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Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and cal-

ibration. In many applications, there are multiple uncertain parameters in a model which must be estimated. Although

the Bayesian formulation is attractive for such problems, computational cost and high dimensionality frequently pro-

hibit a thorough exploration of the parametric uncertainty. A common approach is to reduce the dimension by fixing

some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained

optimization to approximate properties of the Bayesian posterior distribution. For instance, the maximum a posteriori

probability (MAP) and the Laplace approximation of the posterior covariance can be computed. In this article, we pro-

pose using hyperdifferential sensitivity analysis (HDSA) to assess the sensitivity of the MAP point to changes in the

auxiliary parameters. We establish an interpretation of HDSA as correlations in the posterior distribution. Our pro-

posed framework is demonstrated on the inversion of bedrock topography for the Greenland ice-sheet with uncertainties

arising from the basal friction coefficient and climate forcing (ice accumulation rate).

KEY WORDS: hyperdifferential sensitivity analysis, Bayesian inverse problems, inversion

1. INTRODUCTION

Large-scale inverse problems occur in a range of geoscience applications from seismicity to ice-sheet flows [1,2]. In

such problems, the quantities of interest typically depend on unknown parameters that describe material properties,

source terms, and boundary and initial conditions in the governing partial differential equations (PDEs). The goal

is to reconcile the differences between measurements and numerical predictions by estimating or reconstructing the

unknown parameters. This is fraught with many challenges such as limited availability and noise in the observed data,

the need to suitably regularize the problem, and additional uncertainties present in the model.

We discuss some of these challenges in the context of an ice-sheet model, the driving application for this work.

Ice sheets play an important role in the global climate through their effects on sea level rise. Sea level rise may

potentially cause severe flooding and weather changes that will negatively impact wildlife, agriculture, and coastal

infrastructure [3]. We consider an ice-sheet model with several uncertain parameters: the bedrock topography beneath

the ice, accumulation and ablation on the upper surface of the ice, and basal friction on the bottom of the ice-sheet.

The bedrock topography is estimated using data acquired from aircraft flyovers but is uncertain because of data

sparsity (the paths flown by aircraft) [4,5]. Accumulation and ablation, a forcing term in the model, requires climate
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information to be accurately specified [6,7]. The basal friction, a combination of several physical phenomena, is

uncertain due to the limited availability of observations beneath the ice-sheet.

Joint inversion [8] is one approach to estimate multiple uncertain parameters that may be interdependent. An

example is inversion of electromagnetic and seismic parameters [9]. However, joint inversion is challenging because

the parameters can be high-dimensional and a joint regularization term that reflects spatial correlations and imposes

regularity [8] is typically required. Some examples of joint regularization are the cross gradient regularization term

[10] and color total variation (TV) [11].

Bayesian theory provides a suitable formalism to solve inverse problems with statistical characterizations. In

practice, joint Bayesian inversion of all unknown parameters is computationally intractable for the applications of

interest. A commonly used alternative, which we also adopt in this paper, is to invert for one set of parameters (which

we call inversion parameters) and fix all remaining parameters (which we call auxiliary parameters) to a nominal

value. The challenge with this approach is that inferences made about the inversion parameter are relative to the value

of the nominal parameters. This implies that if the nominal values change the inversion may yield very different

results. Therefore, it remains to quantify the sensitivity of the solution of the inverse problem with respect to auxiliary

parameters. To this end, we use hyperdifferential sensitivity analysis (HDSA) to compute postoptimality sensitivities

of the maximum a posteriori estimate with respect to perturbations of the auxiliary parameters.

Our approach is complementary to the Bayesian approximation error (BAE) method [12–14]. In BAE, the aux-

iliary parameter are marginalized out of the Bayesian posterior giving an inverse problem to estimate the inversion

parameters with a cognizance of the auxiliary parameter uncertainty. In contrast, we show how HDSA provides infor-

mation about the joint posterior in a neighborhood of the nominal auxiliary parameters thus elucidating dependencies

between the parameters. There is also the potential to combine BAE and HDSA, but such analysis is beyond the scope

of this article.

Contributions. We build on previous efforts [15–17] and apply HDSA to analyze the sensitivity of the estimated

bedrock topography with respect to perturbations of the accumulation/ablation forcing and basal friction for a real-

istic model of the Greenland ice-sheet. Previous work has applied HDSA for infinite-dimensional inverse problems.

This article extends these demonstrations in the complexity of the model being analyzed (a transient nonlinear partial

differential equation defined on a subset of Greenland). Furthermore, we introduce a new interpretation of the sensitiv-

ities in terms of correlations in the joint Bayesian posterior distribution. This links properties of the computationally

intractable joint inversion problem with postoptimality sensitivities which may be computed efficiently. Additionally,

we demonstrate that computing HDSA on the likelihood informed subspace (LIS), as introduced in [15], provides the

eigenvectors needed to compute approximation posterior samples with the Laplace approximation [2,18]. With this

novel observation, we show how postoptimality sensitivities and approximate posterior samples may be computed si-

multaneously. The resulting approach is applicable to large-scale nonlinear inverse problems with expensive forward

models involving systems of PDEs and multiple unknown parameters.

Overview. In Section 2, we provide a brief overview of Bayesian inversion in the context of PDE constrained

optimization and HDSA. An interpretation of HDSA as correlations in the joint posterior is established in Section 3.

Section 4 demonstrates how sensitivities and approximate posterior samples may be simultaneously computed using

the LIS. The computational costs are analyzed in Section 5. In Section 6, we demonstrate this process on an inverse

problem for the bedrock topography in a region of Greenland. Concluding remarks are made in Section 7.

2. BACKGROUND

We consider inverse problems to estimate parameters z ∈ Z, where Z may be finite- or infinite-dimensional. Assume

that z cannot be observed directly, but rather we have sparse and noisy observations of a state u ∈ U (U is an

appropriate function space) which is related to z by a PDE, c, in the form

c(u, z, θ) = 0, (1)

where θ ∈ Θ are uncertain parameters, referred to as auxiliary parameters, needed to define the PDE.

Assume that the PDE is uniquely solvable for each z ∈ Z and θ ∈ Θ and let Ψ : Z × Θ → U denote the PDE

solution operator, i.e.,
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c(Ψ(z, θ), z,θ) = 0 for all z ∈ Z, θ ∈ Θ.

