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A B S T R A C T

Adapting to drifting data streams is a significant challenge in online learning. Concept drift must be detected for
effective model adaptation to evolving data properties. Concept drift can impact the data distribution entirely
or partially, which makes it difficult for drift detectors to accurately identify the concept drift. Despite the
numerous concept drift detectors in the literature, standardized procedures and benchmarks for comprehensive
evaluation considering the locality of the drift are lacking. We present a novel categorization of concept drift
based on its locality and scale. A systematic approach leads to a test bed of 2760 data stream benchmarks,
reflecting various difficulty levels following our proposed categorization. We conduct a comparative assessment
of 9 state-of-the-art drift detectors across diverse difficulties, highlighting their strengths and weaknesses for
future research. We examine how drift locality influences the classifier performance and propose strategies for
different drift categories to minimize the recovery time. Lastly, we provide lessons learned and recommenda-
tions for future concept drift research. Our benchmark data streams and experiments are publicly available at
https://github.com/gabrieljaguiar/locality-concept-drift.

1. Introduction

Modern data sources continuously generate information character-
ized by both volume and velocity, flooding learning systems with a
constant flow of data. This scenario is commonly referred to as data
streams [1,2]. Traditional classification methods, designed for static
data, struggle to keep up with the ever-changing characteristics of these
incoming instances [1,3]. Given the dynamic nature of data streams, it
becomes essential for learning methods to adapt and acquire knowledge
about emerging concepts over time. This phenomenon is known as
concept drift [4], and it can manifest in various ways, including shifts
in class distribution and decision boundaries [5], and the emergence
of new features or classes [6]. If not detected and addressed effec-
tively, concept drift can significantly degrade predictive performance,
as knowledge learned from older concepts may not be useful anymore
to classify recent instances [7].

In recent years, the issue of concept drift has garnered signifi-
cant attention within the research community across various domains,
including sensors, robotics, system monitoring, and anomaly detec-
tion [8]. Current research in this field is tackling increasingly complex
challenges. These challenges include accurately detecting concept drift
within unstructured and noisy datasets [9], providing understandable
explanations for concept drift [10], and effectively responding to drift
by adapting relevant knowledge [11]. When we extend these concerns
to scenarios involving multiple classes, we encounter a complex and
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perplexing scenario that actually occurs in many real-life applications.
Detecting concept drift in such contexts becomes exceptionally de-
manding, as we must account for the evolving nature of multiple
classes [6,12]. In addition to the challenges previously mentioned, it is
important to note that the location of concept drift within the feature
space significantly influences both the performance of classifiers and
the effectiveness of drift detection methods [6,13]. However, there is
a lack of studies that evaluate drift detectors under varying degrees of
drift locality or provide benchmark datasets to support research in this
crucial area.

Motivation. While the literature offers numerous concept drift detec-
tors, there remains a notable absence of standardized procedures and
benchmarks for a comprehensive assessment of these methods when
considering the locality of concept drifts. Specifically, there is a lack of
dedicated benchmarks suitable for evaluating drift detectors across a
diverse spectrum of challenges, particularly those tied to the locality of
concept drift. An in-depth experimental comparison of state-of-the-art
drift detectors, applied to a diverse set of challenges, would provide
valuable insights into the performance of these detectors under various
conditions. Furthermore, current research tends to concentrate on par-
ticular subsets of drift detectors and specific data challenges, typically
limited to binary class data. These studies often fall short in offering
insightful knowledge regarding the essential aspects of concept drift
that should be taken into consideration. For that reason, we propose a
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comprehensive and reproducible study to gain insights and evaluate the
performance of various drift detectors. This study spans a diverse range
of difficulties, allowing us to analyze how the locality and magnitude
of a concept drift impact its detection.

Overview and main contributions. This paper presents a compre-
hensive and reproducible study for benchmarking and evaluating the
impact of the locality and magnitudes of a concept drift on the classifier
or drift detector. We systematically identify critical challenges within
this domain and leverage them to create a set of benchmark problems
that encompass various difficulties, guided by a novel concept drift cat-
egorization. Furthermore, we conduct a comparative evaluation of nine
state-of-the-art drift detectors across this wide range of difficulty. This
analysis not only identifies the top-performing detectors considering
the proposed difficulties but also sheds light on their specific strengths
and weaknesses, providing valuable insights for future research in drift
detection. The main contributions of this paper are:

• Concept drift locality categorization. We present a novel cat-
egorization that organizes concept drift based on the number of
affected classes and the magnitude of the change. This categoriza-
tion empowers us and future researchers to evaluate the effect of
various concept drift levels when proposing new drift detectors or
classifiers. This categorization guides the creation of benchmark
problems, ranging from scenarios affecting only one class to
those that transform the entire data stream. The comprehensive
evaluation set consists of 2760 data stream benchmarks.
• Drift locality impact evaluation. We present a comprehensive
study designed to assess the influence of concept drift locality
on its detection, encompassing both binary and multi-class data
streams.
• Comparison between state-of-the-art drift detectors. We con-
duct an extensive, comprehensive, and reproducible comparative
study among 9 state-of-the-art drift detectors with different de-
tection mechanisms based on the proposed framework and a set
of benchmarks to assess their performance and behavior under a
plethora of difficulties.
• Recommendations and open challenges. Based on the results
from the experimental study, we derive recommendations seeking
insights into the strengths and weaknesses of the top-performing
drift detectors. These recommendations aim to provide a compre-
hensive understanding of the detectors’ capabilities. Additionally,
we identify open challenges within the domain of learning from
data streams impacted by concept drift, outlining directions for
future research.

This paper is structured as follows: Section 2 provides the theo-
retical foundation and discusses related work. Section 3 introduces
our proposed concept drift locality categorization and presents the
benchmark problems. Section 4 outlines the experimental setup, while
Section 5 presents the results. Section 6 delves into the lessons learned,
and Section 7 offers the conclusion and outlines directions for future
work.

2. Background and related work

This section reviews the background and related work. We pro-
vide an overview of the literature on data streams and concept drift
detection.

2.1. Data streams

A data stream refers to a potentially unbounded sequence of ordered
instances that arrive over time within a system. Learning from data
streams imposes specific limitations on classifiers [3]. We can define
a stream, denoted as S, as a sequence ⟨s1, s2, s3,… , s∞⟩, where si =

(X, y). This stream can be handled either one instance at a time (online

scenario) or in batches (block scenario). Data streams exhibit four
primary characteristics [2,5]: (i) Volume, (ii) Velocity, (iii) Veracity,
and (iv) Non-stationarity, which present challenges to classifiers that
must adapt accordingly.

Data streams are susceptible to concept drift [14,15]. Each instance
arrives at a specific time, denoted as t, and is generated based on
a probabilistic distribution denoted as �t(X, y), where X represents
the feature vector and y denotes the class label. If all instances in
the stream are generated by the same probability distribution, the
data is considered stationary, indicating a single and stable underlying
concept. However, in real-world applications, data rarely adheres to
stationary assumptions [16]. On the other hand, when two distinct
instances arriving at times t and t + C are generated by �t(X, y) and
�t+C (X, y) respectively, and if �t ≠ �t+C , indicates the occurrence of
a concept drift. This phenomenon impacts various aspects of a data
stream and, as such can be examined from multiple viewpoints. When
analyzing and comprehending concept drift, the following factors come
into consideration [5,6]:

• Influence of the decision boundaries. Firstly, it is necessary to
consider how concept drift affects the learned decision bound-
aries, distinguishing between real and virtual concept drifts. Vir-
tual drift produces a change in the unconditional probability
distribution P (x), without affecting the learned decision bound-
aries. Although virtual drift does not impair learning models, its
detection is necessary to avoid false alarms and prevent unnec-
essary, costly adaptations. In contrast, real concept drift modifies
the decision boundaries, making them worthless to the current
concept. Detecting and adapting to real concept drift is crucial
for preserving predictive performance.
• Speed of changes. There are three types of concept drift [17] re-
garding their speed: (i) incremental; (ii) gradual; and (iii) sudden
concept drifts as illustrated in Fig. 1. Incremental drift generates a
sequence of intermediate states between the old and new concept,
while gradual drift oscillates between instances coming from both
old and new concepts, with the new concept becoming more and
more frequent over time. Finally, sudden drift instantaneously
switches between old and new concepts, leading to an instant
degradation of the underlying learning algorithm.
• Recurrence. Changes in the stream can be either unique or
recurring as illustrated in Fig. 1. In the latter case, the previously
seen concept may reemerge over time, allowing us to recycle
previously learned knowledge. The past knowledge can be used
as an initialization point for the drift recovery.
• Presence of noise. Noise can take the form of sporadic, in-
significant variations within a stream that can be disregarded,
or substantial corruption within the features or class labels that
need to be dealt with in order to prevent the input of misleading
or adversarial data into the classifier [18]. Drift detectors must
ignore noise.
• Locality. The literature distinguishes between global and local
concept drifts [13]. The former impacts the entire data stream,
while the latter pertains to specific parts of it, such as individual
clusters of instances or subsets of classes. However, this classifi-
cation is too shallow and a more in-depth and detailed discussion
regarding the concept drift’s locality will be introduced in this
manuscript.

