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Abstract 

 

The influence functional (IF) encodes all the information required for calculating 

dynamical properties of a system in contact with its environment. A direct and simple 

procedure is introduced for extracting from a few numerical evaluations of the IF, 

without computing time correlation functions or evaluating integrals, the parameters 

required for path integral calculations, either within or beyond the harmonic mapping, 

and for assessing the accuracy of the harmonic bath approximation. Further, the small 

matrix decomposition of the path integral (SMatPI) is extended to anharmonic 

environments and the required matrices are constructed directly from the IF.  
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 Theoretical studies of quantum mechanical processes in systems with many degrees of freedom 

often employ the system-bath simplification, where the observed degree(s) of freedom constitute the 

“system” while all other variables that comprise the system’s “environment” are described in terms of 

independent harmonic oscillators that couple to the system coordinate. Besides offering an excellent 

starting point for incorporating the generic dissipative effects of condensed phase environments,1-3 the 

system-bath decomposition leads to insightful and often near-quantitative descriptions of chemical 

transformations along a reaction path,4-5 the impact of intramolecular and lattice vibrations on tunneling 

dynamics,6 vibronic effects in spectroscopy,7-8 charge and energy transfer in solution or biomolecules,9 

and a plethora of other phenomena. From a practical perspective, numerically exact and efficient real-time 

path integral methods for simulating the dynamical processes described by system-bath Hamiltonians 

have been available since the 1990s10-11 and developments in this direction continue at a vigorous pace.  

 Expressing the Hamiltonian for a process in a fluid or biological environment in system-bath 

form requires calculating a time correlation function for the environment and performing a Fourier-type 

transformation to construct a spectral density.12-13 The time-discretized Gaussian influence functional (IF), 

which contains all the effects from the effective harmonic bath on the dynamics of the system, can then be 

constructed in terms of coefficients given by integrals of the spectral density.10 The conventional 

procedure is in principle straightforward but involves several steps and may encounter numerical 

difficulties, as time correlation functions can be noisy and may not decay sufficiently rapidly for accurate 

transformation to the frequency domain. A more direct approach that avoids the transformation to the 

frequency domain but requires the evaluation of two-dimensional integrals has been described in recent 

work.14 Both procedures require availability of the correlation function on a dense time grid. To date, no 

methods are available for assessing the accuracy of the harmonic bath mapping. Adding to the IF terms 

beyond second order would necessitate the calculation of higher-order correlation functions, an 

impractical task. Rigorous methods for computing the system’s reduced density matrix (RDM) beyond 

the harmonic bath approximation are rather limited in scope and performance.  

To address these challenges, the present Letter introduces a direct procedure for (i) obtaining the 

IF coefficients for the system-bath mapping of a process, (ii) checking the validity of the harmonic bath 

approximation, and (iii) constructing the required IF components for propagation through a small matrix 

path integral (SMatPI) decomposition that is not limited to harmonic baths. The procedure involves 

parsing the IF, is rigorous, and requires minimal effort. Applications on systems of coupled two-level 

systems (TLS) are presented, which illustrate the quantitative nature as well as the failure of the Gaussian 

IF assumption under a variety of conditions.  

The Hamiltonian is expressed in the general form 

 

 
0 sb

ˆ ˆ ˆH H H= +  (1) 

 

where 0H  is the Hamiltonian of the system and sbH  describes the general environment or bath and its 

interaction with the system coordinate 
i i ii

s   = . The discretized path integral expression for the 

RDM at the time N t  (where t  is the path integral time step) has the form 
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Here 
1k ks s

G  
+

 is the product of forward and backward short-time system propagators and 
0

( 0)

N

N

s s
F    is the 

influence functional. If the isolated bath with Hamiltonian bH  is initially at a temperature B1/T k = , i.e. 

( )1

b b b(0) expZ H −= − , and the system is in the state 0 0s s+ − , the IF is given by the expression 
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                                     (3) 

 

where bH  is the Hamiltonian of the isolated bath. Without losing generality, suppose that the system-bath 

coupling vanishes at the value 0s = , i.e. sb b(0) (0)H H=  at the origin. Setting all 0ks =  except ks+  and 

k ks++  with , 0,k k k N+   , it is easy to see that Eq. (3) becomes 
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0

ˆ ˆ/ / / /ˆ ˆ( 1) / ( 1) /( 0)
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ˆTr (0) 

k k k
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+ +
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−  − −  −   +  =
  

                          (4) 

 

showing that the influence functional depends only on the difference k . Similar expressions can be 

obtained by giving three or more variables nonzero values. Such expressions demonstrate that the 

influence functional is translationally invariant away from the endpoints, regardless of the form of the 

Hamiltonian. 

