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Abstract 

 

 The small matrix decomposition of the real-time path integral (SMatPI) allows 

numerically exact and efficient propagation of the reduced density matrix (RDM) for 

system-bath Hamiltonians. Its high efficiency lies in the small size of the SMatPI matrices 

employed in the iterative algorithm, whose size is equal to that of the full RDM. By 

avoiding the storage and multiplication of large tensors, the SMatPI algorithm is applicable 

to multistate systems under a variety of conditions. The main computational effort is the 

evaluation of path sums within the entangled memory length to construct the SMatPI 

matrices. A number of methods are available for this task, each with its own favorable 

parameter regime, but calculations with strong system-bath coupling and long memory at 

low temperatures remain out of reach. The present paper evaluates the path sums by 

binning the paths (in forward time only) based on their amplitudes, which depend on the 

number and type of kinks they contain. The algorithm is very efficient, leading to a 

dramatic acceleration of path sums and significantly extending the accessible memory 

length in the most challenging regimes.  
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1.  Introduction 

Quantum mechanical phenomena are ubiquitous and play a vital role in the dynamics of condensed 

phase processes. In addition, quantum effects can inform the design of novel materials for solar energy 

harvest and of architectures suitable for quantum information technology. The quest for novel technologies 

has spurred a renewed interest in the development of robust, efficient and accurate methods for simulating 

the quantum dynamics of large molecular aggregates and systems in condensed phase environments.  

Numerically exact time-dependent wavefunction methods, most notably the multiconfiguration 

time-dependent Hartree (MCTDH) method1-2 and algorithms based on the density matrix renormalization 

group3-4 (DMRG) are suitable for small- to medium-sized molecules and systems with a linear topology. 

Simulating dynamical processes in liquids and biomolecules requires entirely different approaches that 

generally rely on various assumptions and approximations. Many methods utilize classical trajectories, 

which they either augment to capture quantum effects or combine with a quantum mechanical treatment for 

select degrees of freedom. When all degrees of freedom are treated on the same footing on a single Born-

Oppenheimer potential surface, the linearized semiclassical initial value representation5-6 (LSC-IVR), also 

known as Wigner dynamics7-10), the forward-backward semiclassical dynamics (FBSD) method11 and path 

integral Liouville dynamics12 (PILD), use a quantized Boltzmann density in phase space to sample classical 

trajectories, accounting for zero-point energy and quantum dispersion. The use of classical trajectories for 

nonadiabatic dynamics (and more generally processes where a small system interacts with a large 

environment) is more challenging, because the formulations of classical and quantum mechanics are not 

readily compatible. A practical approach to nonadiabatic dynamics is offered by the mapping or MMST 

Hamiltonian13-14 and its coordinate-momentum phase space formulation that uses constrained variables.15-

16 These approaches convert a discrete system to a continuous Hamiltonian that can be treated by classical 

trajectory-based methods, such as LSC-IVR and its more accurate symmetric quasiclassical windowing 

model.17-18 Retaining the discrete nature of the system requires the interaction of local classical trajectories 

with delocalized wavefunctions. The most straightforward such scheme is the Ehrenfest method,19 which is 

a mean field treatment that generally leads to poor results.20 Trajectory surface hopping21-22 provides an ad 

hoc solution that addresses the most serious flaws of Ehrenfest’s approach, but fails to properly account for 

decoherence from condensed phase environments.23 A rigorous alternative is offered by the quantum-

classical path integral24-25 (QCPI), in which classical trajectories interact consistently and unambiguously 

with quantum paths of the discrete system (which are also local), eliminating the need for mean field 

approximations or other assumptions. Another rigorous approach is based on the mixed quantum-classical 

Liouville equation26-27 (MQCL); however, its numerical implementation does not converge easily, thus 

MQCL is often used to obtain approximate results. Beyond classical trajectory-based methods, the centroid 

molecular dynamics28-30 (CMD) and ring-polymer molecular dynamics31-33 (RPMD) approximations are 

widely used for simulating the dynamics in complex many-body systems. These methods extend the 

quantum-classical isomorphism34 of the imaginary-time path integral formulation of quantum statistical 

mechanics35 to extract dynamical information, and have been successfully applied to many processes.  

Additional possibilities arise when the small system of interest interacts with a “bath” of harmonic 

degrees of freedom. The so-called system-bath Hamiltonian is widely employed as a simplified model for 

studying the dissipative effects of condensed phase environments on the dynamics of the observed system,36 

and also for simulating the effects of environments composed of normal mode vibrations, lattice phonons, 
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and even complex, unstructured environments such as liquids when the latter collectively induce Gaussian 

response.37-38 The path integral formulation of time-dependent quantum mechanics39-40 offers a unique 

advantage in this case, allowing harmonic bath degrees of freedom to be integrated out analytically.41 

However, the resulting influence functional introduces memory effects that entangle the path integral 

variables, resulting in multidimensional integrals that cannot be sampled by Monte Carlo methods because 

the highly oscillatory nature of the quantum mechanical phase leads to a catastrophic sign problem, similar 

to (but arguably worse than) the situation encountered in equilibrium calculations with identical fermions.42-

