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Previous studies show that the properties of parts manufactured via additive manufacturing, such as selective
laser melting, depend on local feature sizes like lattice wall thickness and strut diameter. Although size
dependence has been studied extensively, it was not included in constitutive models for numerical simulations.
In this work, flat dog-bone tensile specimens of different thicknesses were manufactured and tested under
quasi-static conditions to characterize the size-dependent properties experimentally. It was observed that key
mechanical properties decrease with specimen thickness. Through curve-fitting to experimental data, this
work provides approximate analytical expressions for the material properties values as a function of specimen
thickness, furnishing a phenomenological size-dependent constitutive model. The interpolating capability of the
model is cross-validated with existing experimental data. Two numerical examples demonstrate the application
of the size-dependent material model. The axial crushing of thin-walled lattices at varying wall thicknesses
was simulated by the size-dependent material model and one that ignores size effects. Results show that
ignoring size effects leads to overestimated peak crushing force and specific energy absorption. The two
material models were also compared in the topology optimization of thin-walled structures. Results show
that the size-dependent model leads to a more robust optimized design: having higher energy absorption and
sustaining less material fracture.

1. Introduction parts, the effects of these process parameters are typically taken into
account by calibrating the material model using tensile specimens
manufactured by the same AM process parameters [14,15]. However,
the standard tensile specimens may not share similar characteristic
dimensions (such as wall thickness and strut diameter) as the AM parts,
which is especially true for thin-walled and truss-based lattices, where
the manufactured lattices may have wall thickness or strut diameter
much smaller than typical tensile test specimens. Previous studies
have shown that the mechanical properties of SLM parts depend on
the local feature size [16-20]. In general, it was found that crucial
mechanical properties, such as Young’s modulus, yield stress, ultimate
tensile stress, and elongation to failure, decrease as the wall thickness
or strut diameter decreases. The reduction in elastic properties with
decreasing thickness can be attributed to the increase in porosity levels

Advances in metal additive manufacturing (AM) techniques have
allowed them to grow from a prototyping technology into industrial
production [1,2]. A commonly used metal AM technique is selective
laser melting (SLM), where a laser traces the cross-section of the
part and melts the deposited metal powder along its path. The part
is printed in a layer-by-layer fashion, where a new layer of metal
powder is deposited once the laser finishes tracing the current layer.
AM removes many constraints and limitations imposed by traditional
subtractive manufacturing methods, thus allowing parts with compli-
cated geometries to be built. Many previous studies have manufactured
lattice structures using AM, such as thin-walled lattice structures like
honeycombs [3-5], gyroids [6,7], and various truss-based lattices [8,9].

The mechanical properties of the manufactured lattice structures

depend on AM process parameters such as laser scan speed [10],
scan strategy [11], build direction [12], and the part surface fin-
ish [13]. When performing finite element (FE) simulations for AM
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of the part [17,20] and the decrease in the actual load-bearing area
due to specimen surface roughness caused by geometric inaccuracy of
the manufacturing process [18]. The reduction in yield stress, ultimate
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Fig. 1. Tensile specimens: (a) Technical drawing showing the specimen dimensions in mm. (b) CAD rendering of specimens with different thicknesses.

strength, and failure strain can be attributed to the stress concentration
effects of the surface roughness. As the specimen thickness (or other
characteristic dimensions) decreases, the depth (or amplitude) of the
surface roughness accounts for a more significant portion of its cross-
sectional area. Thus, the mechanical properties degrade when specimen
size is small [16,18]. Other physical evidence for these size-dependent
material properties includes the changing oxygen content [16] and
the change in microstructures induced by the manufacturing process
and part geometry [16,18,20]. It is also important to note that the
size effects discussed in this work are mainly due to the manufac-
turing processes and are different from the size effects described by
strain-gradient plasticity theories [21-23]. Those are caused by the
non-negligible contribution of geometrically necessary dislocations and
occur at a length scale much smaller than the characteristic thickness
(about 1 mm) discussed in this work.

To capture the effects of surface roughness and the apparent size-
dependent macroscopic properties, researchers have attempted to re-
solve the surface roughness and internal voids explicitly in the FE
models [18,19,24]. When surface roughness is explicitly modeled, the
FE simulations can predict the size-dependent ultimate strength [18]
and provide a much better prediction of buckling load than an idealized
CAD design geometry of the truss-based lattice [19,24]. However,
resolving these small-scale features on the mesh requires solid con-
tinuum elements, which are computationally expensive and limit their
applications in specimen-scale simulations. For larger, component-scale
simulations of lattices, shell elements are typically used for thin-walled
lattices, and beam elements are commonly used for truss-based lattices.
These simplified FE geometric representations cannot resolve small-
scale details like surface roughness and void. Thus, a homogenized,
size-dependent material model is needed to capture the thickness-
dependent mechanical properties in a phenomenological manner.