To address the challenges posed by concept drift, two approaches
are commonly employed: (i) implicit and (ii) explicit. Implicit meth-
ods manage drift adaptation through intrinsic mechanisms integrated
within the classifier, assuming its capability to self-adjust to new in-
stances reflecting the most recent concept while gradually discarding
outdated information [8,19]. These approaches involve establishing
appropriate learning and forgetting rates, utilizing adaptive sliding
windows, or continually tuning hyperparameters. Conversely, explicit
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Fig. 1. Different types of concept drift.

approaches assign drift adaptation to an external tool known as a drift
detector [8,15]. Drift detectors continuously monitor stream properties
(e.g., statistics) or classifier performance (e.g., error rates). They raise
a warning signal when there are indications of impending drift and
trigger an alarm signal when concept drift has occurred.

2.2. Drift detectors

In recent years, a plethora of explicit drift detectors have been
introduced [20]. As defined by Lu et al. [15], drift detectors function by
extracting critical features from both historical and newly arrived data
and subsequently subjecting them to dissimilarity tests. Like classifiers,
drift detection methods fall into three categories: supervised (or error
rate-based), semi-supervised, and unsupervised (or data distribution-
based) [15]. The primary distinction among these categories is the
point at which drift is identified. While supervised drift detectors
pinpoint alterations in class boundaries, unsupervised detectors focus
on tracking shifts in data distribution [4].

Among supervised drift detectors, the most widely adopted group
relies on evaluating classifier error or accuracy using labeled instances.
This category of drift detectors can be further divided into three dis-
tinct types: (i) change detection-based detectors, (ii) statistical-based
detectors, and (iii) window-based detectors.

• Change detection-based detectors. In the first category, we find
detectors like Page Hinkley [21], CUSUM [21], and Geometric
Moving Average [22]. These detectors utilize cumulative sums
to trigger an alarm when a significant change in input data oc-
curs. While they are computationally efficient, their performance
heavily depends on the selection of hyperparameters.
• Statistical-based detectors. The second group comprises detec-
tors such as the Drift Detector Method (DDM) [1] and its vari-
ants like Early DDM (EDDM) [23], Reactive DDM (RDDM) [11],
DDM based on Hoeffding’s bound (HDDM) [24], Statistical Drift
Detection Method (SDDM) [25], Fast Hoeffding Drift Detection
Method (FHDDM) [26,27], McDiarmid Drift Detection Methods
(MDDM) [28], Wilcoxon Rank Sum Test Drift Detector (WSTD)
[29], and EWMA for Drift Detection (ECDD) [30]. These methods
compute statistical features over time based on error rates. They
operate under the assumption that as long as the data distribution
remains stationary, the learner’s error rate will decrease with
an increasing number of analyzed samples. When the error rate
exceeds a predefined threshold, an alert is triggered.
• Window-based detectors. Finally, a popular category of super-
vised detectors relies on metrics calculated within subwindows
of a data stream. An example is the ADaptative WINdow (AD-
WIN) [31], which employs an adaptive sliding window based
on Hoeffding’s inequality. ADWIN manages a sliding window

divided into two sub-windows representing old and new data and
dynamically adjusts its size, expanding during periods of stability
and contracting in the presence of drift. ADWIN signals a drift
when the average between the two windows surpasses a prede-
fined threshold. This approach has inspired the development of
several other detectors such as Kolmogorov–Smirnov Windowing
(KSWIN) [32], Statistical Test of Equal Proportions (STEPD) [33],
optimized versions of ADWIN [34,35] and others [26,36].

In addition to detectors based on classifier accuracy, there are
also supervised trainable detectors that employ traditional machine
learning classifiers to detect concept drift. Examples of such detectors
include DCS [37], the Restricted Boltzmann Machine (RBM-IM) [6],
the Complexity Drift Detector (C2D) [38] and QuadCDD [39]. Concept
drift detectors that can predict the type/speed of the drift have also
been proposed in order to promote an informed adaptation of the
classifer [40]. Moreover, Meta-Learning has been employed for drift
detection [38,41,42]. Besides adapting to concept drift, Halstead et al.
[43] presents a new algorithm to identify and correct errors in concept
drift adaptation. It is important to note that there is a notable absence
of drift detectors specifically designed for multi-class scenarios, which
come with their own unique characteristics and challenges.

Unsupervised drift detectors are primarily focused on identifying
disparities in unlabeled data without the need for added supervision.
These detectors typically employ a distance metric to quantify the dis-
similarity between the distribution of historical data and newly arrived
data [44,45]. When this dissimilarity is statistically significant, it trig-
gers a process to update the learning model. In this category, we find
detectors such as Statistical Change Detection for multi-dimensional
data (SCD) [46], the PCA-based change detection framework (PCA-
CD) [47], Equal Density Estimation (EDE) [48], Least Squares Density
Difference-based Change Detection Test (LSDD-CDT) [49], among oth-
ers [15,50]. More advanced unsupervised methods aim to precisely lo-
cate where the drift occurred in the feature space [51]. These detectors
focus on spatial searches employing various dissimilarity measures [10,
52]. They tackle concept drift at its root, addressing distribution drift.
Typically, these algorithms require users to define both a historical time
window and a new data window. A common approach is to use two
sliding windows, with the historical time window fixed while sliding
the new data window [53,54]. Moreover, Cerqueira et al. [55] presents
a detector based on the student-teacher learning mechanism.

As aforementioned, numerous drift detectors have been proposed
in the literature, highlighting the need for comparisons to understand
how each one behaves in different complex scenarios. While Lu et al.
[15] and Suárez-Cetrulo et al. [8] reviewed the state-of-the-art in data
stream learning with a focus on drift detectors, however they lacked
an empirical comparison between these detectors. Additionally, the
locality of the concept drift is often neglected [6,13]. In a different
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Table 1
Comparison of most commonly applied, drift detectors and types of concept drift by contributions in related works.

Reference Drift detectors Drift type

Gama et al. [1] DDM Sudden; Gradual
Baena-Garcıa et al. [23] DDM, EDDM Sudden; Gradual
Frias-Blanco et al. [24] DDM, ADWIN, HDDMW , ECDD Sudden; Gradual
Gonçalves et al. [56] DDM, EDDM, ADWIN, ECDD,STEPD, PH, NB, PL, DOF Sudden; Gradual
Barros and Santos [20] DDM, EDDM, ADWIN, HDDMW ,HDDMA, ECDD, SEQDRIFT, SEED,

STEPD, FHDDM, FTDD, RDDM, WSTD Sudden; Gradual

Santos et al. [57] DDM, EDDM, ADWIN, HDDMW ,HDDMA, ECDD, SEQDRIFT, STEPD,
FHDDM, RDDM, and WSTD Sudden; Gradual

Babüroğlu et al. [58] DDM, EDDM, ADWIN, HDMMW ,HDDMA, ECDD, SEQDRIFT, SEED,
STEPD, FHDDM, FTDD, RDDM, WSTD, GMA, PH Sudden

Korycki and Krawczyk [6] FHDDM, RDDM, WSTD, PerfSim,DDM-OCI, RBM-IM Sudden; Gradual; Incremental
Poenaru-Olaru et al. [59] DDM, EDDM, ADWIN, HDDMW ,HDDMA Sudden; Gradual
Mahgoub et al. [60] DDM, EDDM, ADWIN, HDDMW ,HDDMA, STEPD, SEQDRIFT, RDDM, Sudden; Gradual; Incremental

SEED, GMA, PH, EWMA, CUSUM

Sakurai et al. [61] DDM, EDDM, HDDMW , HDDMA Sudden; Gradual; Incremental

approach, Barros and Santos [20] conducted an extensive empirical
comparison and evaluation of concept drift detection methods across
various data stream configurations. Moreover, Table 1 presents a sum-
mary of works that empirically compare drift detectors and the type of
concept drift evaluated. However, a notable gap exists in the literature
concerning concept drift detection in data streams with multiple classes
and how the locality of the drift influences its detection.

3. Proposed categorization of concept drift locality

As discussed in various studies [6,13,62,63], local data difficulty
factors and the number of classes exert a substantial influence on the
capabilities of classifiers when handling data streams. Furthermore,
these factors also play a major role in concept drift detection. Notably,
the performance of standard drift detectors can vary significantly based
on the underlying distribution of the stream, especially when they lack
strategies to address these factors. This can result in either excellent
performance or suboptimal outcomes.

