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A B S T R A C T

Previous studies show that the properties of parts manufactured via additive manufacturing, such as selective
laser melting, depend on local feature sizes like lattice wall thickness and strut diameter. Although size
dependence has been studied extensively, it was not included in constitutive models for numerical simulations.
In this work, flat dog-bone tensile specimens of different thicknesses were manufactured and tested under
quasi-static conditions to characterize the size-dependent properties experimentally. It was observed that key
mechanical properties decrease with specimen thickness. Through curve-fitting to experimental data, this
work provides approximate analytical expressions for the material properties values as a function of specimen
thickness, furnishing a phenomenological size-dependent constitutive model. The interpolating capability of the
model is cross-validated with existing experimental data. Two numerical examples demonstrate the application
of the size-dependent material model. The axial crushing of thin-walled lattices at varying wall thicknesses
was simulated by the size-dependent material model and one that ignores size effects. Results show that
ignoring size effects leads to overestimated peak crushing force and specific energy absorption. The two
material models were also compared in the topology optimization of thin-walled structures. Results show
that the size-dependent model leads to a more robust optimized design: having higher energy absorption and
sustaining less material fracture.
1. Introduction

Advances in metal additive manufacturing (AM) techniques have
allowed them to grow from a prototyping technology into industrial
production [1,2]. A commonly used metal AM technique is selective
laser melting (SLM), where a laser traces the cross-section of the
part and melts the deposited metal powder along its path. The part
is printed in a layer-by-layer fashion, where a new layer of metal
powder is deposited once the laser finishes tracing the current layer.
AM removes many constraints and limitations imposed by traditional
subtractive manufacturing methods, thus allowing parts with compli-
cated geometries to be built. Many previous studies have manufactured
lattice structures using AM, such as thin-walled lattice structures like
honeycombs [3–5], gyroids [6,7], and various truss-based lattices [8,9].

The mechanical properties of the manufactured lattice structures
depend on AM process parameters such as laser scan speed [10],
scan strategy [11], build direction [12], and the part surface fin-
ish [13]. When performing finite element (FE) simulations for AM
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parts, the effects of these process parameters are typically taken into
account by calibrating the material model using tensile specimens
manufactured by the same AM process parameters [14,15]. However,
the standard tensile specimens may not share similar characteristic
dimensions (such as wall thickness and strut diameter) as the AM parts,
which is especially true for thin-walled and truss-based lattices, where
the manufactured lattices may have wall thickness or strut diameter
much smaller than typical tensile test specimens. Previous studies
have shown that the mechanical properties of SLM parts depend on
the local feature size [16–20]. In general, it was found that crucial
mechanical properties, such as Young’s modulus, yield stress, ultimate
tensile stress, and elongation to failure, decrease as the wall thickness
or strut diameter decreases. The reduction in elastic properties with
decreasing thickness can be attributed to the increase in porosity levels
of the part [17,20] and the decrease in the actual load-bearing area
due to specimen surface roughness caused by geometric inaccuracy of
the manufacturing process [18]. The reduction in yield stress, ultimate
https://doi.org/10.1016/j.tws.2023.110722
Received 18 January 2023; Received in revised form 6 March 2023; Accepted 20 M
Available online 31 March 2023
0263-8231/© 2023 Elsevier Ltd. All rights reserved.
arch 2023

https://doi.org/10.1016/j.tws.2023.110722
https://www.elsevier.com/locate/tws
http://www.elsevier.com/locate/tws
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2023.110722&domain=pdf
mailto:ijasiuk@illinois.edu
https://doi.org/10.1016/j.tws.2023.110722


J. He, S. Kushwaha, M.A. Mahrous et al. Thin-Walled Structures 187 (2023) 110722

a
C
r
t
a
s
l
T
s
s
d

n
S
a
m
c

u
t
t
n
o
t
e

Fig. 1. Tensile specimens: (a) Technical drawing showing the specimen dimensions in mm. (b) CAD rendering of specimens with different thicknesses.
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strength, and failure strain can be attributed to the stress concentration
effects of the surface roughness. As the specimen thickness (or other
characteristic dimensions) decreases, the depth (or amplitude) of the
surface roughness accounts for a more significant portion of its cross-
sectional area. Thus, the mechanical properties degrade when specimen
size is small [16,18]. Other physical evidence for these size-dependent
material properties includes the changing oxygen content [16] and
the change in microstructures induced by the manufacturing process
and part geometry [16,18,20]. It is also important to note that the
size effects discussed in this work are mainly due to the manufac-
turing processes and are different from the size effects described by
strain-gradient plasticity theories [21–23]. Those are caused by the
non-negligible contribution of geometrically necessary dislocations and
occur at a length scale much smaller than the characteristic thickness
(about 1 mm) discussed in this work.

To capture the effects of surface roughness and the apparent size-
dependent macroscopic properties, researchers have attempted to re-
solve the surface roughness and internal voids explicitly in the FE
models [18,19,24]. When surface roughness is explicitly modeled, the
FE simulations can predict the size-dependent ultimate strength [18]
nd provide a much better prediction of buckling load than an idealized
AD design geometry of the truss-based lattice [19,24]. However,
esolving these small-scale features on the mesh requires solid con-
inuum elements, which are computationally expensive and limit their
pplications in specimen-scale simulations. For larger, component-scale
imulations of lattices, shell elements are typically used for thin-walled
attices, and beam elements are commonly used for truss-based lattices.
hese simplified FE geometric representations cannot resolve small-
cale details like surface roughness and void. Thus, a homogenized,
ize-dependent material model is needed to capture the thickness-
ependent mechanical properties in a phenomenological manner.
This work has two main objectives. First, to characterize the thick-

ess dependence of key mechanical properties on SLM specimens.
econd, curve fitting to experimental data to produce approximate an-
lytical expressions that describe the thickness-dependence of material
odel parameters, thus leading to a phenomenological, size-dependent
onstitutive model.
The strong influence of specimen thickness on yield stress and

ltimate strength indicates that properties measured on thicker/larger
ensile specimens may not be representative of those in the AM-printed
hin-walled lattices, which typically have a much smaller wall thick-
ess. Therefore, using properties measured from larger specimens may
verestimate lattice performance metrics like specific energy absorp-
ion (SEA) and peak crushing force (PCF). In addition, ignoring size
ffects in topology optimization (TO) of thin-walled lattices may lead
 t