This work has two main objectives. First, to characterize the thick-
ness dependence of key mechanical properties on SLM specimens.
Second, curve fitting to experimental data to produce approximate an-
alytical expressions that describe the thickness-dependence of material
model parameters, thus leading to a phenomenological, size-dependent
constitutive model.

The strong influence of specimen thickness on yield stress and
ultimate strength indicates that properties measured on thicker/larger
tensile specimens may not be representative of those in the AM-printed
thin-walled lattices, which typically have a much smaller wall thick-
ness. Therefore, using properties measured from larger specimens may
overestimate lattice performance metrics like specific energy absorp-
tion (SEA) and peak crushing force (PCF). In addition, ignoring size
effects in topology optimization (TO) of thin-walled lattices may lead

Table 1
SLM process parameters used for manufacturing the tensile specimens.

Process parameter Hatch parameters Border parameters

Distance between borders [mm] / 0.11
Number of borders / 2
Laser power [W] 400 225
Point distance [pm] 80 20
Hatch distance [mm] 0.1 /
Laser scan speed [mm/s] 1142.9 500
Layer height [mm] 0.06 0.06
Scan pattern Stripe /

to less robust designs. We demonstrate these two points through two
numerical examples.

This paper is organized as follows: Section 2 provides detail on the
specimen fabrication, experimental setup, and constitutive modeling.
Section 3 presents and discusses the experimental results and the two
numerical examples. Section 4 summarizes the outcomes, limitations,
and highlights possible future works.

2. Materials and methods
2.1. Specimen fabrication

The material considered in this work is Ti-6Al-4V Grade 23, with
raw metal powder sourced from AP&C Powder Metallurgy. The powder
has an oxygen content of 0.11% and the powder diameters range from
15 to 45 pm. SLM technology was used to manufacture the specimens,
with a Renishaw machine located in the Quad City Manufacturing
Laboratory. The SLM process parameters used to manufacture the spec-
imens were default Renishaw build settings for Ti-6Al-4V. Since the
objective of this work is not to study the effects of process parameters
on the properties of the specimens, we did not modify these parameters
during the manufacturing process. The selected parameters are listed in
Table 1.

A technical drawing of the tensile specimens and the CAD rendering
are shown in Fig. 1. The dimensions of the specimens largely follow
ASTM E8/E8M-13a standard for subsize specimens. Slight modifica-
tions were made so that all grip sections have a constant thickness of
2.5 mm regardless of the gauge region thickness (ASTM E8 standard
uses a single thickness throughout the specimen) for easier gripping and
to avoid failure at the grips. Fillets were added to smoothly transition
between the grip thickness and the thickness of the gauge region. This
geometry modification is assumed to have a negligible effect on the
testing results. All specimens share a common length of the reduced
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Fig. 2. Experimental setup for the tensile tests.

section at 32 mm and a width of 6 mm. Five specimen thicknesses
were considered. They were 0.5, 1.0, 1.5, 2.0, and 2.5 mm. For each
thickness, six specimens were manufactured. All specimens were built
vertically with no support material, a typical way to manufacture
thin-walled lattices with a constant in-plane cross-section. Previous
experimental studies show that build direction affects the mechanical
properties of the parts [19,25,26]. This effect is not examined in
this work, and we maintained a single upright build direction for all
specimens. All specimens were stress relieved at 650 °C for 3 h in argon
gas.

2.2. Tensile tests

All samples were tested at room temperature using an Instron 1332
servo-hydraulic testing machine (Instron, MA, USA) with a crosshead
speed of 0.1 mm/s. A 50 kN load cell was used to measure the load at
a sampling rate of 50 Hz. An IEEE 1394 digital camera from IMI TECH
was used to take images of the specimens during the test at a frame
rate of 3.75 Hz for 2D digital image correlation (DIC) analysis. Since no
polishing was applied to the specimen surfaces, the as-printed surface
roughness provided sufficient contrast under the polarizing lens, and
thus no additional speckle pattern was applied to the specimen surfaces.
The camera was positioned to face the width of the specimens. The
processing of the DIC images and strain calculation were completed
in VIC-2D (Correlated Solutions, Columbia, SC, USA). The complete
experimental setup is shown in Fig. 2. The Young’s modulus, yield
stress, and elongation to failure were extracted from the experiment
data.

2.3. Constitutive model

Besides experimental characterization, this work also proposes a
size-dependent material model suitable for FE simulations. For sim-
plicity, the material was assumed to be isotropic, whose elastic re-
sponse is characterized by a thickness-dependent Young’s modulus E(r)
(thickness is denoted by ) and a constant Poisson’s ratio of 0.31 [27].