 Earlier work13 showed that the IF from a general anharmonic environment is the exponential of a 

power series in the coordinates of the forward and backward system paths,  
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  = = = = = =
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=                       (5) 

 

where the coefficients of the linear terms are given by bath averages, while the coefficients of the 

quadratic, cubic, etc. terms are discretized forms of two-, three-, etc. time correlation functions of the 

environment. In the special case where the interaction between the system and the environment is diluted 

over a large number of degrees of freedom, all terms beyond quadratic order vanish. The resulting 

Gaussian influence functional defines an effective harmonic bath, whose two-time correlation function 

equals that of the anharmonic medium and which produces the same system dynamics as the actual 

environment. This equivalence, which has been widely used in classical statistical mechanics,12 can be 

employed to map a complex (e.g. biological) environment on a simple harmonic bath, inviting the use of 

simulation methods suitable for system-bath Hamiltonians.  

 The cumulant expansion of the influence functional also shows that (as long as the environment is 

large) the temporal correlations induced by the bath, which render the dynamics non-Markovian, have a 

finite span. Exploiting the finite memory length has led to a general iterative decomposition of the path 

integral15 that is based on the numerical evaluation of the influence functional. The resulting algorithm15 
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is the generalization of the iterative quasi-adiabatic propagator path integral (QuAPI) algorithm16-17 to 

anharmonic environments, for which the influence functional is not available analytically. Its main 

drawback is the storage and manipulation of tensors, which when combined with the computationally 

intensive evaluation of the IF at each sequence of system coordinates, can be impractical.  

To overcome these difficulties, this Letter proceeds to parse the IF from general, anharmonic 

environments, assuming that the latter may be computed using available algorithms (e.g. see 18 or 19). The 

starting point is the cumulant expression, Eq. (5). Note that the IF coefficients satisfy certain symmetry 

relations, e.g. ( )
*

kk kk −+ +−

 = −  and that the linear terms may be eliminated by shifting the system 

coordinate. Setting 0ks =  for all k   except ks x+ = , where x can be given arbitrary values, gives 

 
2 3

( 0) k kk kkk

k

x x xN

s x
F e

  + ++ +++

+

− − − −

=
=                                                               (6) 

 

where the subscript in the IF labels only the path integral variables that are not equal to zero. Since it is 

assumed that the IF can be computed for any sequence of system coordinates, it is straightforward to 

evaluate Eq. (6) at several values of x. One can then easily check whether the exponent is a quadratic 

function, and if so, determine the diagonal (single-time) influence functional coefficients. If the linear 

term is equal to zero, one obtains 

 

1

( 0) (20)

2 2

ln ln
, 0k

N

s x s x

kk

F F
k N

x x


+ += =++ = − = −    .                                                    (7) 

 

On the other hand, if the linear term does not vanish, evaluation of Eq. (6) at two values 1x  and 2x  

uniquely determines the coefficients k +  and kk ++  as 

 

( ) ( )
2 1 2 1

( 0) ( 0) 2 ( 0) 2 ( 0)

1 2 1 2

1 2 1 2 1 2 1 2

ln ln ln ln
,k k k k

N N N N
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x F x F x F x F

x x x x x x x x
 

+ + + += = = =++ +
− −

= = −
− −

.                               (8) 

 

Proceeding similarly, one can obtain the values of k − , kk +− , etc., although these coefficients can also be 

determined from the symmetry relations mentioned above.  

 It is also easy to obtain the two-time (off-diagonal) influence functional coefficients for the 

effective harmonic bath by setting 0ks =  for all k   except k and k k+  , with k k ks s x+ +

+= = . Since the 

coefficients of the linear and diagonal quadratic terms have already been determined, this step leads to 

 

( )
( , )

,

, ,2

ln
k k k

k k k

s x s x k k k
k k k k k k k kk

F

x x

 
  

+ +
+

+
+ +

= =++ ++ +++
+ + +

+
= − − − + .                                   (9) 

 

Equations (7)-(9) completely specify the IF coefficients for the effective harmonic bath from a small 

number of simple and efficient calculations. They avoid altogether the computation of the two-time 

correlation function of the environment on a dense time grid and the evaluation of integrals of the latter. 