2

Table 1
SLM process parameters used for manufacturing the tensile specimens.
Process parameter Hatch parameters Border parameters

Distance between borders [mm] ∕ 0.11
Number of borders ∕ 2
Laser power [W] 400 225
Point distance [μm] 80 20
Hatch distance [mm] 0.1 ∕
Laser scan speed [mm/s] 1142.9 500
Layer height [mm] 0.06 0.06
Scan pattern Stripe ∕

to less robust designs. We demonstrate these two points through two
numerical examples.

This paper is organized as follows: Section 2 provides detail on the
pecimen fabrication, experimental setup, and constitutive modeling.
ection 3 presents and discusses the experimental results and the two
umerical examples. Section 4 summarizes the outcomes, limitations,
nd highlights possible future works.

. Materials and methods

.1. Specimen fabrication

The material considered in this work is Ti–6Al–4V Grade 23, with
aw metal powder sourced from AP&C Powder Metallurgy. The powder
as an oxygen content of 0.11% and the powder diameters range from
5 to 45 μm. SLM technology was used to manufacture the specimens,
ith a Renishaw machine located in the Quad City Manufacturing
aboratory. The SLM process parameters used to manufacture the spec-
mens were default Renishaw build settings for Ti–6Al–4V. Since the
bjective of this work is not to study the effects of process parameters
n the properties of the specimens, we did not modify these parameters
uring the manufacturing process. The selected parameters are listed in
able 1.
A technical drawing of the tensile specimens and the CAD rendering

re shown in Fig. 1. The dimensions of the specimens largely follow
STM E8/E8M-13a standard for subsize specimens. Slight modifica-
ions were made so that all grip sections have a constant thickness of
.5 mm regardless of the gauge region thickness (ASTM E8 standard
ses a single thickness throughout the specimen) for easier gripping and
o avoid failure at the grips. Fillets were added to smoothly transition
etween the grip thickness and the thickness of the gauge region. This
eometry modification is assumed to have a negligible effect on the
esting results. All specimens share a common length of the reduced
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Fig. 2. Experimental setup for the tensile tests.

ection at 32 mm and a width of 6 mm. Five specimen thicknesses
ere considered. They were 0.5, 1.0, 1.5, 2.0, and 2.5 mm. For each
hickness, six specimens were manufactured. All specimens were built
ertically with no support material, a typical way to manufacture
hin-walled lattices with a constant in-plane cross-section. Previous
xperimental studies show that build direction affects the mechanical
roperties of the parts [19,25,26]. This effect is not examined in
his work, and we maintained a single upright build direction for all
pecimens. All specimens were stress relieved at 650 ◦C for 3 h in argon
as.

.2. Tensile tests

All samples were tested at room temperature using an Instron 1332
ervo-hydraulic testing machine (Instron, MA, USA) with a crosshead
peed of 0.1 mm/s. A 50 kN load cell was used to measure the load at
sampling rate of 50 Hz. An IEEE 1394 digital camera from IMI TECH
as used to take images of the specimens during the test at a frame
ate of 3.75 Hz for 2D digital image correlation (DIC) analysis. Since no
olishing was applied to the specimen surfaces, the as-printed surface
oughness provided sufficient contrast under the polarizing lens, and
hus no additional speckle pattern was applied to the specimen surfaces.
he camera was positioned to face the width of the specimens. The
rocessing of the DIC images and strain calculation were completed
n VIC-2D (Correlated Solutions, Columbia, SC, USA). The complete
xperimental setup is shown in Fig. 2. The Young’s modulus, yield
tress, and elongation to failure were extracted from the experiment
ata.

.3. Constitutive model

Besides experimental characterization, this work also proposes a
ize-dependent material model suitable for FE simulations. For sim-
licity, the material was assumed to be isotropic, whose elastic re-
ponse is characterized by a thickness-dependent Young’s modulus 𝐸(𝑡)
thickness is denoted by 𝑡) and a constant Poisson’s ratio of 0.31 [27].
3

We adopted the modified Voce hardening model [28] for the plastic
behavior of Ti–6Al–4V. The yield stress is given by:

𝜎𝑦(𝜖𝑝) = 𝑌0 + 𝑅0𝜖
𝑝 + 𝑅𝑖𝑛𝑓 (1 − exp(−𝑏𝜖𝑝)) . (1)

where 𝜖𝑝, 𝑌0, 𝑅0 𝑅𝑖𝑛𝑓 , and 𝑏 denote the equivalent plastic strain and
thickness-dependent material parameters to be determined through
curve fitting to experimental data, respectively. The damage and frac-
ture behavior of Ti–6Al–4V is modeled by the element deletion tech-
nique [29], which necessitates the definition of a critical value of
equivalent plastic strain at the onset of material damage and fracture
energy. The equivalent plastic strain at the onset of damage, 𝜖𝑝𝑖𝑛𝑖, is a
thickness-dependent material parameter to be determined iteratively by
matching the FE-predicted elongation to failure with that observed by
experiments. Material damage is said to occur in FE simulations when
̄𝑝 ≥ 𝜖𝑝𝑖𝑛𝑖. Beyond damage initiation, the stress tensor is reduced by a
damage variable 𝐷 as [29]:

