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This paper investigates the structure–property relations of thin-walled lattices, characterized by their
cross-sections and heights, under dynamic longitudinal compression. These relations elucidate the inter-
actions of different geometric features of a design on mechanical response, including energy absorption.
We proposed a combinatorial, key-based design system to generate different lattice designs and used the
finite element method to simulate their response with the Johnson–Cook material model. Using an
autoencoder, we encoded the cross-sectional images of the lattices into latent design feature vectors,
which were supplied to the neural network model to generate predictions. The trained models can accu-
rately predict lattice energy absorption curves in the key-based design system and can be extended to
new designs outside of the system via transfer learning.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice-filled sandwich panels see increasingly widespread use
as energy-absorbing structures in different engineering applica-
tions such as energy absorbers [1,2], sacrificial cladding [3,4], and
armor plates [5,6]. Previous studies have established that the core
design plays a significant role in the energy absorption capabilities
of the sandwich panel [7]. The honeycomb [8] lattice structure,
along with many of its variants, such as the square honeycomb
[9], bio-inspired honeycombs [10], and hierarchical honeycombs
[11], have been studied extensively in the literature as cores of
sandwich panels. They are examples of thin-walled 2D extruded
lattices, whose wall thickness is significantly smaller than their
in-plane dimensions, and the unit cells can be described by their
cross-sectional designs and heights. To generate optimized designs
that maximize specific energy absorption, parameter optimiza-
tions have been performed on design variables such as thickness
[12], unit cell size [13], wave periodicity, and amplitude (for some
bio-inspired honeycombs) [10].

The aforementioned sizing optimization efforts and the con-
struction of response surfaces for the cores [13,14] provide insights
into the structure–property relations relating the lattice structure
to key performance metrics like stress–strain curve and energy
absorption during deformation for a limited set of honeycomb-
like lattice core designs. It is of great research and industrial inter-
est to further extend such structure–property relations to a diverse
set of lattice core designs with different cross-sectional geometries,
and in particular, to elucidate how different geometric features
such as the addition of wavy unit-cell walls, hierarchical designs,
auxetic designs, and fractal designs combine and interact to affect
the specific energy absorption of the lattice core design. The explo-
ration of structure–property relations inherently involves survey-
ing many different lattice core designs. Most current thin-walled
lattice core designs in the literature were generated based on engi-
neering intuition, experiments, and/or bio-inspiration [15–17].
Other studies leveraged optimization-based methods like the
hybrid cellular automata [18,19], ground structure approach [20],
and the ant colony optimization method [21] to systematically
generate new, optimized cross sections for lattices under longitu-
dinal compression. Nonetheless, there is a lack of a systematic
compilation of the mechanical response and energy absorption
characteristics for these new designs and an attempt to reveal
potential structure–property relations for various lattice cross-
sectional designs.

Our current work aims to develop a systematic framework to
generate distinct lattice cross-section designs for longitudinal
compression. To explore the structure–property relations, the con-
sidered structures do not need to have optimized energy absorp-
tion characteristics. Thus, we chose to generate new lattice cross-
section designs via a simple combinatorial framework. Combinato-
rial methods have been applied to generate trussed-based lattices
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Fig. 1. (a) The vertex of the unit cell remains as-is. (b) The vertex is replaced by a
straight edge. (c) The vertex is replaced by an arc.

Fig. 2. (a) The edge segment of the unit cell remains as-is. (b) The edge segment is
replaced by two arcs.
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[22–24], triply periodic minimal surface lattices [25,26], and thin-
walled structures [27] to create new designs by combining differ-
ent pre-selected geometric descriptors. It is a novel attempt to
leverage a combinatorial framework to generate 2D extruded lat-
tice core designs for longitudinal compression systematically. The
second objective of this work is to approximate the underlying
structure–property relations via a neural network (NN) model.
NN models have seen increasing use in solid mechanics, such as
to predict stress–strain curve and toughness of composites [28–
32] and to predict properties of lattices and rapidly evaluate per-
formance [23,33–36]. However, NN models have not been widely
applied to approximate the structure–property relations of thin-
walled lattice cores.

