
Toward an Edge-Friendly Distributed Object Store for
Serverless Functions

Xin Chen
Georgia Institute of Technology

Atlanta, GA, USA
xchen384@gatech.edu

Manoj Prabhakar
Paidiparthy
Virginia Tech

Blacksburg, VA, USA
pmanojprabhakar@vt.edu

Liting Hu∗
University of California, Santa

Cruz
Santa Cruz, CA, USA

liting@ucsc.edu

ABSTRACT
Serverless computing is changing the way in which we struc-
ture and deploy computations in Internet-scale edge sys-
tems. This paper presents Capybara, a new scalable and
programmable distributed object store for storing and shar-
ing serverless function data objects (state) on edge infras-
tructures. The key innovations here are (1) achieving scal-
ability and avoiding the significant DRAM cost through a
consistent DHT-based P2P architecture; and (2) providing a
programmable handler abstraction to customize state man-
agement policies (e.g., data caching policies, container “keep-
alive” times, access control methods, and data replication
policies). We implement Capybara prototype on the Pastry
DHT, deploy it on 150 Amazon EC2 nodes, and evaluate it
by building several use cases to conduct real-world exper-
iments, demonstrating its significant gains in data locality,
state management customization, and scalability compared
to the state-of-the-art.

CCS CONCEPTS
• Computer systems organization→ Distributed archi-
tectures; • Information systems→ Database manage-
ment system engines.

KEYWORDS
Distributed object store, serverless functions, edge comput-
ing.

∗Corresponding author: Liting Hu, Computer Science and Engineering,
University of California, Santa Cruz.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
APSys ’24, September 4–5, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1105-3/24/09.
https://doi.org/10.1145/3678015.3680485

ACM Reference Format:
Xin Chen, Manoj Prabhakar Paidiparthy, and Liting Hu. 2024. To-
ward an Edge-Friendly Distributed Object Store for Serverless Func-
tions. In 15th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys
’24), September 4–5, 2024, Kyoto, Japan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3678015.3680485

1 INTRODUCTION
With the proliferation of 5G and beyond, enabling the next-
generation technologies such as smart cities, self-driving
cars, online video gaming, and augmented reality require
us to reconsider the way we characterize and deploy these
services. Serverless computing is an emerging paradigm,
referring to a software architecture where an application is
decomposed into ‘triggers’ (events) and ‘actions’ (functions),
and there is a platform that provides a seamless hosting and
execution environment, making it easy to develop, manage,
scale, and operate them.
Serverless computing is changing the way in which we

structure and deploy computations in Internet-scale edge
systems. Many major cloud providers have emerged and
introduced serverless computing platforms, including AWS
Lambda [7], Google Cloud Functions [15], Microsoft Azure
Functions [9], and Apache OpenWhisk [6]. While originally
designed for the cloud, the benefits of the serverless paradigm
are also vital in Edge/Fog computing environments.

What is edge serverless? To put it simply, edge systems consist
of Things, Gateways, and the Cloud. Things are sensors (e.g.,
smart wearables, car sensors) that “read” from the world
and actuators that “write” to it, and Gateways orchestrate
Things and bridge them with the Cloud. Figure 1 shows the
comparison of “cloud serverless” and “edge serverless”. In
cloud-based serverless frameworks, functions are executed in
containers [12] that are hosted in a cloud datacenter (Figure 1,
left). Instead of relying on the cloud to process sensor data
and trigger actuators, “edge serverless” decomposes edge
applications into serverless functions and executes them in
containers on distributed edge nodes (Figure 1, right), i.e., a
collection of routers, gateways and micro-datacenter servers
maintained by edge providers.

https://doi.org/10.1145/3678015.3680485
https://doi.org/10.1145/3678015.3680485

APSys ’24, September 4–5, 2024, Kyoto, Japan Xin Chen, Manoj Prabhakar Paidiparthy, and Liting Hu

Serverless
functions

Federated
Orchestrator

Image repository

Internet

f f f f ff f f f f ff

Edge
node

ff

fff
f

f
f

f
f

f
f

UserUser

f
f

f
f f

f
f

f
ff

ff

f
f f

f
f

f

ff

Figure 1: Serverless computing on cloud (left) and edge
(right).