Let F : Z × Θ → R
d denote the parameter-to-observable map. Specifically,

F(z, θ) = O ◦ Ψ(z, θ),

maps parameters z and θ to observations of the PDE solution at d locations via the observation operator O : U → R
d.

We focus on the finite-dimensional inverse problem which arises from the discretization of the PDE. To simplify

the exposition, assume that Zh ⊂ Z and Θh ⊂ Θ are finite-dimensional (a result of the PDE discretization) with

bases {y1, y2, . . . , ym} ⊂ Zh and {φ1,φ2, . . . ,φn} ⊂ Θh. We will use z = (z1, z2, . . . , zm)T ∈ R
m and θ =

(θ1,θ2, . . . ,θn)T ∈ R
n to denote coordinate representations of elements in Zh and Θh (which may be function

spaces). Let f : R
m × R

n → R
d denote the discretized parameter-to-observable map. We assume that the data

d ∈ R
d are related to parameters z and θ as

d = f(z,θ) + η, (2)

where η ∈ R
d is noise. The goal of the finite-dimensional inverse problem is to estimate z and θ from d.

2.1 Bayesian Inverse Problems

Inverse problems are frequently ill-posed in the sense that there are many different z’s and θ’s such that f(z,θ) ≈ d.

This ill-posedness motivates a Bayesian approach to the inverse problem. We review core concepts below and direct

the reader to [19,20] for a detailed introduction to Bayesian inverse problems.

Assume that the data d are related to the parameters z and θ as in Eq. (2) where η ∼ N (0,Γnoise). Through-

out, we also assume that the prior distributions of z and θ are independent Gaussians z ∼ N (µz,Γz) and θ ∼
N (µθ,Γθ), where both Γz and Γθ are symmetric positive definite. Applying Bayes rule, the posterior distribution

is

πjoint(z,θ|d) =
1

Cjoint

exp

(
−

1

2
‖f(z, θ) − d‖2

Γ
−1
noise

−
1

2
‖z − µz‖

2
Γ
−1
z

−
1

2
‖θ − µθ‖

2
Γ
−1
θ

)
, (3)

where Cjoint denotes a normalizing constant which is difficult to compute and is unimportant for this discussion.

However, jointly estimating z and θ is challenging since the dimensions m and n may both be large and the data

may not be sufficiently informative of both parameters. Therefore, one approach in practice is to fix the auxiliary

parameters to a nominal value, denoted by θ, and estimate z from the data.

From a probabilistic perspective, fixing θ to a nominal value corresponds to conditioning the joint posterior πjoint

on θ = θ. In other words, analyzing the conditional posterior,

πcond(z|θ, d) =
1

Ccond(θ)
exp

(
−

1

2
‖f(z,θ) − d‖2

Γ
−1
noise

−
1

2
‖z − µz‖

2
Γ
−1
z

)
, (4)

where the normalizing constant Ccond(θ) is a function of the nominal value of the auxiliary parameters. Computing

Ccond(θ) is challenging as it requires integrating πjoint(z,θ|d) with respect to z; however, it is unimportant for this

discussion.

Observe that the maximum a posteriori probability (MAP) point of πcond(z|θ,d) is obtained by solving the

optimization problem,

min
z∈Rm

J(z, θ) := M(z,θ) + R(z), (5)

where

M(z,θ) :=
1

2
‖f(z,θ) − d‖2

Γ
−1
noise

and R(z) :=
1

2
‖z − µz‖

2
Γ
−1
z

, (6)

are the negative log-likelihood and the negative log of z’s prior PDF (with normalizing constants omitted). In the

context of the optimization problem (5), we will also refer to M and R as the misfit and regularization, respectively.

For high-dimensional inverse problems constrained by computationally intensive PDEs, sampling from the pos-

terior distribution is challenging. When f is a linear function, the posterior distribution is Gaussian and its covariance
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matrix is given by the inverse Hessian of the negative log of the posterior PDF. For a general nonlinear f , the pos-

terior covariance is non-Gaussian and significantly more challenging to estimate. Computing the MAP point (5) is

computationally intensive since it requires many PDE solves [1,2,21]. However, techniques from PDE-constrained

optimization may be leveraged to solve (5) at large scales. We use techniques including finite element discretiza-

tion, matrix-free linear algebra, adjoint-based derivative computation, and parallel computing. The reader is referred

to [21–34] for a sampling of the PDE-constrained optimization literature. From the perspective of the Bayesian in-

verse problem, PDE-constrained optimization is a valuable tool to efficiently compute the MAP point (and possibly

approximate the covariance).

2.2 Hyperdifferential Sensitivity Analysis

Postoptimality sensitivity analysis is predicated on employing the implicit function theorem to write the solution of

an inverse problem as a function of the auxiliary parameters. This function and its Jacobian are defined within a

neighborhood of the nominal value of the auxiliary parameters. Through a combination of tools from postoptimality

sensitivity analysis, PDE-constrained optimization, and numerical linear algebra, HDSA provides unique and valu-

able insights for optimal control and deterministic inverse problems [16,17,35]. This subsection provides essential

background to prepare for our extension of HDSA to Bayesian inverse problems. To facilitate our analysis, assume

that the objective function J : R
m × R

n → R in Eq. (5) is twice continuously differentiable with respect to (z, θ).
Let z? be a local minimum of the objective function with auxiliary parameters fixed to θ = θ ∈ R

n; i.e., it

is a MAP point of the posterior for z when conditioning on θ = θ. A fundamental assumption of post-optimality

sensitivity analysis is that z? satisfies the well-known first- and second-order optimality conditions:

(A1) ∇zJ(z?, θ) = 0,

(A2) ∇z,zJ(z?, θ) is positive definite,

where ∇zJ and ∇z,zJ denote the gradient and Hessian of J with respect to z, respectively. Then applying the

implicit function theorem (IFT) to the equation ∇zJ(z, θ) = 0, which is satisfied by (z∗,θ), gives the existence of a

continuously differentiable operator G : N(θ) → R
m such that ∇zJ(G(θ),θ) = 0 for all θ ∈ N(θ). The operator’s

domain N(θ) = {θ| ||θ−θ||2 < ε} is a radius ε > 0 neighborhood of θ arising from the IFT. Furthermore, the IFT

gives the Jacobian of G evaluated at θ,

G
′(θ) = −H

−1
B, (7)

where B = ∇z,θJ(z?, θ) denotes the Jacobian of ∇zJ with respect to θ, and H = ∇z,zJ(z?, θ) denotes the

Hessian of J with respect to z, each evaluated at z = z? and θ = θ. Then we may interpret G
′(θ)θ̂ as the change in

the optimal solution of Eq. (5) when θ is perturbed in the direction θ̂, i.e., the sensitivity of the MAP point z? to the

perturbation θ̂.