This paper is organized as follows: Section 2 presents an over-
view of the combinatorial generation framework, numerical simu-
lation, preprocessing of the design images, and the architecture of
the NN model. Section 3 presents the results, and Section 4 dis-
cusses the quality of the image preprocessing and NN predictions.
Section 5 summarizes the outcomes and highlights possible future
works.
2. Methods

2.1. A framework to create lattices using geometric descriptors

A diverse design space of lattice cross-sections is needed such
that the subsequent NN can extract trends from various lattice
architectures. Drawing inspiration from the truss descriptors used
to construct truss-based lattices in Bastek et al. [23] and Zok et al.
[37], we define a set of geometric descriptors for generating lattice
cross-sections. In this work, we focus on 2D extruded lattices with
constant cross-sections. Such lattices can be uniquely defined by
their cross-sections and heights. We further require that the unit
cell of the periodic lattice fits within a square bounding box. In this
case, a 2D tessellation can be generated by repeating the unit cell
along the X and Y directions. With this simplification, one can for-
mulate three types of geometric descriptors:

� Vertex. The vertices of the unit cell bounding box can take on
different styles: it can be a vertex or the vertex can be replaced
by a straight edge or an arc, see Fig. 1.

� Edge segment. Each edge of the unit cell bounding box can be
divided into different edge segments, and each can take on a dif-
ferent style: it can be a straight edge or two arcs (inspired by
the bio-inspired honeycomb studied in the work of Ha et al.
[10]), see Fig. 2.

� Interior support. Supports can be added to the interior of the
unit cell: it can be no support, a +-shape, or an X-shape support.
A circle can be added to the center of the unit cell, see Fig. 3.

It is important to point out that the lattice geometric descrip-
tors are not unique; other choices are possible to generate a differ-
ent design space. The descriptors and their sub-options chosen
here aim to generate lattices that bear similar design cues to some
traditional or bio-inspired lattices seen in the literature [10,38,39].

A unique lattice design can then be generated in a combinato-
rial manner by forming different combinations of geometric
descriptors. Some geometric descriptors also allow for sub-design
options. In the straight edge vertex case (Fig. 1b), the edge can take
on either edge style depicted in Fig. 2. In the arc vertex case
(Fig. 1c), the arc can point inward or outward to the unit cell. Ver-
tical and horizontal edges of the unit cell bounding box can be
divided into a different number of edge segments. Still, we limit
to a minimum of 2 and a maximum of 4 divisions for all edges.
The lattice design created by a combination of the design options
2

and their sub-options can be conveniently denoted by an 8-digit
key. Each digit represents a choice on each option/sub-option. A
list of all possible options is presented in Table 1. This key-based
design system contains 660 unique lattice design keys. Besides
the discrete design variables, the framework also features a contin-
uous design variable, namely the thickness of the lattice walls. In
the analysis, we fixed the number of unit cells to be 4 in the
cross-section, forming a 2-by-2 arrangement. Note that different
numbers of unit cells and their arrangements can be used to con-
struct the lattice structure and will affect the mechanical response
of the lattice. Studying the effects of the number of unit cells and
unit cell arrangement is a subject of our future works. A survey
of some periodic lattices generated from the system is presented
in Fig. 4.

2.2. Finite element simulations

A Python script was developed to generate cross-sectional
sketches in the finite element (FE) analysis package Abaqus [40]
based on given design keys. The sketches were scaled so that the
2-by-2 lattice touches a square bounding box with a side length
of 20 mm. Three-dimensional shell parts were created in Abaqus
via extrusion to a fixed height of 10 mm. All lattice designs were
discretized with 4-node shell elements with reduced integration
(S4R) and uniform mesh sizes of 0.25 mm (in the X-Y plane) and
0.8 mm (along the height of the lattice structure) were used.