Edge serverless can be a game-changer for many latency-
sensitive edge applications such as wearable cognitive as-
sistance [29, 32], drone navigation [25], AR-assisted driv-
ing [26], and camera networks for surveillance [35]. For
example, in an AR gaming platform, a player’s interaction
with the virtual environment might trigger a real-time object
recognition, personalized content delivery, dynamic game
element generation, and player analytics, all of which could
be handled by separate serverless functions running on edge
servers. This serverless edge architecture ensures low-latency
responses, enhancing the immersive and responsive nature
of the AR gaming experience.

However, existing serverless platforms [7, 9, 14, 15, 18, 19]
mostly rely on cloud storage services to store serverless func-
tion data, such as AWS S3 [4] and Google Cloud Storage [16].
These solutions, however, are not well-suited for serverless
edge applications for the following reasons:

(1) They may cause long delays and strain the backhaul
network bandwidth. This is especially the case when
functions are instantiated for the first time, container
images need to be pulled from remote repository pools
(e.g., Docker Hub [13], Amazon ECR [3]) for cold starts,
causing expensive data shipping costs and high startup
latency.

(2) Additionally, during execution, serverless functions must
write their intermediate results to the cloud. For example,
a hash-based shuffle from 105 map tasks to 105 reduce
tasks leads to 10 billion intermediate files being created
instantly on the storage system, which may lead signifi-
cant slowdown due to the lack of local storage.

(3) Offloading security-sensitive data to third-party cloud
providers may raise privacy issues.

In this paper, our goal is to build a new scalable and pro-
grammable distributed object store for serverless edge ap-
plications, enabling millions of edge nodes to be seamlessly
integrated as a serverless storage infrastructure.

The challanges. Our work addresses significant challenges
due to high diversity and scalability requirements introduced
by emerging serverless edge applications.

First, how to design a distributed object store for storing and
sharing function data (state) that supports application-specific
customization? The cloud storage systems, such as S3 [4],
Google Cloud Storage [16], and DynamoDB [2], use a client-
server architecture, which rely on a central controller or
proxy server to manage client requests and data distribution
among storage nodes. Unfortunately, there is a critical lack
of application-specific customization for state management.
Serverless applications and their functions are treated uni-
formly, with fixed data caching policies, keep-alive times,
access control methods, and replication policies. This is prob-
lematic for edge applications because they are quite diverse
in terms of popularity, invocation frequency, SLO, and state
management, necessitating a customizable object store.

Second, how to scale gracefully to manage amassive number
of edge applications’ state on millions of edge nodes? Edge com-
puting presents a unique challenge: clients are distributed
geographically, leading to unpredictable workload surges
in arbitrary locations. Similarly, edge nodes are geographi-
cally distributed, experiencing hardware heterogeneity and
churns as they can freely join or leave the systems. This
unpredictability makes it exceptionally challenging to imple-
ment effective scaling solutions for the object store.

Our solution. To address the above challenges, we present
Capybara, a new edge-friendly distributed object store that
achieves the desired properties for the serverless edge archi-
tecture: full scalability and state management customization.
The key innovations of Capybara include: (1) It achieves

full scalability through a consistent Distributed Hash Table
(DHT)-based Peer-to-Peer (P2P) architecture, which avoids
the significant DRAM cost of the directory server or meta-
data server for object lookup or retrieval. (2) It supports
state management customization through a programmable
handler abstraction. Each serverless application has a set of
handlers, allowing users to define procedural code that is
executed in response to storage operations, such as read and
write. By doing that, users can customize their own state man-
agement policies (e.g., container “keep-alive” times, access
control methods, data updating policies, and state replication
policies).