44  

Numerically exact and stable methods for evaluating the real-time path integral were introduced in 

the 1990s with the development of the quasi-adiabatic propagator path integral45-49 (QuAPI). A number of 

further advances have led to methods that are highly efficient in particular regimes. In the special case of a 

bath characterized by the Debye spectral density, the path sum may be evaluated efficiently by solving 

hierarchical equations of motion50-51 (HEOM). Further, the recent small matrix decomposition of the path 

integral52-54 (SMatPI) eliminates the demanding tensor storage requirements of the original QuAPI 

algorithm, allowing calculations in multistate systems and long memory. Recent SMatPI simulations of 

energy flow in the bacterial light harvesting complex, which treated explicitly the excited states of 24 

bacteriochlorophyll molecules, each with 50 intramolecular vibrational modes,55-56 demonstrate the 

suitability of the algorithm for addressing highly nontrivial questions in biological and condensed phase 

processes. Since the SMatPI algorithm allows iterative propagation that involves the multiplication of small 

matrices (of minimal size, equal to that of the target reduced density matrix of the system), the main cost 

of the algorithm is the evaluation of the path sums over the entangled memory interval, which are utilized 

to construct the SMatPI matrices.  

The purpose of the present paper is to introduce the kink sum, an efficient algorithm for evaluating 

the path sum in cases of strongly coupled baths that necessitate small time steps and induce long memory, 

thus leading to astronomical numbers of paths that make this regime inaccessible to available approaches. 

The key idea is the sparsity of path space in discrete systems, for which the weight of a path is closely 

related to the number and type of state-to-state transitions or kinks. Unlike earlier methods that utilized path 

selection based on the damping properties of the influence functional on forward-backward path pairs, the 

kink sum exploits the properties of the system propagator to systematically build the relatively small subset 

of contributing paths in forward time, which can be stored easily even when the memory is rather long and 

subsequently combined to generate only those forward-backward path pairs that contribute to the path sum. 

The kink sum algorithm is efficient and well-suited to strongly quantum mechanical regimes, where other 

path integral decompositions fail to converge, thus increasing the range of processes amenable to 

numerically exact treatment.  

Section 2 presents an overview of the available path integral algorithms for system-bath 

Hamiltonians and describes the QuAPI representation of the reduced density matrix (RDM), along with its 

SMatPI decomposition. Section 3 shows that the set of paths consists of subsets with path weights that span 

many orders of magnitude, determined by the number and type of off-site steps a path takes. In the case of 

diagonal elements of the RDM for a two-level system (TLS), such steps form kinks, and these structures 

suggest the name of the algorithm. Section 4 shows that the kink sum can be performed analytically for a 

symmetric TLS, allowing one to easily assess the contribution from all paths in a subset containing a fixed 

number of kinks. Section 5 discusses how the selected subsets of paths can be most economically combined 

to form path pairs and to include the influence functional.  
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Section 6 illustrates the kink sum with results on four model systems that are representative of 

diverse physical situations: a symmetric TLS coupled to a bath with a very large reorganization energy, 

characteristic of self-exchange electron transfer reactions; a strongly asymmetric TLS typical of proton or 

energy transfer processes; the famous localization transition of a symmetric TLS at zero temperature; and 

a three-dimer system whose time evolution exhibits multiple time scales. In all these cases the kink sum 

converges easily, in spite of the very long memory. Last, a summary and some concluding remarks are given 

in section 7.  

 

 

2. Small matrix path integral (SMatPI) and path summing algorithms 

In the conventional case where the system sites are coupled to a common harmonic bath, the 

system-bath Hamiltonian is given by 
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is the system Hamiltonian in the discrete (or DVR-discretized46) basis , 1,...,i i n =  in which the position 

operator is diagonal, i.e.,  
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and ,i iq p  are the harmonic bath coordinates and momenta. A somewhat different situation is frequently 

encountered in excitation energy transfer within molecular aggregates57-59 composed of many interacting 

units, where the electronic states of each unit are coupled to local harmonic baths consisting of 

intramolecular vibrational degrees of freedom. In such situations the total Hamiltonian can be expressed in 

system-bath form through a vector generalization60 of Eq. (2.1) and (2.3), 
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The vector system-bath Hamiltonian can be extended to include local, common and correlated baths, and 

leads to a particularly simple expression for the influence functional.60 In order to keep the notation as 

simple as possible, the path integral variables are written in scalar form throughout the rest of this paper. 