In this work, we considered the lattices to be made from Ti-6Al-
4V. To accurately capture the response of Ti-6Al-4V during high
strain-rate impact loading, which is common in lattice-filled sand-
wich panels applications, the Johnson–Cook plasticity and damage
models developed by Johnson and Cook [41] were used in the Aba-
qus/Explicit dynamic simulations. The Johnson–Cook plasticity
model defines a rate-dependent material hardening behavior and
the damage model defines an equivalent plastic strain at which
material damage initiates [40]. Beyond damage initiation, a dam-
age evolution law was used in Abaqus to define how the material
damage evolves until the eventual failure of the finite element,
which necessitates the definition of fracture energy. The relevant
material properties follow those found in the literature [42–44].
The element deletion technique [40] was used to model the mate-
rial damage and failure, which removes elements that undergo sig-
nificant damage from the FE simulation to prevent non-
convergence due to excessive element distortion. As a simple
approximation to high strain-rate impact loading, we sandwiched



Fig. 3. (a) No interior support is added. (b) A +-shape support is added. (c) A X-shape support is added. (d) A +-shape support is added along with a circle. (e) A X-shape
support is added along with a circle.

Table 1
Explanation of the 8-digit design key system.

Digit 1 2 3 4 5 6 7 8

Option Vertex Arc sub-opt # segments horizontal # segments vertical Edge sub-opt horizontal Edge sub-opt vertical Interior Interior sub-opt

Possible values 0 (2a) 2 2 0 (3a)
1 (1b) 0 (in) 3 3 0 (2a) 0 (2a) 1 (3b) 0 (3d)
2 (1c) 1 (out) 4 4 1 (2b) 1 (2b) 2 (3c) 1 (3e)

Fig. 4. A survey of some lattice designs generated by the key-based system.
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the lattice between two rigid plates, and the lattices were sub-
jected to dynamic longitudinal compression. The bottom plate,
where the reaction force was measured, was held fixed, and the
top plate traveled downward with a constant velocity determined
by the user-defined strain rate. All sidewalls were traction-free and
were free to deform. All simulations shared a constant final dis-
placement of 2 mm, corresponding to 20% nominal compressive
strain along the Z-axis. Mass scaling was applied to the lattice to
shorten simulation run time so that a minimum stable time incre-
ment of 2� 10�8 s was achieved. It is important to note that the FE
simulations were meant to provide an example data set for the
neural network model training, and the simulated responses were
not validated by lattice-level compression experiments. The reac-
3

tion force (RF) at the bottom plate, displacement of the top plate,
plastic dissipation (PD), damage dissipation (DMD), and elastic
strain energy (ELSE) of the lattice structure were outputs of the
FE simulations. The energy quantities (ELSE, PD, and DMD) were
extracted by summing the corresponding element contributions
for all finite elements in the model. The energy quantities were
stored in Abaqus’s history outputs for the simulations and were
extracted by an in–house Python script. Fig. 5 depicts the FE model
assembly and a typical deformed lattice at the end of dynamic
compression.

A total of 15000 simulations were conducted on an Intel i7-
11800H processor with 8 cores. Each simulation took about one
to two minutes to complete. The design key, nominal strain rate,



Fig. 5. FE model setup and results: (a) Lattice structure and two rigid plates set up for dynamic longitudinal compression. (b) A typical deformed lattice at the end of the
simulation, colored by the equivalent plastic strain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and thickness of the shell elements were sampled using a random
number generator. The nominal strain rates were uniformly sam-
pled on the log scale from the range [102;105] s�1, representing
strain rates during blast loading [45]. Wall thicknesses of the lat-
tice designs were uniformly sampled from the range [0.25,0.75]
mm.
2.3. Encoding lattice cross-sectional images

As a general way to contain the geometry information in the lat-
tice cross-section, we converted the 2D cross-sectional sketch into
a 128-by-128 binary image revealing the skeleton of the cross-
section. Note that the image did not include the shell thickness,
so the resulting skeleton is always a single pixel wide. However,
this means that the image matrices are highly sparse, and a naïve
attempt to directly feed the image matrix to the NN as input is
likely wasteful on computer memory.