In summary, our contributions are as follows:
• We study the software architecture of existing serverless
storage systems and discuss their limitations when storing

Toward an Edge-Friendly Distributed Object Store for Serverless Functions APSys ’24, September 4–5, 2024, Kyoto, Japan

Storage System Storage Type Lookup Unit DRAM Cost Read/Write
Latency

Co-locate Function
with Data

State Management
Customization

Amazon S3 [4] Object storage Directory High High ✗ ✗
Google Cloud Storage [16] Object storage Directory High High ✗ ✗

Microsoft Azure Blob Storage [8] Object storage Directory High High ✗ ✗
IBM Cloud Object Storage [17] Object storage Directory High High ✗ ✗
Alibaba Cloud Object Storage [1] Object storage Directory High High ✗ ✗

IndexFS [30] File system Directory High Medium ✓ ✗
InfiniFS [27] File system Directory High Medium ✓ ✗

OpenStack Swift [21] Object storage Local index (hashing) Low Medium ✗ ✗
CRUSH (Ceph) [10, 34] Object, block, and file Local index (hashing) Low Medium ✗ ✗

MapX [33] Object storage Local index (hashing) Low Medium ✗ ✗
CouchDB [5] Object storage Local index (B-tree) Low Medium ✗ ✗

Capybara (this work) Object storage Distributed hashing Low Medium ✓ ✓

Table 1: Comparison of state-of-the-art cloud storage systems and Capybara.

and sharing serverless function data objects (state) in the
edge setting at scale.

• We introduce Capybara, a new scalable and programmable
distributed object store. To our knowledge, Capybara is
the first endeavor to provide an edge-friendly distributed
object store for serverless edge applications.

• We implement Capybara on Pastry DHT [31], deploy it
on 150 Amazon EC2 nodes, and evaluate it by perform-
ing real-world experiments, demonstrating its significant
gains in data locality, state management customization,
and scalability compared to the state-of-the-art.

2 MOTIVATION AND BACKGROUND
Serverless edge applications generate two types of data ob-
jects (state): ephemeral and durable. Ephemeral state is tem-
porary and exists only during the lifetime of an applica-
tion. For example, for data analytics applications like Spark
Streaming [22], their ephemeral state refers to the intermedi-
ate results between stages. Durable state, on the other hand,
needs to be stored long-term. Examples of the durable state
include function’s container image metadata, user data, data-
base records, as well as input and output files.

2.1 State-of-the-art solutions
Existing serverless platforms mostly use cloud storage ser-
vices to store serverless application’s data objects (state). In
such a system, each data object is uniquely identified by a
bit string, called an identifier (Id), name, or key. To man-
age objects at a massive scale, there are two typical object
placement and lookup strategies.

1. Directory-based approach. As shown in Figure 2(a), this
approach stores ID-location mappings in a central directory
server or metadata server. Clients receive object locations by
querying the server. It has the following limitations for stor-
ing serverless application’s state: (1) Centralized bottleneck.

(b) Hashing-based approach

Storage Nodes

Local
index

Client

Calculate ℎ i to locate
the node that stores the
object i

(c) Hybrid approach

Storage Nodes

Object groups are
assigned to nodes via
a directory

Client

Calculate to find the
group that includes i

(d) Smash (our approach)

Storage Nodes

Client

Calculate to locate the
memory-efficient
lookup unit responsible
for object i

The lookup unit finds the
node and block that stores i

(a) Directory-based approach
Storage Nodes

Client

Directory servers
Locate the node based
on directory lookups

Query or put
object ID i

Figure 2: Comparison of object placement and lookup strate-
gies.

The number of function invocations can be quite high, reach-
ing millions per day. The central directory server becomes
a bottleneck for handling a large number of requests from
clients. (2) High DRAM cost. The DRAM resources required
to house the directory are significant. For instance, storing
10 billion ID-location mappings requires > 400𝐺𝐵, where
the majority is used to store IDs, as in practice, the average
size of IDs is tens of bytes such as 16 bytes in Ceph [10] and
40 bytes in Twitter [36] or Facebook [23]. This is particularly
the case for serverless applications in which the state/ID
space ratio is low.