However, the current body of literature addressing the categoriza-
tion and characterization of concept drifts in streaming classification
problems often overlooks two crucial factors: the number of classes
affected and local data difficulties. It is important to note that a
significant portion of concept drift research primarily focuses on binary
classification and global shifts in data distribution, or perturbations
that primarily impact the minority class, as observed in the imbalanced
scenario [62]. Given the substantial impact that local data difficulty
factors and the number of classes affected can have on non-stationary
data streams, the existing categorizations of concept drift may fall
short in evaluating concept drift detection in dynamic environments.
They may fail to encompass all the nuances that make a concept drift
particularly challenging or solvable. Therefore, we propose an extended
concept drift categorization that explicitly incorporates considerations
of locality and the number of classes affected when assessing concept
drift. This expanded framework should pave the way for further re-
search in the development of classifiers and drift detectors tailored
for multi-class data streams in non-stationary environments, enabling
systematic studies under different relevant drifting conditions.

3.1. Categorization of concept drift locality

First, we formally define the proposed categorization. Consider a
bounded d-dimensional attribute space X and output space y and a
given posterior probability distribution �t(X, y) at time t, which can be
expanded as �t

c1
(X, y) ∪ �t

c2
(X, y)⋯ ∪ �t

cn
(X, y) where ci represents the

distribution for a given class and n the number of classes. As previously
defined if �t(X, y) ≠ �t+C (X, y) a concept drift has occurred and falls
into one of the four categories:

• Single-Class Local Concept Drift: Given the drifted distribution
�t+C (X, y) exists only one i ∈ [0, n] that �t+C

ci
(X, y) = �̂ci

(X, y).

• Single-Class Global Concept Drift: Given the drifted distribution
�t+C (X, y) exists only one i ∈ [0, n] that �t+C

ci
(X, y) =  ci

(X, y).

• Multi-Class Local Concept Drift: Given the drifted distribution
�t+C (X, y) exists more than one i ∈ [0, n] that �t+C

ci
(X, y) =

�̂ci
(X, y)

• Multi-Class Global Concept Drift: Given the drifted distribution
�t+C (X, y) exists more than one i ∈ [0, n] that �t+C

ci
(X, y) =

 ci
(X, y).

where �̂ci (X, y) represents a new distribution that partially equal with
�ci

for a given class ci, and  ci (X, y) represents an entirely new proba-
bilistic distribution for a given class ci.

Figs. 2 and 3 present a visual representation of the four defined
categories. Local drifts occur when the new distribution is partially
equal to the previous concept. For example, when we have two clusters
and only one moves. In our experiments, we considered local changes,
changes that affect less than 50% of the original distribution. This
type of concept drift can be exceedingly subtle yet has the potential to
compromise predictive accuracy in specific regions of the feature space.
Consequently, it poses a challenge for detection and resolution. On the
other hand, global concept drift involves a complete transformation of
the data distribution, often resulting in less subtle changes. However,
the ease of drift detection depends on the behavior of the new distri-
bution. It is worth noting that learning mechanisms and concept drift
detection strategies can differ significantly in scenarios with multiple
classes [6,63]. Thus, when assessing classifier performance or concept
drift detection, we must also account for the number of classes affected
by the concept drift. This proposed categorization enables us to analyze
concept drift detection while considering intricacies that have not
received extensive attention in the existing literature. Additionally,
it empowers the development of novel classifiers and drift detectors
capable of handling a spectrum of concept drifts, ranging from subtle
to noticeable.

3.2. Benchmarks

To explicitly assess the performance of classifiers and drift detectors
in data streams featuring the concept drift categories outlined earlier,
we introduce a set of drift difficulties corresponding to each category
within our proposed framework. These difficulties were implemented
using two widely recognized data stream generators, namely Random
RBF and Random Tree, as established in the literature [5]. The Random
RBF algorithm generates N centroids randomly in the feature space.
Using a mean value � and a standard deviation �, infinite instances can
be generated and assigned to the nearest centroid. To introduce concept



Knowledge-Based Systems 289 (2024) 111535

5

G.J. Aguiar and A. Cano

Fig. 2. Illustrative data distribution before, during and after a Single-Class Local (a)
and Global (b) concept drift. Each color represents one class and background color
represents decision boundaries.

Fig. 3. Illustrative data distribution before, during and after a Multi-Class Local (a)
and Global (b) concept drift. Each color represents one class and background color
represents decision boundaries.

drifts, centroids can be moved or the values of � and � modified. For the
Random Tree algorithm, the generation of instances requires defining
the number of features and the desired depth of the tree. With this
information, the algorithm randomly generates splits in a decision tree,
which is used later to assign labels to randomly generated instances in
the feature space. Concept drift can be induced by either completely
rebuilding the tree or modifying its leaves and internal nodes.

Table 2 presents a comprehensive overview of the proposed data
difficulties along with their respective categorizations. For each diffi-
culty setting, we generated data streams encompassing a range of class
counts, including {2, 3, 5, 10} classes, and varying feature dimensions
of {2, 5, 10}. Additionally, we introduced three distinct types of drifts:
Sudden, Gradual, and Incremental. In the context of Multi-Class drifts,
we considered scenarios where drifts affected subsets of classes, in-
cluding {{2}, {2, 3}, {2, 3, 5}, {2, 3, 5, 10}}, depending on the number of
classes. Hence, by systematically exploring all possible permutations of
drift speed, drift type, number of classes, and features, we generated
a total of 2760 distinct data stream benchmarks. To elaborate, each
Single-Class difficulty resulted in 48 data streams for difficulties without
incremental drift and 64 with the presence of incremental drift. For

Fig. 4. Data distribution before, during and after a Single-Class Local (a) and Global
(b) emerging_branch concept drift. Each color represents one class and background
color represents decision boundaries.

Fig. 5. Data distribution before, during and after a Multi-Class Local (a) and Global
(b) swap_cluster concept drift with all classes affected. Each color represents one
class and background color represents decision boundaries.

Multi-Class concept drifts, we obtained 96 data streams for difficulties
without incremental drift and 128 with incremental drifts, as we now
also account for the number of classes affected by the drift. This
theoretically sums up to 2976 data streams; however, certain scenarios
like reappearing_cluster and class_emerging exclude the
possibility of all classes being affected, as this would result in no data.
Moreover, Table 3 displays a summary of the specifications of each drift
category. Figs. 4 and 5 present a detailed example visual representation
of the single and multi-class concept drifts.

Finally, to ensure reproducibility and facilitate the utilization of
our proposed categorization and benchmarks, all the data streams
used in our experiments have been made publicly available for future
research.1

4. Experimental setup

The experiments are designed to assess the performance of drift
detectors across a diverse range of drift challenges. We also investigate

1 https://github.com/gabrieljaguiar/locality-concept-drift

https://github.com/gabrieljaguiar/locality-concept-drift
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Table 2
Concept drift locality benchmark specifications. S: Sudden, G: Gradual, I: Incremental.

Generator Impact on
the class space

Impact on
the feature space

Difficulty Description Drift
speed

RBF

Single-Class

Local

emerging_cluster A new subcluster emerge S/G
reappearing_cluster Part of the clusters of ONE class disappears for a period of time S/G
splitting_cluster Part of the clusters of ONE class splits into two clusters that move to another direction S/G/I
merging_cluster Part of the clusters of ONE class clusters are merged in the midpoint between them S/G/I
moving_cluster Part of the clusters of ONE class center moves to another position S/G/I

Global

reappearing_cluster All clusters of ONE class disappear for a period of time S/G
splitting_subcluster All subclusters of ONE class splits into two subclusters that move to another direction S/G/I
merging_cluster All subclusters of ONE class of one class merge S/G/I
moving_cluster All clusters of ONE class moves to another position S/G/I
class_emerging A new class appear S/G

Multi-Class

Local

emerging_cluster A new emerging subcluster for N classes appears S/G
reappearing_cluster Part of the clusters of N classes disappears for a period of time S/G
splitting_cluster Part of the clusters of N classes splits into two clusters that move to another direction S/G/I
merging_clusters Part of the clusters are merged in the midpoint between them for N classes S/G/I
moving_cluster Part of the clusters of N classes center moves to another position S/G/I
swap_cluster Part of the clusters of N classes swap position S/G

Global

reappearing_cluster All clusters of N classes disappear for a period of time S/G
splitting_cluster All clusters of N classes splits into two clusters that move to another direction S/G/I
merging_cluster All clusters of N classes center merges S/G/I
moving_cluster All clusters of N classes moves to another position S/G/I
swap_cluster All clusters of N classes swaps position S/G

RT

Single-Class

Local
emerging_branch A new branch appears S/G
prune_regrowth_branch Part of the branches of ONE class are pruned and then regrowth this branches S/G
prune_growth_new_branch Part of the branches of ONE class are pruned and then other branches grow S/G

Global
prune_regrowth_branch All of the branches of ONE class are pruned and then regrowth this branches S/G
prune_growth_new_branch All of the branches of ONE class are pruned and then other branches grow S/G
class_emerging A new class appear S/G

Multi-Class

Local

emerging_branch A new branch appears for N classes S/G
prune_regrowth_branch Part of the branches of N classes are pruned and then regrowth this branches S/G
prune_growth_new_branch Part of the branches of N classes are pruned and then other branches grow S/G
split_node Part of the leaves of N classes are splitted to generate two leafs of two different classes S/G
swap_leaves Part of the leaves of N classes swaps with another class S/G

Global

prune_regrowth_branch All of the branches of N classes are pruned and then regrowth this branches S/G
prune_growth_new_branch All of the branches of N classes are pruned and then other branches grow S/G
split_node All of the leaves of N classes are splitted to generate two leafs of two different classes S/G
swap_leaves All of the leaves of N classes swaps with another class S/G

Table 3
Summary of the proposed benchmark problems.