In this work, we employed a simple autoencoder to extract
information from the lattice cross-sectional image. The encoder
consists of two dense layers, with each having 100 neurons with
the rectified linear unit as an activation function. It transforms a
128-by-128 input image into a 100-by-1 latent feature vector.
The decoder consists of a single dense layer with 1282 neurons
and uses the sigmoid function as activation. The autoencoder
was developed and tested in Keras [46] with a TensorFlow [47]
backend. To train and test the autoencoder, 600 design images
were randomly chosen from a total of 660 designs, and an 80–20
split was adopted for training and testing. We used the mean
squared error (MSE) as the loss function and the Adam optimizer
[48] to minimize it. The autoencoder was trained for 80 epochs
with a batch size of 50. To gauge the ability of the autoencoder
to encode lattice structures never seen in a training set, an addi-
tional testing set consisting only of the 60 lattice designs not
included in the training data set, was formed.
1 All scalars are expressed in the form of a constant array with a length of 50, same
as the number of time steps.
2.4. Neural network for sequence prediction

2.4.1. Input data, data augmentation, and loss function
A sampling of the input space was described in Section 2.2. The

output arrays were extracted from Abaqus and were downsampled
from 100 time steps down to 50-time steps to reduce size of the
training data set. Two groups of inputs were generated for the
NN model. The first group contains information on the lattice
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cross-sections in the form of 100-by-1 encoded latent feature vec-
tors, which remain constant in time. The second group of inputs
has six physics-informed temporal information arrays, which are:

1. Lattice shell thickness1.
2. Final nominal compression strain1.
3. log10

_�� 1. The logarithm of the strain rate is used instead of the
strain rate since the strain rate dependence in the Johnson–
Cook model is logarithmic.

4. Nominal compression strain value at each output time point.
5. Current time value at each output time point.
6. A binary elastic wave indicator is defined as:
Ie ¼
0; t 6 te
1; t > te

�
; ð1Þ

where te ¼ Hffiffiffiffiffiffi
E=q

p is an estimated time for the elastic stress wave

to travel through the height of the lattice H. This indicates that
the reaction force at the rigid bottom plate should remain 0
before the impact stress wave arrives.

Both groups of inputs were normalized by a standard scaler in
Scikit-Learn [49] prior to training. The scaler was fitted to the train-
ing data points to avoid information leakage [28].

To increase the amount of training data, data augmentation was
applied. For each FE simulation (compressed to a constant 20%
strain), twelve final nominal strains in the range [5%,20%] were
randomly sampled, and all inputs and outputs were linearly inter-
polated up to the selected final strain level. This effectively gener-
ated data points corresponding to the same strain rate but different
final strain levels and increased the total number of input data
points to 180000. These data points were divided into training
(600 designs keys, approximately 61.8%), validation (10.9%), test-
ing on lattice designs seen in the training set (denoted Test1,
18.2%), and testing on lattice designs unseen by the training set
(denoted Test2, 60 design keys, approximately 9.1%).

We employed the mean absolute error (MAE) [50] as the loss
function, defined as:



2 To avoid erroneous relative MAE calculations when the range of the ground truth
is very close to 0 (i.e., for cases where the stress wave has not arrived yet), a minimum
range of 0.25 N is enforced for reaction force and 1� 10�2 J for energies.
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MAE ¼

XN
i¼1

jYi � Ŷij

N
; ð2Þ

where N;Yi; Ŷi denote the number of training data points, ground-
truth outputs, and the NN predictions, respectively. The MSE was
chosen as a metric.