Thin-Walled Structures 187 (2023) 110722

We adopted the modified Voce hardening model [28] for the plastic
behavior of Ti-6A1-4V. The yield stress is given by:

0,(@) = Yy + Ryé” + Ry, (1 — exp(~be?)). )}

where é”, Y, Ry R;,,, and b denote the equivalent plastic strain and
thickness-dependent material parameters to be determined through
curve fitting to experimental data, respectively. The damage and frac-
ture behavior of Ti-6Al-4V is modeled by the element deletion tech-
nique [29], which necessitates the definition of a critical value of
equivalent plastic strain at the onset of material damage and fracture
energy. The equivalent plastic strain at the onset of damage, &/, is a
thickness-dependent material parameter to be determined iteratively by
matching the FE-predicted elongation to failure with that observed by
experiments. Material damage is said to occur in FE simulations when
é’ > & . Beyond damage initiation, the stress tensor is reduced by a
damage variable D as [29]:

o = (1 — D)oy, 2)

where o, is the stress computed from the unmodified material prop-

erties; fracture occurs when D = 1. The evolution law for D is given

by [29]:

D= ﬁé”, 3
2G,

where L, G, and éP denote the characteristic length of the finite

element, fracture energy per unit area, and equivalent plastic strain

rate, respectively. The characteristic length of the finite element is used

in the damage evolution to minimize mesh dependence of the solution

following the proposal of Hillerborg [29,30].

Besides the equivalent plastic strain at the onset of material dam-
age, the fracture energy G, is another key parameter in the damage
model. Just like other material parameters considered in this work, it
is reasonable to assume that G, is thickness dependent. However, the
camera frame rate used in this work (3.75 Hz) did not provide sufficient
temporal resolution to resolve the rapid fracture process during the
experiment, so it was difficult to obtain accurate measurements of the
fracture process to characterize the damage evolution behavior. An
inspection of the fractured specimens shows a negligible amount of
necking, and as seen in Section 3.1, the specimen failure behavior is
abrupt, with negligible softening before failure. Therefore, in the lack
of available experimental data, we assumed constant fracture energy
and only focused on the size dependence of damage initiation strain as
a first approximation. The value of the fracture energy follows from the
work of Wang et al. [27], which is an experimentally validated material
parameter set for machined Ti-6A1-4V.

To summarize, a thickness-dependent constitutive model for Ti—
6Al-4V can be fully characterized by Young’s modulus E, parameters
in the modified Voce hardening model Yy, Ry, R;,;, and b, as well
as damage parameter &, . In the next section, we provide analyti-
cal expressions that relate these material parameters to the specimen
thickness 7.

3. Results and discussion

In this section, we present the experimental results and the fitted
equations for the material model parameters. After comparing the FE-
simulated response with the uniaxial tensile experiments, we show
two numerical examples to demonstrate how a size-dependent material
model affects: (1) performance prediction of thin-walled lattice struc-
tures with varying wall thickness and (2) topology optimization (TO) of
thin-walled lattice structures. All FE simulations were conducted using
10 high-end AMD EPYC 7763 Milan CPU cores on Delta, an HPC cluster
hosted at the National Center for Supercomputing Applications (NCSA).
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Fig. 3. Stress-strain curves for SLM Ti-6Al-4V at different specimen thickness. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

3.1. Experiment results and fitted elastic and plastic material parameters

The experimentally measured load (from load cell) and strain (from
digital image correlation) results were converted to true stress—strain
curves for different specimen thicknesses and are shown in Fig. 3. The
Young’s modulus, 0.2% offset yield stress, and elongation to failure
were extracted from the stress—strain curves and summarized in the bar
charts in Fig. 4.

All experimentally obtained data points from specimen thicknesses
2.5, 2, 1, and 0.5 mm were used in the curve fitting to obtain the ma-
terial parameters. The data from the 1.5 mm specimen thickness were
not used in the curve fitting process and were instead saved as cross-
validation for the fitted analytical expressions. We seek an analytical
dependence on specimen thickness in the range ¢ € [0.5,2.5] mm for all
material parameters. The nonlinear least square fitting function curve fit
from the Scipy [31] optimization package was used to perform curve
fitting. To measure the quality of the curve fit for a parameter a, we
calculate the mean relative difference (MRD), defined as:

N | exp fit
Zola a1 o, @

e
where i is the index of the experimental data point, and N is the total
number of available data points.

