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Abstract

We have performed numerical calculations of a binary interacting with a gas disk, using 11 different numerical
methods and a standard binary−disk setup. The goal of this study is to determine whether all codes agree on a
numerically converged solution and to determine the necessary resolution for convergence and the number of
binary orbits that must be computed to reach an agreed-upon relaxed state of the binary−disk system. We find that
all codes can agree on a converged solution (depending on the diagnostic being measured). The zone spacing
required for most codes to reach a converged measurement of the torques applied to the binary by the disk is
roughly 1% of the binary separation in the vicinity of the binary components. For our disk model to reach a relaxed
state, codes must be run for at least 200 binary orbits, corresponding to about a viscous time for our parameters,
0.2(a2ΩB/ν) binary orbits, where ν is the kinematic viscosity. The largest discrepancies between codes resulted
from the dimensionality of the setup (3D vs. 2D disks). We find good agreement in the total torque on the binary
between codes, although the partition of this torque between the gravitational torque, orbital accretion torque, and
spin accretion torque depends sensitively on the sink prescriptions employed. In agreement with previous studies,
we find a modest difference in torques and accretion variability between 2D and 3D disk models. We find cavity
precession rates to be appreciably faster in 3D than in 2D.

Unified Astronomy Thesaurus concepts: Circumstellar disks (235); Binary stars (154); Planetary-disk interactions
(2204); Supermassive black holes (1663); Accretion (14); Galaxy accretion disks (562); Hydrodynamics (1963);
Computational methods (1965)

1. Introduction

Over the past few decades, the general astrophysical
hydrodynamics problem of a disk interacting with a binary
has been investigated in numerous studies. It has been studied
in the context of a stellar binary interacting with the protostellar
disk (e.g., Bate et al. 1995; Dunhill et al. 2015; Terquem et al.

2015; Franchini et al. 2019; Martin & Lubow 2019) and in the
context of supermassive black hole binaries at subparsec
separations interacting in galactic nuclei (e.g., Armitage &
Natarajan 2002; Hayasaki et al. 2007; MacFadyen &
Milosavljević 2008; Cuadra et al. 2009; Dittmann et al. 2023;
Major Krauth et al. 2023). It has been studied in 2D, in the
plane of the binary orbit (e.g., Ochi et al. 2005; MacFadyen &
Milosavljević 2008; Hanawa et al. 2010; D’Orazio et al. 2013,
2016; Farris et al. 2014; Young et al. 2015; Muñoz & Lai 2016;
Miranda et al. 2017; Muñoz et al. 2019; Duffell et al. 2020;
Dittmann & Ryan 2021, 2022; Penzlin et al. 2022; Siwek et al.
2023a, 2023b; Mahesh et al. 2023; Cimerman & Rafikov 2024;
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Tiede & D’Orazio 2024), and in 3D (e.g., Artymowicz &
Lubow 1994, 1996; Bate & Bonnell 1997; Hayasaki et al.
2007; Kratter 2011; Nixon et al. 2011; Ragusa et al. 2016;
Moody et al. 2019; Heath & Nixon 2020; Ragusa et al. 2020;
Franchini et al. 2022; Bourne et al. 2023; Franchini et al. 2023;
Park et al. 2024), including magnetic fields (e.g., Shi et al.
2012; Bankert et al. 2015; Shi & Krolik 2015), self- gravity
(e.g., Cuadra et al. 2009; Roedig et al. 2011, 2012; Franchini
et al. 2021; Bourne et al. 2023), and general relativity (e.g.,
Farris et al. 2012; Noble et al. 2012; Gold et al. 2014; Bowen
et al. 2019; Noble et al. 2021; Combi et al. 2022; Avara et al.
2023; Mignon-Risse et al. 2023). It has been studied using a
locally isothermal equation of state by many of these studies
and using a cooled disk with more involved thermodynamic
assumptions in others (e.g., Farris et al. 2015; d’Ascoli et al.
2018; Combi et al. 2022; Westernacher-Schneider et al. 2022;
Avara et al. 2023; Major Krauth et al. 2023). What all of these
studies have in common is that they employ numerical codes to
integrate a set of hydrodynamic equations, to compute the
gravitational interaction of a disk with a binary.

