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Abstract

The influence functional (IF) encodes all the information required for calculating
dynamical properties of a system in contact with its environment. A direct and simple
procedure is introduced for extracting from a few numerical evaluations of the IF,
without computing time correlation functions or evaluating integrals, the parameters
required for path integral calculations, either within or beyond the harmonic mapping,
and for assessing the accuracy of the harmonic bath approximation. Further, the small
matrix decomposition of the path integral (SMatPI) is extended to anharmonic
environments and the required matrices are constructed directly from the IF.
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Theoretical studies of quantum mechanical processes in systems with many degrees of freedom
often employ the system-bath simplification, where the observed degree(s) of freedom constitute the
“system” while all other variables that comprise the system’s “environment” are described in terms of
independent harmonic oscillators that couple to the system coordinate. Besides offering an excellent
starting point for incorporating the generic dissipative effects of condensed phase environments,!” the
system-bath decomposition leads to insightful and often near-quantitative descriptions of chemical
transformations along a reaction path,*> the impact of intramolecular and lattice vibrations on tunneling
dynamics,® vibronic effects in spectroscopy,”® charge and energy transfer in solution or biomolecules,’
and a plethora of other phenomena. From a practical perspective, numerically exact and efficient real-time
path integral methods for simulating the dynamical processes described by system-bath Hamiltonians
1011 and developments in this direction continue at a vigorous pace.

Expressing the Hamiltonian for a process in a fluid or biological environment in system-bath
form requires calculating a time correlation function for the environment and performing a Fourier-type
transformation to construct a spectral density.!*!* The time-discretized Gaussian influence functional (IF),
which contains all the effects from the effective harmonic bath on the dynamics of the system, can then be
constructed in terms of coefficients given by integrals of the spectral density.! The conventional

have been available since the 1990s

procedure is in principle straightforward but involves several steps and may encounter numerical
difficulties, as time correlation functions can be noisy and may not decay sufficiently rapidly for accurate
transformation to the frequency domain. A more direct approach that avoids the transformation to the
frequency domain but requires the evaluation of two-dimensional integrals has been described in recent
work.'* Both procedures require availability of the correlation function on a dense time grid. To date, no
methods are available for assessing the accuracy of the harmonic bath mapping. Adding to the IF terms
beyond second order would necessitate the calculation of higher-order correlation functions, an
impractical task. Rigorous methods for computing the system’s reduced density matrix (RDM) beyond
the harmonic bath approximation are rather limited in scope and performance.

To address these challenges, the present Letter introduces a direct procedure for (i) obtaining the
IF coefficients for the system-bath mapping of a process, (ii) checking the validity of the harmonic bath
approximation, and (iii) constructing the required IF components for propagation through a small matrix
path integral (SMatPI) decomposition that is not limited to harmonic baths. The procedure involves
parsing the IF, is rigorous, and requires minimal effort. Applications on systems of coupled two-level
systems (TLS) are presented, which illustrate the quantitative nature as well as the failure of the Gaussian
IF assumption under a variety of conditions.

The Hamiltonian is expressed in the general form

H=H, +H, (1)
where H, is the Hamiltonian of the system and H describes the general environment or bath and its

interaction with the system coordinate s = zil('l. |,)(@,|. The discretized path integral expression for the
RDM at the time NAz (where Atz is the path integral time step) has the form



.S vse S1So SytSy

~(1\/0) z ZGf - -G +F(NO) ©)

Here G. . is the product of forward and backward short-time system propagators and F''”, is the
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influence functional. If the isolated bath with Hamiltonian /| is initially at a temperature 7' =1/k, 3, i.e.
p,(0)=Z," exp(—BH, ) , and the system is in the state |s, > <s(; ,
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where H, is the Hamiltonian of the isolated bath. Without losing generality, suppose that the system-bath
coupling vanishes at the value s=0, i.e. H,(0)=H,(0) at the origin. Setting all s; =0 except s, and
Sy With k,k+ Ak #0,N , it is easy to see that Eq. (3) becomes

F(NO) Tr[ —ifl, (VMk)/Al/’l o (Bk= ])HbAt/I1e”H (u )/Al/h Ab(o) i(Ak+1) Ay, At/h:l (4)

showing that the influence functional depends only on the difference Ak . Similar expressions can be
obtained by giving three or more variables nonzero values. Such expressions demonstrate that the
influence functional is translationally invariant away from the endpoints, regardless of the form of the
Hamiltonian.

