynamics shown in Fig. 8. The initially populated state is seen to decay
to approximately 0.5 within a time ¢ =1000, transferring its population to state ¢, within the same central
dimer. During this early time period the populations of the edge dimers begin to grow, with p,, rising first
because it is coupled to the initially populated state ¢, , while p,; follows with a delay because it receives
population from state ¢, , and the most distant p,, begins to grow even slower. Once the central dimer has
reached internal equilibrium, a much slower exponential decay of p,, and p,, is observed, which is
accompanied by population transfer to the edge dimers.

Fig. 9 shows the imaginary components of some off-diagonal RDM elements. While the most
informative and intuitive picture is obtained from the evolution of coherence maps,®' the present focus is
on the effect of multiple time scales on the rates of intra- and inter-dimer transfer. Recent work showed”
that imaginary RDM elements are related to instantaneous time derivatives of state populations. For the
present system,

d . ~ 2J .
Epn(t)=ZQImp34(t)+7Imp32(t) (6.5)

As seen in Fig. 9, Imp,,(#) and Imp,,(#) (and also the linear combination in Eq. (6.5)) display
characteristic plateaus early on, which are associated with the rapid intra-dimer dynamics. However, once
the central dimer reaches local equilibrium (around Qf = 2000 ), the slow population transfer to the edge
dimers leads to the establishment of a second plateau in the coherences. From the perspective of the central-
to-edge dimer dynamics, a flux plateau is expected after all rapid intra-dimer transients have settled. Further,
it is seen that Im p,.(¥) = Im p,,(¢#) over these longer times, reflecting the fact that since the two central
units are now equally populated, transfer to the two adjacent monomers (states ¢, and ¢, ) occurs at equal
rates.
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Fig. 8. Time evolution of populations for a three-dimer system with the states of the monomers coupled to

Ohmic baths with parameters given in the text. The SMatPI results were obtained with QA? =0.02
and 7, =15-25 with matrices computed with the kink sum algorithm. The right panel shows the
early rise of the edge dimer populations.

18



o.0001 m—m—m————————7—+——7—+

-0.0001 |

m p,(0)

—Im P,

-0.0002 |

[m P.,

—Imp

-0.0003 [
[ Im (0. lp_:z-v‘-pm)

00004 e e e v v T
0 2000 4000 6000 8000 110

Qi
0.01 s

-0.01

Im r.,

-0.02

—Imp_,

-0.03

= Im(0.1 p12+p14) 7

PRI ST S S NS T R [N S ST

-0.04 L. —
0 1 2 3 4 5

(0

Q. Im .,
E —Im P,
-0.003 . '

1

o

o

o

N
T

Im (0.1 pu-f—pu)

-0.004 - - ' -
0 1 2 3 4 5

Qf

Fig. 9. Time evolution of the imaginary components of some off-diagonal elements of the RDM for the three-
dimer model. The bottom panel shows early time values.

7. Discussion and concluding remarks

The kink sum algorithm presented in this paper offers an efficient method for performing the path
sum in some of the most demanding situations encountered in system-bath dynamics, most notably when
strong system-bath coupling induces long memory and necessitates small time steps. The efficiency of the
algorithm does not rely on weakly coupled, low-frequency or high-temperature baths, offering an excellent
alternative to other methods suitable for regimes characterized by strongly quantum mechanical behaviors.

In Feynman’s continuous-space formulation of the real-time path integral,>*** all paths contribute
with the same weight. The strong dependence of path weight on path shape that is exploited in the present
paper is a consequence of the finite energy range available to discrete (or DVR-discretized) Hamiltonians.
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Early work on continuous systems utilized momentum?®? and energy® filters to construct propagators with
a finite spatial span. Thus, the classification of paths into fixed-amplitude equivalence classes offers new
insights into the structure of the path sum for discrete systems. Further, recent work’ has shown that this
structure can be exploited in situations where the costly path sums must be performed a large number of
times with different system parameters, as in the case of averaging dynamical results with respect to static
disorder or including time-dependent fields.

The numerical examples presented pertain to several different types of processes, with a wide range
of parameters characteristic of some of the most challenging regimes in quantum simulation. The
convergence of the kink sum algorithm across all these regimes is very encouraging and complements well
the already available fully quantum mechanical methods for simulating system-bath dynamics.
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