HDSA efficiently interrogates the postoptimality sensitivity operator G
′(θ) by leveraging tools such as adjoint-

based derivative calculations and randomized linear algebra. We also note that postoptimality sensitivities and HDSA

may be formally developed for infinite-dimensional problems in a full space optimization framework. The reader is

directed to [17] for additional details.

3. INTERPRETATION OF SENSITIVITIES AS CORRELATIONS IN JOINT POSTERIOR

Although HDSA was developed in the context of PDE-constrained optimization, we establish a statistical interpre-

tation of the sensitivities by linking them to the Bayesian inverse problem in Eq. (3). As shown in [36], the inverse

Hessian of the negative log posterior PDF equals the covariance matrix of the posterior distribution when f is linear.

Though this does not hold for general nonlinear problems, the Laplace approximation linearizes f around the MAP

point and approximates the posterior covariance [18] using the inverse Hessian evaluated at the MAP point. Similar

logic is followed to establish an interpretation of the postoptimality sensitivities as a correlation in the joint posterior

distribution of (z, θ). We provide an analytical result for linear inverse problems and then argue for its local validity

in nonlinear inverse problems.
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Consider the Bayesian inverse problem on the joint distribution of (z,θ) and assume that the parameter-to-

observable map f(z,θ) is linear in (z, θ); i.e., f(z,θ) = Az + Bθ for given matrices A ∈ R
d×m and B ∈ R

d×n.

Since f is linear, and the prior is Gaussian, the joint posterior distribution πjoint(z,θ|d) is Gaussian with covari-

ance matrix Γjoint which satisfies

Γ
−1
joint =

[
AT

BT

]
Γ
−1
noise

[
A B

]
+

[
Γ
−1
z

Γ
−1
θ

]
=

[
AT

Γ
−1
noiseA + Γ

−1
z AT

Γ
−1
noiseB

BT
Γ
−1
noiseA BT

Γ
−1
noiseB + Γ

−1
θ

]
.

Theorem 1 provides an interpretation of HDSA in the context of the posterior covariance.

Theorem 1. Assume that the forward model is linear; that is, f(z, θ) = Az + Bθ, and denote joint posterior

covariance matrix as

Γjoint :=

[
Γz,z Γz,θ

Γ
T
z,θ Γθ,θ

]
.

Then the postoptimality sensitivity operator G
′(θ) corresponding to the negative log of the conditional posterior (4)

satisfies

G
′(θ) = Γz,θΓ

−1
θ,θ.

Proof. Define K := AT
Γ
−1
noiseA + Γ

−1
z , L := AT

Γ
−1
noiseB, and M := BT

Γ
−1
noiseB + Γ

−1
θ

, which represent the (1,

1), (1, 2), and (2, 2) blocks of Γ
−1
joint, respectively. Using the block inversion formula gives

Γjoint =

[
Γz,z Γz,θ

Γ
T
z,θ Γθ,θ

]
=

[
K−1 + K−1LS−1LT K−1 −K−1LS−1

−S−1LT K−1 S−1

]
,

where S := M−1 −LT K−1L is the Schur complement of M . Equating the individual subblocks, we have Γz,θ =
−K−1LS−1 and Γθ,θ = S−1, so that Γz,θΓ

−1
θ,θ = −K−1L.

From calculus we have ∇z,zJ = AT
Γ
−1
noiseA + Γ

−1
z and ∇z,θJ = AT

Γ
−1
noiseB, which implies that

G
′(θ) = −(AT

Γ
−1
noise + Γ

−1
z )−1AT

Γ
−1
noiseB = −K−1L = Γz,θΓ

−1
θ,θ.

Theorem 1 implies that the sensitivity of the MAP point for z with respect to θ, for linear Bayesian inverse

problems with Gaussian noise and priors, corresponds to a scaled version of the posterior covariance between z and

θ. In the case where z and θ are scalars, we may relate G
′(θ) to the Pearson correlation coefficient. Specially, we

measure the magnitude of a change in z, according to the Mahalanobis norm defined by the z posterior, under a unit

norm perturbation of θ according to the Mahalanobis norm defined by the θ posterior. That is, for the unit vector

e ∈ 1/
√

Γ
−1
θ,θ ∈ R

||G′(θ)e||2
Γ
−1
z,z

=
1√
Γ
−1
θ,θ

Γ
−1
θ,θΓz,θΓ

−1
z,zΓz,θΓ

−1
θ,θ

1√
Γ
−1
θ,θ

=
Γ

2
z,θ

Γz,zΓθ,θ
,

or equivalently,

||G′(θ)e||
Γ
−1
z,z

=
Γz,θ√

Γz,z

√
Γθ,θ

,

which is the Pearson correlation coefficient defined by the covariance of z and θ, normalized by the standard de-

viations of z and θ. This provides a foundation to interpret HDSA in terms of the correlation between z and θ in

their joint posterior distribution. Correlations are a considerable challenge in joint inversion, and hence this interpre-

tation of HDSA provides critical posterior information to enable better characterization of uncertainty. For instance,

posterior distributions with strong correlations will have poor sample efficiency in Markov chain Monte Carlo or re-

jection sampling algorithms if they are not informed by the correlation structure. Hence this interpretation of HDSA

provides critical posterior information to enable better characterization of uncertainty.
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Following similar principles of the Laplace approximation (e.g., [18]), HDSA may be interpreted as local correla-

tions in the joint posterior distribution for nonlinear inverse problems. As in [18], we consider a linear approximation

of f around (z?, θ), i.e., the linear inverse problem whose parameter-to-observable map is, to a first-order approxi-

mation,

f(z,θ) ≈ f(z?, θ) + f ′
z(z?,θ)(z − z?) + f ′

θ
(z?,θ)(θ − θ),

where f ′
z and f ′

θ
denote the Jacobians of f . Applying Theorem 1 to this linearized problem, G

′(θ) measures the

correlation between z and θ in the region where the linear approximation is valid, i.e., in a neighborhood of (z?,θ).
Example 1 below further explores the connection between HDSA and the joint posterior distribution.