The RDM of the system is obtained by tracing the density matrix with respect to all bath degrees 

of freedom. At the time N t , the elements of the RDM for the initial condition 0 0s s+ −
 are  
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where 
b

ˆ (0)  is the initial density operator describing the bath, and the superscript ( 0)N  indicates the final 

and initial times (in units of the path integral time step). It is useful to consider the full 2 2n n  RDM that 

corresponds to all possible initial conditions. For brevity, this matrix is referred to as the RDM throughout 

this paper. In the discretized path integral formulation, the RDM elements are given by sums of amplitudes, 
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along all discrete forward-backward paths 
0Ns s   associated with the time points that separate short-time 

propagators. Here 
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 are the forward-backward system propagators and 
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 are the QuAPI-discretized 

influence functional factors.49           

 The path integral variables in Eq. (2.6) are fully entangled within the memory length induced by 

the bath. The SMatPI decomposition52-53 disentangles the path integral variables by recursively shifting the 

entanglement to longer time intervals. Specifically, the path sum for each auxiliary RDM matrix 
( 0) , 2,3,...r r =R  (with continuation, i.e. non-endpoint influence functional coefficients53) is expressed as a 

sum of matrix products that involve earlier auxiliary RDMs, as well as an entangled residual ( 0)r
M , 
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etc. It has been shown analytically52-53 that the residual decreases rapidly once the memory length has been 

exceeded and thus can be dropped after some entanglement length maxr , which in practice is equal to (but 

may also be smaller than54) the memory length induced by the bath. Discarding the negligible residual 
max( 1,0)r +

M  leads to the following expression of the auxiliary RDM at times longer than the entanglement 

length: 
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By construction, Eq. (2.8) is an exact decomposition of the path integral. The 2 2n n  SMatPI matrices 
( , )N N r−

M  are given by the residuals (with proper influence functional coefficients suitable for 

continuation53) and involve fully entangled path sums within the entangled memory interval. With proper 

influence functional boundary conditions, these auxiliary matrices give the desired full RDM ( 0)N
ρ .  

To compute the SMatPI matrices, one must be able to evaluate the path sum within the 

entanglement length by one of several available methods. The largest such calculation involves 4n  sums, 

each of which contains max2( 1)r
n

−  terms: 
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The simplest and most direct approach for evaluating Eq. (2.9) is to explicitly construct all forward-

backward path sequences 
max max 1 0, , ,r rs s s  

−
. This is a straightforward task if the number of system states 

and the entanglement parameter are reasonably small. For example, for 2n =  the direct evaluation of the 

path sum is extremely fast for 
max 10r   and can be obtained with modest effort for entanglement lengths 

up to approximately 
max 20r . Large values of 

maxr  are accessible by applying filtering techniques, which 

exploit the damping role of the influence functional, implying that the vast majority of the paths leads to 

exponentially small contributions. Early work61-62 used Monte Carlo methods to obtain the statistically 

significant path sequences (those with a weight larger than a specified threshold) for use in iterative QuAPI 

calculations. Subsequent work63-64 developed deterministic procedures for constructing the set of 

contributing paths. Such procedures, which build the paths step-by-step, are free of Monte Carlo error but 

require the storage of all retained forward-backward sequences, which often is impractical. The simplest 

storage-free approach is to generate all sequences in a loop, immediately discarding forward-backward path 

combinations if the product of system propagators (along with the single-step influence functional factors) 

falls below the threshold, proceeding to evaluate the influence functional only for those that satisfy the 

weight criteria.65-66 This procedure avoids the majority of effort for path sequences that make negligible 

contributions, but the mere step of generating them restricts in practice the range of accessible 
maxr  values.  

It is formally possible to reduce the number of terms in the forward-backward path sum by 

switching to the blip representation.67 This involves performing a change of variables at each time point 

from ,k ks s+ −  to the “blip” and “sojourn” variables ( )1
2

,k k k k k ks s s s s s+ − + − = − = + . By exploiting the structure 

of the influence functional, all sojourn variables are summed using efficient matrix multiplication,  

effectively reducing the number of terms to ( ) max 1
1
2

( 1)
r

n n
−

+ , a number much smaller than the number 
max2( 1)r

n
−  of terms in the original coordinates. Thus, the blip transformation leads to an exponential 

acceleration of the path sum. For example, with 2n =  the total number of terms becomes max 1
3

r − , which for 

max 1r   is a much smaller number than max 1
4

r −
, pushing the practical limit from 

max 20r  to 
max 25r .  

In cases of near-classical, strongly dissipative environments (large system-bath coupling, low-

frequency modes, moderate-to-high temperature), the blip decomposition exploits the exponential decrease 

in the path weight with increasing number of blips, leading to an exponential reduction of the number of 

terms. Only the surviving forward-backward blip configurations (rather than the full path sequences) need 

to be generated, accounting for all spin-sojourn influence functional interactions between blips through 

iterative matrix multiplication.67 Since the required number of blips tends to be small in strongly dissipative 

regimes, the blip decomposition can converge rapidly even with 
max 100r   in such situations. 

