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Abstract—This study explores the application of deep learn-
ing to the segmentation of DENSE cardiovascular magnetic
resonance (CMR) images, which is an important step in the
analysis of cardiac deformation and may help in the diagnosis of
heart conditions. A self-adapting method based on the nnU-Net
framework is introduced to enhance the accuracy of DENSE-
MR image segmentation, with a particular focus on the left
ventricle myocardium (LVM) and left ventricle cavity (LVC), by
leveraging the phase information in the cine DENSE-MR images.
Two models are built and compared: 1) ModelM, which uses
only the magnitude of the DENSE-MR images; and 2) ModelMP,
which incorporates magnitude and phase images. DENSE-MR
images from 10 human volunteers processed using the DENSE-
Analysis MATLAB toolbox were included in this study. The
two models were trained using a 2D UNet-based architecture
with a loss function combining the Dice similarity coefficient
(DSC) and cross-entropy. The findings show the effectiveness
of leveraging the phase information with ModelMP resulting in
a higher DSC and improved image segmentation, especially in
challenging cases, e.g., at early systole and with basal and apical
slices.

Index Terms—Image segmentation; nnU-Net; Magnetic reso-
nance imaging; DENSE MRI; Phase and magnitude data.

I. INTRODUCTION

The introduction of deep learning has revolutionized the
field of medical image segmentation [1]. One area that has

This material is based upon work supported by the National Science
Foundation under Grant No. 2205043 to LEP and DW, and No. 2205103
to DBE.

been significantly affected is cardiovascular magnetic res-
onance (CMR) image segmentation, where deep learning’s
potential has been particularly evident [2]. In this paper,
we compare two models for segmenting cine Displacement
Encoding with Stimulated Echoes (DENSE) [3] MR images.
Our approach is based on the nnU-Net framework proposed
by Isensee et al. [4]. The nnU-Net is a framework for deep
learning-driven biomedical image segmentation that automati-
cally adapts and adjusts its settings, covering aspects like data
preprocessing (e.g., data augmentation and rescaling of signal
intensity), network topology (e.g., pooling behavior and depth
of the network architecture), and training (e.g., learning rate
and batch size).

The literature on deep learning for medical image segmen-
tation is extensive. In the pursuit of enhancing cardiac image
segmentation, researchers have explored a range of strategies,
from utilizing innovative architectures to incorporating addi-
tional information alongside magnitude images.

In the domain of architectural innovations, Von Zuben et
al. [5] utilized a multi-layered machine learning strategy,
employing an ensemble-like method of UNet and UNet++
models, and a heart locator for improved accuracy. This
approach has improved short-axis cine MR image segmen-
tation. Barbaroux et al. [6] crafted an automated segmentation
technique for both long- and short-axis DENSE CMR to
compute myocardial strains with spatiotemporal convolutional
neural networks, stressing the need for spatial and temporal



analysis in CMR segmentation. The findings from their study
highlighted the improved segmentation performance of spatio-
temporal models across the DENSE images, in contrast to 2D
architectures, which often struggled to accurately segment end-
diastolic frames due to poor blood-to-myocardium contrast.
Their spatio-temporal models achieved notable segmentation
accuracy, with a Dice similarity coefficient (DSC) of 0.83 ±
0.05 and a Hausdorff distance of 4.0 ± 1.1 mm for short-
axis segmentations. Similarly, for long-axis segmentations,
the models reached a DSC of 0.82 ± 0.03 and a Hausdorff
distance of 7.9 ± 3.9 mm, demonstrating consistent and
reliable performance in capturing cardiac structures throughout
the cardiac cycle.

A different set of studies emphasized the integration of
additional information besides magnitude. Shen et al. [7] have
automated the segmentation of biventricular contours using
deep learning and leveraging velocity data in the context
of tissue phase mapping MRI to enhance the segmentation
process. Similarly, Wu et al. [8] developed a rapid automated
segmentation method for cine myocardial velocity mapping,
further demonstrating the utility of incorporating velocity data
alongside magnitude. This emphasis on velocity information,
whether through tissue phase mapping MRI or cine myocardial
velocity mapping, highlights a growing trend towards enrich-
ing cardiac image segmentation with diverse data sources.
Further contributions include Ghadimi et al.’s [9] fully auto-
mated method for both global and segmental strain analysis in
DENSE CMR, employing deep learning for segmentation and
phase unwrapping. These innovative approaches demonstrate
the value of incorporating diverse data sources in addition to
magnitude but also highlight the potential of novel architec-
tures in pushing the boundaries of cardiac image segmentation.