Example 1. To illustrate the relationship between HDSA and correlations in the joint posterior distribution, consider

the synthetic model problem

f(z,θ1, θ2) = e(1/10)zθ1 + θ2.

We generate three data points by evaluating f at the “true” parameters z† = 5 and θ
† = (θ1,θ2)

T = (5, 1)T and

contaminate them with Gaussian noise. Taking a joint Gaussian prior on (z, θ1, θ2) with mean and covariance matrix

µ =




5

5

1



, Γ =




52 0 0

0 22 0

0 0 0.22



,

respectively, we consider joint inversion on z and θ. Figure 1 displays the objective function J with θ2 fixed at

1 (left panel) and θ1 fixed at 5 (right panel) with MAP points of the conditional posteriors (for different θ’s) and

hyperdifferential sensitivities indicated by dots.

We observe several trends which illustrate the interpretation of HDSA:

• The joint objective indicates a stronger dependency between z and θ1 in comparison to z and θ2. Correspond-

ing to this, we observe a much larger sensitivity for θ1 (given by the red-yellow color bar in the left panel)

than θ2 (given by the red-yellow color bar in the right panel).

• The sensitivities vary with θ showing that it is measuring local correlations which vary with θ. We observe

the greatest sensitivity for small values of θ1 which is consistent with the visual observation that the MAP

point of πcond(z|d; θ̄) varies more for small values of θ1.

FIG. 1: Objective function J with θ2 fixed at 1 (left panel) and θ1 fixed at 5 (right panel). In each panel, the shading (in the

blue color scale) indicates the joint objective while the solid dots (in the red-yellow color scale) denote the maximum a posterior

probability (MAP) point z
? of πcond(z|d; θ̄). The color of the dot (in the red-yellow color scale) indicates the hyperdifferential

sensitivities for the MAP point with respect to θ1 (left panel) and θ2 (right panel).
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• There is little variation in the sensitivities in the right panel where the distribution is approximately Gaussian

(since local correlations do not vary in Gaussian distributions) and much greater variation in the left panel

where the distribution is highly non-Gaussian.

4. HDSA AND LIKELIHOOD INFORMED SUBSPACES

Having motivated the postoptimality sensitivities for Bayesian inverse problems, this section recalls the computa-

tion of sensitivities in the likelihood informed subspace [15] and, demonstrates how this computation may be done

concurrently with approximate posterior sampling via the Laplace approximation.

4.1 Computing the Projected Sensitivity Indices

For ill-posed inverse problems, the postoptimality sensitivities may be dominated by the directions which are poorly

informed by data. These directions are given by the eigenvectors corresponding to the smallest eigenvalues of H. To

compute sensitivities in the directions informed by data, we follow [15] and introduce the projection of the sensitivity

operator onto the likelihood informed subspace (LIS).

The LIS was used for dimension reduction in nonlinear Bayesian inverse problems in [37]. It defines the informed

directions by the r leading eigenvectors of the generalized eigenvalue problem,

HMvj = λjΓ
−1
z vj , j = 1, 2, . . . , m, (8)

where

HM = ∇zzM(z?, θ), (9)

with M as defined in Eq. (6). Multiplying Eq. (8) by vT
j to compute the Rayleigh quotient,

λj =
vT

j HMvj

vT
j Γ

−1
z vj

,

provides an interpretation of the eigenvalue as a ratio of contributions from the likelihood (since HM is the negative

log likelihood Hessian) and the prior. The eigenvectors define the corresponding directions; i.e., the eigenvectors

corresponding to large eigenvalues specify directions in the parameter space which are informed by the likelihood.

The truncation rank r is application dependent and dictates the computational complexity. For ill-posed problems,

r may be small as a result of data sparsity. In this case, one can use efficient Krylov or randomized methods to solve

the eigenvalue problem [15]. To solve Eq. (8), we employ the “two pass” randomized algorithm introduced in [38].

We define a projector onto the LIS as

P = VrV
T
r Γ

−1
z , (10)

where the columns of Vr are given by the r leading eigenvectors in Eq. (8). Then the sensitivities in directions

informed by the likelihood, see [15] for details, are given by

Si = ||PH
−1

Bei||WZ
=

√√√√
r∑

k=1

r∑

j=1

(
vT

j Bei

1 + λj

)(
vT

k Bei

1 + λk

)
vT

k WZvj , i = 1, 2, . . . , n, (11)

where ei denotes the ith canonical basis vector and WZ is a symmetric positive definite matrix defining a weighted

inner product, for instance, a mass matrix if z is discretized with finite elements. We interpret Si as the influence

of the ith parameter on the MAP point projected onto the LIS. Equation (11) follows from considering a spectral

representation of the H in combination with the Sherman-Morrison-Woodbury formula.
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4.2 Gaussian Approximation of the Posterior

We seek to efficiently approximate the posterior by leveraging the LIS computation in the postoptimality sensitivity

computations. If the mapping from the parameter space to observations f is nonlinear, the posterior distribution

is not Gaussian. As a result, the posterior cannot conveniently be described in terms of its mean and covariance.