Another option suitable for strongly coupled, low-frequency baths is offered by the quantum-

classical path integral24-25 (QCPI), a rigorous quantum-classical methodology applicable to complex 

anharmonic environments. QCPI captures the effects of the bath through classical trajectories that interact 

locally with system paths, and offers an exact, fully quantum mechanical approach to system-bath 

Hamiltonians. It has been shown that the dissipative effects associated with classical decoherence 

processes68 can be fully included in appropriately augmented system propagators,69 such that the remaining 

path sum must account only for the quantum mechanical component of the bath-induced memory, and even 

the latter can be partially incorporated through a dynamically consistent scheme.70 As a result, the QCPI 

time step can be considerably larger and convergence is achieved with shorter memory. Recent work71 

showed that in spite of small Monte Carlo errors, QCPI may be employed for efficient calculation of SMatPI 

matrices.  
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A different approach72 takes advantage of the structure of the influence functional to express the 

forward-backward path amplitude in the form of a matrix product state73 (MPS). Formally, the size (“bond 

dimension”) of the resulting matrices increases exponentially with 
maxr , following the number of paths, but 

is kept much smaller by utilizing singular value decomposition (SVD) to compress the matrices. A high 

level of compression is feasible under weak system-bath coupling, reflecting the enormous redundancy of 

the QuAPI tensor and making the time-evolving matrix product operator (TEMPO) method72 an excellent 

approach for constructing the SMatPI matrices in small systems with favorable parameters.66 However, 

strong coupling and multi-state systems quickly lead to large bond dimensions, and since SVD scales as 

the third power of matrix size, the computational cost (storage and number of operations) of TEMPO 

becomes prohibitive in such situations.  

 

 

3. Paths and kinks 

To address these challenges, the present paper introduces a systematic and efficient procedure for 

dramatically reducing the number of paths employed in the calculation of the RDM, thus allowing 

evaluation of the path sum over long entanglement intervals in regimes that are unfavorable to the 

approaches discussed in the previous section. Unlike earlier methods that were based on the weights of 

forward-backward path pairs, the present approach focuses on the much smaller set of paths along the 

forward time direction. Path weights are therefore based on properties of the system Hamiltonian alone, 

although additional benefits deriving from the influence functional contribute to the efficiency of the 

method at a later stage. 

Consider the set of discrete forward paths over a length of r time steps, where the largest value of 

r  is the entanglement length (or, if the dynamical process is short-lived, the entire propagation length). The 

wavefunction that evolves from the state 0s+  (i.e. the propagator) of the isolated system is given by the 

(single) path sum 
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Εq. (3.1) is the forward-time analogue of the RDM in Eq. (2.5). To compute the value of 
0

( 0)

,r

r

s s
 , one needs 

to add the amplitudes of the 1rn −  paths that span the time points 0,...,r . The amplitude of a path is 

determined by the number of short-time propagator factors 11K , the number of 12K  factors, the number of 

13K  factors, etc. In general, there are ( 1) / 2n n+  distinct propagator elements, although symmetry may 

reduce this number. (For example, in a symmetric TLS there are only two propagator elements, because 

11 22K K= .) The number ( , )m n r  of possible values for the total path amplitude is equal to the number of 

connected graphs with n vertices (see Figure 1). In general, this number grows rapidly with n and/or r . 

Thus, the set of paths is divided into ( , )m n r  equivalence classes, each of which consists of all paths that 

have the same amplitude. It follows that the paths within each equivalence class interfere constructively, 

while paths that belong to different equivalence classes may interfere constructively or destructively. 

Suppose all short-time propagator elements have different values and (without loss of generality) 

that 11K  has the largest modulus. The path with the largest weight, equal to ( )11

r
K ,  is the one that has all 

coordinates equal to 1 , and the corresponding equivalence class contains a single element. On the other 



8 

 

hand, if all diagonal propagator elements have the same value (as in a cyclic system with identical site 

energies), then the equivalence class of largest weight includes n paths. The next equivalence class is 

obtained by replacing a single 
11K  factor by the short-time propagator of next-to-largest magnitude 

(preserving the connected topology that characterizes a path). If this propagator element can be inserted at 

any of the r  time intervals, it generates an equivalence class with r  paths. Inserting multiple short-time 

propagators of smaller magnitudes leads to large numbers of paths with rapidly decreasing weights. As r  

increases, so does the number of equivalence classes, some of which contain huge numbers of paths, each 

of a very small weight. Whether or not such subsets contribute substantially to the desired path sum depends 

on the balance between a path’s weight and the cardinality of the subset. As one sums the paths grouped 

into equivalence classes with decreasing path weights, the contributions go through a maximum and 

subsequently decay rapidly.  

 

 
 

Fig. 1.  Graphs showing two 10-step paths that start and ends on site 1 in a system of 8 sites, represented 

by hollow black circles. Filled circles and lines indicate elementary path segments. Burgundy 

circles indicate diagonal short-time propagator elements, while red, orange and yellow lines 

correspond to propagator elements connecting nearest-, next-nearest-neighbor and distant sites, 

respectively. The left graph shows a path consisting of the sequence 1-2-4-3-7-6-1-4-8-6-1, while 

the right graph shows the path 1-1-2-3-3-3-4-3-2-1-1.  
 