Using the determined IF coefficients, one can compute the system’s RDM (or any other property) using 
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any of the available methods for system-bath dynamics. It is also possible to calculate the cubic and 

quartic IF coefficients through a similar procedure.  

 If the above procedure determines that the influence functional deviates significantly from the 

Gaussian form, one must proceed differently. Recent work20 outlined the generalization of the small 

matrix decomposition of the path integral21-22 (SMatPI) for system-bath dynamics to situations where the 

IF does not have the Gaussian form. The main idea was described in the context of the modular path 

integral (MPI) algorithm23-24 with a SMatPI decomposition of path amplitudes,25 and is developed below 

for the most general situation.  

Regrouping the components in Eq. (5) according to the number of path integral variables they 

contain and combining one- and two-variable factors, the influence functional from a general environment 

can be written in the form 

 

0

( 0) ( ) ( )

1 1
N k k k k k

N N
N kk kk k

s s s s s s s
k k k k k k k k

F f f      
  

  

   =  =  

=                                                (10) 

 

where, with ordinary values of the time step required for convergence, all factors are of order unity. The 

SMatPI decomposition employs the auxiliary propagation matrices ( )rr
R , which are RDMs with 

appropriate IF boundary conditions22 (for propagation if r N  or termination if r N= ). Defining  

 

1 0 1 0 1 0 1 0 2 1 2 1 2 1

(10) (10) (10) (21) (21),
s s s s s s s s s s s s s s

M R G f M G f              = = ,                                          (11) 

 

the propagation RDM at the second time point is expressed as 

 

2 0 2 1 1 0 2 0

1 1

(20) (21) (10) (20)
n

s s s s s s s s
s

R M R M




       

 =

= +                                                         (12) 

where  

( )
2 0 2 1 1 0 2 1 1 0 2 0 2 1 0

1 1

(20) (21) (10) (20) (210) 1
n

s s s s s s s s s s s s s s s
s

M G G f f f f




              

 =

 − .                                          (13) 

 

is the residual. Eq. (13) is the first step in the SMatPI decomposition and is analogous to the 

corresponding matrix for a harmonic bath, although in the present case the factors do not generally have a 

Gaussian form and the term in the parenthesis is a function of three variables. Just as in the harmonic bath 

case, the presence of the small factor 
2 1 0

(210) 1
s s s

f    −  implies that the elements of the residual matrix (20)
M  

have small values compared to those of (10)
M .  

 Proceeding to the next time point, the SMatPI decomposition of the propagation RDM becomes 

 

3 0 3 2 2 0 3 1 1 0 3 0

2 1 1 1

(30) (32) (20) (31) (10) (30)
n n

s s s s s s s s s s s s
s s

R M R M R M
 

 

           

 = =

= + +  ,                                           (14) 

 

and straightforward algebra shows that the residual is given by 
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s s s s s
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 −
  

                  (15) 

 

Analogous expressions can be obtained for higher order residuals. 

 In the case of a harmonic bath, if the environment is sufficiently large, the two-time correlation 

function decays to zero within a finite interval known as the memory length L t . This behavior is 

observed in anharmonic baths as well, where all time correlation functions decay to zero when the 

difference of any two variables exceeds the memory interval. It follows that the IF factors rapidly 

approach unity when the memory length is exceeded. Just as in the case of a Gaussian IF, the SMatPI 

residuals are dominated by the memory (not by the entanglement of variables they contain).21-22 For 

example, if 2L =  Eq. (15) simplifies to  

 

( )( )
3 0 3 2 2 1 1 0 3 2 2 1 1 0 3 1 3 2 1 2 0 2 1 0

2 1 1 1

(30) (32) (21) (10) (31) (321) (20) (210)1 1
n n

s s s s s s s s s s s s s s s s s s s s s s s s
s s

M G G G f f f f f f f
 

 

                       

 = =

 − −  .                    (16) 

 

This expression shows that the elements of (30)
M  are smaller than those of (20)

M . This trend continues, 

with the elements of ( 0)r
M  decreasing rapidly with r L . Eventually, the residuals ( )kk 

M become 

negligible when the time separation ( )k k t−   exceeds the entanglement time maxr t , and thus may be 

omitted in subsequent steps, leading to the SMatPI decomposition 

 
1

( 0) ( ) ( 0)

max

1

,
k

k kk k

k

k r
−

 

=

=  R M R .                                                     (17) 

 

An analogous expression (with endpoint IF factors21-22) gives the RDM at the desired time.  