Drift category Drift speed # of classes # of features # of instances # of benchmark streams

No Drift – {2, 3, 5, 10} {2, 5, 10} 100,000 24
Single-Class Local {1, 1000, 5000, 10000} {2, 3, 5, 10} {2, 5, 10} 100,000 384
Single-Class Global {1, 1000, 5000, 10000} {2, 3, 5, 10} {2, 5, 10} 100,000 384
Multi-Class Local {1, 1000, 5000, 10000} {2, 3, 5, 10} {2, 5, 10} 100,000 1092
Multi-Class Global {1, 1000, 5000, 10000} {2, 3, 5, 10} {2, 5, 10} 100,000 876

how the locality and the number of affected classes influence drift
detection. The primary goal is to gain insights into the performance of
various drift detectors and how each type of drift challenge affects their
effectiveness. Additionally, we examine the impact of each challenge
on classifiers that rely on explicit drift detectors. To address these
objectives, we formulate the following research questions (RQ):

• RQ1: Which concept drift detector demonstrates the most effec-
tive detection performance across all scenarios?
• RQ2: Which concept drift detector excels in detection perfor-
mance for each distinct type of scenario?
• RQ3: How does each category of concept drift influence the
performance of the drift detector?
• RQ4: Which specific difficulty presents the most challenging sce-
nario?
• RQ5: How does the number of classes and features affect the
concept drift detection?
• RQ6: How does each scenario impact the performance of classi-
fiers utilizing the best-performing drift detector?

4.1. Drift detectors

To assess the performance of drift detectors across various types
of concept drift, we chose 9 state-of-the-art supervised drift detec-
tors displayed in Table 4. We made these selections based on their
widespread use in the literature and their demonstrated effectiveness in
numerous scenarios. It is important to note that we included at least one
representative from each group of supervised drift detectors mentioned
in Section 2. Our deliberate choice of these detectors was strategic,
with the primary objective of comprehensively assessing the behavior,
strengths, and weaknesses within each group. Our work is centered
on understanding how the locality and magnitude of a concept drift
impact its detection. Our focus extends beyond merely identifying the
best-performing concept drift, aiming instead to delve into the nuanced
dynamics of detection performance.

To monitor drift, we leverage the error distribution of the classi-
fier to effectively monitor concept drifts, as suggested in the existing
concept drift literature [31]. The error distribution is binary, and we
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Table 4
Drift detectors used in the experiments.

Acronym Name Reference

ADWIN ADaptive Windowing Bifet and Gavalda [31]
DDM Drift Detection Method Gama et al. [1]
ECDD EWMA for Drift Detection Ross et al. [30]
EDDM Early Drift Detection Method Baena-Garcıa et al. [23]
FHDDM Fast Hoeffding Drift Detection Method Pesaranghader and Viktor [26]
FHDDMS Stacking Fast Hoeffding Drift Detection Method Pesaranghader et al. [27]
HDDM Drift Detection Method based on Hoeffding bound Frias-Blanco et al. [24]
KSWIN Kolmogorov–Smirnov Windowing Raab et al. [32]
PH Page Hinkley Page [21]
RDDM Reactive Drift Detection Method Barros et al. [11]
STEPD Statistical Test of Equal Proportions Nishida and Yamauchi [33]

determine the value to update the drift detector using the equation:

� =

{
1, if L(x) = y

0, if L(x) ≠ y
(1)

where � represents the error distribution, x represents a new instance,
y denotes the correct class, and L the classifier. By employing this
approach, we can effectively detect concept drifts when there are
changes in the classifier error distribution.

4.2. Classifier

To evaluate the performance of the drift detectors, we opted to use
Hoeffding Tree (HT) [64] as our classifier. This classifier is known
for its exceptional predictive performance and lacks inherent drift
detection or adaptation mechanisms, ensuring an unbiased assessment
of concept drift detection.

4.3. Performance evaluation

Given that each data stream in our experiments is characterized
by a single known drift point, we employed an evaluation process
similar to that used in classification tasks. Consequently, we extracted
True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) values according to the following definitions:

• TP: When a concept drift detected at time t and t ∈ [id , id + R].
• TN: When no alert is raised and there is no known concept drift.
• FP: When a concept drift alert is raised at t and t ∉ [id , id + R].
• FN: When no alert is raised within the range of detection R.

where id is the instance where the concept drift happened, and R is the
range of detection, with R = 5000 in our experiments. This value of R
was defined based on 5% the total size of the stream.

Subsequently, we calculated three performance metrics: Precision
(Eq. (2)), Recall (Eq. (3)), and F1-Score (Eq. (4)). Precision assesses
the ratio between false alarms and accurate drift alerts, while recall
measures the ratio between correct drift detection and undetected
drifts. The F1-Score combines both of these metrics. These three metrics
in combination provide insights into the behavior of each concept drift
detector.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(4)

Furthermore, for each accurate drift alarm, we calculate the average
detection delay [65] as described in Eq. (5), where D represents the
instance position of the drift, and Dd indicates the instance position
when the drift alarm was triggered. This metric assesses the speed of

drift detection, and it is measured considering the number of instances
between Dd and D.

Delay =

∑
(Dd −D)

TP
(5)

4.4. Reproducibility

The source code of the algorithms, the experiments and the data
streams are publicly available on GitHub to facilitate the transparency
and reproducibility of this research.2 All results, interactive plots and
tables are available on the website3. All the experiments, genera-
tors and drift detectors were implemented using Python 3.8 and the
river [66] package. Experiments were run on a GNU/Linux cluster
with 192 Intel Xeon cores, 6 TB RAM, and Centos 7.

5. Results

This section presents and discusses the experimental results. Firstly,
we conducted a comparative analysis of all drift detectors, irrespective
of the specific scenarios, to determine which drift detector exhibits
the best overall performance both with and without concept drift.
Secondly, we investigate deeper into each scenario to gain insights
into how the locality and the proposed data difficulties influence drift
detection. Additionally, we evaluated the influence of the number of
classes on drift detection in each scenario. In sequence, we assessed
how these proposed difficulties affect the classifier’s performance and
the impact of using a classifier in combination with an explicit drift
detector. Finally, we assess the performance of the drift detectors in
real-world multi-class benchmark problems.

5.1. Overall aggregated comparison for all scenarios

To address RQ1, we first evaluated the performance of all classifiers
with a focus on data streams that either had or did not have concept
drift, irrespective of how the concept drift affected the feature space
or class space. Table 5 presents the average results for 24 data streams
without concept drift. In these cases, as the stream remains stationary,
we display only the average True Negatives and False Positives values.
Notably, only 3 drift detectors did not raise any alert in this scenario,
highlighting the sensitivity of explicit drift detectors to changes in
the error distribution, even when data distribution remains stable.
Moreover, ECDD, EDDM, and STEPD exhibited a high level of sensi-
tivity to any change, resulting in a high number of False Positives. In
contrast, DDM and ADWIN displayed the lowest values of false alerts,
demonstrating their stability over time.

Table 6 presents the results considering data streams with concept
drift. It is interesting to note that EDDM exhibited the lowest delay

2 https://github.com/gabrieljaguiar/locality-concept-drift
3 Interactive plots and tables for all experiments are available at

https://gabrieljaguiar.github.io/comprehensive-concept-drift/

https://github.com/gabrieljaguiar/locality-concept-drift
https://gabrieljaguiar.github.io/comprehensive-concept-drift/
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Table 5
Comparison between drift detectors considering sce-
narios without concept drift.

Drift detector TN FP

ADWIN 0.00 3.79
DDM 0.17 2.71
ECDD 0.46 904.58
EDDM 0.00 62914.04
FHDDM 1.00 284.00
FHDDMS 0.00 1058.00
HDDM 0.00 41.83
KSWIN 0.08 10.25
PH 0.00 12.46
RDDM 0.00 27.96
STEPD 0.00 4628.13

Table 6
Comparison between drift detectors considering all evaluated drift difficulties.

Drift detector Precision Recall F-1 Delay

ADWIN 7.40% 34.50% 12.19% 2192
DDM 1.82% 5.45% 2.73% 2168
ECDD 0.03% 36.48% 0.06% 235
EDDM 0.00% 95.18% 0.00% 15
FHDDM 4.68% 62.43% 8.7% 1771
FHDDMS 1.50% 74.31% 2.9% 1087
HDDM 1.65% 76.61% 3.23% 1271
KSWIN 3.32% 42.54% 6.16% 1866
PH 5.18% 72.19% 9.66% 1867
RDDM 0.89% 25.99% 1.72% 2027
STEPD 0.01% 95.80% 0.03% 516

among all evaluated drift detectors and the second-highest recall, al-
though this came at the cost of raising numerous drift alerts, leading to
a precision of 0%. A similar pattern is observed for ECDD and STEPD.
When comparing DDM and its variations, their detection performance is
quite similar, with HDDM displaying the best F1-Score and the shortest
detection delay, highlighting the efficiency of Hoeffding’s inequality.
In terms of F1-Score, ADWIN and PH displayed the best detection
performance, with PH having a shorter detection delay.