This motivates alternative methods for describing the posterior. State-of-the-art Markov chain Monte Carlo (MCMC)

methods may be used to exactly specify the posterior via sampling. However, MCMC methods often require repeated

evaluations of the parameter-to-observable map. In the applications that we are interested in, f maps onto observations

of a (possibly) nonlinear PDE. For computational efficiency, we use the Laplace approximation to the posterior

distribution (see, e.g., [18]). Specifically, we assume the posterior is approximately Gaussian with mean z? and

covariance matrix Γpost = H
−1, where H is the Hessian of the objective function (5) evaluated at z?. We write the

approximate posterior as π̂cond and define it as

π̂cond(z|d;θ) ∼ N (z?,Γpost). (12)

Explicit construction of the Hessian/covariance matrix is infeasible as they are only accessible via matrix-vector

products. Specifically, computing Hx, for x ∈ R
m, requires two linear PDE solves (called the incremental state

and incremental adjoint equations), and computing H
−1x, for x ∈ R

m, requires an iterative solver needing multiple

matrix-vector products with H. Thus we resort to a low-rank approximation of the Hessian to efficiently store and

compute with the posterior covariance matrix.

4.2.1 Efficient Representation of Posterior Covariance

To efficiently represent the inverse Hessian H
−1, observe that the Hessian is the sum of the data misfit Hessian HM

(9) evaluated at z? and Γ
−1
z . In many ill-posed inverse problems of interest, the LIS exhibits fast spectral decay as a

symptom of directions in the parameter space poorly informed by the data [39]. Consequently, we can represent the

data misfit Hessian with a low rank approximation in the LIS basis.

Let V and Λ denote the m × m matrices containing all eigenvectors and eigenvalues from the LIS generalized

eigenvalue problem (8). In practice we will truncate after the leading r eigenvalues, but all are retained for the

derivation below to provide error analysis. Following the procedure of [40], observe that HM = Γ
−1
z VΛV

T
Γ
−1
z and

that the inverse Hessian can be written as

H
−1 =

(
Γ
−1
z + HM

)−1
= Γz −

(
I + Γ

−1
z VΛV

T
)−1

,

Applying the Sherman-Morrison-Woodbury formula to invert I + Γ
−1
z VΛV

T , exploiting the orthogonality of V in

the Γ
−1
z inner product, and truncating with a rank r approximation, we can write

H
−1 =

(
Γ
−1
z + HM

)−1
= Γz − VrDrV

T
r + O

(
m∑

i=r+1

λi

1 + λi

)
, (13)

where Dr = diag(λ1/(λ1 + 1), . . . , λr/(λr + 1)). For problems admitting a rapid spectral decay, the O(λr+1)
truncation error is small and hence the LIS subspace computation provides an efficient way to approximate the inverse

Hessian H
−1 with a computational cost scaling with the LIS subspace dimension r.

We define the approximate posterior covariance as

Γpost = Γz − VrDrV
T
r . (14)

Equation (14) shows how the eigenpairs calculated for the sensitivity indices can be used for the posterior approxi-

mation. This implies that approximate posterior sampling is a computational by-product of computing sensitivities.

In the next subsection, we describe the methods for quantifying the uncertainty in the solution through sampling and

variance.
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4.2.2 Sampling from Approximate Posterior Distribution and Posterior Variance

Recall that the posterior distribution represents the information gained by combing the data (likelihood) and our

beliefs (prior). To represent the reduction of uncertainty we draw samples from the prior and posterior and compute

their variances (the diagonals of Γz and Γpost). A sample z from N (µz,Γz) can be computed via the formula

zprior = µz + Cx, (15)

where C is any matrix satisfying Γz = CCT and x ∼ N (0, I). The matrix C can be calculated in a multitude of

ways. One method is to compute C as a Cholesky factor. In the case of large-scale problems computing the Cholesky

factor is not feasible. To remedy this, we follow the preconditioned Lanczos method for sampling multivariate Gaus-

sian distributions proposed by Chow and Saad in [41]. This method utilizes the Lanczos algorithm to approximate the

action of Γ
1/2
z onto a vector.

To sample from the Laplace approximation of the posterior N (z?,Γpost) we follow the approach described in

Section 4.3.2 of [40]. Given a sample zprior from the prior distribution, a sample from N (z?,Γpost) is given by

zpost =
(
Im − VrSrV

T
r Γ

−1
z

)
(zprior − µz) + z?, (16)

where Sr = Ir − (Λr + Ir)
−1/2.

Since our approximate posterior distribution is Gaussian with covariance Γpost = Γz − VrDrV
T
r , the posterior

variance is given by

diag(Γpost) = diag(Γz) − diag(VrDrV
T
r ). (17)

To approximate diag(Γz), we use the Diag++ algorithm ([42], Algorithm 1). Given a budget of sD matrix-vector

products, Diag++ approximates the diagonal of Γz by sketching its range space using sD/3 matrix-vector products,

computing the diagonal of a low-rank approximation using sD/3 matrix-vector products, and estimating the diagonal

of Γz minus its low-rank approximation using sD/3 matrix-vector products. Since Γz is the inverse of a differential

operator, the main cost of Diag++ is sD linear solves.

The diagonal of VrDrV
T
r is calculated directly via the formula

diag(VrDrV
T
r ) =

r∑

k=1

(
λk

1 + λk
vk

)
¯ vk. (18)

5. ALGORITHMS

In this section we show our algorithm for computing HDSA indices and the Gaussian approximation. The algorithm

consists of four major components: the MAP point, the generalized eigenvalue problem, the sensitivity indices, and

the Gaussian approximation. The MAP point is key to performing HDSA and computing the Gaussian approximation

of the posterior (as seen in Section 4). In the subsections below, we summarize the computational details of each major

component. Note that this discussion is based on the assumptions for the data d, prior z, and auxiliary parameters θ

as stated in Section 2.1.

5.1 Computation of the MAP Point

Recall that the MAP point is the solution of the optimization problem (5). This is a nonlinear least-squares problem

and we employ the truncated Newton CG trust region method [34]. This corresponds to the loop in lines 4–8 in

Algorithm 1. Given an iterate zk, we compute the gradient of the objective function at zk, gk (which requires a

forward and adjoint PDE solve) and check for convergence to a stationary point. If zk is not a stationary point, we

form the local model of the objective function mk(s) = J(s) + gT
k s + (1/2)sT Hks, where Hk is the Hessian of J

evaluated at zk. Then the trust region subproblem is solved using the CG-Steihaug algorithm. Note that we compute

exact Hessian vector products using incremental adjoint equations. To calculate zk+1 the reduction in the local model
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Algorithm 1: Workflow for HDSA in Bayesian inverse problems

Input: r0 ∈ N, ∆r ∈ N, p ∈ N, and λmin ∈ R.