2. Local index approach. As shown in Figure 2(b), this ap-
proach places data to storage nodes based on the hash value
of its IDℎ(𝐼𝐷) [24, 34]. Each node in the cluster is responsible
for a specific range of data based on the key of the data. Local
index approach avoids the overhead of a directory server but
may introduce load imbalance, place replicas into the same
failure domain, and repeatedly force data re-location when
nodes join or leave the system.

APSys ’24, September 4–5, 2024, Kyoto, Japan Xin Chen, Manoj Prabhakar Paidiparthy, and Liting Hu

2.2 Limitations
We show a comparison among state-of-the-art cloud storage
systems in Table 1. Unfortunately, these systems are not
suitable for serverless edge applications.

1. Limited scalability. They leverage a client-server archi-
tecture, which limits scalability, as they rely on a central
controller or proxy server to manage client requests and
data distribution among storage nodes.

2. Lack of application-specific customization. These systems
do not offer features or interfaces that are tailored to a spe-
cific use case, making it difficult to meet different serverless
applications’ needs. For example, they use a fixed “keep-alive”
policy that stores a function’s durable state (e.g., container
image) in memory after the function execution (the timeout
is 10 to 20 minutes), but do not consider application and
function’s skewed popularity distributions. They use a fixed
isolation mechanism, but do not provide different access
control methods for different priority data objects.

3 DESIGN
We are not attempting to build a general-purpose distributed
object store, such as S3 [4]; such a system would be inappro-
priate for our needs. Rather, our goal is to support relatively
simple operations on data objects (state). Interestingly, even
with simple operations, we can build a powerful distributed
object store to realize diverse state management policies.

3.1 Architecture
Figure 3 shows the architecture of Capybara. It consists of
three components: DHT-based P2P overlay, locality-aware
key-value store, and programmable handlers.

Layer 1: DHT-based P2P overlay. All distributed edge nodes
are self-organized into a consistent DHT-based P2P overlay,
which implements the object-to-node mapping.

Layer 2: locality-aware key-value store. Built upon Layer 1,
we implement a persistent storage utility for storing and
sharing function data objects (state). Each function has a
unique key, which is computed as the secure hash (SHA-1) of
the function’s name, the application’s name, and a randomly
chosen salt. Its data objects (state) are stored in the𝑚 nodes
whose NodeIds are numerically closest to the key. To retrieve
a function’s state, the routing substrate typically applies a
hash function to the key to compute the IDs of the node that
store the associated value.

Layer 3: programmable handler abstraction. Unlike other stor-
age systems that only store key-value pairs, we store key-
value pairs together with operational code. This operational
code is structured as a set of programmable handlers (e.g.,

read/
write/
delete

Function 1
- data objects

-state
- code (handlers)

1. DHT-based P2P overlay

3
. P

ro
gr

am
m

ab
le

h

an
d

le
rs

Edge Node

Key Value

2. Localiy-aware key-value store

Lookup(key)

read(key)write(key, object) Execute handler code

readCb, updateCb, timerCb

readCb, updateCb

readCb

readCb, updateCb, timerCb

101

102

103

77

103220

103220

103220

103221

AppId FuncId Callback handlers

...

...

...

...

State

Function 2
…

Function 2
…

Routing Table

NodeId: d13da3
Prefix(d)

……

f6224c

d16598

c3648f

dfc21a

d4213f

d12844

f6224c

d16598

c3648f

dfc21a

d4213f

d12844

f6224c

d16598

c3648f

dfc21a

d4213f

d12844
……

f6224c

d16598

c3648f

dfc21a

d4213f

d12844

Routing Table

NodeId: d13da3
Prefix(d)

……

f6224c

d16598

c3648f

dfc21a

d4213f

d12844

d467c4

d461c5
d4213fd13da3 d1ef40

75a342

1564ab

Hash(“X”)=d46a16

Remote
Edge Node

Application/
User

Path to deploy App X’s
functions

Path to store App X’s
container images

NodeId: d461c5
Prefix(d46)