Since the influence functional components are translationally invariant away from endpoints, the 

propagation SMatPI matrices depend only on the time separation, i.e. ( , ) (1 ,1)k k k k+ +=M M  for 0k   (but 
(1 ,1) ( ,0)k k+ M M ). Re-labeling ( )kk 

M  as ( )k
M  in Eq. (17), one sees that the SMatPI decomposition of 

the auxiliary propagation matrix ( )rr
R  has the structure of the Nakajima-Zwanzig generalized quantum 

master equation26-27 (GQME), and the SMatPI matrices become the discretized elements of the GQME 

kernel. The SMatPI decomposition of the actual RDM differs slightly because of IF endpoint effects, 

which are the consequence of a symmetric partitioning of the short-time propagator. If, instead, the path 

integral is discretized using an asymmetric partitioning, the SMatPI decomposition takes the GQME form 

where all kernel matrices depend only on time separation.22 Since the Trotter error vanishes in the limit 

0t → , the GQME is recovered from a SMatPI decomposition.  

 The SMatPI matrices (1 ,1)k+
M  are given by the residuals and are obtained recursively if (21)

M  is 

provided. The starting matrix (21)
M  can be achieved by following a procedure similar to that described 

for the harmonic bath mapping. Evaluating the IF with 0ks =  for all k except 1 2,s x s y+ += =  and 

removing the component that depends only on 1s x+ = , one obtains the value of 
2 1

(21)

,s x s y
f + += =

, which 

determines (21)
M . 
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 To illustrate these ideas, consider a TLS with right and left states labeled R and L, described by 

the Hamiltonian 

 

( )0

0
ˆ ˆ R L L RxH = −  = −  +                                                 (18) 

 

where the level splitting is 2  , and suppose that the TLS is coupled to d  “bath TLSs” according to the 

Hamiltonian 

 

0

b

1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
2 2

d
i i

i x i i z i z

i i

H c s q s q  
=

 
= − + = = 

 
                                     (19) 

 

where 
0 0,x z   and ,i i

x z   are the Pauli spin matrices for the system and bath, respectively, and 1 = . 

The parameter   is introduced to allow the scaling of the system TLS “coordinate”
0

z . Coupled TLSs 

(where the two states represent the ground and excited electronic states of a molecule) are often employed 

in studies of excitation energy transfer in molecular aggregates. Further, the TLS Hamiltonian describes a 

spin-½ interacting with other spins, a situation of much current interest because of its relevance to 

quantum information science. Besides its physical relevance, the TLS bath offers an excellent testbed for 

demonstrating the theoretical ideas described in this Letter: A single TLS is a highly nonlinear system, 

inducing dynamical effects that can be differ vastly from those of a harmonic oscillator. In addition, the 

correlation function of a TLS is available analytically, simplifying the harmonic bath mapping in the 

d →  limit.28-29 

 

 

 
Fig. 1.  Natural logarithm of the influence functional as a function of the coordinate scaling parameter 

  for the TLS bath with c1, 10 = =   at a temperature 1 =  for 2,5,10d =  and 100. 

The path integral time step is 10.1t − =  . (a) 
1s + = , (b) 

1 6s s + += = .  

In the limit of d →  the bath frequencies i  and coupling parameters ic  are assumed to be 

related through the spectral density function c/1
2

( )J e
    −

= , which peaks at c  and   is a measure 

of the overall coupling strength. With finite values of d, the frequencies i  are obtained by applying the 
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logarithmic discretization,13-14 which in the case of a harmonic bath partitions the spectral density into 

regions of equal reorganization energies. The TLS is initially placed in the R state, while the bath TLSs 

are at thermal equilibrium at the reciprocal temperature B1/ k T = . The IF from the TLS bath is 

calculated numerically using matrix operations.18 

Figure 1 shows the logarithm of the influence functional for 
c1, 10 = =   at a temperature 

1 =  with (a) 1s + =  and (b) 1 6s s + += =  (and all other path variables set to zero), for several values 

of d. The values of the single- and two-time IF coefficients are also determined within the Gaussian 

approximation according to Equations (6)-(8), respectively, using a small value of  . When the number 

of bath TLSs is small, the departure from the Gaussian form is visibly obvious. The anharmonicity effects 

decrease with increasing d and become very small for 1000d  . In this case, the IF coefficient obtained is 

independent of the chosen value of  , indicating that the Gaussian response limit has been reached and 

the collective effect of the bath TLSs is the same as that of a bath of harmonic oscillators whose 

parameters can (depending on the temperature) differ significantly from those of the TLSs).  

