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Abstract— In this letter, we propose and experimentally
demonstrate compact, low-profile, and optically-transparent
antennas for multi-band and multi-range wireless power transfer
(WPT) applications. Specifically, we put forward new types of
transparent multi-band antennas that can perform the near-field
reactive WPT (13.56 MHz), as well as the far-field radiative WPT
(980 MHz and 2.45 GHz) within a single device. Further, such an
antenna is integrated with compact, frequency-scalable rectifying
circuits to form an unseeable multi-mode WPT device. We show
that a hybrid inductive (13.56 MHz) and radiative (980 MHz and
2.4 GHz) WPT device can be realized with a modified inverted-F
antenna (IFA) structure connected to spiral-coil virtual ground.
To meet the stringent design requirements of this unobtrusive
multi-band antenna, a state-of-the-art machine learning-assisted
global optimization method (parallel surrogate model-assisted
hybrid differential evolution for antenna optimization or
PSADEA) is exploited for global optimization. We envision that
the proposed transparent and flexible WPT and energy harvesting
devices can be beneficial for many applications, including
ubiquitous wireless charging based on smart windows and glasses,
solar-radio frequency (RF) integrated power supply, wearable or
textile electronics, and internet-of-things (IoTs).

Index Terms—transparent antennas, Al-assisted antenna
design optimization, antenna synthesis, differential evolution,
efficient global optimization, energy harvesting.

I. INTRODUCTION

HE concept of wireless power transfer (WPT) was first

theorized by Nikola Tesla and his seminal experiments
demonstrated that light electric bulbs can be wirelessly charged
through resonant inductive coupling [1]. In general, modern
WPT systems can be classified into two major categories: (1)
far-field (long-range) radiative power transmission systems,
known also as the rectifying antenna or rectenna technologies
[2—4], and (2) near-filed (short-range) reactive power
transmission systems based on the inductively coupled coils [5—
7] or the capacitively coupled metallic plates [8—10]. Recently,
few studies have been conducted to implement a dual-band
wireless powering device that can simultaneously provide far-
field and near-field WPT functions, so as to reduce the footprint
and cost of devices, while enabling a wide wireless charging
range [11-15]. Although these new hybrid platforms may
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Fig. 1. Conceptual schematic illustration of the proposed hybrid optically
transparent multi-band and multi-range wireless power transfer (WPT)
device.

leverage existing Bluetooth and NFC technologies to perform
WPT within a tightly confined space, they are mostly
manufactured using the traditional printed circuit board
technique with rigid and opaque metal patches and microstrips,
which hinders its applicability in the next-generation
multifunctional transparent electromagnetic devices and
systems, such as smart glasses and windows for smart cities,
wearable electronics, antenna-on-display technology, and
optically-transparent 5G antennas and intelligent surfaces [16—
25].

In this letter, we propose a new type of multi-band and multi-
range WPT devices based on compact, low-profile optically-
transparent rectennas that can operate efficiently in both near-
field and far-field WPT bands to accommodate various wireless
charging distances, as schematically shown in Fig. 1. This
rectenna hybridizes a modified inverted-F antenna (IFA) for the
radiative WPT at 980 MHz and 2.4 GHz, and a spiral coil
(virtual ground plane) supporting the inductive WPT at 13.56
MHz. Since the IFA antenna has a sophisticate geometry with
many design parameters and constraints, it is difficult to
implement manually or through trial-and-error methods. Here,
we exploit an artificial intelligence (Al)-driven design
automation tool to synthesize the compact, low-profile, multi-
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Fig. 2. Schematics of the self-dual antennas for tri-band rectenna. The
antennas (highlighted by the green color) can act as a far-field WPT
module (a), while its ground plane can be (b) near-field WPT module.

band inverted-F antenna with 20 design parameters. We
envision that these new multi-band and multi-principle
transparent antennas for WPT devices may be beneficial for a
wide range of applications, including but not limited to smart
windows/ glasses, integrated radio frequency solar power
supply, wearable electronics, smart cities, loT devices, and
next-generation optically transparent transceivers in the 5G
networks and beyond [26-29].

II. PARALLEL SURROGATE MODEL-ASSISTED HYBRID
DIFFERENTIAL EVOLUTION FOR ANTENNA OPTIMIZATION

In this work, the commercial transparent conductive film
(TCF), TDK Ag-Stacked film, with an optical transparency of
82% in the visible range and sheet resistance of 4 ()/square, is
used to demonstrate the proposed transparent multi-band and
multi-range WPT systems. Due to the large number of design
parameters and search space in optimization, the transparent
antenna in Fig. 3 presents a practical design challenge, that is,
it is rather difficult to have a priori knowledge of the optimum
topology that provides the required frequency responses and
radiation properties. Compared with the design of traditional
opaque antennas based on the copper microstrip, the high
surface resistance of the TCF further complicates the
optimization process. To address this issue, a state-of-the-art
machine learning-assisted global optimization method for
antenna design was used to optimize the proposed transparent
antenna. The method used is the parallel surrogate model-
assisted hybrid differential evolution for antenna optimization
(PSADEA) [30-31]. PSADEA belongs to the SADEA
algorithm series [32—34], which is one of the state-of-the-art
methods for machine learning-assisted antenna global
optimization. PSADEA carries out a global search using a
differential evolution (DE) driver that employs multiple
complementary mutation operators adaptively. The DE-based
global search is assisted by Gaussian process (GP) regression,
a supervised learning technique that is used to predict antenna
performances given a set of geometric parameters that define
the antenna’s shape. The harmonious working of DE and GP in
PSADEA is achieved by employing the surrogate model-aware
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Fig. 3. (a) Geometry of the self-dual tri-band rectenna operating as