In summary, ADWIN, DDM, FHDDM, and PH stood out as strong
performers in both evaluated scenarios. They exhibited caution when
dealing with stationary streams and demonstrated good detection per-
formance when concept drift occurred. On the other hand, EDDM,
ECDD, and STEPD could detect concept drifts quickly but raised a
significant number of false alarms in the process.

5.2. Detailed comparison within each scenario

Tables 7 and 8 present the metrics for Single-Class Local and Global
concept drift scenarios. When we analyze the detection performance, it
is evident that ADWIN and PH consistently exhibited the best detection
performance for both local and global concept drifts, while EDDM,
ECCD, and STEPD displayed the least favorable results. Comparing the
differences in results between local and global concept drift, we observe
that precision values remained relatively stable. However, recall values
increased for most drift detectors, with a 17% increase for ADWIN and
a 10% increase for PH. This indicates an inverse correlation between
false alarms and the magnitude of the concept drift. On the other
hand, the detection rate improved from local to global drifts. This
is understandable since global concept drifts have a more substantial
impact on data distribution, making them easier to detect due to their
significant influence.

When considering Multi-Class concept drift scenarios, with results
presented in Tables 9 and 10, ADWIN and PH again demonstrated the
best results for both scenarios. Similar to the observations in Single-
Class concept drift, when we compare local and global drifts, we
notice that global drifts were detected more effectively due to their
more substantial impact on classifier performance. Furthermore, it is

Table 7
Comparison between drift detectors considering single class local concept drifts.

Drift detector Precision Recall F1 Delay

ADWIN 5.48% 22.40% 8.80% 2728
DDM 1.88% 5.47% 2.80% 2287
ECDD 0.03% 29.17% 0.07% 201
EDDM 0.00% 97.40% 0.00% 4
FHDDM 4.24% 46.61% 7.8% 2045
FHDDMS 1.46% 61.20% 2.9% 1223
HDDM 1.69% 67.45% 3.30% 1359
KSWIN 2.91% 31.51% 5.32% 1991
PH 5.21% 64.06% 9.63% 2176
RDDM 1.13% 31.77% 2.18% 2016
STEPD 0.02% 91.15% 0.04% 649

Table 8
Comparison between drift detectors considering single class global concept drifts.

Drift detector Precision Recall F1 Delay

ADWIN 8.15% 39.06% 13.48% 1909
DDM 2.21% 6.25% 3.27% 2286
ECDD 0.02% 26.30% 0.05% 315
EDDM 0.00% 91.41% 0.00% 11
FHDDM 4.84% 53.13% 8.9% 1550
FHDDMS 1.65% 66.67% 3.2% 1074
HDDM 1.81% 69.01% 3.52% 1321
KSWIN 3.30% 34.11% 6.02% 1879
PH 5.87% 75.78% 10.90% 1737
RDDM 1.01% 28.39% 1.96% 1982
STEPD 0.01% 93.75% 0.02% 517

noteworthy that Multi-Class Local drifts exhibited higher recall values
than their single-class counterparts. This is expected since a larger
portion of the data distribution is influenced by the drift in multi-class
scenarios, making it easier to detect and leading to improved recall
values.

Additionally, Figs. 6 to 9 illustrate four examples of the data
distribution, accuracy of the classifier, and the moments when the
ADWIN (the most effective overall) signaled drifts. These visualizations
provide insight into the ease or difficulty in detecting specific scenarios.
In the case of Local drifts (Figs. 6 and 8), the drift alerts were signaled
when no actual drift occurred, indicating that detecting Local drifts
is challenging due to their subtle nature. Conversely, in Global drifts
(Figs. 7 and 9), a more distinct alteration in the data distribution was
observable, making it easier to identify and leading to more noticeable
changes in classifier accuracy. Both Single and Multi scenarios exhib-
ited false alarms, where drift detection alerts were raised despite no
actual drift occurring during those periods.

To address RQ2, ADWIN and PH consistently demonstrated supe-
rior detection performance across all evaluated scenarios. Conversely,
EDDM and STEPD, while achieving high recall values, also triggered
numerous false alarms, resulting in lower precision. It is worth noting
that DDM consistently exhibited low values of both recall and precision
in all scenarios, indicating a more conservative approach. Furthermore,
when comparing the behavior of drift detectors in the four scenarios,
a hierarchy of difficulty emerges, from easiest to hardest detection
as follows: Multi-Class Global, Single-Class Global, Multi-Class Local,
Single-Class Local. This order of difficulty corresponds closely to the
impact on data distribution, with a more pronounced impact leading
to a more significant change in error distribution. Another noteworthy
observation is that in all evaluated drift detectors, scenarios with more
localized drifts tended to generate a higher number of false alarms. This
highlights the need for the development of drift detectors that are less
sensitive to error distribution, particularly in scenarios with local drifts.
In conclusion, our analysis provides insights into how each scenario
affected the performance of drift detectors, addressing RQ3.
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Fig. 6. Single-Class Local sudden drift data distribution and drift alerts over time considering the emerging_branch difficulty and ADWIN as drift detector.

Fig. 7. Single-Class Global drift data distribution and drift alerts over time considering the class_emerging difficulty and ADWIN as drift detector.

Table 9
Comparison between drift detectors considering multi class local concept drifts.

Drift detector Precision Recall F1 Delay

ADWIN 7.19% 30.40% 11.63% 2360
DDM 1.58% 4.67% 2.36% 2036
ECDD 0.04% 40.29% 0.07% 192
EDDM 0.00% 95.51% 0.00% 21
FHDDM 4.60% 64.10% 8.6% 1830
FHDDMS 1.48% 77.11% 2.9% 1092
HDDM 1.67% 80.68% 3.28% 1207
KSWIN 3.31% 44.32% 6.16% 1873
PH 5.18% 70.88% 9.66% 1956
RDDM 0.92% 26.37% 1.77% 2083
STEPD 0.02% 96.70% 0.03% 508

5.3. Comparison between difficulties

In this experiment, our aim is to assess the varying levels of diffi-
culty encountered by each drift detector when dealing with different
concept drift scenarios. We seek to analyze which scenarios pose more

Table 10
Comparison between drift detectors considering multi class global concept drifts.

Drift detector Precision Recall F1 Delay

ADWIN 7.95% 42.92% 13.41% 2033
DDM 1.94% 6.05% 2.93% 2195
ECDD 0.03% 39.38% 0.06% 277
EDDM 0.00% 95.43% 0.00% 14
FHDDM 4.86% 71.35% 9.1% 1699
FHDDMS 1.48% 79.91% 2.9% 1039
HDDM 1.56% 78.88% 3.06% 1299
KSWIN 3.48% 48.86% 6.49% 1819
PH 4.91% 75.80% 9.22% 1706
RDDM 0.72% 21.92% 1.39% 1977
STEPD 0.01% 97.60% 0.03% 469

significant challenges and which ones are relatively easier to detect

for each drift detector. To accommodate space limitations within the

manuscript, we will primarily focus on presenting the results for the
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Fig. 8. Multi-Class Local drift data distribution and drift alerts over time considering the swap_cluster difficulty and ADWIN as drift detector.

Fig. 9. Multi-Class Global drift data distribution and drift alerts over time considering the swap_leaves difficulty and ADWIN as drift detector.

top-performing drift detectors, ADWIN and Page Hinkley. The com-
plete set of results is accessible on our website for a more detailed
examination.

When considering Single-Class Local drifts, Table 11 provides an
overview of the performance metrics for each difficulty as observed
with both drift detectors. It is worth noting that, for both detectors,
the reappearing_cluster scenario appeared to be the easiest to
detect. This is because the disappearance and reappearance of data
segments tend to induce substantial changes in error distribution, mak-
ing them relatively clear for the drift detectors, even if they occur in
specific regions of the feature space. Conversely, when faced with more
complex drift scenarios, ADWIN displayed its worst performance in de-
tecting the emerging_branch difficulty, while PH struggled with the
moving_cluster scenario. The differences in their performance can
be attributed to their distinct detection mechanisms. ADWIN employs
a two-window approach that relies on detecting a significant difference

between the two windows to identify concept drift. Consequently, when
the classifier rapidly adapts to the new data distribution, ADWIN may
encounter challenges in detecting the drift. On the other hand, PH
utilizes a cumulative approach, allowing it to handle such scenarios
more effectively. Additionally, difficulties that inherently involve incre-
mental changes, such as those related to moving, merging, and splitting
clusters, displayed a higher detection delay in general.