 Figure 2 shows the time evolution of the population 
R ( )P t  (i.e. the diagonal RDM 

element) of the system TLS, with bath TLS parameters 0.5 =  and c 10 =  , for 5,10d =  and 50. The 

TLS bath is initially at the temperature 5 = , while the system TLS is in the R state. The path integral 

time step set is set to 0.2t = . The panels compare the results calculated with the anharmonic SMatPI 

algorithm to those under the effective harmonic bath approximation, obtained with the SMatPI module of 

the PATHSUM package30 using IF coefficients from Equations (8) and (9). For 5d =  and 10, exact results 

obtained by full diagonalization of the Hamiltonian are also presented. 

Time correlation functions in a finite-dimensional bath exhibit prominent recurrences of varying 

amplitude, which reflect the many time scales that characterize the dynamics and which induce infinite 

memory. As the number d of bath degrees of freedom is increased, such recurrences become weaker and 

the population curves become smoother. This behavior implies that the iterative evaluation of the RDM 

(either with full anharmonicity or under the Gaussian mapping) cannot converge with small values of d, 

but for a fixed value of maxr L=  convergence over longer time intervals is attained as the number of bath 

TLSs increases. For 5d =  and 10 the SMatPI results are converged up to 4t , while for 50d =  they 

are converged over much longer times and practically reach equilibrium.  

In both cases where diagonalization of the full Hamiltonian is possible, the anharmonic SMatPI 

results are in close agreement with the exact calculations. Very small deviations are the consequence of 

Trotter error in the QuAPI splitting10 of the system-bath Hamiltonian. The results obtained with the 

effective harmonic bath approximation differ significantly from the exact results for 5d =  and 10 and the 

discrepancies grow with time, suggesting that anharmonic corrections are important with the chosen 

parameters. When the number of bath spins is increased to 50, the effective harmonic approximation 

becomes nearly quantitative, although small differences from the results obtained with the anharmonic 

SMatPI algorithm are seen even in this case. Upon further increasing the number of bath spins, the 

effective harmonic bath results approach and eventually become identical to the exact path integral 

results.  

In the d →  limit the influence functional from the TLS bath becomes Gaussian, i.e. the TLS 

bath becomes equivalent to a bath of harmonic oscillators with a modified, temperature-dependent 

spectral density.13 Since the two-time correlation function of a two-level system can be obtained 

analytically, the spectral density of the effective harmonic bath can be calculated exactly.28-29 With a large 
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number of bath spins ( 310d ) the IF coefficients obtained using Equations (8) and (9) are identical 

through several significant figures to those calculated with the harmonic bath spectral density from the 

analytical correlation function, and the population results are identical as well. 

 

 
Fig. 2.  Population of the R state as a function of time for a TLS coupled to a bath of d TLSs given in 

Equations (18) and (19). Red squares: results obtained with the fully anharmonic SMatPI algorithm. 

Blue circles: results obtained with the effective harmonic bath from the Gaussian IF approximation 

using IF coefficients from Equations (8) and (9). Black line: exact results from diagonalization of the 

full Hamiltonian. 

 

 

As a last example, the system TLS is coupled to another identical TLS through the term 0 1ˆ ˆ
z zJ −  

with 0.5J =   and also (weakly) to a continuous harmonic bath with 0.1 =  and 
c 10 =   at an 

intermediate temperature 1 − =  . The bath TLS is initially placed in an eigenstate of its own 

Hamiltonian. The inclusion of a dissipative environment leads to smoother dynamics, but the coupled 
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single-TLS bath gives rise to infinite memory. However, accurate and well-converged results over long 

times are obtained by processing the RDM for the two-spin system coupled to a harmonic bath, which 

was computing with the standard SMatPI algorithm. 