inductive WPT at 13.56 MHz and radiative WPT at 980 MHz and 2.4
GHz). (b) Front view of IFA antenna with design parameters.

evolutionary search framework to allow obtaining a highly
optimal design using much fewer computationally full-wave
simulations. Compared to popular global optimization methods
(e.g., particle swarm) for antenna design, PSADEA offers more
than 20 times efficiency improvement and is suitable for
addressing antenna optimization problems that traditional
methods cannot solve [35-36].

The initial design of the IFA tails is presented in Fig. 3 and
20 design parameters are identified to be critical to the
frequency responses. The initial topology of the IFA has a poor
reflection coefficient. Our design goal is to achieve tri-band
operation in different electromagnetic spectrum. Here, the Al-
driven design approach was used to maximize the radiation
efficiency of the transparent antenna with complicated
geometry. PSADEA is performed to optimize the structure
through the minimization of the cost function below:

max([—10dB—S/,,0])+max([10dB+S53,07)
F,., = w, x 1+max([~10dB-5}},0])+max([10dB+S;;,0])
+max([-10dB-5;,,0]) (1

+Ww, X {max([6dB—G},0])+max([4dB—G,2,0])}
)]

where S},, Si,and S7, are the minimum in-band reflection
coefficient (0.5 GHz to 0.75 GHz), (1.1 GHz to 2.25 GHz) and
(2.9 GHz to 3.4 GHz), respectively, S, and S;, are the
maximum in-band reflection coefficient (0.95 GHz to 1 GHz),
and (2.4 GHz to 2.5 GHz), respectively, G, and G? are realized
gains at 0.98 GHz and 2.45 GHz, respectively, w; and w; the
penalty coefficients set to 1 and 50, respectively. We note that
w; and w> used respectively for the reflection coefficient term
and the realized gain term can guarantee the main specification,
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namely the realized gain, can be maximized, while the minor
objective return loss can be achieved. When all the
specifications are met, Fj4 becomes zero. After 964 full-wave
electromagnetic ~ simulations, PSADEA  obtained the
satisfactory design reported in Table II, and its reflection
coefficient is as desired.

Fig. 4(a) shows the photograph of the PSADEA -optimized
transparent multi-band antenna placed on the acrylic substrate
with relative permittivity & = 2.6, loss tangent tan(d) = 0.04,
and thickness # = 1.5 mm. In comparison to the initial design,
the simulated reflection coefficient for PSADEA-optimized one
shows a far better performance at the resonance frequencies
(980 MHz and 2.45 GHz). Fig. 4(b) presents the measured
reflection spectrum for the dual-band inverted-F antennas
hybridized with the coil-antenna ground plane. The results
show that the dual-band inverted-F antenna can resonate at 980
MHz and 2.45 GHz with bandwidths of 231 MHz and 342
MHz, respectively. The measurement and simulation results are
in good agreement. In Fig. 4(c), the oscillating current is
localized in the upper arm of the modified IFA structure at 980
MHz, while at 2.45 GHz the resonating current path is observed
on the shorter arm, given in Fig. 4(d). Figs. 5(a) and (b) report
the simulated and measured radiation patterns on the E (y-z) and
H (x-z) planes for the IFA at 980 MHz and 2.45 GHz,
respectively. The measured maximum realized gains are —4.5
dBi and —1.8 dBi at 980 MHz and 2.45 GHz, respectively; such
values agree quite well with the simulated ones. The high

blue lines represent E and H planes patterns.

conduction loss in TCF results in low radiation efficiency of
17.8% at 980 MHz and 19% at 2.45 GHz. The discrepancy
between simulated and measured results is due to fabrication
errors and antenna misalignment.

III. HYBRID OPTICALLY TRANSPARENT RECTENNA DESIGN

In this work, Advanced Design Simulator (ADS) has been
used to design and optimize the multi-band rectifiers, consisting
of bandpass filters, and matching networks built from lumped
elements, and two =zero-bias Schottky diodes (Skyworks
SMS7630) [37] with low threshold voltage (Vi = —-150 mV )
and low junction capacitance (C; = 0.15 pF), as schematically
shown in Fig. 2. The values of lumped element used in Fig. 2(a)
are: Co = 33 pF, Ci = 22 pF, C; = 94 pF (from Wurth
Elektronik), L; = 11 nH, and L, = 47 nH (from TDK). By
integrating the compact rectifying circuit with the fabricated
IFA, a multi-band WPT device was built, and the photograph is
shown in Fig. 6 (c).