𝝈 = (1 −𝐷)𝝈0, (2)

where 𝝈0 is the stress computed from the unmodified material prop-
erties; fracture occurs when 𝐷 = 1. The evolution law for 𝐷 is given
by [29]:

𝐷̇ =
𝜎𝑦𝐿
2𝐺𝑓

̇̄𝜖𝑝, (3)

where 𝐿, 𝐺𝑓 , and ̇̄𝜖𝑝 denote the characteristic length of the finite
element, fracture energy per unit area, and equivalent plastic strain
rate, respectively. The characteristic length of the finite element is used
in the damage evolution to minimize mesh dependence of the solution
following the proposal of Hillerborg [29,30].

Besides the equivalent plastic strain at the onset of material dam-
age, the fracture energy 𝐺𝑓 is another key parameter in the damage
model. Just like other material parameters considered in this work, it
is reasonable to assume that 𝐺𝑓 is thickness dependent. However, the
camera frame rate used in this work (3.75 Hz) did not provide sufficient
temporal resolution to resolve the rapid fracture process during the
experiment, so it was difficult to obtain accurate measurements of the
fracture process to characterize the damage evolution behavior. An
inspection of the fractured specimens shows a negligible amount of
necking, and as seen in Section 3.1, the specimen failure behavior is
abrupt, with negligible softening before failure. Therefore, in the lack
of available experimental data, we assumed constant fracture energy
and only focused on the size dependence of damage initiation strain as
a first approximation. The value of the fracture energy follows from the
work of Wang et al. [27], which is an experimentally validated material
parameter set for machined Ti–6Al–4V.

To summarize, a thickness-dependent constitutive model for Ti–
6Al–4V can be fully characterized by Young’s modulus 𝐸, parameters
in the modified Voce hardening model 𝑌0, 𝑅0, 𝑅𝑖𝑛𝑓 , and 𝑏, as well
as damage parameter 𝜖𝑝𝑖𝑛𝑖. In the next section, we provide analyti-
cal expressions that relate these material parameters to the specimen
thickness 𝑡.

3. Results and discussion

In this section, we present the experimental results and the fitted
equations for the material model parameters. After comparing the FE-
simulated response with the uniaxial tensile experiments, we show
two numerical examples to demonstrate how a size-dependent material
model affects: (1) performance prediction of thin-walled lattice struc-
tures with varying wall thickness and (2) topology optimization (TO) of
thin-walled lattice structures. All FE simulations were conducted using
10 high-end AMD EPYC 7763 Milan CPU cores on Delta, an HPC cluster
hosted at the National Center for Supercomputing Applications (NCSA).
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Fig. 3. Stress–strain curves for SLM Ti–6Al–4V at different specimen thickness. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

3.1. Experiment results and fitted elastic and plastic material parameters

The experimentally measured load (from load cell) and strain (from
digital image correlation) results were converted to true stress–strain
curves for different specimen thicknesses and are shown in Fig. 3. The
Young’s modulus, 0.2% offset yield stress, and elongation to failure
were extracted from the stress–strain curves and summarized in the bar
charts in Fig. 4.

All experimentally obtained data points from specimen thicknesses
2.5, 2, 1, and 0.5 mm were used in the curve fitting to obtain the ma-
terial parameters. The data from the 1.5 mm specimen thickness were
not used in the curve fitting process and were instead saved as cross-
validation for the fitted analytical expressions. We seek an analytical
dependence on specimen thickness in the range 𝑡 ∈ [0.5, 2.5] mm for all
aterial parameters. The nonlinear least square fitting function curve_fit
rom the Scipy [31] optimization package was used to perform curve
itting. To measure the quality of the curve fit for a parameter 𝑎, we
alculate the mean relative difference (MRD), defined as:

𝑅𝐷𝑎 =
∑𝑁

𝑖 |𝑎𝑒𝑥𝑝𝑖 − 𝑎𝑓𝑖𝑡𝑖 |

∑𝑁
𝑖 𝑎𝑒𝑥𝑝𝑖

× 100%. (4)

where 𝑖 is the index of the experimental data point, and 𝑁 is the total
number of available data points.

Young’s modulus was fitted to an exponential-type equation of the
form:

𝑦 = 𝑎0
(

1 − exp(−𝑎1𝑡)
)

+ 𝑎2. (5)

Here, an exponential-type curve-fitting equation is used instead of a
polynomial form since it is reasonable to assume the existence of a
critical thickness value, beyond which size effects are negligible, and
the material properties approach a plateau value. This assumption is
supported by our experimental measurements in Fig. 4 and previous
literature findings [17,18]. The experimentally measured Young’s mod-
ulus for each thickness is shown in Fig. 5 as box-and-whisker plots along
with the fitted curve. The analytical functional dependence is given by:

𝐸(𝑡) = 45979.1 [1 − exp(−2.2𝑡)] + 55918.2 [MPa]. (6)

The fitted expression agrees well with the mean values of the four
thicknesses used in the curve fitting, although slightly over-predicting
the mean Young’s modulus for the validation set (1.5 mm thickness).
Nonetheless, we note that the fitted curve is within the observed
specimen-to-specimen variation, and the MRD is 2.6%, which indicates
a satisfactory fit.