2.4.2. Neural network model
In solid mechanics, a recurrent NN model known as the gated

recurrent unit (GRU) model has been widely used to predict
sequences [51,52]. In the work of Abueidda et al. [51], three recur-
rent neural network models, including the GRU, long short-term
memory (LSTM) model, and the temporal convolutional network
(TCN) model, were used to predict the effective stress of an elasto-
plastic material undergoing a randomly generated load path. They
found that the GRU model yielded the most accurate predictions,
but took the longest time to train compared to the other two mod-
els (see the comparison in Fig. 2 therein). This result highlights the
ability of the GRU model to capture structure response under com-
plex deformation and material constitutive models. For this reason,
we utilized a GRU model to predict the energy absorption of lat-
tices under dynamic compression. However, we did not compare
the performance of the LSTM and TCN models using the current
data set, as it is outside the scope of this current research.

The developed GRU model consists of three stacked layers, each
of 300 GRU units with hyperbolic tangent (tanh) activation, leading
to a model with 1.45 million trainable parameters. The architecture
of the GRU model is depicted in the schematic in Fig. 6. The loss
function was minimized using an Adam optimizer [48] with an
inverse time decay learning rate schedule and an initial learning
rate of 1� 10�3. The model was trained for 150 epochs with a
batch size of 600, and training was repeated 10 times to obtain
average training time and model accuracy. The complete data set
was reshuffled and partitioned in each training repetition, as
described in Section 2.4.1. The GRU model was implemented and
tested in Keras [46] with a TensorFlow [47] backend. All training
was conducted on an Intel i7-11800H processor with GPU acceler-
ation on an Nvidia GeForce RTX 3050 GPU.

3. Results

3.1. Lattice design encoding and reconstruction

Using a latent space dimension of 100, we compared the origi-
nal lattice designs to the reconstructed ones generated by the
trained autoencoder for six randomly selected designs, see Fig. 7.
To quantitatively describe the reconstruction quality, the dice sim-
ilarity coefficient (DSC) [17] is used:

DSC ¼ 2jI \ Ir j
jIj þ jIr j ; ð3Þ

where I and Ir are the ground-truth and reconstructed binary skele-
ton images (1 denotes presence of material and 0 indicates void),
respectively.

3.2. Predicting energy outputs

To access the number of input data points required in training
to obtain accurate results, different percentages of the total input
data were used to train the model independently and were tested
on two identical testing sets; the results are shown in Fig. 8a. To
obtain a measure of the average performance of the GRU model,
training was repeated ten times using the partition described in
Section 2.4.1. A typical convergence curve showing the loss and
5

metric during training is shown in Fig. 8b. As described in Sec-
tion 2.4.1, we tested our model on two testing sets: (1) Test1,
which was chosen from the 600 lattice designs that were seen by
training, and (2) Test2, which contains 60 lattice designs that were
completely unseen by training. Mean and standard deviation of
training time, relative MAE for each component in each test set,
are reported in Table 2. Relative MAE is presented here since the
four output arrays considered have vastly different scales; thus,
we normalize the MAE by the range over time steps of the respec-
tive ground truth2.

A comparison between ground truths and NN predictions,
ranked by the percentile of MAE for each output array, is presented
in Figs. 9 and 10. The median model (one that gives the median
overall MAE among the 10 training repetitions) was used to gener-
ate the plots. The 25th percentile plots for the damage dissipation
in Figs. 9 and 10 depict a poor visual comparison despite having a
low MAE. This apparent disagreement is due to the small damage
dissipation magnitude in the FE ground truth, leading to a small
absolute error compared to other cases, where the FE ground
truths show damage dissipation that is two orders of magnitude
larger.

Once trained, the GRU model can infer lattice mechanical
response and energy absorption at a rate much faster than FE sim-
ulations. To test the inference speed, we randomly selected 50 shell
thickness values. We used the model to infer the response of all
660 designs in the key-based design system under different shell
thicknesses, which led to a total of 33000 evaluations. The infer-
ence finished in 6.15s, yielding an average inference speed of
1.866�10�4s per design. In comparison, a FE simulation of the lat-
tice design typically takes around one to two minutes to complete.
3.3. Extending to new lattice designs through transfer learning

Comparison of model performance between sets Test1 and
Test2 shows how well the trained GRU model can generalize to
previously unseen but similar designs (all were generated by the
key-based system detailed in Section 2.1). It is of interest to further
investigate the performance of the as-trained model on lattice
designs that are generated outside of the key-based design system.