Earlier work'® showed that the IF from a general anharmonic environment is the exponential of a
power series in the coordinates of the forward and backward system paths,
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where the coefficients of the linear terms are given by bath averages, while the coefficients of the
quadratic, cubic, etc. terms are discretized forms of two-, three-, etc. time correlation functions of the
environment. In the special case where the interaction between the system and the environment is diluted
over a large number of degrees of freedom, all terms beyond quadratic order vanish. The resulting
Gaussian influence functional defines an effective harmonic bath, whose two-time correlation function
equals that of the anharmonic medium and which produces the same system dynamics as the actual
environment. This equivalence, which has been widely used in classical statistical mechanics,'? can be
employed to map a complex (e.g. biological) environment on a simple harmonic bath, inviting the use of
simulation methods suitable for system-bath Hamiltonians.

The cumulant expansion of the influence functional also shows that (as long as the environment is
large) the temporal correlations induced by the bath, which render the dynamics non-Markovian, have a
finite span. Exploiting the finite memory length has led to a general iterative decomposition of the path
integral'® that is based on the numerical evaluation of the influence functional. The resulting algorithm'’



is the generalization of the iterative quasi-adiabatic propagator path integral (QuAPI) algorithm'®!” to
anharmonic environments, for which the influence functional is not available analytically. Its main
drawback is the storage and manipulation of tensors, which when combined with the computationally
intensive evaluation of the IF at each sequence of system coordinates, can be impractical.

To overcome these difficulties, this Letter proceeds to parse the IF from general, anharmonic
environments, assuming that the latter may be computed using available algorithms (e.g. see '® or ). The
starting point is the cumulant expression, Eq. (5). Note that the IF coefficients satisfy certain symmetry
relations, e.g. S, =—( B ) and that the linear terms may be eliminated by shifting the system
coordinate. Setting s;. =0 for all k" except s; = x, where x can be given arbitrary values, gives
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where the subscript in the IF labels only the path integral variables that are not equal to zero. Since it is
assumed that the IF can be computed for any sequence of system coordinates, it is straightforward to
evaluate Eq. (6) at several values of x. One can then easily check whether the exponent is a quadratic
function, and if so, determine the diagonal (single-time) influence functional coefficients. If the linear
term is equal to zero, one obtains
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On the other hand, if the linear term does not vanish, evaluation of Eq. (6) at two values x, and x,
uniquely determines the coefficients ¢ and f,;" as
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Proceeding similarly, one can obtain the values of «,, S, , etc., although these coefficients can also be
determined from the symmetry relations mentioned above.

It is also easy to obtain the two-time (off-diagonal) influence functional coefficients for the
effective harmonic bath by setting s;, =0 for all &' except k and k + Ak, with s; =s,,,, =x. Since the
coefficients of the linear and diagonal quadratic terms have already been determined, this step leads to
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Equations (7)-(9) completely specify the IF coefficients for the effective harmonic bath from a small
number of simple and efficient calculations. They avoid altogether the computation of the two-time
correlation function of the environment on a dense time grid and the evaluation of integrals of the latter.
Using the determined IF coefficients, one can compute the system’s RDM (or any other property) using



any of the available methods for system-bath dynamics. It is also possible to calculate the cubic and
quartic IF coefficients through a similar procedure.

If the above procedure determines that the influence functional deviates significantly from the
Gaussian form, one must proceed differently. Recent work? outlined the generalization of the small
matrix decomposition of the path integral®'-?> (SMatPI) for system-bath dynamics to situations where the
IF does not have the Gaussian form. The main idea was described in the context of the modular path
integral (MPI) algorithm?*** with a SMatPI decomposition of path amplitudes,”® and is developed below
for the most general situation.

Regrouping the components in Eq. (5) according to the number of path integral variables they
contain and combining one- and two-variable factors, the influence functional from a general environment
can be written in the form

e <1111 si’i’j’HHH PR (10)

k=1 k'<k k=1 k'<k k"<k’

where, with ordinary values of the time step required for convergence, all factors are of order unity. The
SMatPI decomposition employs the auxiliary propagation matrices R“"’, which are RDMs with
appropriate IF boundary conditions®* (for propagation if » < N or termination if 7 = N ). Defining

MU =R =G, 1, M =G, f (an
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the propagation RDM at the second time point is expressed as

(20) _ (21) p(10) (20)

R.: = Z MR+ M (12)
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where
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is the residual. Eq. (13) is the first step in the SMatPl decomposition and is analogous to the
corresponding matrix for a harmonic bath, although in the present case the factors do not generally have a
Gaussian form and the term in the parenthesis is a function of three variables. Just as in the harmonic bath
case, the presence of the small factor f*\”) —1 implies that the elements of the residual matrix M“”
have small values compared to those of M“O%

Proceeding to the next time point, the SMatPI decomposition of the propagation RDM becomes
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and straightforward algebra shows that the residual is given by



333): Z Z G..G, G++f(32>f<21>f(10)

sysy sysposysy? sysy Y osysi o stsg

$ =K 8 =K (15)
|:f(31)f(321) (f(ZO)f(SO)f(ZlO) f(320) f(SlO) f(3210) _ ) (f(ZO)f(ZlO) ):|

5387 8) s380 7 s3sy Y S3SySg 7 538350 Y S3ST S Y 83855 5380 Y S35y

Analogous expressions can be obtained for higher order residuals.