Furthermore, Table 12 provides an overview of the results for each
of the Single-Class Global difficulties. Notably, for both ADWIN and PH,
the class_emerging difficulty appeared to be the least challenging
to detect and exhibited the lowest detection delay. This observation
aligns with the logic that the emergence of a new class results in a
sudden drop in accuracy, as a novel class is being introduced and
evaluated. Conversely, the most challenging difficulty to detect was the
moving_cluster, followed by splitting_cluster and merg-
ing_cluster. These three difficulties are inherently incremental in
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Table 11
Comparison of detection performance for Single-Class Local drift difficulties by ADWIN and Page Hinkley. Bold values represent the highest
value of that column (easiest detection) and underscored values represent the lowest value (harder detection).

Difficulty Precision Recall F1 Delay

ADWIN PH ADWIN PH ADWIN PH ADWIN PH

emerging_branch 3.83% 5.24% 14.58% 70.83% 6.06% 9.76% 2176 1975
emerging_cluster 5.61% 5.41% 25.00% 62.50% 9.16% 9.95% 3364 2249
merging_cluster 5.15% 5.39% 20.83% 62.50% 8.26% 9.92% 2914 2285
moving_cluster 5.03% 4.94% 20.83% 58.33% 8.10% 9.11% 2930 2050
prune_growth_new_branch 4.47% 5.09% 16.67% 66.67% 7.05% 9.45% 2257 2067
prune_regrowth_branch 7.14% 4.94% 22.92% 64.58% 10.89% 9.17% 2479 2261
reappearing_cluster 7.35% 5.56% 37.50% 66.67% 12.29% 10.26% 2550 2179
splitting_cluster 4.95% 5.16% 20.83% 60.42% 8.00% 9.51% 2936 2368

nature, which means they do not create an abrupt change in the learn-
ing curve and error rate. Consequently, this incremental nature makes
them harder to detect promptly. Comparing the results to those of
Single-Class Local drifts, an improvement in recall values is noticeable.
This suggests that, for almost all difficulties, detecting Global drifts was
generally easier due to their broader impact on the data distribution.

Analyzing the metrics for Multi-Class Local drifts in Table 13,
ADWIN achieved the best results when encountering the
prune_growth_new_branch difficulty, while PH exhibited its best
performance with swap_clusters. Notably, results for difficulties
that do not involve incremental drifts were quite similar to the best
results. This observation emphasizes the challenge that drift detectors
face in effectively detecting incremental drifts, even when multiple
classes are affected. Another aspect worth noting is the larger per-
formance gap between ADWIN and PH in the context of multi-class
drifts compared to single-class drifts. This difference can be attributed
to the higher precision that ADWIN demonstrates in multi-class drift
scenarios. When we make comparisons with their Single-Class Local
counterparts, it becomes evident that multi-class drifts generally yield
better detection results, as expected due to their greater impact on data
distribution.

The results for Multi-Class Global drifts are presented in Table 14.
ADWIN displayed its best detection performance when confronted with
prune_growth_new_branch drifts, but it also achieved the satis-
factory F1 values for other difficulties, such as
prune_regrowth_branch and swap_leaves. The poorest results
for ADWIN once again correlated with difficulties involving incre-
mental drift. PH, on the other hand, exhibited its best performance
with reappearing_cluster, although its performance with other
difficulties was quite similar and generally less favorable than that
of ADWIN. In comparison to Multi-Class Local drifts, precision values
remained similar, but recall values increased, indicating improved
detection even with a notable number of false alarms.

To address RQ4, it becomes evident that sudden changes in data
distribution, like new data appearing in the feature space or the emer-
gence of a new class, were the easiest and quickest to be detected.
Conversely, difficulties that inherently involved incremental changes
displayed higher values of False Negatives, resulting in lower recall
and less effective detection. It is important to note that this observa-
tion is correlated with how the base learner operates. Consequently,
when evaluating drift detectors with other base learners or employing
unsupervised drift detectors, the ranking of difficulties in terms of
complexity may vary.

5.4. Impact of number of classes and number of features

Furthermore, the benchmark dataset used in the experiments in-
cluded streams with varying configurations in terms of the number
of classes and features. Therefore, we assessed how these different
specifications influenced drift detection while considering each drift
categorization to address RQ5. Fig. 10 presents a boxplot showing the
F1 score for the top 2 performing detectors, i.e., ADWIN and Page
Hinkley in each drift category, comparing each configuration regarding

Fig. 10. F1 Score for each categorization of concept drift. Each color represents streams
with different number of classes.

numbers of classes, and Fig. 11 considering different feature space
dimensionality.

Firstly, it is evident that as the number of classes in the stream
increases, the detection of concept drifts becomes more challenging,
regardless of how the stream is affected. Moreover, when considering
Single-Class Global drifts, a noticeable drop in performance is observed.
This is expected in this specific scenario because when only one class is
affected, the more stationary the other classes are, the more localized
the change becomes, making it difficult to detect. On the other hand,
when multiple classes are affected globally, the increase in the number
of classes did not have a significant impact on drift detection. The
scenario that posed the most challenge for both drift detectors was
Single-Class Local drift with only 2 classes. In a binary setting where
only a portion of the classes is affected, it is similar to an imbalanced
scenario, and these changes may not significantly impact the classifier’s
error.

When considering different feature space configurations, we can see
that this factor did not have a substantial impact on Page Hinkley’s
performance. However, it did affect ADWIN, particularly in the pres-
ence of Single-Class Local and Multi-Class Local drifts. Additionally, it
is worth noting that ADWIN’s performance exhibits higher variance,
while Page Hinkley demonstrates consistent performance across various
stream configurations.

5.5. Impact on classifier performance

Finally, in addition to assessing how the proposed scenarios and
difficulties influence concept drift detection, we also examined their
impact on the performance of the utilized classifier, the Hoeffding
Tree, when used in conjunction with the best-performing drift detector.
The primary objective of this experiment is to ascertain how each
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Table 12
Comparison of detection performance for Single-Class Global drift difficulties by ADWIN and Page Hinkley. Bold values represent the highest
value of that column (easiest detection) and underscored values represent the lowest value (harder detection).

Difficulty Precision Recall F1 Delay

ADWIN PH ADWIN PH ADWIN PH ADWIN PH

class_emerging_rbf 10.07% 7.68% 58.33% 93.75% 17.18% 14.20% 1104 1698
class_emerging_rt 11.06% 6.55% 52.08% 85.42% 18.25% 12.17% 1198 1280
merging_cluster 5.24% 5.17% 20.83% 60.42% 8.37% 9.52% 2895 2130
moving_cluster 4.37% 4.32% 20.83% 54.17% 7.22% 8.00% 2885 2089
prune_growth_new_branch 9.60% 5.68% 39.58% 77.08% 15.45% 10.59% 2378 1689
prune_regrowth_branch 9.21% 5.54% 43.75% 83.33% 15.22% 10.39% 1722 1487
reappearing_cluster 9.62% 6.76% 58.33% 91.67% 16.52% 12.59% 2124 1896
splitting_cluster 4.50% 5.22% 18.75% 60.42% 7.26% 9.60% 2985 1899

Table 13
Comparison of detection performance for Multi-Class Local drift difficulties by ADWIN and Page Hinkley. Bold values represent the highest
value of that column (easiest detection) and underscored values represent the lowest value (harder detection).

Difficulty Precision Recall F1 Delay

ADWIN PH ADWIN PH ADWIN PH ADWIN PH

emerging_branch 11.53% 5.35% 45.37% 76.85% 18.39% 10.01% 2474 1644
emerging_cluster 6.82% 5.15% 27.78% 64.81% 10.95% 9.54% 3016 2329
merging_cluster 4.65% 5.14% 19.44% 64.81% 7.50% 9.52% 2783 2032
moving_cluster 4.66% 4.86% 20.37% 63.89% 7.59% 9.03% 2799 2042
prune_growth_new_branch 11.40% 5.37% 49.07% 80.56% 18.50% 10.08% 1983 1618
prune_regrowth_branch 4.37% 3.88% 15.00% 58.33% 6.77% 7.27% 2650 1970
reappearing_cluster 11.37% 5.69% 48.33% 73.33% 18.41% 10.56% 2696 1749
split_node 3.32% 4.50% 12.04% 61.11% 5.21% 8.38% 1777 2387
splitting_cluster 4.82% 5.58% 20.37% 67.59% 7.80% 10.31% 3013 2213
swap_cluster 7.76% 5.97% 42.59% 85.19% 13.12% 11.15% 1995 1842
swap_leaves 8.23% 5.23% 35.19% 78.70% 13.33% 9.80% 1675 1835

Table 14
Comparison of detection performance for Multi-Class Global drift difficulties by ADWIN and Page Hinkley. Bold values represent the highest
value of that column (easiest detection) and underscored values represent the lowest value (harder detection).