A two-stage fitting process is required for the four material param-
eters in the modified Voce hardening model. First, the four parameters

for each stress–strain curve must be determined, which is done by

4

fitting the portion of the stress–strain curve above the elastic limit
(defined by 𝜖𝑝 > 4 × 10−4 2) to Eq. (1). Once we obtained the
parameters for each stress–strain curve, we performed curve fitting
for each parameter to obtain the size dependence, again reserving the
1.5 mm thickness data from cross-validation. For parameters 𝑌0 and
𝑅𝑖𝑛𝑓 , the exponential function of the form in Eq. (5) was used. The
box-and-whisker plots and the fitted curves are shown in Fig. 6. The
analytical functional dependencies for 𝑌0 and 𝑅𝑖𝑛𝑓 are given by:

𝑌0(𝑡) = 432.6 [1 − exp(−0.4𝑡)] + 686.0 [MPa],

𝑅𝑖𝑛𝑓 (𝑡) = 274.1 [1 − exp(−4.8𝑡)] − 126.2 [MPa].
(7)

The fitted expressions show a decent fit with experimental data, falling
within the specimen-to-specimen variation of the validation data points.
The MRDs are 2.3% and 8.8% for 𝑌0 and 𝑅𝑖𝑛𝑓 , respectively.

The parameter 𝑅0, due to its oscillatory data distribution and lack of
a consistent trend, is considered size-independent, and the mean value
over all the curve-fitting data points was used as the fitted value, which
was found to be 1298.7 MPa. A comparison of this mean value with the
box-and-whisker plots of the raw data is shown in Fig. 7(a), and using
a constant value results in an MRD of 21.4%. For the parameter 𝑏, a
slightly different exponential form was used in the curve fitting; it is
given by:

𝑦 = 𝑎0
(

1 − exp(−𝑎1(𝑡 − 𝑎2))
)

+ 𝑎3. (8)

The fitted curve and box-and-whisker plots are compared in Fig. 7(b).
The analytical functional dependence is given by:

𝑏(𝑡) = 23.1 [1 − exp(−1.5(𝑡 − 2.0))] + 364.5. (9)

This curve fit leads to a satisfactory fit with an MRD of 7.9%, and the
fitted curve agrees well with the mean value of the validation data.

The approximate analytical expressions in (6), (7) and (9) provide
the dependence of the elastic and plastic material parameters on the
specimen thickness.

3.2. Mesh convergence study and damage model parameter

The equivalent plastic strain at damage initiation 𝜖𝑝𝑖𝑛𝑖 is needed
in the definition of the damage model, which is different from the
experimentally measured elongation to failure. The former is a local
measure, while the latter is a global, average measure of failure.
Therefore, as mentioned in Section 2.3, 𝜖𝑝𝑖𝑛𝑖 was obtained by iteratively
fitting the FE simulations to the experimentally measured elongation
to failure. The FE simulation was conducted in Abaqus/Explicit [29]
using C3D8R finite elements. An explicit dynamic simulation was used
for easier convergence with the damage model. For simplicity, only the
rectangular gauge region for each specimen was modeled. Before using
this model to calibrate the damage model, a mesh convergence study
was conducted. Three meshes were generated with 5, 6, and 7 elements
through the specimen thickness. A constant aspect ratio of 2 was used to
determine the in-plane mesh size based on the corresponding element
thickness to maintain good-quality elements. The size-dependent elastic
and plastic properties defined in Section 3.1 and a constant 𝜖𝑝𝑖𝑛𝑖 of
0.05 were used to test mesh independence of the failure behavior.
6% strain was applied under displacement control over 1 s, and the
simulation was conducted under a time increment of 5 × 10−6 s. The
displacements and reaction forces were extracted from the simulation
and converted to the simulated stress–strain curves. The FE mesh,
boundary conditions, and simulated responses are depicted in Fig. 8.
Based on the results shown in Fig. 8(b), a mesh with 5 elements through
thickness was sufficient to achieve convergence with the elastic–plastic
and damage response. This mesh was used in subsequent damage
material model calibration.

2 𝜖𝑝 = 𝜖𝑡𝑜𝑡𝑎𝑙 −
𝜎
𝐸
is the axial plastic strain, and a threshold of 4×10−4 instead

of 0 was used to exclude small initial noise in experimental data.
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Fig. 4. Experimentally measured mechanical properties: (a) Young’s modulus. (b) 0.2% offset yield stress. (c) Elongation to fracture. The error bars in the plots indicate the
tandard deviation across all samples.
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Fig. 5. The fitted thickness-dependent Young’s modulus of Ti–6Al–4V compared to
experimental observations. Cross-validation data (not used in curve fitting) is shown in
purple. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 2
FE-identified values of 𝜖𝑝𝑖𝑛𝑖 at different thicknesses.

Specimen thickness [mm] 0.5 1.0 1.5 2.0 2.5

𝜖𝑝𝑖𝑛𝑖 [mm/mm] 0.0302 0.0428 0.0432 0.0480 0.0529

Due to the sensitivity of the damage behavior on the parameter
̄𝑝𝑖𝑛𝑖 and the large scattering observed in the experimentally measured
longation to failure, we focused on capturing the mean behavior of
he size-dependent failure. Therefore, the mean elongation to failure
as calculated for all thicknesses, and FE simulations were performed
o determine the corresponding value of 𝜖𝑝𝑖𝑛𝑖 that best agrees with the
ean elongation to failure behavior. The FE-identified values for 𝜖𝑝𝑖𝑛𝑖
re shown in Table 2.
The data points, except at 1.5 mm thickness, were used in fitting a
odel of the form given in Eq. (5) to obtain an approximate analytical
elationship. The fitted curve is compared to all FE-identified 𝜖𝑝𝑖𝑛𝑖 values
n Fig. 9(a). The curve fit equation is shown in Eq. (10). The fitted curve
ields a satisfactory representation of the FE-identified 𝜖𝑝𝑖𝑛𝑖 values with
n MRD of 4.2%, except slightly over-predicting at the cross-validation
ata.