 

For small time steps, off-diagonal elements of the propagator for discrete Hamiltonians have much 

smaller values than diagonal elements, regardless of the site energy values. Off-diagonal elements may also 

vary significantly in value, depending primarily on the coupling elements in the system Hamiltonian. These 

facts imply that the contribution of a path to the wavefunction value is governed by the number and type of 

off-diagonal propagator factors, which correspond to transitions between states. In the case of a symmetric 

TLS with 0rs s= , paths hop between the two states an even number of times, forming an integer number 

of (tight or loose) kinks, where each kink includes two off-diagonal short-time propagator elements (see 

Figure 2 in the next section). In multistate systems, kinks are segments where a path departs from a state 

j  at a particular instant, travels to another state or to several other states, and eventually returns to j  

after two or more time steps. Paths containing multiple kinks make exponentially small contributions to the 

path sum for the wavefunction, Eq. (3.1). To calculate the value of the wavefunction at r t , one must sum 

the amplitudes of all paths that contribute to the desired accuracy. This task can be achieved by sorting the 

paths according to the number/type of kinks they contain. In multistate systems it is not necessary to bin 

the paths into all possible equivalence classes, although doing so offers some benefits.74 Instead, one may 

group together paths of similar weights, generating a small number of bins that store the coordinates of the 

contained paths. 
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Before proceeding to make these ideas suitable for evaluation of the RDM that contains influence 

functional factors, it is instructive to discuss the simplest and most common example, a symmetric TLS.   

 

 

4. Analytical example: symmetric two-level system 

 As an example, consider a symmetric TLS described by the Hamiltonian  

 

 ( )0 1 2 2 1Ĥ    = −  +  (4.1) 

 

The focus is on evaluation of the wavefunction at the time r t  with initial and final conditions set at the 

first site, 0 /( 0)

11 1 1

iH r tr e − 
 = . Since the two site energies are identical in the case of a symmetric TLS, 

there are only two independent propagator elements, with values 

 

11 22 12cos , sinK K t K i t= =  =   .                                              (4.2) 

 

In this case each kink contains two 
12K  factors. Fig. 2 shows various arrangements of paths with zero, one 

and two kinks.  

 

 
 
Fig. 2.   Some representative discretized paths for a TLS over 10N =  time steps. Violet: path with 

no kinks. Blue: representative paths with one kink. Red: representative paths with two 

kinks.  

 

 

There is a single kink-free path whose contribution is equal to 11( )rK . The number of paths with 

one kink is given by the number of possible arrangements of two 12K  elements over r  time steps, i.e. is 

equal to  

 

!
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r r

r

 
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.                                                             (4.3) 

 

Each such path has an amplitude equal to 2 2

11 12

rK K− . Similarly, the number of paths with amplitude equal to 
4 4

11 12

rK K−  is given by the number of arrangements of four off-diagonal propagator elements over r  steps, 
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etc. Figure 4 shows the number of paths with a particular number of off-diagonal propagator elements as a 

function of path length. Table 1 shows the equivalence classes, their cardinalities, the amplitude of a path 

in each equivalence class, and the total contribution of an equivalence class, for an even value of r .  

The sum of amplitudes along all paths is thus given by 

 

( ) ( ) ( ) ( ) ( )
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2 2 4 4( 0)
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         (4.4) 

 

It is easy to see that the terms in Eq. (4.4) are the even powers in the Taylor expansion of the binomial 

( )cos sin
r

t i t +  , and therefore the sum is equal to 
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2
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 

                        (4.5) 

 

which is recognized as the exact result for the diagonal element of the system propagator at the time r t .  

 

 
Fig. 3.  Number of discrete paths with 3-6 off-diagonal elements as a function of the number r of time steps. 

Red, green, blue and violet show the number of paths with 3,4,5 and 6 off-diagonal factors. The solid 

black line shows the number of all possible paths. 

 

Table 1.  
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 Since sin cost t   as 0t → , the contribution of a path to the total amplitude decreases 

monotonically and rapidly as the number of kinks increases. However, the binomial coefficient that gives 

the number of paths with   kinks also increases rapidly with   at first, reaching its maximum at 1
2
r = , 

and subsequently decreases again in a symmetric fashion. Figure 4 (left panel) shows the absolute value of 

the path amplitude and number of paths as a function of the number of kinks at the time 15t −=   with 

100r =  (such that 10.05t − =  ). The total contribution of all paths with the same number of kinks is 

shown in the right panel of Figure 4. Table 2 shows the corresponding numerical values for paths with 

contribution greater than 410− . The simplest path that remains on state 
1  at all times contributes to the 

amplitude a value slightly smaller than unity. One-kink paths add to a large negative contribution. Two-

kink paths have very small individual amplitudes ( 6~10− ) but the total contribution of nearly four million 

such paths exceeds unity. As the number of kinks is increased, individual path amplitudes drop off rapidly, 

but their number increases, leading to significant contributions to the wavefunction up to 8 . With 9   

kinks the path amplitude is so small that the large number of such paths no longer compensates, making 

collective contributions that are corrections smaller than 410− . If one is interested in computing the total 

amplitude through four decimal places, including paths with ten or more kinks is entirely unnecessary.  

 

        
Fig. 4.  Left: Path amplitude (blue) and subset cardinality (red) as a function of the number of kinks with the parameters 

given in the text. Right: Total contribution from all paths with the same number of kinks. Note the large 

contributions of each group of paths in relation to the net sum, i.e. the wavefunction value, 0.28366.  

 

 
Table 2.  Path amplitude, number of paths and overall contribution to the probability of remaining in the state 

1
  as a function of 

the number of kinks for 
15t −=   with 100r = , 10.05t − =  . 