Many of these studies have had results that (at least
seemingly) disagreed with one another; for example, it was
often thought that disk−binary interaction would always
remove angular momentum from the binary (essentially
exerting a “drag force”), shrinking the binary separation (e.g.,
D’Angelo & Lubow 2008). However, with the advent of
modern high-resolution hydrodynamical simulations, several
studies have found net positive torque on the binary, enough to
cause binary expansion. Circumbinary disk-driven outspirals
were first observed in Miranda et al. (2017) and later confirmed
by numerous other studies (e.g., Moody et al. 2019; Muñoz
et al. 2019; Duffell et al. 2020). Subsequent studies have found
that binary orbital evolution depends on the disk and binary
parameters, such as the disk aspect ratio h/r (Tiede et al. 2020;
Dittmann & Ryan 2022, 2024; Penzlin et al. 2022), the disk
viscosity (Miranda et al. 2017; Dittmann & Ryan 2022, 2024;
Franchini et al. 2022; Penzlin et al. 2022), the cooling timescale
(Sudarshan et al. 2022; Wang et al. 2023a, 2023b; Franchini
et al. 2024), and the binary eccentricity (Miranda et al. 2017;
D’Orazio & Duffell 2021; Siwek et al. 2023a). Lai & Muñoz
(2023) recently presented a review summarizing the outcomes
of many of these studies.

This rapid influx of results is compounded by the fact that
each study uses a different code, at different resolutions,
integrating for different amounts of time, using different
numerical choices such as boundaries, floors, and sinks, and
including different amounts of additional physics (such as 3D
and magnetic fields). In order to help make sense of all of this,
we present a code test for a uniform binary−disk setup, to
determine just how closely our different codes agree and what
numerical ingredients (such as resolution and length of time
integration) are necessary for convergence (or at least for
agreement) between codes.

Nearly identical initial conditions are implemented across 11
different numerical schemes, running them at different
resolutions and with different numerical choices. We compute
a few different measurements of the gravitational torque on the
binary, the morphology of the cavity, and the accretion rate
onto each binary component, in order to determine under what
conditions the codes agree for different measured quantities.

The hydrodynamical setup is designed to be relatively simple
while maintaining the essential ingredients of a time-dependent

binary potential interacting with a disk. In this way we will
think of it as the “minimal” binary−disk problem. The obvious
advantage of using a minimal setup is that it can be tested
across many different codes. Additionally, performing these
calculations in 2D enables codes to be run at higher resolution
and for longer timescales than in 3D, which will make it
possible to determine when the solution is converged. Such a
criterion might then be used to inform whether 3D studies are
converged. Another advantage of such a minimal problem is
that it provides a straightforward way to test new codes on their
ability to describe a binary−disk setup. Our code outputs have
been made public on Zenodo at doi:10.5281/zenodo.10557951
(Duffell 2024) and online.25

2. Codes

A wide variety of codes will be compared on this binary
setup. It is worth noting that many of them are not being
utilized up to their full potential; many of these codes are
capable of 3D, MHD, self-gravity, general relativity, complex
thermodynamics, and more. Many of these capabilities need to
be “turned off” in order to make an accurate comparison in a
minimal binary−disk problem. For each code, results from at
least three numerical calculations at different resolutions will
be presented and compared through the usage of a number of
diagnostics described in Section 4.
We list the essential characteristics of each code, as they are

used in this study, in Table 1. Some codes, namely Disco and
Athena++, have been used in multiple configurations. For the
sake of brevity, we defer comprehensive descriptions of each
code to the Appendix.

3. Test Problem

3.1. Binary Orbit

We study an equal-mass binary with total binary mass M
(individual component masses M1=M2=M/2), on a fixed,
circular (e= 0) Keplerian orbit with semimajor axis a. The
binary angular frequency is denoted ΩB, while the disk angular
frequency is Ω. For concreteness, the binary is initialized along
the x-axis, orbiting in the x-y plane counterclockwise when
viewed from the positive z-axis.
Gravitational softening is implemented uniformly across all

codes. The binary potential can be expressed as

F = -
+

GM
, 1j

j

ij
2 2∣ ∣

( )
r

where ij∣ ∣r is the distance between the ith gas cell/particle and
the jth binary component and ò is the gravitational softening
length. In the fiducial runs, we set ò= 0.05a, but we also
explore its impact on the results in Section 6.5. In that section,
we demonstrate the binary torque to be insensitive to the
gravitational softening for ò< 0.15a.
Most of the codes have employed “code units” where

GM= 1, a= 1 (so that ΩB= 1), and Σ0= 1 (Σ0 is defined in
the initial conditions). Codes that do not work in these units
will normalize their results (e.g., reporting Σ/Σ0 instead of Σ).
For example, simulations employing a “live binary” have an
additional mass scale (the solution can depend on the
normalization of Σ0), and therefore such codes must set

25 https://www.physics.purdue.edu/duffell/data.html
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Σ0= 1 in order to find agreement with fixed-binary results in
the “test fluid” limit.