̄𝑝𝑖𝑛𝑖(𝑡) = 0.0572 [1 − exp(−1.0352𝑡)] − 6.1621 × 10−3 [mm∕mm]. (10)

FE simulations were conducted at all five thicknesses with the fitted
̄𝑝𝑖𝑛𝑖 values to evaluate the effect of the curve-fitting on the simulated
longation to failure. A comparison between the simulated elongation
o failure and the box-and-whisker plots of the experimental data is
hown in Fig. 9(b). From the comparison, we see that the curve-fitted
𝑝
̄𝑖𝑛𝑖 values yield a satisfactory agreement with the mean elongation to T

5

ailure observed in the experiments. To show the agreement between
xperimental data and the curve-fitted material model over the entire
tress–strain curve, we illustrate the FE-predicted response and the
xperimental measurements in Fig. 10.
The comparison shows that the fitted size-dependent material model

ell captures the mean response of the specimens over the entire
ange of the stress–strain curve, and the FE-predicted response falls
ithin the specimen-to-specimen variations observed in the experi-
ents. This result validates the proposed curve-fitting approach and
he phenomenological size-dependent material model.
To summarize, the thickness-dependent material properties in

qs. (6)–(10) furnish a size-dependent material model for SLM Ti–6Al–
V that covers the material’s elastic, plastic, and damage behaviors.
he thickness-dependent material model parameters were entered into
baqus via data tables. A field variable 𝑇 was introduced in the
ables to represent specimen thickness, and the values of the material
arameters at different field variable values (i.e., specimen thicknesses)
ere stored. A preprocessing step to assign field variable value to the
E model is needed to use this size-dependent material model on thin-
alled structures. In this step, each element in the mesh is assigned a
alue of 𝑇 based on its thickness. This value of 𝑇 affects the element’s
onstitutive behavior based on the size-dependent material model.

.3. Material size effects and performance prediction of thin-walled lattices

A typical thin-walled lattice is the extruded lattice, which has a
onstant cross-section along its height. The in-plane geometry design
an significantly affect the PCF and SEA of the lattices [32]. The PCF is
efined as the maximum crushing force observed during loading, while
he volume-based SEA of a lattice design is defined as:

𝐸𝐴 = 1
𝑉 ∫

𝑢𝑓

0
𝐹 𝑑𝑢, (11)

here 𝑉 , 𝐹 , 𝑢, and 𝑢𝑓 denote the volume of the thin-walled lat-
ice, reaction force, axial displacement, and final axial displacement,
espectively. The authors [33] previously proposed a combinatorial
ramework to generate lattice cross-sections by randomly combining
eometric features. The Johnson-Cook constitutive law was used to
odel the strain-rate-dependent material properties of Ti–6Al–4V un-
er high strain rates. Still, the size effects were ignored when varying
he wall thickness of the thin-walled lattice structures. In this example,
e leverage the size-dependent material model in Section 3.1 to study
ow the inclusion of size effects influences the predicted PCF and SEA
t different lattice wall thicknesses.
A lattice cross-section was randomly generated using the combina-

orial framework detailed in [33], which has four unit cells, forming a
× 2 periodic arrangement. The in-plane cross section has a nominal
imension of 150 × 150 mm2, with a height of 75 mm. The lattice
tructures were discretized using shell elements with constant shell
hickness. Five thicknesses mentioned in Section 2.1 were considered.
he lattice was compressed to 5% axial strain by a rigid plate with



J. He, S. Kushwaha, M.A. Mahrous et al. Thin-Walled Structures 187 (2023) 110722

o

Fig. 6. The fitted thickness-dependent 𝑌0 and 𝑅𝑖𝑛𝑓 curves compared to individual values. Cross-validation data (not used in curve fitting) is shown in purple. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. The fitted thickness-dependent 𝑅0 and 𝑏 curves compared to individual values. Cross-validation data (not used in curve fitting) is shown in purple. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Mesh convergence study for parameter calibration: (a) Mesh and applied boundary conditions. (b) Simulated responses from three meshes.
a constant velocity of 250 mm/s. Since the material model was cali-
brated at quasi-static loading conditions, the effects of strain rate on
the material constitutive response were ignored. General contact in
6

Abaqus/Explicit was used for contact between parts and self-contact
with hard behavior in the normal direction and frictionless behavior
in the tangential direction. Two material models were considered: (1)
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Fig. 9. Calibration of the damage model: (a) The fitted thickness-dependent damage initiation strains compared to individual FE-identified values. (b) Comparison of simulated
nd experimentally observed elongation to failure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Comparison between experimentally measured and the FE-simulated responses. The experimental data reserved for cross-validation (1.5 mm specimen thickness) is marked
with purple and was not used in curve fitting. The mean strain to failure observed in the experiments is indicated in green. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
d
d

size-dependent model (subsequently denoted as SDM) in Section 3.1.
2) constant model (subsequently denoted as CM), where all properties
ere taken from the 2.5 mm specimen data irrespective of the wall
hickness. 2.5 mm was chosen since typical tensile specimen thicknesses
re larger than the wall thickness of the thin-walled lattices. The force–
isplacement curve was recorded, and SEA was calculated from it.
Mesh convergence was studied on three meshes with 38880, 75 600,

nd 154080 linear shell elements with reduced integration (S4R).
DM was used for the constitutive model, and the shell thickness was
.5 mm. The FE mesh, boundary conditions, and simulated responses
re depicted in Fig. 11. Based on the results shown in Fig. 11(b), the
esh with 75 600 elements (uniform mesh size of 1 mm) was sufficient
o achieve force–displacement curve convergence, which was used in
his example.
The lattice cross section and the simulated PCFs and SEAs are shown

n Fig. 12. We define the percent difference (PD) in predicted values
etween two material models for a metric 𝑋 as:
7