# of kinks path amplitude # of paths contribution 

0 +0.882451 1 +0.88245 

1 -2.2098E-03 4,950 -10.93856 

2 +5.5337E-06 3,921,225 +21.69906    

3 -1.3857E-08 1.1921E09 -16.51881 

4 +3.4701E-11 1.8609E11 +6.45752 

5 -8.6898E-14 1.7310E13 -1.50424 

6 +2.1761E-16 1.0504E15 +0.22858 

7 -5.4493E-19 4.4187E16 -0.02408 

8 +1.3646E-21 1.3459E18 +0.00184 

9 -3.4172E-24 3.0665E19 -0.00010 
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With the chosen parameters, the largest contribution comes from two-kink paths. If  r  were to be 

increased for a fixed total time, the contributions of paths with more kinks would increase. If the time step 

is decreased for a fixed value of r, the weights of paths with a given number of kinks decreases, leading to 

faster convergence of the series, but the total propagation time reached is shorter.  

Summing all the contributions with up to 9 =  gives the approximate wavefunction value 0.28366. 

This value is in excellent agreement with the exact result 
(50)

11 cos5 = .  

 

 

5.  Forward-backward paths and influence functional 

 Propagation of a system’s wavefunction involves the set of Q  paths whose weights are larger than 

a chosen threshold. The RDM includes forward-backward path pair combinations with amplitudes that are 

augmented by influence functional factors. While the array of Q paths is usually manageable, the set of 

contributing forward-backward paths often exceeds realistically available computer storage. Rather than 

constructing and storing forward-backward path pairs, the kink algorithm combines the set of forward paths 

with the (same) set of backward paths. However, the number 
2Q  of forward-backward paths that enter the 

double sum may be prohibitively large. Fortunately, for reasons that are discussed below, the forward-

backward path sum usually converges with a much smaller number of terms.  

 First, amplitudes multiply in the forward-backward pair. As a result, combining a forward path of 

the smallest retained weight with a backward path of comparable amplitude will lead to a contribution that 

is by far smaller than the desired accuracy in the RDM. Phrased differently, the Q Q  matrix of forward-

backward paths is fairly sparse. The arrangement of paths into equivalence classes, or in merged such 

subsets that form bins, allows the treatment of only those forward-backward combinations expected to make 

an appreciable contribution to the sum, avoiding a double loop over all 
2Q  terms. Convergence is easily 

checked by increasing the number of forward-backward bin combinations.  

 Second, the influence functional decreases the weights of forward-backward path combinations to 

values far below those of the bare system. Consider the paths over a large number of time steps with a small 

number of kinks. In the vast majority of forward-backward path combinations, the kinks of the forward and 

backward paths will not align, leading to multiple blip intervals that lead to an exponential decrease of the 

pair’s weight. This damping implies that bins whose overall contribution may be important in the absence 

of a bath can amount to negligible corrections once the influence functional is included, effectively 

increasing the path selection threshold and decreasing the number Q of retained sequences. For example, 

the analysis presented in the previous subsection suggests that paths with up to nine kinks must be included 

for the given parameters, but when computing the RDM in the presence of system-bath coupling one may 

find that bins with up to four or five kinks are sufficient.  

 

 

 

6.  Illustrative examples 

 This section illustrates the use of the kink sum algorithm in the evaluation of the SMatPI matrices 

with several examples. In all cases the system states are coupled to common or local baths described by an 

Ohmic spectral density,  
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  c/1
2

( )J e
   −

=                                                                (6.1) 

 

where   indicates the system-bath coupling strength and 
c  is a cutoff frequency.  

 

(i) Symmetric (self-exchange) electron transfer model 

 Simulating the dynamics of charge transfer processes often provides a serious challenge. This is so 

because such processes are frequently characterized by a large reorganization energy, which necessitates a 

small time step and gives rise to long memory. The surrounding medium may contain strongly coupled 

high-frequency modes, which are primarily in their ground state even at ambient temperatures, generating 

significant quantum effects. Because of the long quantum memory, the blip series does not converge rapidly 

under such conditions. This regime has generally been inaccessible to numerically exact methods.  

 Figure 5 shows results for a model symmetric electron transfer pair, described by the system 

Hamiltonian 

 

( )0 1 2 2 1Ĥ    = −  +                                                        (6.2) 

 

whose states are coupled to a common Ohmic bath representative of a molecular solvent or biological 

medium through the position operator given by Eq. (2.3) with 
1 20, 2 = =  at an inverse temperature 

0.5 = . The bath parameters are 2 = , 
c 20 =  , such that the strongest coupled modes are in their 

respective ground states (
c 10  = ). The bath is initially in equilibrium with the donor (state 

1 ). The 

solvent reorganization 80 =   is very large, such that a very small time step 0.01t =  is required for 

convergence of the path integral. Accurate results with the kink sum algorithm were easily obtained for 

entanglement lengths up to max 70r = , which is adequate for convergence, using paths containing up to 5 

off-diagonal short-time propagator elements over the time points 1,..., 1r − . The path sum was restricted to 

forward-backward combinations containing at most seven 12K  factors. The RDM was propagated for a 

total of 250000N =  steps, providing results up to 2500t = .  
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Fig. 5.  RDM elements for a model charge transfer reaction. The donor-acceptor pair is coupled to an Ohmic bath 

with 2 = , c 20 =   at an inverse temperature 0.5 = . Top left: donor population over 200000 path 

integral time steps. Kink-SMatPI results are shown for max 16,20,50r = and 70. The SMatPI matrices 

employed paths containing up to 5 off-diagonal propagator elements over the time points max1,..., 1r − .  