Three new geometries were generated manually, and the com-
parison of the lattice designs with their autoencoder reconstruc-
tions is shown in Fig. 11. The mean and standard deviation of
relative MAE for each output array in each test set using the as-
trained model are listed in Table 3. For easier comparison, results
from Test2 in Table 2 are repeated here.

Besides the as-trained model, it is worth investigating how the
model can be extended to unseen geometries by exposing it to a
small amount of new input data via transfer learning. Transfer
learning can be used to extend the trained model to a new field
by transferring its knowledge learned previously from a similar
field [53]. The trained GRU model was retrained for 20 epochs on
a new training set of data points corresponding to new geometries.
To prevent catastrophic forgetting during transfer learning, we add
5000 original training data points corresponding to geometries in
the key-based design system to the training set, although other
more involved methods exist [54,55]. To gauge the presence and
amount of catastrophic forgetting, we test our data on two testing
sets: one consists of 60 lattice design keys unseen during the train-
ing of both the original GRU model and the transferred model,
while the other one contains data points for the three new geome-
tries (that are unseen by the transfer training). Fifty strain rates



Fig. 6. Architecture of the developed GRU model.

Fig. 7. Comparison of original and reconstructed lattice design skeletons for six randomly chosen designs.
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and thicknesses were randomly sampled from the same ranges as
described in Section 2.2 for each of the three new geometries, lead-
ing to 150 FE simulations. A similar data augmentation technique
detailed in Section 2.4.1 was used to generate 7500 input data
points. Plots comparing the relative MAE in both testing sets are
shown in Fig. 12. A comparison between ground truths and trans-
ferred GRU model predictions, ranked by the percentile of MAE for
each output array, is presented in Fig. 13. The model retrained with
40% of the new data points was used to generate the plot.
4. Discussion

Fig. 7 demonstrates the ground truth images and their autoen-
coder reconstructions. For six randomly chosen cases, we observe a
close resemblance of the two, which indicates that a 100-by-1
latent vector is sufficient to encode the input images from within
the key-based design system. This confirms the autoencoder as
an effective tool to encode image inputs [56,57]. However, as
Fig. 11 shows, the reconstruction quality drops significantly on
images from outside of the key-based design system. Especially
6

for the third new geometries shown in Fig. 11, its autoencoder
reconstruction resembles the first geometry, although the ground
truths are vastly different. This confusion in the autoencoder indi-
cates that it is specialized in encoding images within the key-based
system, which all bear some design feature resemblance due to the
combinatoric nature of the framework. One possible way to
enhance the encoding capability of the autoencoder is to expose
it to a more diverse design space. As training for the autoencoder
is separated from the training of the GRU model, this additional
training can be done efficiently without the need for any expensive
FE simulations. It is also hypothesized that the prediction accuracy
of the subsequent GRU model will increase if the autoencoder
effectively and accurately extracts important latent features from
the given design.

Two validation sets, Test1 and Test2, were always employed for
examining the model’s ability to extend the structure–property
relations learned from a limited input space to new design geome-
tries. Fig. 8 shows the accuracy of the two sets when a different
number of data points were used in training. Although loss keeps
decreasing on set Test1, model performance plateaus on set Test2
after about 50% of points are used. For best performance in both



Fig. 8. Convergence plot for GRU model training process: (a) Scaled mean squared error when a different percentage of the total data is used in training. (b) Scaled mean
absolute error evolution during training. Note that the MAE shown here is the MAE computed on the variables scaled by the standard scaler.

Table 2
Mean and standard deviation of training time and relative MAE.