Young’s modulus was fitted to an exponential-type equation of the
form:

MRD, =

Yy =ag (1 - exp(—alt)) +a,. 5)

Here, an exponential-type curve-fitting equation is used instead of a
polynomial form since it is reasonable to assume the existence of a
critical thickness value, beyond which size effects are negligible, and
the material properties approach a plateau value. This assumption is
supported by our experimental measurements in Fig. 4 and previous
literature findings [17,18]. The experimentally measured Young’s mod-
ulus for each thickness is shown in Fig. 5 as box-and-whisker plots along
with the fitted curve. The analytical functional dependence is given by:

E(f) = 45979.1[1 — exp(—2.20)] + 55918.2 [MPal. 6)

The fitted expression agrees well with the mean values of the four
thicknesses used in the curve fitting, although slightly over-predicting
the mean Young’s modulus for the validation set (1.5 mm thickness).
Nonetheless, we note that the fitted curve is within the observed
specimen-to-specimen variation, and the MRD is 2.6%, which indicates
a satisfactory fit.

A two-stage fitting process is required for the four material param-
eters in the modified Voce hardening model. First, the four parameters
for each stress-strain curve must be determined, which is done by
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fitting the portion of the stress-strain curve above the elastic limit
(defined by €, > 4Xx 10~ 2) to Eq. (1). Once we obtained the
parameters for each stress—strain curve, we performed curve fitting
for each parameter to obtain the size dependence, again reserving the
1.5 mm thickness data from cross-validation. For parameters Y, and
Ry, the exponential function of the form in Eq. (5) was used. The
box-and-whisker plots and the fitted curves are shown in Fig. 6. The
analytical functional dependencies for Y; and R,,, are given by:

Yo () = 432.6[1 — exp(—0.41)] + 686.0 [MPal,
Ry, /(1) = 274.1[1 — exp(=4.81)] — 126.2 [MPa].

)

The fitted expressions show a decent fit with experimental data, falling
within the specimen-to-specimen variation of the validation data points.
The MRDs are 2.3% and 8.8% for Y, and R,,,, respectively.

The parameter R, due to its oscillatory data distribution and lack of
a consistent trend, is considered size-independent, and the mean value
over all the curve-fitting data points was used as the fitted value, which
was found to be 1298.7 MPa. A comparison of this mean value with the
box-and-whisker plots of the raw data is shown in Fig. 7(a), and using
a constant value results in an MRD of 21.4%. For the parameter b, a
slightly different exponential form was used in the curve fitting; it is
given by:

y=ag (1 —exp(-a(t — @y))) + as. ®

The fitted curve and box-and-whisker plots are compared in Fig. 7(b).
The analytical functional dependence is given by:

b(t) = 23.1[1 — exp(—1.5(7 — 2.0))] + 364.5. 9

This curve fit leads to a satisfactory fit with an MRD of 7.9%, and the
fitted curve agrees well with the mean value of the validation data.

The approximate analytical expressions in (6), (7) and (9) provide
the dependence of the elastic and plastic material parameters on the
specimen thickness.

3.2. Mesh convergence study and damage model parameter

The equivalent plastic strain at damage initiation &’ is needed
in the definition of the damage model, which is different from the
experimentally measured elongation to failure. The former is a local
measure, while the latter is a global, average measure of failure.
Therefore, as mentioned in Section 2.3, & = was obtained by iteratively
fitting the FE simulations to the experimentally measured elongation
to failure. The FE simulation was conducted in Abaqus/Explicit [29]
using C3D8R finite elements. An explicit dynamic simulation was used
for easier convergence with the damage model. For simplicity, only the
rectangular gauge region for each specimen was modeled. Before using
this model to calibrate the damage model, a mesh convergence study
was conducted. Three meshes were generated with 5, 6, and 7 elements
through the specimen thickness. A constant aspect ratio of 2 was used to
determine the in-plane mesh size based on the corresponding element
thickness to maintain good-quality elements. The size-dependent elastic
and plastic properties defined in Section 3.1 and a constant & of
0.05 were used to test mesh independence of the failure behavior.
6% strain was applied under displacement control over 1 s, and the
simulation was conducted under a time increment of 5 x 10~ s. The
displacements and reaction forces were extracted from the simulation
and converted to the simulated stress-strain curves. The FE mesh,
boundary conditions, and simulated responses are depicted in Fig. 8.
Based on the results shown in Fig. 8(b), a mesh with 5 elements through
thickness was sufficient to achieve convergence with the elastic-plastic
and damage response. This mesh was used in subsequent damage
material model calibration.

% €, = €4q — & is the axial plastic strain, and a threshold of 4x10™* instead

of 0 was used to exclude small initial noise in experimental data.
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Table 2
FE-identified values of & at different thicknesses.
Specimen thickness [mm] 0.5 1.0 1.5 2.0 2.5

& [mm/mm] 0.0302  0.0428  0.0432  0.0480  0.0529

Due to the sensitivity of the damage behavior on the parameter
&) and the large scattering observed in the experimentally measured
elongation to failure, we focused on capturing the mean behavior of
the size-dependent failure. Therefore, the mean elongation to failure
was calculated for all thicknesses, and FE simulations were performed
to determine the corresponding value of & that best agrees with the
mean elongation to failure behavior. The FE-identified values for &
are shown in Table 2.