1

2 Solve MAP point min
z∈Rm

J(z,θ) := M(z, θ) + R(z)

3 Truncated Newton CG trust region procedure:

4 for k = 0, 1, 2, . . . do

5 Compute gk = ∇zJ and Hk = ∇z,zJ to form a local model mk

6 Minimize the local model mk subject to the trust region constraint

7 Update trust region radius

8 end

9

10 Compute LIS eigenpairs HMvj = λjΓ
−1
z vj , j = 1, 2, . . . , r

11 Randomized generalized Hermitian eigenvalue procedure:

12 Set λiter = ∞, Sample a random matrix Ω ∈ R
n×(r0−∆r+p)

13 while λiter > λmin do

14 Augment Ω with ∆r additional columns

15 Compute:

16 sketch Y = ΓzHMΩ

17 projection T onto range of Y

18 eigendecomposition T = SΛST

19 Set λiter = (Λ)r,r

20 end

21 Compute vj = Qsj , 1 ≤ j ≤ r, where sj is the jth column of S

22

23 Calculate sensitivity indices Si = ||PH
−1

Bei||WZ
for 1 ≤ i ≤ n

24 Compute:

25 Bei = ∇z,θJpost(z
?, θ)ei, i = 1, 2, . . . , n

26 Si, i = 1, 2, . . . , n, using Eq. (11)

27

28 Laplace approximation π̂post(z|d;θ) ∼ N (z?,Γpost), Γpost = Γz − VrDrV
T
r

29 Sampling procedure: zpost =
(
Im − VrSrV

T
r Γ

−1
z

)
(zprior − µz) + z?, where zprior is generated

from Eq. (15)

30 Variance procedure: Estimate diag(Γpost) using ([42], Algorithm 1) and Eq. (18)

is considered and then the trust region is updated. As stated in the Introduction, the MAP is only a point estimate

of the unknown and is not sufficient for describing relationships between the unknown and auxiliary parameters. To

address this the relationship we employ HDSA to the optimization problem (5).

5.2 Computing the Eigenpairs

Solving the Hermitian generalized eigenvalue problem (HGEVP) (8) is important to computing the LIS for HDSA

and the Gaussian approximation of the posterior. In this subsection, we elaborate upon the calculations of the HGEVP

that correspond to lines 12–21 in Algorithm 1.

The randomized generalized Hermitian eigenvalue procedure is a modification of the “double pass” algorithm

[38]. Line 16 sketches the range of ΓzHM by multiplying it by a collection of random vectors Ω. Next, a Γ
−1
z or-

thogonal basis for the range of Y is computed using dense linear algebra. The second round of matrix-vector products

with HM computes the low-rank projection onto the range space of Y . Dense linear algebra is done to compute the
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eigendecomposition of the projection T . If the smallest eigenvalue is above the target eigenvalue threshold then the

loop continues by augmenting the columns of Ω, or else the loop ends. The desired eigenvectors are obtained through

vj = Qsj . The sketch dominates the computational cost of the procedure and requires a 2(r + p) matrix-vector

product with HM where r is the final target rank and p is the oversampling parameter. Note that several of the com-

putations in the randomized generalized Hermitian eigenvalue procedure can be easily parallelized. The details of this

procedure are given in [15].

5.3 Computing the Sensitivity Indices

The sensitivity indices calculation corresponds to lines 25 and 26. Since we have the eigenpairs of Eq. (8), the

dominant cost of the sensitivity calculation is the action of B onto basis vectors ei. The matrix B corresponds to the

Jacobian of ∇zJ(z?,θ) with respect to θ, so each Bei is two additional PDE solves. Therefore, computing {Bei}
n
i=1

costs 2n PDE solves where n is the auxiliary parameter dimension.

5.4 Computing the Laplace Approximation

Approximating the posterior utilizes the calculation of the eigenpairs in Eq. (8). To sample from the posterior we draw

from the prior using the Lanczos method as explained in Section 4.2.1. Using this method without a preconditioner,

the cost of approximating prior samples Γ
1/2
z ε, where ε is a standard normal Gaussian sample, is Nlanczos matrix-

vector products with Γz . For the variance, the dominant cost is the Diag++ algorithm requiring sD matrix-vector

products with Γz .

6. APPLICATION TO ICE-SHEET BEDROCK INVERSION

In this section of the paper, we apply the numerical methods and algorithms described in Sections 4 and 5 to an appli-

cation in ice-sheet inversion. The goal is to use surface velocity measurements on the Greenland ice-sheet to compute

an estimate of the uncertain bedrock topography beneath the ice, quantify the influence of auxiliary parameters on

the solution, and provide a statistical characterization. To accomplish this we first introduce the shallow ice-sheet

model in Section 6.1 and the inverse problem that we are solving in Section 6.2. The inverse problem formulation is

followed by the MAP estimate results in Section 6.3. The MAP estimate drives the HDSA calculation which we apply

to the inversion of the bedrock with respect to the log basal friction (a spatial coefficient representing the interaction

between the land ice and the bedrock) and forcing. This is detailed in Section 6.5. In Section 6.6 we provide results

for posterior samples and variance.

6.1 Ice-Sheet Model

Developing high-fidelity models for ice-sheets is important for global climate modeling and prediction of sea level

rise. Simulation of ice-sheets such as Antarctica and Greenland requires extensive computational resources to solve

nonlinear partial differential equations (PDEs) on fine spatial meshes. A high-fidelity model for ice-sheet dynamics is

typically derived by considering the ice-sheet to behave as a viscous shear-thinning fluid in a low Reynolds-number

flow. This results in the nonlinear Stokes equation in three spatial dimensions coupled with equations for the temper-

ature distribution in the ice and the thickness of the ice. From these fundamental equations, a variety of assumptions

are made to yield models of different physics fidelities, a comprehensive overview of which is beyond the scope

of this article. To demonstrate HDSA in this article we adopt the shallow ice approximation (SIA) [43,44] with the

isothermal assumption [45].

