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ABSTRACT

Quantum optomechanics has led to advances in quantum sensing, optical manipulation of mechanical systems,
and macroscopic quantum physics. However, previous studies have typically focused on dispersive optomechanical
coupling, which modifies the phase of the light field. Here, we discuss recent advances in “imaging-based”
quantum optomechanics – where information about the mechanical resonator’s motion is imprinted onto the
spatial mode of the optical field, akin to how information encoded in an image. Additionally, we find radiation
pressure backaction, a phenomenon not usually discussed in imaging studies, comes from spatially uncorrelated
fluctuations of the optical field. First, we examine a simple thought experiment in which the displacement of
a membrane resonator can be measured by extracting the amplitude of specific spatial modes. Torsion modes
are naturally measured with this coupling and are interesting for applications such as precision torque sensing,
tests of gravity, and measurements of angular displacement at and beyond the standard quantum limit. As an
experimental demonstration, we measure the angular displacement of the torsion mode of a Si3N4 nanoribbon
near the quantum imprecision limit using both an optical lever and a spatial mode demultiplexer. Finally,
we discuss the potential for future imaging-based quantum optomechanics experiments, including observing
pondermotive squeezing of different spatial modes and quantum back-action evasion in angular displacement
measurements.
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1. INTRODUCTION

The field of quantum optomechanics1 has focused on the coupling between mechanical and optical degrees of
freedom, including the effects of radiation pressure on mechanical motion. Notable demonstrations include
manipulation of mechanical degrees of freedom through optical spring and damping effects,2 ground state prepa-
ration of mechanical modes via coherent cavity cooling,3 and measurements at and below the standard quantum
limit.4 Key advances facilitated by cavity optomechanics include gravitational wave detectors5 and emerging
quantum technologies such as optical-to-microwave transducers.6

Quantum optomechanics typically focuses on the dispersive interaction between mechanical and optical
modes, characterized by the coupling of mechanical modes to the phase of the light field. However, some
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Figure 1. Spatial optomechanical coupling. Light reflected from a surface with modeshape um has an orthogonal spatial
mode usc added in the reflected field. The amplitude of the scattered modes can be detected and used to estimate the
mechanical mode displacement.
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mechanical modes, including metrologically significant torsion modes,7 may only experience weak dispersive cou-
pling in some situations due to their net-zero center of mass motion. Inspired by the discovery of high-Q torsion
modes in silicon nitride (Si3N4) nanoribbons,

8 we explore coupling nanomechanical torsion modes to the spatial
modes of an optical field. Drawing on inspiration from the field of quantum imaging,9,10 we examine how to
optimally extract the mechanical displacement from the spatial modes.11 Unlike most studies within quantum
imaging, we study the effects of quantum backaction, which is due to the spatially uncorrelated intensity noise
of the optical field. Here, we present preliminary steps towards imaging-based quantum optomechanics exper-
iments, including quantum imprecision noise limited readout of the motion of a torsion mode with an optical
lever and spatial mode demultiplexer. In the future, by utilizing low mass, high-Q nanomechanical oscillators,
we hope to move into the radiation pressure-dominated regime and observe effects such as quantum backaction
and ponderomotive squeezing.

2. SPATIAL OPTOMECHANICAL COUPLING AND RADIATION PRESSURE
FORCE

First, we examine how light reflected from a surface introduces additional spacial modes to the reflected field,
illustrated in Fig. 1. The reflection of light from a surface with modeshape um(x, y) produces a position-
dependent phase shift eikAm(t)um(x,y), where Am(t) is the amplitude of the mode and k is the wavenumber. In
the limit of small displacements (Am � λ), the reflected field ur(x, y) is a sum of the initial mode ui(x, y) plus
the scattered mode usc(x, y), which depends on the mechanical modeshape:

ur(x, y) = Aiui(x, y)e
ikum(x,y) ≈ ui(x, y)(1 + ikum(x, y)) = Aiui(x, y) +Ascusc(x, y). (1)

In general, the scattered mode is orthogonal to the input mode. Therefore, by measuring Asc, one can make an
estimate of the mechanical displacement. We characterize the strength of the coupling via

β =

∫
ui(x, y)u

∗
sc(x, y)φ(x, y)dxdy, (2)

which can be then used to express the shot noise limited imprecision noise

Simp
z =

�cλ

16πβ2Piη
(3)

which is found by noting the fundamental limiting noise source is the vacuum fluctuations of the scattered mode.

The radiation pressure force on the mechanical mode can be found via12

FRP(t) = 2�k〈|E(x, y, t)|2um(x, y, t)〉, (4)

where 〈...〉 denotes an average over space. Evaluating Eq. 4 for a coherent input state, the fluctuating component
includes a contribution from the amplitude quadrature noise Xvac

sc :

FQBA(t) = 2�kβEiX
vac
sc (t), (5)

which is responsible for the quantum backaction. In terms of a power spectral density, the backaction force is
then

SQBA
F =

16π�β2Pi

cλ
. (6)

Notably, Eqs. 3 and 6 satisfy the imprecision-backaction product1

Simp
z SQBA

F ≥ �
2, (7)

signaling that an imaging measurement can add a minimal amount of noise in a measurement of the mechanical
displacement.