The data points, except at 1.5 mm thickness, were used in fitting a
model of the form given in Eq. (5) to obtain an approximate analytical
relationship. The fitted curve is compared to all FE-identified &’ = values
in Fig. 9(a). The curve fit equation is shown in Eq. (10). The fitted curve
yields a satisfactory representation of the FE-identified &/ values with
an MRD of 4.2%, except slightly over-predicting at the cross-validation
data.

e"fni(t) =0.0572[1 — exp(—1.03521)] — 6.1621 X 10~* [mm/mm]. (10)

FE simulations were conducted at all five thicknesses with the fitted
& values to evaluate the effect of the curve-fitting on the simulated
elongation to failure. A comparison between the simulated elongation
to failure and the box-and-whisker plots of the experimental data is
shown in Fig. 9(b). From the comparison, we see that the curve-fitted
&) values yield a satisfactory agreement with the mean elongation to

failure observed in the experiments. To show the agreement between
experimental data and the curve-fitted material model over the entire
stress-strain curve, we illustrate the FE-predicted response and the
experimental measurements in Fig. 10.

The comparison shows that the fitted size-dependent material model
well captures the mean response of the specimens over the entire
range of the stress-strain curve, and the FE-predicted response falls
within the specimen-to-specimen variations observed in the experi-
ments. This result validates the proposed curve-fitting approach and
the phenomenological size-dependent material model.

To summarize, the thickness-dependent material properties in
Egs. (6)-(10) furnish a size-dependent material model for SLM Ti-6Al-
4V that covers the material’s elastic, plastic, and damage behaviors.
The thickness-dependent material model parameters were entered into
Abaqus via data tables. A field variable T was introduced in the
tables to represent specimen thickness, and the values of the material
parameters at different field variable values (i.e., specimen thicknesses)
were stored. A preprocessing step to assign field variable value to the
FE model is needed to use this size-dependent material model on thin-
walled structures. In this step, each element in the mesh is assigned a
value of T based on its thickness. This value of T affects the element’s
constitutive behavior based on the size-dependent material model.

3.3. Material size effects and performance prediction of thin-walled lattices

A typical thin-walled lattice is the extruded lattice, which has a
constant cross-section along its height. The in-plane geometry design
can significantly affect the PCF and SEA of the lattices [32]. The PCF is
defined as the maximum crushing force observed during loading, while
the volume-based SEA of a lattice design is defined as:

ur
SEA=1/ F du, an
VJo

where V, F, u, and u, denote the volume of the thin-walled lat-
tice, reaction force, axial displacement, and final axial displacement,
respectively. The authors [33] previously proposed a combinatorial
framework to generate lattice cross-sections by randomly combining
geometric features. The Johnson-Cook constitutive law was used to
model the strain-rate-dependent material properties of Ti-6A1-4V un-
der high strain rates. Still, the size effects were ignored when varying
the wall thickness of the thin-walled lattice structures. In this example,
we leverage the size-dependent material model in Section 3.1 to study
how the inclusion of size effects influences the predicted PCF and SEA
at different lattice wall thicknesses.

A lattice cross-section was randomly generated using the combina-
torial framework detailed in [33], which has four unit cells, forming a
2 x 2 periodic arrangement. The in-plane cross section has a nominal
dimension of 150 x 150 mm?, with a height of 75 mm. The lattice
structures were discretized using shell elements with constant shell
thickness. Five thicknesses mentioned in Section 2.1 were considered.
The lattice was compressed to 5% axial strain by a rigid plate with
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a constant velocity of 250 mm/s. Since the material model was cali- Abaqus/Explicit was used for contact between parts and self-contact
brated at quasi-static loading conditions, the effects of strain rate on with hard behavior in the normal direction and frictionless behavior
the material constitutive response were ignored. General contact in in the tangential direction. Two material models were considered: (1)
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size-dependent model (subsequently denoted as SDM) in Section 3.1.
(2) constant model (subsequently denoted as CM), where all properties
were taken from the 2.5 mm specimen data irrespective of the wall
thickness. 2.5 mm was chosen since typical tensile specimen thicknesses
are larger than the wall thickness of the thin-walled lattices. The force—
displacement curve was recorded, and SEA was calculated from it.