6.2 Mathematical Formulation of Inverse Problem

We consider the following inverse problem for the discretized bedrock topography b of the ice-sheet,

min
b∈Rm

J(b,θ) =
1

2
||f(b, θ) − d||2

Γ
−1
noise

+
1

2
||b − b0||

2
Γ
−1
b

, (19)
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where b0, Γb, θ, and d correspond to the prior bedrock topography mean and covariance, the nominal value of

the auxiliary parameters, and the data, respectively. The forward operator f(b, θ) is the mapping from the bedrock

topography and the auxiliary parameters (log basal friction and forcing) to surface velocity in Eq. (22).

Shallow ice approximation. The inverse problem (19) is constrained by the SIA equation

∂s

∂t
−∇ · (Q(s)∇s) = hflux(θ) on Ω × (0, T ],

∇s · n = 0 on ∂Ω × (0, T ],

s = s0 on Ω × {0},

(20)

Q(s) = e−γ(θ)ρg(s − b)2 +
2Aρ3g3

5
(s − b)5||∇s||2, (21)

where s is the surface height and Q(s) is a velocity field derived from the Stokes velocity model. The scalar parameter

ρ = 910 (kg/m3) is the density of ice, g = 9.81 (m/s2) is the acceleration of gravity, and A = 10−16 (Pa−3/s) is a

flow rate factor.

Parameter to observable map. The parameters b, γ, and hflux are inputs to the shallow ice approximation (20)

which predicts the surface height s. The observation operator maps the surface height (the PDE solution) to the

ice-sheet surface velocity which is modeled via

v(b, γ, hflux) = −
1

2
Aρ3g3(s(b,γ, hflux) − b)4||∇s(b,γ, hflux)||

2∇s(b,γ, hflux). (22)

We refer the reader to [11,27,35] for additional details concerning the SIA model.

Domain. We consider the inversion of bedrock topography b in a 550 × 450 km region of Greenland specified

in Fig. 2. The surface velocity v is calculated as a function of the surface height [the PDE (20) solution] via (22) and

compared with velocity observations from satellites.

Auxiliary parameters. The log basal friction γ and forcing hflux are given by

γ(θ) = γ̃δ1(θ) and hflux(θ) = h̃fluxδ2(θ), (23)

where

δi(θ) = 1 + 0.2
n∑

j=1

θ((i−1)n+j)φj , i = 1, 2, (24)

FIG. 2: Ice surface height data for the Greenland ice-sheet. The black box indicates the region analyzed in this article.

International Journal for Uncertainty Quantification



Post-Optimality in Land-Ice 13

are parameterized perturbations; {φj}
n
j=1 are linear finite element basis functions defined on a 31 × 31 mesh of the

domain Ω. This implies that n = 961 so there are 1922 auxiliary parameters in total. The nominal parameters are

θ = 0 ∈ R
1922 yielding γ(0) = γ̃ and hflux(0) = h̃ (magnitudes are shown in Fig. 3). For simplicity, we provide a

summary of relevant variables and constants for the inverse problem in Table 1.

Prior parameters. We assume a Gaussian prior with mean zero and covariance Γb given by the matrix represen-

tation of the operator (−β∆ + αI)
−2

with constants β = 10−2 and α = 9 × 10−7. The Laplacian operator ∆ and

identity operator I are equipped with zero Neumann boundary conditions. The parameter β controls the smoothness

of prior samples and α controls the variance of the prior samples.

Synthetic data generation. To facilitate a numerical demonstration, data are generated from the model using

“true” bedrock topography, which is subsequently considered unknown as we solve and analyze the inverse problem

to reconstruct it. The bedrock, ice thickness, accumulation/ablation, and log basal friction are taken from [46]. To

aid in numerical performance we presmooth the log basal friction and bedrock topography using a local averaging

technique. The accumulation/ablation forcing term from [46] is stationary. The forcing term is depicted in the top left

panel of Fig. 3.

We generate data by solving Eq. (20) on a 101 × 101 mesh with 121 time steps from t = 0 to t = T = 10

years and evaluating the surface velocity given in Eq. (22). This is a spatial resolution of 5.45 kilometers and a time

resolution of 0.083 years. To avoid an “inverse crime,” the data are interpolated onto a 71 × 71 mesh with 61 time

steps, and 5% Gaussian noise is added. The noise covariance is taken as Γnoise = σ2
noiseI with σnoise = 50. We solve

the inverse problem on a 71 × 71 mesh with 61 times steps over 10 years.

6.3 Results for MAP Estimate

We compute the MAP point by solving Eq. (19) for θ = 0 using a truncated conjugate gradient trust region algorithm

as outlined in lines 4–8 in Algorithm 1. Exact gradients and Hessian vector products are computed using adjoint and

incremental adjoint equations. The initial guess for the bedrock topography was given by a highly smoothed version

of the “true” bedrock topography.

In Table 2 the optimization history for the computation of the MAP point is given. It terminates upon achieving

a gradient norm less than 10−7. We see that the gradient norm has reduced nine orders of magnitude and that the step

size decreases as the iterations increase, indicating the convergence of the optimizer.

TABLE 1: Table of relevant variables and constants for

the inverse problem (19)–(24)

Constants Values

β 10−2

α 9 × 10−7

Γb Matrix representation of (−γ∆ + α)−2

Γnoise (50)2I

d Surface velocity data (m/s)

A Flow rate factor 10−16 (Pa−3/s)

ρ Density of ice 910 (kg/m3)

g Acceleration of gravity 9.81 (m/s2)

γ Log basal friction

hflux Forcing

Variables Values

b Bedrock topography (m)

v Surface velocity (m/s)

s Surface height (m)
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FIG. 3: Top left: accumulation/ablation forcing term; top right: log basal friction; bottom: surface height at time t = 5 (left) and

t = 10 (right)

TABLE 2: Iteration history for calculating the MAP point

Iteration Objective Gradient norm Step size

0 5.83 × 104 2.66 × 101 N/A

2 1.65 × 104 1.0352 × 101 2.5 × 103

4 6.36 × 103 6.089 2.5 × 103

10 3.82 × 103 8.55 × 10−1 6.10 × 102

25 3.22 × 103 9.72 × 10−8 7.36 × 10−2

Visualizations of the initial guess, MAP estimate, true bedrock topography, and difference are provided in Fig. 4.