Difficulty Precision Recall F1 Delay

ADWIN PH ADWIN PH ADWIN PH ADWIN PH

merging_cluster 4.37% 4.53% 20.37% 60.19% 7.20% 8.43% 2917 1889
moving_cluster 4.93% 4.30% 27.78% 66.67% 8.37% 8.08% 3148 1885
prune_growth_new_branch 11.52% 5.19% 63.89% 87.04% 19.52% 9.80% 1666 1540
prune_regrowth_branch 10.19% 5.14% 55.00% 90.00% 17.19% 9.72% 1865 1485
reappearing_cluster 9.31% 5.51% 58.33% 85.00% 16.06% 10.34% 1797 1705
split_node 7.24% 4.79% 25.93% 67.59% 11.31% 8.94% 2129 2061
splitting_cluster 4.97% 4.62% 20.37% 58.33% 7.99% 8.55% 2987 2177
swap_cluster 8.76% 5.12% 69.44% 91.67% 15.56% 9.70% 1847 1263
swap_leaves 9.79% 5.13% 57.41% 86.11% 16.73% 9.68% 1657 1608

Fig. 11. F1 Score for each categorization of concept drift. Each color represents streams
with different number of features.

of the proposed scenarios affects classification performance and to
determine whether combining them with a drift detector enhances
overall performance.

Figs. 12 and 13 present the accuracy corresponding to each drift
difficulty. Analyzing the average accuracy enables identification of the
drifts causing the most significant drop in accuracy, given that, prior
to the drift, all data streams from the same generator are equal.

In the Single-Class scenario, particularly focusing on local drifts,
incremental changes such as emerging, merging, moving, and split-
ting clusters proved to be the most challenging to detect. However,
classifiers exhibited a capacity for self-adaptation and showed their
best accuracy levels. The emergence of new branches posed the most
complex scenario in terms of predictive performance. Furthermore,
streams generated with Random Tree generator displayed lower accu-
racy compared to those with RBF. In terms of global changes, the results
were similar to local changes, except for class_emerging, which
exhibited higher accuracy values. This is likely due to the reduction
in the number of classes for the majority of the stream, leading to
improved accuracy.

Within the Multi-Class local and global scenarios, performance
aligned closely with what was observed in Single-Class drifts. In-
cremental drifts demonstrated the highest accuracy levels, whereas
emerging_branch and swap_leaves presented the most challeng-
ing difficulties. Once again, the Random Tree generator proved more
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Fig. 12. Boxplot of HT accuracy for each of the proposed difficulties for Single-Class Local (a) and Global (b).

Fig. 13. Boxplot of HT accuracy for each of the proposed difficulties for Multi-Class Local (top) and Global (bottom).

challenging to learn from than RBF, which could be attributed to the
distribution of clusters. As feature space dimensions increased, the RBF
model facilitated easier learning of class boundaries.

Furthermore, we conducted a comparison to understand the im-
pact of integrating the best-performing drift detector, i.e. ADWIN, on
the classifier’s performance. For this analysis, we compared the stan-
dard classifier with two modified versions: Drift/Warning Retraining
(HT-DW) and Adaptive Hoeffding Tree (AHT). The former initiates
retraining of the classifier upon the detector signaling a warning and
completely replaces the classifier when a drift is detected. In contrast,
the latter employs a drift detector for each branch of the tree, replacing
only the affected branch when a drift signal is detected, while main-
taining the overall structure of the tree. This differentiates HT-DW’s
global approach from AHT’s localized strategy in addressing concept
drift within the classifier structure.

Table 15 displays the average accuracy for each drift category across
the three classifiers. Overall, the AHT strategy, focusing on addressing
drift locally, improved the accuracy of the standard Hoeffding Tree by
an average of 4.03%. This improvement underscores the robustness

of the Hoeffding Tree in adapting to new concepts, exhibiting good
accuracy values even without a drift detector. On the other hand,
despite the utilization of a drift detector, completely retraining the
classifier resulted in decreased accuracy across all evaluated scenarios.
Notably, the more localized the drift category, the more pronounced
the reduction in accuracy.

Additionally, in Figs. 14 to 17, the accuracy of each classifier un-
der the prune_growth_new_branch, reappearing_cluster,
reappearing_cluster and reappearing_cluster difficulties
is displayed, including sudden and gradual drifts. These figures serve
as an illustration of the classifiers’ behavior across different drift cat-
egories. Across Single-Class drifts, both local and global, AHT consis-
tently demonstrated superior accuracy. Even in the presence of drift,
HT showcased a remarkable self-adaptation ability, recovering swiftly.
Conversely, the retraining strategy resulted in notably poorer per-
formance. Notably, the sole scenario where retraining displayed an
advantage was in the context of Multi-Class Global drifts. This specific
category provoked a significant change in data distribution, evident
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Table 15
Accuracy of HT and AHT for evaluated drift categories.

Drift category HT AHT HT-DW

Single-Class Local 66.88% ± 0.148 70.71% ± 0.127 (↑ 3.83%) 50.13% ± 0.135 (↓ 16.75%)
Single-Class Global 68.16% ± 0.148 71.61% ± 0.132 (↑ 3.44%) 52.55% ± 0.157 (↓ 15.61%)
Multi-Class Local 60.78% ± 0.147 65.18% ± 0.126 (↑ 4.39%) 44.92% ± 0.121 (↓ 15.87%)
Multi-Class Global 58.80% ± 0.144 63.28% ± 0.128 (↑ 4.48%) 45.52% ± 0.122 (↓ 13.28%)

Fig. 14. Accuracy curve for AHT, HT and HT-DW on prune_growth_new_branch data stream in the presence of a sudden concept drift. Dashed vertical line indicates where
the concept drift happened.

Fig. 15. Accuracy curve for AHT, HT and HT-DW on reappearing_cluster data stream in the presence of a sudden concept drift. Dashed vertical line indicates where the
concept drift happened.

Fig. 16. Accuracy curve for AHT, HT and HT-DW on prune_growth_new_branch data stream in the presence of a gradual concept drift. Dashed vertical line indicates where
the concept drift happened.

from the notable accuracy drop. Given the entirely new data distribu-
tion, retraining the classifier proved a valid method for recovering from
these drifts. However, by the end of the stream, the plain HT exhibited
better accuracy compared to both drift-adapted classifiers.

5.6. Comparison in real-world scenarios

Real-world data streams pose unique challenges to classifiers, in-
cluding the latency with which instances from a specific class arrive or

extended periods during which instances from only one class appear.
This configuration of data streams introduces additional challenges for
streaming classifiers.

In the context of drift detectors, many real-world problems do
not provide information about when a concept drift occurs, making
evaluation challenging. However, Souza et al. [67] addressed this issue
by creating 8 data streams with the presence of Multi-Class Global
concept drifts. They had prior knowledge of the characteristics and
patterns of changes to adequately evaluate new adaptive algorithms.
Table 16 presents a summary of the real-world benchmark problems.



Knowledge-Based Systems 289 (2024) 111535

15

G.J. Aguiar and A. Cano

Fig. 17. Accuracy curve for AHT, HT and HT-DW on reappearing_cluster data stream in the presence of a gradual concept drift. Dashed vertical line indicates where the
concept drift happened.

Fig. 18. Hoeffding Tree accuracy over time for Abrupt (balanc.) stream experiencing concept drift. The gray dashed line denotes the change points. Red dashed lines represent
the FP drift alarms triggered by ADWIN and Green dashed lines represent the TP drift alarms.

Table 16
INSECTS datasets specifications.

Datasets # of instances Drift points

Abrupt (balanc.) 52,848 14,352; 19,500; 33,240; 38,682; 39,510
Abrupt (imb.) 355,275 83,859; 128,651; 182,320; 242,883; 268,380
Gradual (balanc.) 24,150 14,028
Gradual (imb.) 143,323 58,159
Incremental(balanc.) 79,986 26,568; 53,364
Incremental (imb.) 452,044 150,683; 301,365
Reoccurring (balanc.) 79,986 26,568; 53,364
Reoccurring (imb.) 452,044 150,683; 301,365

As the change point is known, we were able to evaluate the drift
detectors using the same methodology employed in the generated
benchmarks. Table 17 presents the overall values of F1 and Delay, along
with the average ranking of each drift detector. The results closely
resembled those observed in scenarios with generated data streams.
ADWIN exhibited the best performance, achieving the top average
ranking and the highest F1 value in five of the datasets, ranking second
in the remaining three. In addition to ADWIN, PH and FHDDM also
demonstrated commendable results in the real-world datasets. On the
other hand, ECDD and EDDM presented the least favorable outcomes,
with nearly zero correct detections and elevated false positive values.

Furthermore, Fig. 18 displays the accuracy curve, change points,
and instances where ADWIN triggered alarms for concept drifts in
the Abrupt balanced dataset. While ADWIN accurately identified all
concept drifts, it also produced numerous false positives. In a scenario
where prompt adaptation is crucial upon detecting a concept drift, such
a high rate of false positives is undesirable.