Mesh convergence was studied on three meshes with 38 880, 75 600,
and 154080 linear shell elements with reduced integration (S4R).
SDM was used for the constitutive model, and the shell thickness was
1.5 mm. The FE mesh, boundary conditions, and simulated responses
are depicted in Fig. 11. Based on the results shown in Fig. 11(b), the
mesh with 75600 elements (uniform mesh size of 1 mm) was sufficient
to achieve force—displacement curve convergence, which was used in
this example.

The lattice cross section and the simulated PCFs and SEAs are shown

in Fig. 12. We define the percent difference (PD) in predicted values
between two material models for a metric X as:

Table 3
Percent difference in performance metrics predicted by two material models.
Specimen thickness [mm] 2.5 2.0 1.5 1.0 0.5 Mean
PDpep [%] 00 28 67 127 192 83
PDg; 4 [%] 00 30 70 204 376 136
X, -X
PDy = 2™ TSDM o 100%, (12)
Xspm

where subscript ¢p,, denotes the size-dependent material model, and
cum denotes the constant material model. A positive percent difference
means that the constant material model overestimates the metric X.
The percent differences for PCF and SEA are reported in Table 3.

The force-displacement curves for the 0.5 mm-thick lattice pre-
dicted by both material models are compared in Fig. 13. For further
discussion, four critical strain points have been marked in Fig. 13. They
are: (1) immediately after peak load, 0.99% strain; (2) during first
major fracture, 1.05% strain; (3) end of first major fracture, 1.2%; and
(4) end of compression, 5% strain.
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To compare the deformed shapes and fracture locations predicted by
the two material models, the displacement magnitude and equivalent
plastic strain contours at the four critical points are shown in Figs. 14
and 15.

Comparing the results in Fig. 12 and Table 3, it is evident that
ignoring material size effects leads to over-prediction of PCF by an
average of over 5% and SEA by an average of over 10%. In the most
extreme case, when CM was used to model the lattice with 0.5 mm
thickness, it overestimated the PCF by close to 20% and SEA by almost
40%. This overestimation of performance is undesirable in design areas

requiring a tight safety factor, such as the aerospace industry. Thus,
material size dependence should be included in the constitutive model
if a conservative estimate is needed. Inspecting the complete force—
displacement curve, the deformed shape, and the fracture locations
revealed that the lattice failed by local bucking at the center of its
height. Noticeable out-of-plane buckling displacement is visible after
the peak load at around 0.99% strain. Comparing the contours in the
first column of Figs. 14 and 15, we see that SDM predicted larger buck-
ling displacement magnitude and more widespread localized fracture,
which contribute to the lower predicted PCF. At around nominal 1.05%
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compression strain, both material models predicted that the lattice
went through a loss in strength caused by rapid localized buckling and
fracture. Again, fracture is more widespread as predicted by SDM. At
1.2% strain, most of the structural strength was lost, and both models
predicted similar fracture patterns. However, at 1.2% and 5% strain,
SDM predicted a more pronounced localized buckling at the lower-right
corner of the lattice, as highlighted in the last two columns of Fig. 14.
These results indicate that ignoring material size effects can lead to
different predicted deformed shapes and less widespread fracture at the
initial stage of structural failure.

The lattices simulated in this example have constant thicknesses
throughout the structure. In this case, it can be argued that a size-
dependent material model is unnecessary, and it is easier to simply
calibrate the material using the target wall thickness instead of a range

of thicknesses. However, this is only the case if the lattice wall thickness
is already known. If the optimal lattice thickness for a given application
is not known and is to be chosen from a range of acceptable thicknesses,
a constant material model cannot fully capture the change in material
response as wall thickness varies, and a size-dependent material model
should be used.

3.4. Material size effects and topology optimization

The lattices in Section 3.3 have a uniform thickness distribution.
However, in many real-world applications, the lattice wall thickness
distribution may be nonuniform, such as functionally graded lattices
generated from TO [34]. In this case, a material model calibrated over
a single thickness cannot accurately capture the material behavior of a
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by the von Mises stress. The top row shows the side view, while the bottom row shows the top view. Fracture occurred at the fixed end and is circled in red. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

multi-thickness design. The authors [35] recently developed a heuristic
TO framework for thin-walled lattice structures to maximize SEA under
dynamic loading by iteratively updating the wall thickness distribution.
The mathematical statement of the optimization and design constraints
are:

1 N
1 i
mtax v ; E
N
stV = 2 FLH =V*, 13)
i=1
t, <t <t  Vi=1-N,

min = max>

e+t -, < 4t

max?

where E' is the total energy absorbed by the ith lattice wall in the
structure. ¢, L, and H denote the individual lattice wall’s thickness,
length, and height. V* is the target volume of the lattice structure. 7,,,
and t,,,, are user-defined thickness limits as a manufacturing constraint,
and 4t,,, is the maximum allowable thickness change per iteration.
N is the number of lattice wall segments in a design. The design
variables of this optimization are the thicknesses ¢ of all lattice walls.
Size-dependent material properties were not employed in the examples
in [35]. In this example, we investigate how size effects influence the
optimized design generated by TO.