Train time ½s� rMAE,RF1, [%] rMAE, PD2, [%] rMAE,DMD3, [%] rMAE,ELSE4, [%]

Test1 3597.44 (23.15) 6.26 (0.19) 0.30 (0.01) 4.15 (0.16) 0.95 (0.01)
Test2 9.32 (1.08) 1.04 (0.18) 6.93 (0.61) 2.38 (0.26)

Percent difference n 48.75% 242.58% 67.09% 151.83%

1 Reaction force.
2 Plastic dissipation.
3 Damage dissipation.
4 Elastic strain energy.

Fig. 9. Comparison of ground truths and GRU predictions on set Test1 (contains designs seen in training), ranked by percentile of MAE to provide a representative sampling.
Note that the MAE is ranked independently for each of the four output arrays.
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sets, all subsequent models in this work were trained using 61.8%
of total data points, as described in Section 2.4.1. It can be inferred
from Fig. 8b that no severe overfitting occurred during training.
7

Comparing the results in Table 2, we see that the prediction accu-
racy on set Test2 has deteriorated by about 50 to 240 percent com-
pared to set Test1, but we note that all relative MAEs in Test2



Fig. 10. Comparison of ground truths and GRU predictions on set Test2 (contains designs unseen by training), ranked by percentile of MAE to provide a representative
sampling. Note that the MAE is ranked independently for each of the four output arrays.

Fig. 11. Comparison of original and reconstructed lattice design skeletons for new lattice geometries.
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remain smaller than 10% of the ground truth range. The statistical
distributions of MAEs are shown in Fig. 9 and Fig. 10. Comparing
the first three columns (up to 75th percentile), we observe that
the GRU predictions closely follow the FE simulation results,
except when the ground truth values are very small (e.g., row 3
column 1 in Fig. 9). Deviations from ground truth grow in the later
stages of loading, after about 30 time steps. However, even in the
highest MAE case, the GRU model can predict response curves that
bear similar trends as the ground truth in both testing sets. It is
worth noting that a positivity constraint was not enforced on the
8

energy outputs; thus, some non-physical negative energy values
arise when the ground truths are small. In most cases, the model
can accurately predict the reaction curve and energy absorption
history for various lattice designs, with an observed accuracy sim-
ilar to that reported by Yang et al. [28], which employs a convolu-
tional NN architecture as opposed to the recurrent NN architecture
in this work. As is apparent in Table 3, the trained GRUmodel has a
certain generalization ability on set Test2, but falls short on new
geometries outside of the key-based design system. It is hypothe-
sized that this limited generalization ability is due to both geome-



Table 3
Mean and standard deviation of relative MAE on new geometries.

rMAE, rMAE, rMAE, rMAE,
RF1, [%] PD2, [%] DMD3, [%] ELSE4, [%]

Test2 9.32 (1.08) 1.04 (0.18) 6.93 (0.61) 2.38 (0.26)
New geometry 1 132.45 (70.19) 7.05 (0.86) 27.59 (5.38) 13.47 (1.03)
New geometry 2 338.09 (85.60) 26.35 (2.05) 38.95 (7.86) 35.82 (1.98)
New geometry 3 186.81 (63.80) 17.88 (1.62) 28.52 (4.99) 26.00 (1.30)

1 Reaction force.
2 Plastic dissipation.
3 Damage dissipation.
4 Elastic strain energy.

Fig. 12. Comparison of relative MAE on different output arrays using different percentages of the total data points corresponding to the new geometries. The relative MAE of
the as-trained GRU model is plotted in red as a reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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tries in sets Test1 and Test2 coming from the same key-based
design system and can be remedied by having a more diverse train-
ing set that covers a wider range of input designs. Previous studies
also suggest alternative ways to improve the generalization ability
of trained models, such as altering the input format [58] or using a
neural network ensemble [59].