Although previous studies have made significant progress
using various architectures and information sources, there
is still a research gap in utilizing phase information for
cardiac DENSE-MR segmentation. The utilization of phase
information for cardiac DENSE-MR segmentation can result
in more accurate segmentations, ultimately improving the
downstream task of computing myocardial strains from the
segmented images. The present study explores a strategy to
start addressing this gap and builds a model that leverages
the magnitude and phase data in the nnU-Net framework. Our
study introduces two models: the first model – ModelM – uses
only magnitude DENSE images; while the second model –
ModelMP – incorporates X, Y, and Z phase data in addition
to magnitude data.

II. METHODOLOGY

A. Image Acquisition and Preprocessing

The dataset included DENSE MR images acquired in 10
healthy volunteers (IRB consented). Eighty-seven slices cor-
responding to a total of 3338 frames were used for training
and validation. The original image resolutions were 80x80 and
100x100 pixels, while the final resolution prior to introducing
the images to the nnU-Net model was 400x400 pixels as a
result of resampling. The resampling was introduced to more

accurately represent the curved endocardial and epicardial
contours. The ground truth for the training and validation
images were manually segmented using the DENSE-Analysis
MATLAB toolbox [3], [10], specifically designed to segment
and analyze DENSE images. This step resulted in a set of pro-
cessed images (for each image, the epicardial and endocardial
contours through time were computed) alongside the corre-
sponding masks that delineated three classes: background, left
ventricle myocardium (LVM), and left ventricle cavity (LVC).
This study focuses on the segmentation of LVM and LVC.

B. Model Training

Prior to initiating the training process, the preprocessed
images and their associated masks were organized to match
the particular dataset structure demanded by nnU-Net, which
consists of the input images and their respective segmentation
maps. The architecture chosen in this work is the 2D UNet-
based model, paired with a loss function that combines the
Dice similarity coefficient (DSC) and cross-entropy. The input
images and masks are then used to train two separate models
using the nnU-Net pipeline: ModelM (trained solely on the
magnitude data) and ModelMP (trained on magnitude and
phase data). The phase data in ModelMP is introduced as
additional channels.

In the training process of the proposed models, we adopted
a 10-fold cross-validation method where an entire subject is
fully excluded in each fold. The training process was extended
over 300 epochs to ensure thorough learning. To optimize
the training phase, we employed an automatic learning rate
adjustment mechanism, which dynamically adapts the learning
rate based on training progress and, in doing so, improves
convergence and performance. The proposed models were
trained on a single NVIDIA A30 GPU with a memory capacity
of 24GB. Each fold training duration for both ModelM and
ModelMP was approximately 5 hours. The model with the best
weights based on the validation set was employed for inference
rather than the model with the final epoch’s weights.

III. RESULTS AND DISCUSSION

The segmentation models predictive capabilities were eval-
uated using cross-validation, and it has to be noted that
the validation slices belong to hearts that were excluded in
the training fold. In the following figure captions we report
the slice and frame numbers to locate the image along the
LV longitudinal axis and across the cardiac cycle: the slice
numbering starts from the most apical slice (slice 1) and
advances toward the most basal one (last slice), while the
frame numbering starts from 1 at the beginning of systole.

Table I compares the overall segmentation performance of
ModelM and ModelMP based on DSC. ModelMP performs
better than ModelM across all metrics, although the DSC
values are close.

In Fig. 1, the ModelMP’s predictions for a basal validation
slice are displayed throughout the cardiac cycle. ModelMP

performs well in all phases, even those that may prove chal-
lenging for human segmentation, such as in early systole (first



TABLE I
DICE SIMILARITY COEFFICIENT (DSC) FOR MODELM AND MODELMP .

Metric ModelM ModelMP
LVM DSC 0.789 0.824
LVC DSC 0.888 0.903
Mean DSC 0.838 0.864

images in the top left corner). Nevertheless, it is noted that
the model segmentation of the myocardium in the septal wall
toward the right ventricle is slightly underpredicted. In this
current stage, ModelMP results in a proper initial segmentation
that can be further improved manually for downstream tasks,
such as motion and strain analysis in the DENSE-Analysis
Toolbox. This initial segmentation can significantly reduce the
processing time of DENSE images, enabling more efficient
and effective data analysis.