Consider a lattice-reinforced rectangular beam with dimensions
400 x 30 x 60 mm? that is fixed at both ends. A rigid pole of 20 mm
radius impacts the center of the beam at a downward velocity of
18000 mmy/s for a displacement of 9 mm. Although the applied strain
rate is high, we did not include strain-rate sensitivity effects in the
material model and assumed that the material parameters are strain-
rate-independent. Symmetry in the YZ plane was exploited, so only half
of the domain was modeled. The initial lattice design has a uniform
wall thickness of 0.7 mm except for the non-designable walls at both
ends where the fixed boundary condition is applied, whose thickness
is 1.5 mm. The maximum and minimum allowable wall thicknesses are
2.5 and 0.5 mm, respectively. 4t,,,. = 0.12 mm allows relatively aggres-
sive design change per iteration. The mesh and boundary conditions are
shown in Fig. 16(a); a mesh size of 2 mm was used. The initial design’s
deformed shape and fracture locations are shown in Fig. 16(b). Forty
TO iterations were performed to maximize the SEA of the beam while
maintaining the same volume as the initial design. TO was performed
independently with the constant and size-dependent material models.

The optimized designs occurred at design iterations 27 and 36 for
CM and SDM, respectively. The signed thickness difference At is used
to show differences in the designs, which is defined as:

At =tspy —tems 14

where t ), and t-,, denote the optimized thickness distribution arrays
from SDM and CM, respectively. The two optimized designs and At are
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Table 4
Energy absorption comparison for the two optimized designs.

Total absorption Elastic Plastic Damage
From constant model [J] 272.4 1039 1672 1.2
From size-dependent model [J] 334.3 168.7 1653 0.3
Percent difference [%] -18.5 -384 1.1 282.8

presented in Fig. 17(a). A histogram is shown in Fig. 17(b) to compare
the distribution of lattice wall thicknesses in both optimized designs.

To provide a consistent comparison of the performance of the de-
signs, SDM was used to simulate the response of the optimized designs
and obtain a size-dependent estimate of their energy absorption. Fig. 18
depicts a bar chart showing the energy contributions, and Table 4
shows the numerical values. The final deformed shapes, plastic strain,
and fracture distributions are shown in Fig. 19.

Comparing the optimized designs in Fig. 17(a), it is evident that
material size effects influenced the optimized design generated from
TO. Both structures share the common feature of a gradated horizontal
wall thickness distribution, where the wall thickness is larger near the
fixed end and the center where the rigid pole impacts. In addition,
both designs removed vertical lattice wall members except at the fixed
end and center. The crucial difference between the designs is that the
one from CM distributed the structural volume approximately evenly
over all four horizontal members. In comparison, SDM removed the top
horizontal member (Row 1 in Fig. 17(a)) to distribute the same volume
to only three horizontal members. Doing so effectively strengthened the
remaining members. This behavior is expected, as SDM predicts that
thinner lattice walls provide less energy absorption than their thicker
counterparts, thus becoming a weak point in the design. Therefore, the
optimizer moved material from the relatively stronger regions to the
weaker regions, so the overall design is balanced. This trend is also
observed in Fig. 17(b) as we see a rightward shift of average lattice
wall thickness for the optimized design from SDM, and the design is
dominated by lattice wall members with mid-range thicknesses (about
1.5 mm). Comparing the design performance in Fig. 18 and Table 4,
it is revealed that the optimized design from SDM has about 19%
higher SEA (both designs share identical total volume). Inspecting the
detailed contributions to the total energy absorption, we see that the
SDM design stores about 38% more energy through elastic deformation,
while the irreversible plastic dissipation is almost identical (about 1%
less) compared to the CM design. Noticeably, the SDM design also
has less fracture at the end of the impact, although the magnitudes
of the fracture dissipation are small compared to plasticity. For the
fracture locations, from Fig. 16(b), we observed that for the uniform-
thickness design fractures were localized near the fixed end, and the
lattice wall members connecting to the fixed end almost fractured
completely. Both optimized designs did not suffer from fractures at the
fixed wall, which is an improvement over the initial design. For the
CM optimized design, through-height fractures exist around the center
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Fig. 18. Performance comparison between two optimized designs. All energy values
reported here were calculated using the size-dependent material model.

of the structure (see the circled regions in Fig. 19(a)). For the SDM-
optimized design, no through-height fractures were present. Compared
to the initial design, the two optimized structures also extensively
leveraged localized buckling as an energy absorption mechanism. These
results indicate that the optimized design generated from SDM is more
robust than one generated from CM; it has higher SEA though more
effective elastic energy storage and is less susceptible to fracture.