Routing Table

……

d46flf

d46c92

d4c688

d4cfl9

d4c654

d462b4

d46flf

d46c92

d4c688

d4cfl9

d4c654

d462b4

d46flf

d46c92

d4c688

d4cfl9

d4c654

d462b4
……

d46flf

d46c92

d4c688

d4cfl9

d4c654

d462b4

Routing Table

……

d46flf

d46c92

d4c688

d4cfl9

d4c654

d462b4

Routing Table

……

Zone C

Zone A

d466d2

d467c4

Neighborhood set

d4cflfd4c688d4c654
……

NodeId: d461c5
Prefix(d46)

Routing Table

……

d46flf

d46c92

d4c688

d4cfl9

d4c654

d462b4

Routing Table

……

Zone C

Zone A

d466d2

d467c4

Neighborhood set

d4cflfd4c688d4c654
……

Routing Table

NodeId: d4213f
Prefix(d4)

……

d4224c

d42df2

d43c89

d426f8

d461c5

d42f45

d4224c

d42df2

d43c89

d426f8

d461c5

d42f45

Routing Table

NodeId: d4213f
Prefix(d4)

……

d4224c

d42df2

d43c89

d426f8

d461c5

d42f45

O(logN) hops

Figure 3: The Capybara system architecture.

readCb, updateCb, timerCb) that specify how the applica-
tion behaves, for example, how it modifies state when certain
events occur. It can make dynamic decisions based on its
access history, its current number of replicas, and the time of
day. For example, when a client performs a “read” operation
to access a data object (e.g., a function’s container image),
the readCb handler will be invoked to perform a simple op-
eration, such as incrementing a counter for the number of
reads. If the counter increases rapidly in a short period of
time, the container image will be considered “popular”. Then
the handler can dynamically change the keep-alive time of
the container image to make it retain longer in memory to
reduce cold-start latency.

The key to efficiency comes from several factors. 1. Scala-
bility and lowDRAM cost.Weuse a decentralized architecture,
allowing data to be stored and retrieved directly between
nodes without the need for a central directory (metadata)
server. Therefore, it avoids the significant DRAM cost and
can scale horizontally, as more nodes can be added to the
network as needed. 2. Application-specific customization. We
abstract away the complexities of DHT-based P2P ring over-
lay construction, routing substrate for data placement and
lookup. Our system can easily support various storage life-
times, access control methods, or state replication policies.

Toward an Edge-Friendly Distributed Object Store for Serverless Functions APSys ’24, September 4–5, 2024, Kyoto, Japan

Programmable Handler Description

createCb(caller)
Invoked upon the initial creation of a function’s state (data object), such as during application registration.
Returns the state to be stored by the node (e.g., itself or nil).

readCb(caller, args)
Invoked when a read operation is performed on the state (e.g., when serverless scheduler tries to access
function’s container info during invocation). Returns the function state.
It may modify the state and write it back to the storage system depending on the handler code.

updateCb(caller, new_state) Invoked when updating an existing function state (data object). Returns the new state that needs to be stored.

timerCb()
Invoked periodically at intervals set by the edge zone administrator. This handler has no return value.
It is used to perform periodic tasks such as container cleanup, state replication, and health monitoring.

Table 2: Capybara programmable handlers (we use state and data object interchangeably in this paper).

3.2 DHT-based P2P Overlay
As the first layer, all distributed edge nodes are self-organized
into a consistent DHT-based P2P ring overlay, which is simi-
lar to the BitTorrent nodes that use the Kademila DHT [28]
for “trackerless” torrents. Each edge node is assigned a unique
128-𝑏𝑖𝑡 NodeId in a very large circular Id space (e.g., 0 ∼ 2128).
NodeIds are used to identify the nodes and route queries for
object placement and lookup. DHT-based routing substrate
guarantees that, no matter where the function is invoked, we
can find nodes that store its data objects (state) within𝑂 (𝑙𝑜𝑔𝑁)
hops, where 𝑁 is the total number of nodes in the system. To
do that, each node needs to maintain a routing table. The
routing works based on prefix-based matching. Every node
knows 𝑚 other nodes in the ring and the distance of the
nodes it knows increases exponentially. It jumps closer and
closer to the destination, like a greedy algorithm, within
⌈𝑙𝑜𝑔2𝑏𝑁 − 1⌉ hops, where 2𝑏 − 1 is the number of entries in
the routing table.