Moreover, Table 18 provides the average accuracy of the assessed
classifiers with ADWIN as the drift detector. AHT exhibited superior
accuracy compared to HT-DW, although the margin was not as substan-
tial as observed in the generated scenarios. This can be attributed to the
numerous false alarms raised by ADWIN, triggering retraining when un-
necessary. Furthermore, the incorporation of a drift detector to the HT

classifier enhanced its performance by an average of 4.11%, showcasing
the robustness of HT to concept drifts even without an explicit mecha-
nism. Fig. 19 illustrates the accuracy curve for each classifier across all
datasets. For balanced datasets, AHT and HT-DW consistently exhibit
higher accuracy throughout the entire stream, whereas in imbalanced
scenarios, defining the best-performing classifier is less straightforward.

6. Lessons learned and recommendations

In order to summarize the knowledge we extracted through the
experimental evaluation, this section presents the lessons learned and
recommendations for future researchers.

Locality matters. The locality of concept drift plays a pivotal role
in the accuracy and adaptability of detectors when detecting changes
in data streams. When dealing with the detection of concept drift,
understanding its locality provides insights into how changes within
the data stream, affecting either the entire stream or specific parts
of it, influence the classification system. For instance, in scenarios
where drift affects only particular sections, such as individual clusters
or subsets of classes, it is critical to discern the precise areas within
the data stream that undergo these changes. Different sections might
require varied adaptations to maintain predictive performance. More-
over, different types of drift, local or global, might require different
strategies to handle them effectively. Understanding these subtleties
can significantly impact the accuracy and performance of the drift
detection and adaptation methods used in learning models.

Handling high number of classes. The learning task becomes more
challenging for both classifiers and drift detectors as the number of
classes increases. Our study indicated that when the impact is local-
ized due to fewer classes being affected, the detection of the change
becomes more difficult. Hence, drift detectors capable of handling a
larger number of classes play a crucial role in effective drift detection.
Furthermore, future research should aim at detecting drifts within
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Table 17
Comparison between drift detectors considering real-world datasets.

Dataset ADWIN DDM ECDD EDDM FHDDM FHDDMS

F1 Delay F1 Delay F1 Delay F1 Delay F1 Delay F1 Delay

Abrupt (balanc.) 47.62% 698 36.36% 390 0.00% 0 0.04% 2 31.58% 1576 23.26% 1415
Abrupt (imb.) 25.81% 327 0.00% 0 0.00% 0 0.00% 1.2 17.78% 294 6.41% 326.4
Gradual (balanc.) 33.33% 3196 40.00% 3628 0.00% 0 0.00% 0 28.57% 92 14.29% 22
Gradual (imb.) 12.50% 473 0.00% 0 0.00% 0 0.00% 0 5.71% 744 2.04% 42
Incremental (balanc.) 15.38% 138 0.00% 0 0.00% 0 0.01% 4 16.00% 29 7.14% 12.5
Incremental (imb.) 8.16% 320 0.00% 0 0.00% 0 0.00% 2 5.41% 13 1.58% 133.5
Reoccurring (balanc.) 17.39% 314 0.00% 0 0.00% 0 0.01% 12.5 8.33% 13 3.23% 5.5
Reoccurring (imb.) 3.85% 522 10.00% 141 0.00% 0 0.00% 1.5 2.41% 790 1.43% 1635

Avg. Rank 1.75 3.75 6.25 7.50 9.62 9.50 8.87 8.50 3.37 4.37 5.62 5.00

Dataset HDDM KSWIN PH RDDM STEPD

F1 Delay F1 Delay F1 Delay F1 Delay F1 Delay

Abrupt (balanc.) 16.67% 558 38.10% 1156 35.71% 257 15.79% 669 0.14% 700
Abrupt (imb.) 3.90% 400 15.09% 590 11.94% 91 2.06% 344 0.05% 188
Gradual (balanc.) 11.76% 1388 18.18% 34 22.22% 2706 14.29% 2950 0.05% 4
Gradual (imb.) 2.02% 961 0.00% 0 6.45% 724 0.00% 0 0.02% 14
Incremental (balanc.) 6.35% 515 17.39% 18 10.26% 599 3.85% 1681 0.03% 12
Incremental (imb.) 1.82% 1822 7.27% 1865 4.21% 119 0.00% 0 0.01% 16
Reoccurring (balanc.) 3.70% 75 9.52% 6.5 12.90% 1258 0.00% 0 0.02% 0
Reoccurring (imb.) 1.55% 1398 5.88% 1882 4.35% 645 1.28% 5 0.02% 114

Avg. Rank 6.00 3.25 3.13 4.00 3.38 4.63 7.63 5.75 7.88 7.00

Table 18
Accuracy of HT and AHT for each INSECTS dataset.

Dataset HT AHT HT-DW

Abrupt (balanc.) 53.64% 61.94% (↑ 08.30%) 63.14% (↑ 09.51%)
Abrupt (imb.) 66.12% 66.00% (↓ 00.12%) 60.02% (↓ 06.10%)
Gradual (balanc.) 60.22% 61.84% (↑ 01.62%) 65.22% (↑ 05.00%)
Gradual (imb.) 57.62% 63.42% (↑ 05.80%) 61.99% (↑ 04.37%)
Incremental (balanc.) 57.38% 64.09% (↑ 06.71%) 64.99% (↑ 07.62%)
Incremental (imb.) 64.54% 62.66% (↓ 01.88%) 57.61% (↓ 06.93%)
Reoccurring (balanc.) 53.17% 65.20% (↑ 12.03%) 68.04% (↑ 14.87%)
Reoccurring (imb.) 62.92% 63.33% (↑ 00.41%) 57.55% (↓ 05.38%)

Average 59.45% 63.56% (↑ 04.11%) 62.32% (↑ 02.87%)

Fig. 19. Accuracy curve for AHT, HT and HT-DW on real-world INSECTS dataset. Dashed vertical line indicates where the concept drift happened.

individual classes, a strategy that could facilitate the adaptation of

classifiers to new concepts.

False alarms. Drift detectors that rely on error rates often generate

numerous false alarms. Given their univariate nature, even positive

changes in the error rate, such as when a new branch is created in
an incremental tree or a classifier establishes a new boundary, can
trigger alarms in certain drift detectors, which is counterproductive.
In more complex scenarios, such as localized changes, false alarms
can mislead the classifier, resulting in poorer performance. For future
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research, it is essential that drift detectors strike a better balance
between detection and false alarms by examining not only the error
curve but also statistics related to data distribution.

The common strategy to address concept drift involves replacing
the classifier once a drift is identified. While this approach works well
with ensembles due to their varied classifiers, our experiments have
shown that when handling drifts that only affect specific boundaries or
when the classifier is capable of self-adaptation, avoiding complete re-
placement of the established boundaries results in better performance.
Furthermore, retraining the classifier for each identified drift may lead
to redundant work due to the high occurrence of false alarms, even
with state-of-the-art drift detectors. This emphasizes the necessity for
drift detectors capable of pinpointing which class or segment of the
data stream was affected by the drift. This, in turn, facilitates a more
precise adaptation of the classifier rather than a complete replacement.

Retraining is not (always) the best option. The common strategy
to address concept drift involves replacing the classifier once a drift
is identified. While this approach works well with ensembles due to
their varied classifiers, our experiments have shown that when handling
drifts that only affect specific boundaries or when the classifier is capa-
ble of self-adaptation, avoiding complete replacement of the established
boundaries results in better performance. Furthermore, retraining the
classifier for each identified drift may lead to redundant work due
to the high occurrence of false alarms, even with state-of-the-art drift
detectors. This emphasizes the necessity for drift detectors capable of
pinpointing which class or segment of the data stream was affected
by the drift. This, in turn, facilitates a more precise adaptation of the
classifier rather than a complete replacement.

7. Conclusion and future work

In this paper, we presented a comprehensive study focusing on
benchmarking and evaluating the impact of concept drift, specifically
concerning its locality and magnitude, on classifiers and drift detectors.
We introduced a novel categorization of concept drift, considering
its locality and scale. Through a systematic approach, we identified
significant challenges within this domain, formulated, and evaluated
a set of 2760 data stream benchmarks that encompass various levels
of difficulty, guided by our proposed categorization. Additionally, we
conducted a comparative evaluation of 9 state-of-the-art drift detectors
across a diverse range of difficulties. Each drift detector was thoroughly
assessed across various isolated and combined scenarios. This analysis
not only identifies the top-performing detectors but also sheds light on
their specific strengths, providing valuable insights for future research
in drift detection. Moreover, we evaluated how the locality of drift
influences the base-classifier’s performance, gaining knowledge into
the most effective approaches for addressing different categories of
concept drift to minimize recovery time. This comprehensive study
offered insights into different and yet unexplored categorizations of
concept drift, providing an understanding of how drift detectors and
classifiers perform across numerous difficulties. All benchmark prob-
lems and evaluation methodologies are publicly available, enabling
future researchers to design efficient approaches, drift detectors, and
classifiers to handle local concept drifts effectively.

Our future work aims to explore the influence of concept drift lo-
cality on data streams characterized by imbalanced class distributions.
Additionally, our plans include an investigation into the performance of
unsupervised and semi-supervised drift detectors within the proposed
scenarios. Furthermore, we seek to develop classifiers with the capacity
to handle concept drift locally, avoiding the necessity for retraining or
complete replacement.
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