Table 3
Percent difference in performance metrics predicted by two material models.
Specimen thickness [mm] 2.5 2.0 1.5 1.0 0.5 Mean

𝑃𝐷𝑃𝐶𝐹 [%] 0.0 2.8 6.7 12.7 19.2 8.3
𝑃𝐷𝑆𝐸𝐴 [%] 0.0 3.0 7.0 20.4 37.6 13.6

PD𝑋 =
𝑋𝐶𝑀 −𝑋𝑆𝐷𝑀

𝑋𝑆𝐷𝑀
× 100%, (12)

where subscript 𝑆𝐷𝑀 denotes the size-dependent material model, and
𝐶𝑀 denotes the constant material model. A positive percent difference
means that the constant material model overestimates the metric 𝑋.
The percent differences for PCF and SEA are reported in Table 3.

The force–displacement curves for the 0.5 mm-thick lattice pre-
icted by both material models are compared in Fig. 13. For further
iscussion, four critical strain points have been marked in Fig. 13. They
are: (1) immediately after peak load, 0.99% strain; (2) during first
major fracture, 1.05% strain; (3) end of first major fracture, 1.2%; and

(4) end of compression, 5% strain.
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Fig. 11. Mesh convergence study for axial compression: (a) Mesh and applied boundary conditions. (b) Simulated responses from three meshes.
Fig. 12. Axial lattice compression at different lattice wall thicknesses: (a) Lattice cross section. (b) Comparison of PCF predicted by different models. (c) Comparison of SEA

predicted by different models.
Fig. 13. The force–displacement curves predicted by two material models. Four points on the load path were marked for further discussion; they are 0.99%, 1.05%, 1.2%, and
5% axial compression strain, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
To compare the deformed shapes and fracture locations predicted by
the two material models, the displacement magnitude and equivalent
plastic strain contours at the four critical points are shown in Figs. 14
and 15.

Comparing the results in Fig. 12 and Table 3, it is evident that
gnoring material size effects leads to over-prediction of PCF by an
verage of over 5% and SEA by an average of over 10%. In the most
xtreme case, when CM was used to model the lattice with 0.5 mm
hickness, it overestimated the PCF by close to 20% and SEA by almost
0%. This overestimation of performance is undesirable in design areas
8

requiring a tight safety factor, such as the aerospace industry. Thus,
material size dependence should be included in the constitutive model
if a conservative estimate is needed. Inspecting the complete force–
displacement curve, the deformed shape, and the fracture locations
revealed that the lattice failed by local bucking at the center of its
height. Noticeable out-of-plane buckling displacement is visible after
the peak load at around 0.99% strain. Comparing the contours in the
first column of Figs. 14 and 15, we see that SDM predicted larger buck-
ling displacement magnitude and more widespread localized fracture,
which contribute to the lower predicted PCF. At around nominal 1.05%
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Fig. 14. The displacement magnitude predicted by two material models. Constant model predictions are on the top row, and size-dependent model predictions are on the bottom.
Noticeable differences are circled in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. The equivalent plastic strain predicted by two material models. Constant model predictions are on the top row, and size-dependent model predictions are on the bottom.
oticeable differences are circled in red. Fracture locations are shown with high equivalent plastic strain. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
ompression strain, both material models predicted that the lattice
ent through a loss in strength caused by rapid localized buckling and
racture. Again, fracture is more widespread as predicted by SDM. At
.2% strain, most of the structural strength was lost, and both models
redicted similar fracture patterns. However, at 1.2% and 5% strain,
DM predicted a more pronounced localized buckling at the lower-right
orner of the lattice, as highlighted in the last two columns of Fig. 14.
hese results indicate that ignoring material size effects can lead to
ifferent predicted deformed shapes and less widespread fracture at the
nitial stage of structural failure.
The lattices simulated in this example have constant thicknesses

hroughout the structure. In this case, it can be argued that a size-
ependent material model is unnecessary, and it is easier to simply
alibrate the material using the target wall thickness instead of a range
9

of thicknesses. However, this is only the case if the lattice wall thickness
is already known. If the optimal lattice thickness for a given application
is not known and is to be chosen from a range of acceptable thicknesses,
a constant material model cannot fully capture the change in material
response as wall thickness varies, and a size-dependent material model
should be used.