In the case of a harmonic bath, if the environment is sufficiently large, the two-time correlation
function decays to zero within a finite interval known as the memory length LAz. This behavior is
observed in anharmonic baths as well, where all time correlation functions decay to zero when the
difference of any two variables exceeds the memory interval. It follows that the IF factors rapidly
approach unity when the memory length is exceeded. Just as in the case of a Gaussian IF, the SMatPI
residuals are dominated by the memory (not by the entanglement of variables they contain).?'** For
example, if L =2 Eq. (15) simplifies to
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This expression shows that the elements of M are smaller than those of M
with the elements of M"” decreasing rapidly with »> L. Eventually, the residuals M“" become

negligible when the time separation (k—k’)At exceeds the entanglement time » _A¢, and thus may be

. This trend continues,

omitted in subsequent steps, leading to the SMatPI decomposition
k-1
R ="M R fe>p (17)
k=

An analogous expression (with endpoint IF factors®!-*?) gives the RDM at the desired time.

Since the influence functional components are translationally invariant away from endpoints, the
propagation SMatPI matrices depend only on the time separation, i.e. M**** = M"Y for k=0 (but
MHAED o MDY Re-labeling M™? as M in Eq. (17), one sees that the SMatPI decomposition of
the auxiliary propagation matrix R has the structure of the Nakajima-Zwanzig generalized quantum
master equation®*?’ (GQME), and the SMatPI matrices become the discretized elements of the GQME
kernel. The SMatPI decomposition of the actual RDM differs slightly because of IF endpoint effects,
which are the consequence of a symmetric partitioning of the short-time propagator. If, instead, the path
integral is discretized using an asymmetric partitioning, the SMatPI decomposition takes the GQME form
where all kernel matrices depend only on time separation.?? Since the Trotter error vanishes in the limit
At — 0, the GQME is recovered from a SMatPI decomposition.

The SMatPI matrices M"***" are given by the residuals and are obtained recursively if M®" is
provided. The starting matrix M" can be achieved by following a procedure similar to that described
for the harmonic bath mapping. Evaluating the IF with s; =0 for all k except s =x, s; =y and
removing the component that depends only on s =x, one obtains the value of f (21) ._» which
determines M®" . J



To illustrate these ideas, consider a TLS with right and left states labeled R and L, described by
the Hamiltonian

H,=-hQ6) =-hQ(|R)(L|+|L)(R|) (18)

where the level splitting is 24, and suppose that the TLS is coupled to d “bath TLSs” according to the
Hamiltonian

d

A 1 A, A R R R s
H, :_Z(Ehwio-; +ciSQij5 S= ) 3’ q,=,|5—0. (19)
i=1

where ¢!, 6’ and o', o! are the Pauli spin matrices for the system and bath, respectively, and y =1.
The parameter ¥ is introduced to allow the scaling of the system TLS “coordinate” o, . Coupled TLSs
(where the two states represent the ground and excited electronic states of a molecule) are often employed
in studies of excitation energy transfer in molecular aggregates. Further, the TLS Hamiltonian describes a
spin-% interacting with other spins, a situation of much current interest because of its relevance to
quantum information science. Besides its physical relevance, the TLS bath offers an excellent testbed for
demonstrating the theoretical ideas described in this Letter: A single TLS is a highly nonlinear system,
inducing dynamical effects that can be differ vastly from those of a harmonic oscillator. In addition, the
correlation function of a TLS is available analytically, simplifying the harmonic bath mapping in the
d — oo limit.?*?
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Fig. 1. Natural logarithm of the influence functional as a function of the coordinate scaling parameter
y for the TLS bath with & =1,0, =10Q at a temperature #QS =1 for d =2,5,10 and 100.
The path integral time step is Az =0.1Q7". (a) 57 =y, (b) s/ =5, =y .
In the limit of d — oo the bath frequencies @, and coupling parameters ¢, are assumed to be
related through the spectral density function J(w) =1 zEhwe ”*, which peaks at @, and & is a measure
of the overall coupling strength. With finite values of d, the frequencies @, are obtained by applying the



logarithmic discretization,!*4

which in the case of a harmonic bath partitions the spectral density into
regions of equal reorganization energies. The TLS is initially placed in the R state, while the bath TLSs
are at thermal equilibrium at the reciprocal temperature S =1/k,T. The IF from the TLS bath is
calculated numerically using matrix operations.'®