The MAP estimate captures a majority of the features present in the true bedrock topography and the largest deviations

are in the mountain in the northwest corner which is reflected in the diff plot. The bedrock is rough in that region

and due to the smoothing prior, the reconstruction fails to capture some of the fine-scale features. It is important to

note that computing the MAP point provides an estimate of the unknown bedrock topography, but it does not address
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FIG. 4: Top left: initial bedrock topography, top right: MAP point, bottom left: true bedrock topography, bottom right: the differ-

ence between true and estimated bedrock topography

how the uncertainty of the auxiliary parameters (log basal friction and forcing) will influence the uncertainty in the

bedrock topography. The influence of uncertainty in the log basal friction and the forcing is explored through HDSA.

6.4 Result for the LIS

The LIS eigenpairs were calculated using lines 12–21 in Algorithm 1 with an initial target rank r0 = 230, rank

increment ∆r = 256, oversampling parameter p = 26, and minimum of eigenvalue threshold λmin = 0.1. The

literature recommends p ∼ 20, but we chose p, r0, and ∆r to leverage parallelism with 16 compute nodes (16 cores

per node). Our motivation for choosing λmin = 0.1 was to ensure that the decay of the eigenvalues was sufficient for

capturing parameter directions influenced by the likelihood and prior. The decay was achieved within two iterations

of the for loop in the randomized generalized Hermitian eigenvalue procedure. Therefore we computed a total of 742

eigenvalues which are shown in Fig. 5. To calculate the sensitivity indices and approximate the posterior covariance

we used all 742 eigenvalues.

6.5 Results for Sensitivity Indices

Sensitivity indices for log basal friction and forcing are computed as outlined in lines 25 and 26 of Algorithm 1 and

plotted in Fig. 6. We make the following observations about the sensitivity indices.
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FIG. 5: Logarithmic plot of spectrum for Eq. (8). The line λ = 1 corresponds to an equal contribution from the likelihood and

prior.

FIG. 6: (Left) Sensitivity heat map for the log basal friction. (Right) Sensitivity heat map for the forcing.

• The magnitude of the log basal friction indices is much greater than the forcing; i.e., changes in log basal

friction are more impactful on bedrock topography estimation than the forcing. This is consistent with physical

intuition since the log basal friction is representative of “slipping” between the ice-sheet and the underlying

bedrock which is known to have a more significant effect over time horizons of 10–20 years [47].

• The interpretation of high-sensitivity regions in the log basal friction is that perturbing the log basal friction

in those regions will lead to the largest changes in the bedrock topography estimate.

• The largest log basal sensitivities correspond to the largest differences in the reconstruction of the bedrock

topography which demonstrates the joint correlation between z and θ (Theorem 1).

• In the context of joint Bayesian inversion of bedrock topography and log basal friction, the sensitivity indices

correspond to correlations in the posterior. Correlations in the joint posterior distribution identify regions

where inversion is difficult and may require more data collection.

6.6 Results for Posterior Samples and Variance

As a result of the eigenvectors calculations in the LIS, we compute approximate posterior samples and a variance

estimate as described in lines 28–30 of Algorithm 1. We plot samples from the prior and posterior distribution in
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Fig. 7. The prior variance computation uses the Diag++ algorithm, ([42], Algorithm 1), with parameters sD = 2100

matrix-vector products. The approximation to the posterior variance is computed using the prior variance and Eq. (17)

with r = 742. The approximate prior and posterior variances are plotted in Fig. 8; by contrasting the two plots one can

gain insight into the reduction in uncertainty, from the prior to the posterior, obtained by solving the inverse problem.

The posterior samples capture most of the heterogeneous structure in the domain including the mountain in the

top left corner. In addition, the posterior samples have a similar spatial pattern to the MAP. The well-captured regions

correspond to areas where we have more confidence in our estimate of bedrock topography.

These observations are reflected in the plot of the posterior variance (Fig. 8, right panel). In the bottom left corner

and the top left corner of the posterior variance plot, the uncertainty is much higher implying that the data are not as

informative as the prior in those areas. This observation is also reflected in the inconsistent structure of the posterior

samples in these regions. The highly uncertain areas also correspond to the highest-error regions in the diff plot in

Fig. 4.

FIG. 7: Samples from the prior distribution, bottom: samples from the posterior distribution

FIG. 8: Left: prior pointwise variance, right: posterior pointwise variance
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7. CONCLUSIONS

This article presents a new algorithm that combines hyperdifferential sensitivity analysis (HDSA) and approximate

sampling from the posterior distribution for Bayesian inverse problems. HDSA determines the influence of uncertain-

ties on the solution of large-scale inverse problems and is shown to have a Bayesian interpretation in terms of corre-

lations in the joint posterior distribution. By projecting onto the likelihood informed subspace (LIS), the sensitivities

are computed efficiently and samples from the Laplace approximation of the posterior distribution are computed as

a by-product of the LIS computation. Motivated by large-scale problems and by the added complexity of multiple

sources of uncertainty, we demonstrate our methods on a nonlinear dynamic ice-sheet model whose parameters are

based on realistic values from the Greenland ice-sheet. As a proof of concept, we generate synthetic data to invert on

bedrock topography and demonstrate HDSA with respect to basal friction and surface forcing.

We conclude that basal friction is much more important than the surface forcing in the context of bedrock to-

pography inversion. Although this makes intuitive sense from a physics perspective, HDSA quantifies the differences

exactly and provides a spatial characterization of sensitivities for basal friction and surface forcing. From a Bayesian

perspective, this implies that the bedrock topography and basal friction are highly correlated in their joint posterior.

With these conclusions in hand, one may consider the implementation of higher-fidelity basal friction modeling or

reprioritization of the data acquisition program.

HDSA insight is enabled through several computational foundations. Adjoint-based derivatives are used to cal-

culate gradients and Hessians as part of a trust region Newton-CG optimization algorithm, which is predicated on

parallel numerical linear algebra. A randomized generalized Hermitian eigenvalue solver is used to efficiently com-

pute the LIS projector asynchronously.

Inversion using observed data (instead of synthetically generated data) can create solver convergence issues

making the interpretation of HDSA questionable. However, projecting the sensitivities onto the LIS subspace provides

a clear interpretation as discussed in [15].
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