3.4. Material size effects and topology optimization

The lattices in Section 3.3 have a uniform thickness distribution.
However, in many real-world applications, the lattice wall thickness
distribution may be nonuniform, such as functionally graded lattices
generated from TO [34]. In this case, a material model calibrated over
a single thickness cannot accurately capture the material behavior of a
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Fig. 16. FE model setup and deformation: (a) Mesh of the half beam model with applied boundary conditions. (b) The deformed initial design at the end of the simulation, colored
y the von Mises stress. The top row shows the side view, while the bottom row shows the top view. Fracture occurred at the fixed end and is circled in red. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
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ulti-thickness design. The authors [35] recently developed a heuristic
O framework for thin-walled lattice structures to maximize SEA under
ynamic loading by iteratively updating the wall thickness distribution.
he mathematical statement of the optimization and design constraints
re:

max
𝒕

1
𝑉

𝑁
∑

𝑖=1
𝐸𝑖

s.t. 𝑉 =
𝑁
∑

𝑖=1
𝑡𝑖𝐿𝑖𝐻 𝑖 = 𝑉 ∗,

𝑡𝑚𝑖𝑛 ≤ 𝑡𝑖 ≤ 𝑡𝑚𝑎𝑥, ∀𝑖 = 1⋯𝑁,

‖𝒕𝑖+1 − 𝒕𝑖‖∞ ≤ 𝛥𝑡𝑚𝑎𝑥,

(13)

where 𝐸𝑖 is the total energy absorbed by the 𝑖th lattice wall in the
structure. 𝑡, 𝐿, and 𝐻 denote the individual lattice wall’s thickness,
ength, and height. 𝑉 ∗ is the target volume of the lattice structure. 𝑡𝑚𝑖𝑛
and 𝑡𝑚𝑎𝑥 are user-defined thickness limits as a manufacturing constraint,
and 𝛥𝑡𝑚𝑎𝑥 is the maximum allowable thickness change per iteration.
𝑁 is the number of lattice wall segments in a design. The design
ariables of this optimization are the thicknesses 𝒕 of all lattice walls.
ize-dependent material properties were not employed in the examples
n [35]. In this example, we investigate how size effects influence the
ptimized design generated by TO.
Consider a lattice-reinforced rectangular beam with dimensions

00 × 30 × 60 mm3 that is fixed at both ends. A rigid pole of 20 mm
adius impacts the center of the beam at a downward velocity of
8000 mm/s for a displacement of 9 mm. Although the applied strain
ate is high, we did not include strain-rate sensitivity effects in the
aterial model and assumed that the material parameters are strain-
ate-independent. Symmetry in the YZ plane was exploited, so only half
f the domain was modeled. The initial lattice design has a uniform
all thickness of 0.7 mm except for the non-designable walls at both
nds where the fixed boundary condition is applied, whose thickness
s 1.5 mm. The maximum and minimum allowable wall thicknesses are
.5 and 0.5 mm, respectively. 𝛥𝑡𝑚𝑎𝑥 = 0.12 mm allows relatively aggres-
ive design change per iteration. The mesh and boundary conditions are
hown in Fig. 16(a); a mesh size of 2 mm was used. The initial design’s
eformed shape and fracture locations are shown in Fig. 16(b). Forty
O iterations were performed to maximize the SEA of the beam while
aintaining the same volume as the initial design. TO was performed
ndependently with the constant and size-dependent material models.
The optimized designs occurred at design iterations 27 and 36 for

M and SDM, respectively. The signed thickness difference 𝛥𝒕 is used
o show differences in the designs, which is defined as:

𝒕 = 𝒕𝑆𝐷𝑀 − 𝒕𝐶𝑀 , (14)

here 𝒕𝑆𝐷𝑀 and 𝒕𝐶𝑀 denote the optimized thickness distribution arrays
rom SDM and CM, respectively. The two optimized designs and 𝛥𝒕 are
 C

10
Table 4
Energy absorption comparison for the two optimized designs.

Total absorption Elastic Plastic Damage

From constant model [J] 272.4 103.9 167.2 1.2
From size-dependent model [J] 334.3 168.7 165.3 0.3
Percent difference [%] −18.5 −38.4 1.1 282.8

presented in Fig. 17(a). A histogram is shown in Fig. 17(b) to compare
he distribution of lattice wall thicknesses in both optimized designs.
To provide a consistent comparison of the performance of the de-

igns, SDM was used to simulate the response of the optimized designs
nd obtain a size-dependent estimate of their energy absorption. Fig. 18
epicts a bar chart showing the energy contributions, and Table 4
hows the numerical values. The final deformed shapes, plastic strain,
nd fracture distributions are shown in Fig. 19.
Comparing the optimized designs in Fig. 17(a), it is evident that
aterial size effects influenced the optimized design generated from
O. Both structures share the common feature of a gradated horizontal
all thickness distribution, where the wall thickness is larger near the
ixed end and the center where the rigid pole impacts. In addition,
oth designs removed vertical lattice wall members except at the fixed
nd and center. The crucial difference between the designs is that the
ne from CM distributed the structural volume approximately evenly
ver all four horizontal members. In comparison, SDM removed the top
orizontal member (Row 1 in Fig. 17(a)) to distribute the same volume
o only three horizontal members. Doing so effectively strengthened the
emaining members. This behavior is expected, as SDM predicts that
hinner lattice walls provide less energy absorption than their thicker
ounterparts, thus becoming a weak point in the design. Therefore, the
ptimizer moved material from the relatively stronger regions to the
eaker regions, so the overall design is balanced. This trend is also
bserved in Fig. 17(b) as we see a rightward shift of average lattice
all thickness for the optimized design from SDM, and the design is
ominated by lattice wall members with mid-range thicknesses (about
.5 mm). Comparing the design performance in Fig. 18 and Table 4,
t is revealed that the optimized design from SDM has about 19%
igher SEA (both designs share identical total volume). Inspecting the
etailed contributions to the total energy absorption, we see that the
DM design stores about 38% more energy through elastic deformation,
hile the irreversible plastic dissipation is almost identical (about 1%
ess) compared to the CM design. Noticeably, the SDM design also
as less fracture at the end of the impact, although the magnitudes
f the fracture dissipation are small compared to plasticity. For the
racture locations, from Fig. 16(b), we observed that for the uniform-
hickness design fractures were localized near the fixed end, and the
attice wall members connecting to the fixed end almost fractured
ompletely. Both optimized designs did not suffer from fractures at the
ixed wall, which is an improvement over the initial design. For the