It is unlikely that the model needs to predict the mechanical
response and energy absorption of a new lattice geometry given
only its cross-section. It is often possible to obtain additional input
data from limited testing. The model would then extend predic-
tions to the new lattice design with different wall thicknesses
and/or loading strain rates. Fig. 12 demonstrates the results of
transfer learning with different percentages of new input data.
We see that transfer learning based on the GRU model trained in
Section 3.2 is highly effective. With as few as 20 training epochs
using only 30% of the 150 FE simulations on the new lattice
designs, the prediction accuracy on the energy absorption curves
is within 5% of the model performance on the set Test2. Relative
MAE of the reaction force prediction remains relatively high at
30.5% with the inclusion of 30% new data points, but it is still a dra-
matic decrease from over 300% in the as-trained model. Also, note
the transferred model retains similar accuracy on set Test2 to the
original GRU model, indicating that catastrophic forgetting has
not occurred. Fig. 13 depicts the MAE distribution of the trans-
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ferred model. Predictions up to the 75th percentile show relatively
close agreement with FE simulation results, and large deviations
only emerge after about halfway through the loading. This shows
that transfer learning effectively extends a trained GRU model to
new lattice designs outside of the original, finite training design
space with limited new data.

5. Conclusions and future work

In this work, a GRU model was trained to predict the reaction
force curve and energy absorption curves of thin-walled lattices
during dynamic longitudinal compression. A novel combinatorial,
key-based system was developed to generate lattice geometries
that share some of the design cues with bio-inspired honeycomb
lattices, which the authors believe is the first time that a combina-
torial framework is used to systematically generate thin-walled
lattice designs. An autoencoder was used to effectively encode
the lattice cross-sectional image to reduce input dimensions. The
GRU model is able to accurately predict the energy responses in
unseen geometries from the key-based design system but falls
short of directly extending the predicting capability to lattice
designs outside of the key-based design system. Nonetheless,
when enhanced with data points on the new geometries via trans-
fer learning, the transferred GRUmodel reclaims much of the accu-



Fig. 13. Comparison of ground truths and GRU predictions on new geometries, ranked by percentile of MAE to provide a representative sampling. Note that the MAE is ranked
independently for each of the four output arrays.

J. He, S. Kushwaha, D. Abueidda et al. Computers and Structures 277–278 (2023) 106940
racy on new designs, while maintaining high accuracy over the
designs in the key-based system.

We conclude that the trained GRU model can accurately
approximate the relations between the lattice structure and key
performance measurements such as stress–strain curve and energy
absorption as a function of compression strain for a wide variety of
thin-walled lattices under dynamic longitudinal compression. The
ability of the trained model to quickly generate performance pre-
dictions for new lattice designs even on low-end laptop platforms
renders itself a suitable guide in preliminary design stages to
quickly sift out potentially performant designs for more detailed
analyses. In this work, all repetitions of the unit cell in the 2-by-
2 periodic arrangement share identical size and shape for simplic-
ity. Additional unit-cell level irregularities can be introduced by
distorting the unit cells and/or choosing a different unit cell in each
of the 4 locations. However, that does not fundamentally alter the
workflow of the current GRU framework. The autoencoder and
GRU model can learn to encode and decode the input design
images and to predict the mechanical response, irrespective of
whether the lattice designs are regular or not, provided that a suf-
ficient number of irregular lattices have been supplied to the train-
ing set.

In future work, we will focus on leveraging the gradients of the
trained GRU model to inversely generate new designs with opti-
mized specific energy absorption during high strain rate loading,
similar to the work by Chen et al. [60] and Zheng et al. [61]. Differ-
ent ways to parameterize the lattice design space, such as using the
adjacency matrix [62], will be explored to enhance the generaliz-
ability and generative ability of future NN models. The effect of a
number of unit cells and unit cell arrangements, as well as the role
of periodic boundary conditions, will also be explored.
Data availability

The data and source code that support the findings of this study
can be found at: https://github.com/Jasiuk-Research-Group/Lat-
ticeResponse_NN_Prediction.
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