In real-world applications, it is ubiquitous that a lattice design is
to be generated to yield optimum performance under a set of antic-
ipated loads. If a systematic optimization tool such as TO is used,
the optimizer must traverse through a vast design space of lattice
designs with different wall thicknesses before providing an optimized
design. Therefore, it is impossible to calibrate the material model to
a single wall thickness. In this case, having a size-dependent material
model inherently provides more physical insights and information to
the optimizer or designer when exploring different lattice designs or
generating an optimized lattice design. We also emphasize that these
arguments are valid regardless of whether the current material model
is further validated by lattice-scale experiments or not. Therefore, from
a lattice designer perspective, incorporating material size effects in the
design process is vital to producing more robust designs.

4. Conclusions, limitations, and future work

This work presents an experimental and computational study on size
effects in SLM Ti—6A1-4V samples. On the experimental side, flat tensile
specimens of five different thicknesses were manufactured and tested
under quasi-static tensile tests. The experimentally measured Young’s
modulus, yield stress, and elongation to failure decrease monotonically
with specimen thickness, which agrees with previous experimental
studies. Approximate analytical expressions of the size-dependence of
material parameters were provided through curve fitting. The fitted
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size-dependent material model was validated against experimental data
with 1.5 mm specimen thickness. The simulated response well captures
the mean behavior and falls within specimen-to-specimen variation.

On the computational side, two examples were presented to empha-
size the importance of a size-dependent material model in evaluating
and designing thin-walled lattices. In the first example, two material
models were used to predict the PCF and SEA of a lattice design at dif-
ferent thicknesses. The results reveal that a material model that ignored
size effects over-predicted the PCF and SEA by 19.2% and 37.6% in
the most extreme case, respectively. In addition, the size-independent
model under-predicted the buckling displacement magnitude and the
extent of fracture during the first major structural failure. The re-
sults highlight that a size-independent material model calibrated at
large specimen thickness provides overly optimistic design performance
predictions and is undesirable in applications requiring a tight safety
factor. In the second example, two material models were used in TO
to improve the SEA of a lattice-reinforced beam. The size-dependent
model produced a more balanced design with fewer lattice wall mem-
bers; hence, the average thickness and strength increased. Comparison
between the two optimized designs showed that the size-dependent
design has higher SEA and no visible through-height fracture at the
end of the loading, making it more robust than the one generated
from the size-independent model. The results demonstrate that using
a size-dependent material model in the lattice design process is highly
necessary. Such a model provides more physical information on the ma-
terial behavior as the optimizer traverses through different thicknesses
and can produce a more robust optimized design.

The limitations of the present work are as follows. All the char-
acterization tests were performed under quasi-static conditions at a
single strain rate. Hence, the current size-dependent material model
does not account for the effects of strain rate on material behavior.
In all the numerical examples, this material model was applied even
when the applied strain rate was high, and we operated under the
assumption that the strain rate effects would influence the constant and
size-dependent material models in the same way. Secondly, we could
not extract size-dependent fracture energy from the experiments due
to the low camera frame rate. The fracture energy, like the equivalent
plastic strain at damage initiation, is a crucial parameter defining
material failure behavior and can be size-dependent. Therefore, we
assumed constant failure energy in this work and calibrated the damage
initiation strain to match the global failure behavior. Lastly, the current
material model was only validated with tensile test data and was not
compared with lattice-scale experimental results. However, we remark
that the arguments we made about the importance of a size-dependent



J. He, S. Kushwaha, M.A. Mahrous et al.

&p
[mm/mm}

(a)

Thin-Walled Structures 187 (2023) 110722

(b)

Fig. 19. Comparison of plastic strain and fracture distributions: (a) Optimized design generated from constant model. (b) Optimized design generated from the size-dependent
model. The top row shows the side view, while the bottom row shows the top view. Fracture locations are circled in red. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

material model in the lattice design process remain valid regardless of
whether the current model is further validated by lattice compression
experiments.

In future work, we aim to perform additional experiments to address
the limitations of this work: (1) to perform tensile tests at various
strain rates, especially covering the high-strain-rate regime, to char-
acterize how strain rate affects the size-dependent material behavior;
(2) conduct lattice compression experiments and compare the results
with the predicted response from the size-dependent material model
to validate its application on full lattices; and (3) perform additional
experiments to determine the failure strain under buckling, as local
buckling commonly occurs in compression of thin-walled lattices.

Replication of results

The data and source code that support the findings of this study
can be made available upon reasonable request to the corresponding
author.
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