3.3 Locality-aware Key-Value Store
As the second layer, we create a “bucket” data structure
in each edge node and organize them into a locality-aware
distributed key-value store. The key innovation is co-locating
function data with function invocations on edge nodes that
minimize the data shipping cost, leveraging the same DHT
overlay networks for placing functions and their data objects
in 𝑂 (𝑙𝑜𝑔𝑁) steps regardless of their geographical locations.

When an application joins the system, an application cer-
tificate is generated, which assigns the application a unique
160-bit key (AppId), e.g., the secure hash (SHA-1) of the ap-
plication’s textual name, the owner’s Id, and a random salt.
When inserting data, Capybara routes the data to the 𝑘 nodes
whose NodeIds are numerically closest to the 128 most sig-
nificant bits of the key (𝑘 is a user-defined parameter with a
default value of 3). When retrieving data, Capybara applies
the same hash function to the key to compute the NodeIds
that store the data object.

Capybara deploys an application’s functions on edge nodes
using the same DHT-based routing substrate. The deploy-
ment process includes (1) generating a key by calculating the
secure hash of the application’s key (AppId); (2) routing an

“invocation query” toward the key, which specifies function
code and triggers; (3) delivering the query to the node whose
NodeId is numerically closest to the key, and (4) spawning
containers on this node and/or the neighboring nodes. When
the workload changes, the neighboring nodes are used for
scaling containers.

This procedure ensures (1) the data insertion and function
deployment share the same key (𝑘𝑒𝑦 = ℎ𝑎𝑠ℎ(“𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛”)),
so their routing paths converge at the same destination node.
Therefore, the function data is placed close to the node where
the functionwill be invoked, enabling data locality. As shown
in Figure 3, application 𝑋 ’s functions and 𝑋 ’s container im-
ages are placed around the same location; and (2) following
with the load balance property of DHTs, the function data
are stored in a well-balanced manner.

3.4 Programmable Handlers

var readCb = function (state, args) {
state.intervals.add(

sys.currentTime() - state.lastExecTime,
);
state.keepAlive =

dht.currentTime() + max(intervals) * minutes;
state.coldWait =

dht.currentTime() + min(intervals) * minutes;
write(this, sys.getKey(), state);
return state;

};
var timerCb = function (state) {

if (sys.currentTime() > state.coldWait) {
sys.deployContainer();
reset(state.coldWait);

}
if (sys.currentTime() > state.keepAlive) {

sys.deleteContainer();
reset(state.keepAlive);

}
write(this, sys.getKey(), state);

};

Listing 1: Adaptive keep-alive policy.

As the third layer, we develop a new programmable handler
abstraction (Table 2). We implement a store controller for

APSys ’24, September 4–5, 2024, Kyoto, Japan Xin Chen, Manoj Prabhakar Paidiparthy, and Liting Hu

(a) CDF distribution of function instance’s
cold starts for 15𝑘 Applications.

(b) CDF distribution of function instance’s
idle times for 15𝑘 Applications.

(c) Cold start and idle time trade-off for 100
Applications.

Figure 4: Capybara’s adaptive keep-alive policy.

executing these handlers. When a request is sent to the key-
value store to access the data, it spawns a code runner process
to retrieve and execute the relevant handler code.
Listing 1 shows the code snippets of an adaptive keep-

alive policy. Here, we introduce two parameters: cold-waiting
window and keep-alive window. The cold-waiting window
represents the time between the last execution and when the
system loads the function image to memory. The keep-alive
window determines how long the application will remain in
memory after the last execution or after its image is loaded to
memory. If idle times are consistently short, indicating a high
invocation frequency, we will reduce the cold-waiting time,
causing the image to be loaded to memory more frequently.
The readCb handler is invoked when the function state is
read. The timerCb handler wakes up periodically, which is
responsible for loading the function image to memory after
the cold-waiting window, recycling the container after the
keep-alive window, and resetting both windows.