 

 

 As seen in the top left panel of Fig. 5, if shorter memory is used to construct the SMatPI matrices, 

the donor population does not equilibrate properly, eventually reaching long-time populations that are much 

higher than 0.5.  Similarly, longer-memory calculations with SMatPI matrices obtained using an inadequate 

number of blips cause the population to decay too rapidly. Note that differences among unconverged results 

(top right panel) are very small during early times and could easily be ignored, leading to a false perception 

of convergence. Also, a much faster decay is observed at very short times, before the population settles into 

exponential dynamics.   

 The bottom panel of Fig. 5 shows the imaginary part of the off-diagonal element of the RDM. Off-

diagonal RDM elements arise from quantum superpositions, and their imaginary components are related to 

instantaneous population derivatives.75 In the case of a TLS,76 12Im ( )t  gives the time derivative of 

11( )t  and thus decays to zero on the same time scale as the donor population. As shown in the right bottom 

panel, this function displays a clear plateau characteristic of the reactive flux at short times, following some 

early highly nonmonotonic behavior.   

 

(ii) Exothermic energy transfer model 

 The second example is representative of excitation energy transfer in a model heterodimer. The 

excited states of the monomers are coupled by the parameter −   and have energies that differ by the 

asymmetry parameter 10 =   according to the Frenkel exciton Hamiltonian58,77-79 
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( )0 1 1 1 2 2 1Ĥ       = −  + .                                                (6.3) 

 

 

 
Fig. 6.   Donor population in a strongly exothermic charge transfer reaction modeled by an asymmetric TLS coupled 

to an Ohmic bath with 2 = , c 10 =   at an inverse temperature 0.25 = . The asymmetry parameter 

is 10  .  The lines show SMatPI results with 0.02t =  and max 10 35r = − . For max 10r =  and 15 the 

SMatPI matrices were computed from the full QuAPI path sum, while the kink sum algorithm was used for 

max 20 35r = − . The markers show kink sum results with 0.01t = , verifying convergence with respect to 

time step value.  

 

 

Energy transfer follows excitation of the first monomer from the ground state via a Franck-Condon process. 

The two excited states are coupled to local baths with 2 = , c 10 =   at an inverse temperature 

0.25 = , such that both the system and the strongest coupled modes are at a moderately low 

temperature ( c 2.5  = = ). The bath reorganization energy of each unit is 40  .  

 Figure 6 shows SMatPI results obtained using a path integral time step 0.02t =  over 

entanglement lengths ranging from max 10r =  to max 35r = . Convergence with respect to the time step was 

confirmed through calculations with 0.01t = . For max 10 15r = −  the results computed with the kink sum 

algorithm are in agreement with those obtained with the full, unfiltered QuAPI path sum method. The donor 

population converges with max 35r = .  

 

(iii) TLS localization 

 It is well-known80 that a symmetric TLS coupled to a high-frequency ( c  ) Ohmic bath at 

zero temperature undergoes a transition to a localized phase when the coupling to the bath exceeds the 

critical value 1 = . The TLS Hamiltonian is given by Eq. (6.2) and the system operator has 1 21, 1 = = −

. The TLS states are coupled to a common Ohmic bath with parameters c 10 =  , 1.5 = . At zero 

temperature, these parameters represent a highly quantum mechanical regime. 
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Fig. 7.   Localization transition as a function of temperature in a symmetric TLS strongly coupled to an Ohmic 

bath. The SMatPI results were obtained with 0.02t =  and max 20 100r = −  with matrices computed 

with the kink sum algorithm with up to 5 off-diagonal propagator elements. Results are shown at zero 

temperature and also for 1 =  and 0.5.  

 

 

Figure 7 shows the time evolution of the initially populated state with the bath in its ground state 

and also at two temperatures specified by 1 =  and 0.5 = . The SMatPI matrices were computed 

using the kink sum algorithm with entanglement lengths up to 
max 100r = , using a path integral time step 

0.02t = . The calculations employed the kink sum algorithm with 4-5 off-diagonal propagator elements, 

which result in a very small number of paths in comparison with the total number of 200 602 1.6 10  paths 

that enter the sum for the RDM. At zero temperature the converged population remains constant after a 

minor short-time drop, in excellent agreement with analytical treatments80 and earlier path integral 

calculations.66,72 However, finite temperature is seen to rapidly destroy localization, causing the population 

to decay, even though the bath modes that are most strongly coupled to the TLS are still at a very low 

temperature ( c 10  =  and 5, respectively).  