Proc. of SPIE Vol. 12912  129120S-2



0.01 0.1 1 10
Pdet [mW]

Ideal OL imp. (w0 = 60 μm)
Im

pr
ec

is
io

n 
no

is
e 

[ra
d2 /H

z]

10-20

10-21

10-22

10-19

Imp. noise 

Ideal imp. (w0 = 60 μm)

10
-21

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

A
ng

ul
ar

 D
is

pl
ac

em
en

t [
ra

d
/H

z]

52.5052.4552.4052.35
Frequency [kHz]

 Data
Thermal
 Imprecision
Total

a) b)

+

Figure 2. Imaging-based measurements of a torsion mode. a) Optical lever with split photodetector measurements near
the quantum imprecision noise limit (red line). The blue points are the measured imprecision noise while sweeping the
optical power on the photodetector. The black line is the absolute quantum imprecision noise limit for an input coherent
state. Notably, the optical lever is a factor of π/2 away from this limit. b) Spatial mode demultiplexer measurement of
the torsion mode. The power in the HG10 mode is detected to determine the mechanical mode amplitude.

As an example, we look at measuring the angular displacement of a torsion oscillator with two different
methods, both of which rely on sorting the spatial modes of the reflected field. Specifically, we measure the
torsion mode of a Si3N4 nanoribbon. The modeshape of the fundamental torsion mode is given by8

θ(y) = sin(πy/L) (8)

where θ is the angle of rotation around the y-axis and L is the length of the ribbon. We perform our measurements
in the center of the ribbon, where θ(y) is maximized, so that an optical field reflected off the ribbon with an
amplitude reflectivity of rf experiences a phase shift e

ikθx. For an incident field in the fundamental Hermite-Gauss
(HG) mode, the reflected field is

E(x, y, z) = A00rf

√
2/π

w(z)
e

−(x2+y2)

w2(z) eikθx ≈ (1 + ikθx)A00rf

√
2/π

w(z)
e

−(x2+y2)

w2(z) , (9)

where A00 is the incident electric field amplitude, with power equal to |A00|2 = P , w(z) is the spot size and
k = 2π/λ is the wavenumber, and we have assumed that the displacement relative to the wavelength λ is small. In
particular, a field centered on the nanoribbon experiences a net zero phase shift, implying a negligible dispersive
optomechanical coupling G = ∂ω/∂z ≈ 0, where ω is the optical field frequency. Instead, we can estimate θ by
examining the spatial mode of the optical field. Writing the reflected field as an expansion of HG modes shows
that the reflection produces a superposition of two orthogonal modes

E(x, y, z) = A00rf

√
2/π

w(z)
e

−(x2+y2)

w2(z) +Aθ
10

2x

w(z)

√
2/π

πw(z)
e

−(x2+y2)

w2(z) , (10)

= A00rfE00(x, y, z) +Aθ
10E10(x, y, z),

where
Aθ

10 = ikw0θA00rf , (11)

is the amplitude of the HG10 mode and E00,10(x, y, z) describe the modeshapes of the HG00,10 modes.

3. EXPERIMENT

In Fig. 2, we show measurements of the torsion mode displacement via two different methods: first via an
optical lever with a split photodetector along with utilizing a spatial mode demultiplexer that sorts modes in
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the Hermite-Gauss basis. The inset of Fig. 2a shows a simplified diagram of the optical lever setup, in which
laser light is focused onto the nanoribbon and collected on a split photodetector. The torsion mode applies an
angular displacement to the reflected field, and the split photodetector measures the lateral displacement after
the beam propagates the lever arm distance. The split photodetector can be seen as a mode sorter that measures
the amplitude of the HG10 mode, albeit with a quantum efficiency that is a factor of 2/π below the quantum
limit.13 In turn we are able to measure the angular displacement with a shot noise limited sensitivity of8

Simp
θ =

1

w2
0

�cλ

8P
. (12)

In Fig. 2a, we show measurements of the torsion mode near the limit of Eq. 12 when accounting for the loss
between the nanoribbon and the detector.

We then use a spatial mode demultiplexer (Cailabs Proteus-C) to measure the torsion mode displacement.
We use a photodetector to make a direct detection measurement of the HG10 intensity, which is proportional
to the angular displacement (inset of Fig. 2b). We are able to observe the thermal motion of the torsion mode
near the frequency predicted by a finite element analysis model. In Fig. 2b, we fit the observed signal with a
model of the thermal noise, which follows a Lorenzian lineshape,14 plus corresponding a constant white noise
term corresponding to the imprecision noise.

4. CONCLUSION

We discuss readout of mechanical motion via spatial coupling to the optical field, in which the information about
the displacement and backaction are in orthogonal spatial modes of the field. Additionally, we experimentally
demonstrate readout of a nanomechanical resonator with this type of coupling via two different methods. In the
first, the angular displacement of a torsion mode is measured using a split photodetector, and in the second,
we move to a more general scheme and measure the angular displacement by utilizing a spatial mode demulti-
plexer. In the future, we aim to extend this work into the regime where radiation pressure backaction plays an
important role, which is an important consideration for sensing applications and can lead to new physics such
as ponderomotive squeezing of higher-order spatial modes.
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