M optimized design, through-height fractures exist around the center
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Fig. 17. TO-optimized designs comparison: (a) Optimized cross-section designs generated from two material models (top-down view). The line thickness is assigned based on lattice
wall thickness; non-designable outer boundaries have a fixed thickness of 1.5 mm and are marked in red. The four rows of horizontal wall members are numbered for subsequent
discussion. (b) A histogram comparing the thickness distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 18. Performance comparison between two optimized designs. All energy values
eported here were calculated using the size-dependent material model.

f the structure (see the circled regions in Fig. 19(a)). For the SDM-
optimized design, no through-height fractures were present. Compared
to the initial design, the two optimized structures also extensively
leveraged localized buckling as an energy absorption mechanism. These
results indicate that the optimized design generated from SDM is more
robust than one generated from CM; it has higher SEA though more
effective elastic energy storage and is less susceptible to fracture.

In real-world applications, it is ubiquitous that a lattice design is
to be generated to yield optimum performance under a set of antic-
ipated loads. If a systematic optimization tool such as TO is used,
the optimizer must traverse through a vast design space of lattice
designs with different wall thicknesses before providing an optimized
design. Therefore, it is impossible to calibrate the material model to
a single wall thickness. In this case, having a size-dependent material
model inherently provides more physical insights and information to
the optimizer or designer when exploring different lattice designs or
generating an optimized lattice design. We also emphasize that these
arguments are valid regardless of whether the current material model
is further validated by lattice-scale experiments or not. Therefore, from
a lattice designer perspective, incorporating material size effects in the
design process is vital to producing more robust designs.

4. Conclusions, limitations, and future work

This work presents an experimental and computational study on size
effects in SLM Ti–6Al–4V samples. On the experimental side, flat tensile
specimens of five different thicknesses were manufactured and tested
under quasi-static tensile tests. The experimentally measured Young’s
modulus, yield stress, and elongation to failure decrease monotonically
with specimen thickness, which agrees with previous experimental
studies. Approximate analytical expressions of the size-dependence of

material parameters were provided through curve fitting. The fitted

11
size-dependent material model was validated against experimental data
with 1.5 mm specimen thickness. The simulated response well captures
the mean behavior and falls within specimen-to-specimen variation.

On the computational side, two examples were presented to empha-
size the importance of a size-dependent material model in evaluating
and designing thin-walled lattices. In the first example, two material
models were used to predict the PCF and SEA of a lattice design at dif-
ferent thicknesses. The results reveal that a material model that ignored
size effects over-predicted the PCF and SEA by 19.2% and 37.6% in
the most extreme case, respectively. In addition, the size-independent
model under-predicted the buckling displacement magnitude and the
extent of fracture during the first major structural failure. The re-
sults highlight that a size-independent material model calibrated at
large specimen thickness provides overly optimistic design performance
predictions and is undesirable in applications requiring a tight safety
factor. In the second example, two material models were used in TO
to improve the SEA of a lattice-reinforced beam. The size-dependent
model produced a more balanced design with fewer lattice wall mem-
bers; hence, the average thickness and strength increased. Comparison
between the two optimized designs showed that the size-dependent
design has higher SEA and no visible through-height fracture at the
end of the loading, making it more robust than the one generated
from the size-independent model. The results demonstrate that using
a size-dependent material model in the lattice design process is highly
necessary. Such a model provides more physical information on the ma-
terial behavior as the optimizer traverses through different thicknesses
and can produce a more robust optimized design.

The limitations of the present work are as follows. All the char-
acterization tests were performed under quasi-static conditions at a
single strain rate. Hence, the current size-dependent material model
does not account for the effects of strain rate on material behavior.
In all the numerical examples, this material model was applied even
when the applied strain rate was high, and we operated under the
assumption that the strain rate effects would influence the constant and
size-dependent material models in the same way. Secondly, we could
not extract size-dependent fracture energy from the experiments due
to the low camera frame rate. The fracture energy, like the equivalent
plastic strain at damage initiation, is a crucial parameter defining
material failure behavior and can be size-dependent. Therefore, we
assumed constant failure energy in this work and calibrated the damage
initiation strain to match the global failure behavior. Lastly, the current
material model was only validated with tensile test data and was not
compared with lattice-scale experimental results. However, we remark

that the arguments we made about the importance of a size-dependent



J. He, S. Kushwaha, M.A. Mahrous et al. Thin-Walled Structures 187 (2023) 110722
Fig. 19. Comparison of plastic strain and fracture distributions: (a) Optimized design generated from constant model. (b) Optimized design generated from the size-dependent
model. The top row shows the side view, while the bottom row shows the top view. Fracture locations are circled in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
material model in the lattice design process remain valid regardless of
whether the current model is further validated by lattice compression
experiments.

In future work, we aim to perform additional experiments to address
the limitations of this work: (1) to perform tensile tests at various
strain rates, especially covering the high-strain-rate regime, to char-
acterize how strain rate affects the size-dependent material behavior;
(2) conduct lattice compression experiments and compare the results
with the predicted response from the size-dependent material model
to validate its application on full lattices; and (3) perform additional
experiments to determine the failure strain under buckling, as local
buckling commonly occurs in compression of thin-walled lattices.

Replication of results

The data and source code that support the findings of this study
can be made available upon reasonable request to the corresponding
author.
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