Figure 1 shows the logarithm of the influence functional for £=1, @, =10€) at a temperature
hQB =1 with (a) s/ =y and (b) 5, =s, =y (and all other path variables set to zero), for several values
of d. The values of the single- and two-time IF coefficients are also determined within the Gaussian
approximation according to Equations (6)-(8), respectively, using a small value of y . When the number
of bath TLSs is small, the departure from the Gaussian form is visibly obvious. The anharmonicity effects
decrease with increasing d and become very small for d >1000. In this case, the IF coefficient obtained is
independent of the chosen value of y, indicating that the Gaussian response limit has been reached and
the collective effect of the bath TLSs is the same as that of a bath of harmonic oscillators whose
parameters can (depending on the temperature) differ significantly from those of the TLSs).

Figure 2 shows the time evolution of the population F,(¢) (i.e. the diagonal RDM
element) of the system TLS, with bath TLS parameters &=0.5 and @, =10Q, for d =5,10 and 50. The
TLS bath is initially at the temperature #Q 5 =5, while the system TLS is in the R state. The path integral
time step set is set to QAf =0.2. The panels compare the results calculated with the anharmonic SMatPI
algorithm to those under the effective harmonic bath approximation, obtained with the SMatPI module of
the PATHSUM package® using IF coefficients from Equations (8) and (9). For d =5 and 10, exact results
obtained by full diagonalization of the Hamiltonian are also presented.

Time correlation functions in a finite-dimensional bath exhibit prominent recurrences of varying
amplitude, which reflect the many time scales that characterize the dynamics and which induce infinite
memory. As the number d of bath degrees of freedom is increased, such recurrences become weaker and
the population curves become smoother. This behavior implies that the iterative evaluation of the RDM
(either with full anharmonicity or under the Gaussian mapping) cannot converge with small values of d,
but for a fixed value of =L convergence over longer time intervals is attained as the number of bath
TLSs increases. For d =5 and 10 the SMatPI results are converged up to Qf =4, while for d =50 they
are converged over much longer times and practically reach equilibrium.

In both cases where diagonalization of the full Hamiltonian is possible, the anharmonic SMatPI
results are in close agreement with the exact calculations. Very small deviations are the consequence of
Trotter error in the QuAPI splitting'® of the system-bath Hamiltonian. The results obtained with the
effective harmonic bath approximation differ significantly from the exact results for d =5 and 10 and the
discrepancies grow with time, suggesting that anharmonic corrections are important with the chosen
parameters. When the number of bath spins is increased to 50, the effective harmonic approximation
becomes nearly quantitative, although small differences from the results obtained with the anharmonic
SMatPI algorithm are seen even in this case. Upon further increasing the number of bath spins, the
effective harmonic bath results approach and eventually become identical to the exact path integral
results.

In the d — oo limit the influence functional from the TLS bath becomes Gaussian, i.e. the TLS
bath becomes equivalent to a bath of harmonic oscillators with a modified, temperature-dependent
spectral density.'® Since the two-time correlation function of a two-level system can be obtained
analytically, the spectral density of the effective harmonic bath can be calculated exactly.??° With a large



number of bath spins (d =10) the IF coefficients obtained using Equations (8) and (9) are identical
through several significant figures to those calculated with the harmonic bath spectral density from the
analytical correlation function, and the population results are identical as well.
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Fig. 2. Population of the R state as a function of time for a TLS coupled to a bath of d TLSs given in
Equations (18) and (19). Red squares: results obtained with the fully anharmonic SMatPI algorithm.
Blue circles: results obtained with the effective harmonic bath from the Gaussian IF approximation
using IF coefficients from Equations (8) and (9). Black line: exact results from diagonalization of the
full Hamiltonian.

As a last example, the system TLS is coupled to another identical TLS through the term —J 6!
with J=0.52Q and also (weakly) to a continuous harmonic bath with £=0.1 and @, =10Q at an
intermediate temperature B~ =hQ. The bath TLS is initially placed in an eigenstate of its own
Hamiltonian. The inclusion of a dissipative environment leads to smoother dynamics, but the coupled



single-TLS bath gives rise to infinite memory. However, accurate and well-converged results over long
times are obtained by processing the RDM for the two-spin system coupled to a harmonic bath, which
was computing with the standard SMatPI algorithm.