Fig. 6(a) shows the PCE measurement setup for the far-field
WPT; here, a horn antenna was used to transmit the radio signal
from 0.5 GHz to 3.0 GHz. Fig. 7(a) reports the RF-to-DC
conversion efficiencies of the multi-band rectenna at different
input power levels. Here, the PCE is defined as the ratio of the
output DC power to the input RF power at the antenna’s input

terminal, given by [4]:
2

7= —L_ %100 %, ©)

LT r
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Fig. 6. Photographs of (a) the far-field radiative WPT measurement, (b) the
near-field inductive WPT measurement, and (c) the fabricated multi-band and
multi-range WPT device based on transparent and flexible conductive film
(TDK Ag-Stacked film type B).

where J; and R; are respectively the output DC voltage and
load resistance of the rectifying circuit, and P, is the RF power
received at the input terminal of the antenna, which can be
obtained from the Friis transmission equation [38] as:

2
P E[A] 3)
L, \4zR

where G, is the realized gain of the transmitting horn antenna
(here; G, = 12 dBi and 16.75 dBi at 980 MHz and 2.45 GHz,
respectively), G- is the realized gain of the receiving antenna,
R is the distance between transmitter and the rectenna under
test, P, is the total transmitted power. We note that all
measurements were performed in an anechoic chamber and that
insertion losses in cables and connectors were excluded when
determining P; and P, (i.e., Lgys = 1). In our PCE calculation, the
maximum effective aperture of the antenna, o = (13/4m) X
D,, is used such that the finite radiation efficiency of the
antenna is considered. From Fig. 7(b), we find that at the
operating frequencies, the conversion efficiencies are
proportional to the input power. The efficiency curves exhibit
peaks at 980 MHz and 2.45 GHz for different illuminating
power densities, demonstrating good dual-band matching and
the potential of multi-band WPT. Fig. 7(a) reports the measured
PCE as a function of RF illuminating power density at 980 MHz
and 2.45 GHz; here, the illuminating power density
Wine = BG; | (47R)? x(1/ Lgys). Fig. 7(b) shows that the
highest PCE reaches up to 55.45% at 980 MHz and 51.44% at
2.45 GHz under the delivered power density of 136.46 mW/m?.
Moreover, even at a relatively low RF power density of 4.41
mW/m?, the measured PCE can still reach 21.81 % at 980 MHz
and 20.49 % at 2.45 GHz. We note that the far-field WPT
performance was characterized in the presence of the secondary
coil shown in Fig. 6(b).

Next, we study the power transmission efficiency and the
maximum output power level of the inductive coil used for the
near-field WPT. The measurement setup is shown in Fig. 6(b),
where a copper coil is used as the power transmitter. The
inductive WPT at 13.56 MHz features a standard series resonate
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Fig. 7. (a) Frequency and (b) power dependencies of the RF-to-DC
conversion efficiency for the dual-band far-field WPT module
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Fig. 8. (a) Inductive coupling factor and efficiency versus AZ for the

embedded spiral coil. (b) AC-to-DC efficiency versus load resistance for

the near-field inductive WPT module in Fig. 6(b-c). Measured results are

represented by symbols in (a) and dashed lines in (b). Simulated results are

represented by solid lines in (a) and (b).
LC tank [see Fig. 2(b)], and an adjustable capacitor (from
Murata) for tuning the resonance frequency. The power source
is based on a full-bridge D-class amplifier from Rigol. The full-
bridge rectifier configuration comprises four Skyworks
SMS7630 Schottky diodes [see Fig. 2(b)]. Fig. 8(a) reports the
extracted coupling factor between the copper coil transmitter
and the transparent coil receiver at different interrogation
distances. As can be observed in Fig. 8(a), the coupling
coefficient decreases with increasing the air gap, and a
satisfactory inductive coupling strength of 0.45 and efficiency
of 50% can still be obtained at a transfer distance of 10 mm.
Given a typical transfer distance (5 mm) that corresponds to the
magnetic coupling factor of 0.61, the efficiency and output
power of this inductive WPT system are reported in Fig. 8(b).
By tuning the load on the rectifier side, the maximum system
efficiency of 62.8 % can be obtained with a 4 kf load. The
maximum power transfer of 36.8 mW can be obtained at a 150
0 load.

IV. CONCLUSION

We have proposed and experimentally demonstrated
compact, low-profile, optically transparent, and flexible
antenna designs that target multi-band and multi-range wireless
power transmission applications. A self-dual antenna structure
has been designed and optimized using a machine learning-
assisted global optimization method for antenna design,
PSADEA (i.e., the stripline-based radiative-inductive hybrid
rectenna). The miniature transparent antennas loaded with
lightweight lumped rectifier can simultaneously achieve the
long-range radiative WPT and the short-range inductive WPT
within a single device. Our experimental results show that the
satisfactory antenna gain, impedance matching, and RF-to-DC
conversion efficiency can be achieved at different operating
frequencies spanning the HF and UHF bands.
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