4 EVALUATION
We performed a feasibility study of Capybara. We resort to a
cluster of 150 Amazon EC2 nodes, each of which has 4 vCPUs,
16GB of RAM, and 32 GB of disk space (equivalent to Cisco’s
IoT gateway [11]). To create a real-world heterogeneous
edge environment, we launched 5000 heterogeneous edge
nodes (emulated using JVMs) on the testbed. Each node can
randomly host up to 4, 16, 64, or 256 functions.

We implement the adaptive keep-alive policy on Capybara
for storing severless function’s container images, driven with
Microsoft Azure traces [20]. The traces include 15,940 Appli-
cations that consist of 39,491 functions in total. We compare
Capybara’s adaptive keep-alive policy with state-of-the-art
serverless systems’ fixed policies (20 minutes, 30 minutes, 40
minutes, and 120 minutes).

• Cold Start (%): Percentage of Apps resulting in a cold start.
• Idle Time (%): Percentage of time that the spawned ap-
plication’s containers remain idle without any function
invocation (measured at 1 minute granularity).

Figure 4a shows the comparison of the percentage of cold
start out of the total number of invocations for different
policies. Results show that Capybara reduces the cold start
percentage at the 90𝑡ℎ percentile by 42.9%, as compared to the
fixed keep-alive policy (120 minutes). The improvement is
more noticeable for shorter fixed keep-alive time (20 minutes,
30 minutes, 40 minutes).

Figure 4b shows the comparison of the percentage of con-
tainer idle times out of the total number of invocations for
different policies. Results show that Capybara reduces the
container idle time percentage at the 90𝑡ℎ percentile by at
least 3.2%∼4.3% and 75𝑡ℎ percentile by 14.7%, as compared
to the fixed keep-alive policies.
Figure 4c shows a trade-off analysis between idle time

and cold starts for 100 randomly selected individual appli-
cations. Intuitively, if a policy reduces cold starts, it tends
to keep container images in memory longer, leading to in-
creased idle time and resource wastage. Therefore, an effec-
tive policy should strike a balance between idle time and
cold starts. Results show that Capybara’s adaptive keep-alive
policy has less idle time with comparable cold starts, as com-
pared to a fixed keep-alive policy (20 minutes), and is thus
more resource-efficient.

5 CONCLUSION
Capybara is a new scalable and programmable distributed
object store designed for serverless edge applications. The
preliminary results are quite encouraging and clearly show
the potential of our approach. Our future work involves im-
plementing more diverse state management policies and im-
plementing a secure runtime, like a language-based sandbox
to prevent handlers from interfering with other applications
or consuming excessive resources.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation
(NSF-CAREER-2313737, NSF-OAC-2313738, and NSF-CNS-
2322919).

Toward an Edge-Friendly Distributed Object Store for Serverless Functions APSys ’24, September 4–5, 2024, Kyoto, Japan

REFERENCES
[1] Alibaba Cloud Object Storage Service (OSS). https://www.alibabacloud.

com/product/object-storage-service.
[2] Amazon DynamoDB. https://aws.amazon.com/dynamodb/.
[3] Amazon Elastic Container Registry. https://aws.amazon.com/ecr/.
[4] Amazon S3. https://aws.amazon.com/s3/.
[5] Apache CouchDB. http://couchdb.apache.org/.
[6] Apache OpenWhisk. https://openwhisk.apache.org/.
[7] AWS Lambda. https://aws.amazon.com/lambda/.
[8] Azure Blob Storage. https://azure.microsoft.com/en-us/products/

storage/blobs.
[9] Azure Functions. https://azure.microsoft.com/en-us/services/

functions/.
[10] Ceph. https://docs.ceph.com.
[11] Cisco Kinetic Edge & Fog Processing Module (EFM).

https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-
things/kinetic-datasheet-efm.pdf.

[12] Docker Container. https://www.docker.com/resources/what-
container/.