Figure 3 compares the time evolution of B, for the system TLS in the presence of the composite
bath, obtained using the anharmonic SMatPI algorithm, the effective harmonic approximation with
coefficients obtained through the IF parsing procedure, and the fully converged harmonic SMatPI results
for the pair. In all cases the SMatPI results with L=7__ =16 are converged up to approximately € =4.
In order to decipher the roles of the two separate bath components, results are also presented for the
system TLS with the environment composed of either just the bath TLS (J =0.54Q, £=0) or only the
harmonic bath (J =0, £=0.1).

J=0.5, £=0.1 exact
® J=0.5, £=0.1 harmonic mapping SMatPL, L=16
B J=0.5, £=0.1 anharmonic SMalPl, L=16
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Fig. 3. Population of the R state as a function of time for a TLS coupled to a composite environment
consisting of a TLS and a harmonic bath. The lines show numerically exact results obtained with the
harmonic SMatPI algorithm for the two TLSs coupled to a harmonic bath. Squares show results

obtained with the anharmonic SMatPI algorithm with L =r =16, while circles show the results of

the harmonic mapping. Lime green and yellow: J =0.5AQ, £=0. Orange: J =0, £=0.1. Red
and blue: J=0.5, £=0.1.

Even though the overall damping effects of these two environments are comparable in magnitude,
the TLS population dynamics differ significantly. In the presence of a weakly dissipative harmonic bath,
the system population exhibits underdamped oscillatory dynamics. The IF is Gaussian in this case and the
SMatPI calculation with IF coefficients from the parsing procedure yields exact results. The generalized
anharmonic SMatPI algorithm also produces identical results. In contrast, coupling to a single-TLS bath

10



modulates the system dynamics but does not lead to equilibration. Even with this single-TLS bath, the
effective harmonic approximation is seen to capture the correct dynamics up to the first local minimum of
the population, but subsequently deviates significantly from the exact results.

The dynamics of the TLS interacting with the composite environment exhibits the signatures of
the strongly coupled bath TLS, in addition to the damping induced by the harmonic bath. During very
early times, the effects from the two bath components are nearly additive, leading to a shallower
population minimum compared to those observed when the system is coupled to either the harmonic bath
or the other spin. The results of the anharmonic SMatPI algorithm match well the exact results over the
converged range. (Again, some very small differences arise because of different Trotter factorization in
the two methods.) The effective harmonic approximation is seen to be accurate up to the first local
population minimum in this case as well, deviating at longer times, although it continues to qualitatively
track the exact results because of the appreciable quadratic component in the bath Hamiltonian.

In summary, the ideas described in this Letter offer new possibilities for simulating the quantum
dynamics of systems in environments that are not restricted to common quadratic Hamiltonians. By
parsing the IF, it was shown that the coefficients of the time-discretized Gaussian IF under the effective
harmonic bath mapping can be obtained through a very simple and efficient procedure that avoids the
calculation of the environment’s time correlation function, along with its double integration, or
(equivalently) its conversion to a spectral density and subsequent integration. Further, the same procedure
can be used to examine any deviations of the IF from the Gaussian form, in order to assess whether the
harmonic mapping should offer an adequate approximation. Last, it was shown that the parsing ideas can
be adapted to the calculation of SMatPI matrices without resorting to the harmonic bath form, thus
generalizing the SMatPI decomposition to anharmonic environments. The resulting SMatPI expressions
have the GQME structure away from endpoints, and from this perspective the SMatPI form of the RDM
does not come as a surprise. However, the calculation of the GQME kernel from the Hamiltonian presents
an extremely demanding task. Further, the SMatPI matrices developed from the discretized path integral
do not have the translationally invariant GQME form at endpoints, and these differences are important for
the exact nature of the propagation algorithm.

Application of these ideas hinge on the ability to numerically evaluate the influence functional for
anharmonic environments. In the most general situation, this task entails performing fully quantum
mechanical calculations over the relatively short memory interval. At present, influence functionals from
anharmonic environments can be generated fully quantum mechanically in the case of separable baths,'®
and through the forward-backward semiclassical approximation!® (FBSD) for general many-body

environments. Further, the MPI algorithm?*-**

can be used to calculate the IF of multi-component systems
with a one-dimensional topology. More work is needed to devise methods for calculating the IF of more
complicated environments without introducing approximations. Nevertheless, the developments described
in this Letter are encouraging toward the long-standing goal of simulating the dynamics of quantum

mechanical processes in complex media.
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