 

(iv) Transport in a three-dimer model with multiple time scales 

 Last, the kink sum algorithm is applied to a model of transport in a cluster of three molecular dimers 

in a linear arrangement (see Figure 8) , with a total of six electronic states. The system Hamiltonian is given 

by  

 

( ) ( )0 1 2 3 4 5 6 2 3 4 5
ˆ h.c.H J         = −  + + − + +                        (6.4) 

 

where −   is the intra-dimer electronic coupling, J−  is the inter-dimer coupling, and h.c. denotes the 

hermitian conjugate. The inter-dimer coupling parameter is chosen as 0.1J =  . The electronic state of 

each monomer is strongly coupled to its own vibrational bath modeled by an Ohmic spectral density with 

parameters 2 = , c 10 =   at a temperature 0.25 = , which is intermediate for the bath ( c 2.5  =

). Only state 3  is initially populated. The three characteristic frequencies c 10 100 /J =  = , which span 
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two orders of magnitude, give rise to multiple time scales that are observed in the RDM evolution and 

which necessitate long-time propagation with a small time step. 

 SMatPI results are shown in Figures 8 and 9 over 500000N =  path integral time steps of length 

0.02t = . Convergence was obtained with entanglement length max 25r = . The SMatPI matrices were 

efficiently computed with the kink sum algorithm. The full set of forward-backward paths with these 

parameters involves 50 386 8 10=   terms.  

The three characteristic frequencies, each separated from the next by an order of magnitude, are 

readily identified in the population dynamics shown in Fig. 8. The initially populated state is seen to decay 

to approximately 0.5 within a time 1000t , transferring its population to state 4  within the same central 

dimer. During this early time period the populations of the edge dimers begin to grow, with 22  rising first 

because it is coupled to the initially populated state 3 , while 55  follows with a delay because it receives 

population from state 4 , and the most distant 66  begins to grow even slower. Once the central dimer has 

reached internal equilibrium, a much slower exponential decay of 33  and 44  is observed, which is 

accompanied by population transfer to the edge dimers.   

Fig. 9 shows the imaginary components of some off-diagonal RDM elements. While the most 

informative and intuitive picture is obtained from the evolution of coherence maps,81 the present focus is 

on the effect of multiple time scales on the rates of intra- and inter-dimer transfer. Recent work showed75 

that imaginary RDM elements are related to instantaneous time derivatives of state populations. For the 

present system,  

 

33 34 32

2
( ) 2 Im ( ) Im ( )

d J
t t t

dt
  =  +                                                     (6.5) 

 

As seen in Fig. 9, 34Im ( )t  and 32Im ( )t  (and also the linear combination in Eq. (6.5)) display 

characteristic plateaus early on, which are associated with the rapid intra-dimer dynamics. However, once 

the central dimer reaches local equilibrium (around 2000t ), the slow population transfer to the edge 

dimers leads to the establishment of a second plateau in the coherences. From the perspective of the central-

to-edge dimer dynamics, a flux plateau is expected after all rapid intra-dimer transients have settled. Further, 

it is seen that 45 32Im ( ) Im ( )t t   over these longer times, reflecting the fact that since the two central 

units are now equally populated, transfer to the two adjacent monomers (states 2  and 5 ) occurs at equal 

rates.  
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Fig. 8.   Time evolution of populations for a three-dimer system with the states of the monomers coupled to 

Ohmic baths with parameters given in the text. The SMatPI results were obtained with 0.02t =  

and max 15 25r = −  with matrices computed with the kink sum algorithm. The right panel shows the 

early rise of the edge dimer populations. 
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Fig. 9.   Time evolution of the imaginary components of some off-diagonal elements of the RDM for the three-

dimer model. The bottom panel shows early time values.  

 
 

7.  Discussion and concluding remarks 

 The kink sum algorithm presented in this paper offers an efficient method for performing the path 

sum in some of the most demanding situations encountered in system-bath dynamics, most notably when 

strong system-bath coupling induces long memory and necessitates small time steps. The efficiency of the 

algorithm does not rely on weakly coupled, low-frequency or high-temperature baths, offering an excellent 

alternative to other methods suitable for regimes characterized by strongly quantum mechanical behaviors.  

 In Feynman’s continuous-space formulation of the real-time path integral,39-40 all paths contribute 

with the same weight. The strong dependence of path weight on path shape that is exploited in the present 

paper is a consequence of the finite energy range available to discrete (or DVR-discretized) Hamiltonians. 
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Early work on continuous systems utilized momentum82 and energy83 filters to construct propagators with 

a finite spatial span. Thus, the classification of paths into fixed-amplitude equivalence classes offers new 

insights into the structure of the path sum for discrete systems. Further, recent work74 has shown that this 

structure can be exploited in situations where the costly path sums must be performed a large number of 

times with different system parameters, as in the case of averaging dynamical results with respect to static 

disorder or including time-dependent fields.  

The numerical examples presented pertain to several different types of processes, with a wide range 

of parameters characteristic of some of the most challenging regimes in quantum simulation. The 

convergence of the kink sum algorithm across all these regimes is very encouraging and complements well 

the already available fully quantum mechanical methods for simulating system-bath dynamics.  
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