[13] Docker Hub Container Image Library. https://hub.docker.com/.
[14] Function Compute, Alibaba Cloud Function Compute. https://www.

alibabacloud.com/product/function-compute.
[15] Google Cloud Functions. https://cloud.google.com/functions.
[16] Google Cloud Storage. https://cloud.google.com/.
[17] IBM Cloud Object Storage. https://www.ibm.com/cloud/object-

storage.
[18] Knative. https://knative.dev/.
[19] Kubeless. https://kubeless.io/.
[20] Microsoft Azure Function Traces. https://github.com/Azure/

AzurePublicDataset.
[21] OpenStack Swift. https://github.com/openstack/swift.
[22] Spark Streaming. https://spark.apache.org/streaming/.
[23] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload Analysis of a Large-Scale Key-Value Store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference onMeasurement andModeling of Computer Systems,
SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. Association
for Computing Machinery.

[24] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. On the FaaS Track: Building Stateful
Distributed Applications with Serverless Architectures. In Proceed-
ings of the 20th International Middleware Conference, Middleware ’19,
page 41–54, New York, NY, USA, 2019. Association for Computing
Machinery.

[25] Samira Hayat, Roland Jung, Hermann Hellwagner, Christian Bettstet-
ter, Driton Emini, and Dominik Schnieders. Edge computing in 5g
for drone navigation: What to offload? IEEE Robotics and Automation
Letters, 6(2):2571–2578, 2021.

[26] Patrick Lindemann, Tae-Young Lee, and Gerhard Rigoll. Supporting
driver situation awareness for autonomous urban driving with an
augmented-reality windshield display. In 2018 IEEE International Sym-
posium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),
pages 358–363, 2018.

[27] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu.
InfiniFS: An Efficient Metadata Service for Large-Scale Distributed
Filesystems. In 20th USENIX Conference on File and Storage Technologies
(FAST 22), pages 313–328, Santa Clara, CA, February 2022. USENIX
Association.

[28] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems, IPTPS ’01,

page 53–65, Berlin, Heidelberg, 2002. Springer-Verlag.
[29] Manuel Olguín Muñoz, Roberta Klatzky, Junjue Wang, Padmanabhan

Pillai, Mahadev Satyanarayanan, and James Gross. Impact of delayed
response on wearable cognitive assistance. Plos one, 16(3):e0248690,
2021.

[30] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. IndexFS:
Scaling File System Metadata Performance with Stateless Caching
and Bulk Insertion. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’14, page 237–248. IEEE Press, 2014.

[31] Antony I T Rowstron and Peter Druschel. Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-to-Peer
Systems. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, Middleware ’01, pages 329–
350, London, UK, UK, 2001. Springer-Verlag.

[32] Mahadev Satyanarayanan and Nigel Davies. Augmenting cognition
through edge computing. Computer, 52(7):37–46, 2019.

[33] Li Wang, Yiming Zhang, Jiawei Xu, and Guangtao Xue. MAPX: Con-
trolled Data Migration in the Expansion of Decentralized Object-Based
Storage Systems. In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 1–11, Santa Clara, CA, February 2020. USENIX
Association.

[34] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
CRUSH: Controlled, Scalable, Decentralized Placement of Replicated
Data. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, pages 31–31, 2006.

[35] Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran. Coral-
pie: A geo-distributed edge-compute solution for space-time vehicle
tracking. In Proceedings of the 21st International Middleware Conference,
Middleware ’20, page 400–414, New York, NY, USA, 2020. Association
for Computing Machinery.

[36] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis of
hundreds of in-memory cache clusters at Twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 191–208. USENIX Association, November 2020.

https://www.alibabacloud.com/product/object-storage-service
https://www.alibabacloud.com/product/object-storage-service
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ecr/
https://aws.amazon.com/s3/
http://couchdb.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.ceph.com
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://hub.docker.com/
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://cloud.google.com/functions
https://cloud.google.com/
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://knative.dev/
https://kubeless.io/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://github.com/openstack/swift
https://spark.apache.org/streaming/

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 State-of-the-art solutions
	2.2 Limitations

	3 Design
	3.1 Architecture
	3.2 DHT-based P2P Overlay
	3.3 Locality-aware Key-Value Store
	3.4 Programmable Handlers

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