Fig. 1. ModelMP’s predicted segmentations for a basal slice (slice 11 out of
14) throughout the cardiac cycle (23 frames).

In Fig. 2, the magnitude and phase images for a basal
slice (12 out 14) at the beginning of systole (frame 1) are
displayed, and the segmentation resulting from both models
is compared. This early systolic phase is often character-
ized by a low LVC/LVM signal contrast, which makes the
segmentation task more challenging. ModelM, which utilizes
only the magnitude image for prediction, shows an inaccurate
segmentation with defects highlighted by the yellow arrows.
On the other hand, the prediction of ModelMP overcomes the
problems encountered by ModelM. At the bottom of Fig. 2,
the input images and the models’ predictions for the next time
frame are displayed. These next-frame images confirm that
the predicted heart location is correct in the previous time
frame. By this time frame, the magnitude image presents a
more defined myocardium, and both models lead to similar
predictions. This exemplifies that the phase information can
be useful for improving the segmentation accuracy in early
systole.

Figure 3 compares the predictions of the two models for
mid-ventricular and apical slices during systole and diastole. In
presence of low contrast or artifacts in the magnitude images,
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Fig. 2. Top: input images for a basal slice (slice 12 out of 14), including
magnitude and phase data, at the beginning of systole (frame 1) and the
corresponding predictions for ModelM and ModelMP. The yellow arrows
highlight the anatomically inaccurate regions in ModelM predictions. Bottom:
input images and predictions corresponding to the subsequent time frame
(frame 2) for the same slice.

ModelM is more prone to generate an inaccurate mask that
either under-predicts (top two rows in Fig. 3) or over-predicts
(third row in Fig. 3) the LVM. Despite ModelMP performing
better than model ModelM overall, both models may still fail
to accurately predict the LVM in challenging cases as the one
shown in the bottom row of Fig. 3.

Mid-ventricular slices are typically easier to segment due to
a higher image contrast and a smoother ring shape. For a very
basal slice, both models struggled to provide a closed region
in the prediction. As the valve structure starts to emerge at the
base of the LV, it is expected that the models’ predictions will
be inaccurate in this region.

Fig. 4 compares the DSC for the LVC and LVM predictions
of ModelM and ModelMP averaged over all slices for one
validation subject. The DSC values are reported through-
out the cardiac cycle for both models. ModelMP results in
more accurate segmentations (based on DSC) for both LVM
and LVC. In particular, ModelMP leads to improved LVM
segmentations, which constitute the first step in computing
myocardial displacements from DENSE data. We also observe
that, overall, the LVM DSC improves after the first few time
frames, often characterized by low image contrast.

IV. CONCLUSION

In this study, we have compared two models, ModelM
and ModelMP, for the segmentation of DENSE MR images,
focusing on the LVM and LVC. Our preliminary findings
show that including phase data alongside magnitude data in
ModelMP yields more accurate segmentations, especially in
cases with lower contrast, for example, at early systole and
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Fig. 3. ModelM and ModelMP predictions for midventricular slices (top two
rows, slices 8 out of 14 and 7 out of 14) and an apical slice (slice 3 out of
14) at mid diastole and mid systole.
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Fig. 4. Left ventricular cavity (LVC) and left ventricular myocardium (LVM)
DSC averaged over all slices for one validation subject and obtained with
either ModelM or ModelMP throughout the cardiac cycle (39 frames).

in apical and basal slices where even manual segmentation
is often challenging. The improved performance of ModelMP

is indicated by a higher DSC for both LVM and LVC and
fewer anatomically inaccurate features (such as discontinuities
and over/under predictions) compared to ModelM. Although
ModelMP leads, overall, to improved LMV and LVC segmen-
tations, it does not always perform better than ModelM. This
points to the need of further improving ModelMP. Future work
will involve exploring a broader range of model architectures
and the potential of ensemble methods, together with utilizing
a significantly larger dataset for training. Additionally, we
aim to integrate the obtained segmentations in the DENSE-
Analysis toolbox [3], [10] to facilitate the initial segmentation
process and improve accuracy and robustness. This integrated
approach is expected to streamline the segmentation workflow,
reducing processing time and enabling researchers to analyze
DENSE images more efficiently to quantify cardiac motion
and deformation.
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