Figure 3 compares the time evolution of 
RP  for the system TLS in the presence of the composite 

bath, obtained using the anharmonic SMatPI algorithm, the effective harmonic approximation with 

coefficients obtained through the IF parsing procedure, and the fully converged harmonic SMatPI results 

for the  pair. In all cases the SMatPI results with 
max 16L r= =  are converged up to approximately 4t .  

In order to decipher the roles of the two separate bath components, results are also presented for the 

system TLS with the environment composed of either just the bath TLS ( 0.5J =  , 0 = ) or only the 

harmonic bath ( 0J = , 0.1 = ).  

 

 

 
      
Fig. 3.  Population of the R state as a function of time for a TLS coupled to a composite environment 

consisting of a TLS and a harmonic bath. The lines show numerically exact results obtained with the 

harmonic SMatPI algorithm for the two TLSs coupled to a harmonic bath. Squares show results 

obtained with the anharmonic SMatPI algorithm with max 16L r= = , while circles show the results of 

the harmonic mapping. Lime green and yellow: 0.5J =  , 0 = . Orange: 0J = , 0.1 = . Red 

and blue: 0.5J = , 0.1 = . 

 

 

Even though the overall damping effects of these two environments are comparable in magnitude, 

the TLS population dynamics differ significantly. In the presence of a weakly dissipative harmonic bath, 

the system population exhibits underdamped oscillatory dynamics. The IF is Gaussian in this case and the 

SMatPI calculation with IF coefficients from the parsing procedure yields exact results. The generalized 

anharmonic SMatPI algorithm also produces identical results. In contrast, coupling to a single-TLS bath 
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modulates the system dynamics but does not lead to equilibration. Even with this single-TLS bath, the 

effective harmonic approximation is seen to capture the correct dynamics up to the first local minimum of 

the population, but subsequently deviates significantly from the exact results.  

The dynamics of the TLS interacting with the composite environment exhibits the signatures of 

the strongly coupled bath TLS, in addition to the damping induced by the harmonic bath. During very 

early times, the effects from the two bath components are nearly additive, leading to a shallower 

population minimum compared to those observed when the system is coupled to either the harmonic bath 

or the other spin. The results of the anharmonic SMatPI algorithm match well the exact results over the 

converged range. (Again, some very small differences arise because of different Trotter factorization in 

the two methods.) The effective harmonic approximation is seen to be accurate up to the first local 

population minimum in this case as well, deviating at longer times, although it continues to qualitatively 

track the exact results because of the appreciable quadratic component in the bath Hamiltonian.  

In summary, the ideas described in this Letter offer new possibilities for simulating the quantum 

dynamics of systems in environments that are not restricted to common quadratic Hamiltonians. By 

parsing the IF, it was shown that the coefficients of the time-discretized Gaussian IF under the effective 

harmonic bath mapping can be obtained through a very simple and efficient procedure that avoids the 

calculation of the environment’s time correlation function, along with its double integration, or 

(equivalently) its conversion to a spectral density and subsequent integration. Further, the same procedure 

can be used to examine any deviations of the IF from the Gaussian form, in order to assess whether the 

harmonic mapping should offer an adequate approximation. Last, it was shown that the parsing ideas can 

be adapted to the calculation of SMatPI matrices without resorting to the harmonic bath form, thus 

generalizing the SMatPI decomposition to anharmonic environments. The resulting SMatPI expressions 

have the GQME structure away from endpoints, and from this perspective the SMatPI form of the RDM 

does not come as a surprise. However, the calculation of the GQME kernel from the Hamiltonian presents 

an extremely demanding task. Further, the SMatPI matrices developed from the discretized path integral 

do not have the translationally invariant GQME form at endpoints, and these differences are important for 

the exact nature of the propagation algorithm. 

Application of these ideas hinge on the ability to numerically evaluate the influence functional for 

anharmonic environments. In the most general situation, this task entails performing fully quantum 

mechanical calculations over the relatively short memory interval. At present, influence functionals from 

anharmonic environments can be generated fully quantum mechanically in the case of separable baths,18 

and through the forward-backward semiclassical approximation19 (FBSD) for general many-body 

environments. Further, the MPI algorithm23-24 can be used to calculate the IF of multi-component systems 

with a one-dimensional topology. More work is needed to devise methods for calculating the IF of more 

complicated environments without introducing approximations. Nevertheless, the developments described 

in this Letter are encouraging toward the long-standing goal of simulating the dynamics of quantum 

mechanical processes in complex media. 
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