3.2. Initial Conditions

It is important for all codes to start from the same initial
condition (or at least as close to one as possible). This ensures
that any distinctions (no matter how small) stem from our
numerical methods, and not differences in the true solution, and
that all codes would converge to exactly the same solution at
sufficiently high resolution.

The initial disk surface density employed here is a simplified
version of (Muñoz & Lithwick 2020, Equation (4))

d dS = S - +-r e f r1 , 2R r
0 0 0cav

12( ) [( ) ] ( ) ( )( )

with Rcav= 2.5a and δ0= 10−5, as grid-based codes may have
difficulty with such a deep vacuum in their initial condition
(this is not a density “floor”; the cavity can get deeper than this
during the calculation).

The function f (r) provides a means for truncating the disk,
for those codes that are not able to specify general outer
boundary conditions. For an infinite disk, f= 1. For a finite
disk,

= -
+ - -

f r
e

1
1

1
, 3

r R a2 out
( ) ( )( )

with Rout= 10a. In practice, we will find that most results do
not depend on whether the finite or infinite disk is chosen (see
Section 6.3 for a comparison between finite and infinite disk
solutions), as previously shown by Muñoz et al. (2020).

The equation of state is locally isothermal with sound speed

f f= -F = -Fc t r h t r; , ; , 4s b b
2 2 2( ) ( ) ( )

for the (softened) binary potential Φb=Φ1+Φ2. We choose a
disk with aspect ratio h= 0.1 (equivalently an azimuthal Mach
number = 10 ).

For the initial angular frequency of gas in the disk, we first
start with a solution that is in equilibrium far from the binary,

W = - = -r
GM
r

h
GM
r

1 1 1 , 50
2

3
2

3
2( ) ( ) ( ) ( )

suitably modified to flatten in the vicinity of the binary, i.e.,

W = W + W- - -r r . 6B0
4 4 1 4( ) [ ( ) ] ( )

For 3D particle-based runs, we adopted a Gaussian vertical
density profile given by

⎜ ⎟⎛⎝ ⎞⎠r
p

=
S

-r z
r

H
z
H

,
1
2

exp
2

, 7
2

2
( ) ( ) ( )

where H= hr is the disk scale height. Note that Σ(r)/H=
ρ(r, 0) is the density on the disk midplane and

ò rS =
-¥

+¥
r r z dz, . 8( ) ( ) ( )

The 3D Athena++ runs adopted a vertically isothermal
equation of state, in analogy to the 2D runs, and specified the
density profile so as to match the surface density prescribed by
Equation (2) and to satisfy vertical hydrostatic equilibrium.
We assume a constant kinematic viscosity ν rather than

constant α, as different codes may have different α viscosity
implementations (this is also consistent with the assumed
uniform surface density profile in steady state, far from the
binary). We adopt the value

n = W- a10 , 9B
3 2 ( )

which, for = =h 1 0.1 , corresponds to α= 0.1 at r= a
and is also convenient to achieve steady-state solutions in only
a few hundred orbits, due to the correspondingly short viscous
time in the disk.
A key feature of the isothermal circumbinary disk response

to an equal-mass binary is an elongated, lopsided (m= 1)
central disk cavity (e.g., MacFadyen & Milosavljević 2008). In

Table 1
Overview of Various Hydrodynamics Codes and Their Configurations Used in This Study

Code 2D/3D Numerical Scheme Convergence Order Excised Binary Discretization

Arepoa 2D Moving-mesh finite volume Second No Voronoi tessellation
Athena++b 2D Finite volume Third No Cartesian
Athena++ (Excised) 2D Finite volume Second Yes Cylindrical polar
Athena++ (3D) 3D Finite volume Second No Cartesian
Discoc 2D Moving-mesh finite volume Second No Cylindrical polar
Disco (Excised) 2D Moving-mesh finite volume Second Yes Cylindrical polar
Fargo3Dd 2D Orbital advection finite difference and volume Second Yes Cylindrical polar
Gizmoe 3D Mesh-free finite mass Second No Particles
Mara3f 2D Finite volume Second No Cartesian
Phantomg 3D Smoothed particle hydrodynamics Second No Particles
Plutoh 2D Finite volume Second No Cylindrical polar
Sailfishi 2D Finite volume Second No Cartesian

Notes. A summary of the different codes used in this study. We provide additional details for each in the Appendix.
a Springel (2010); Muñoz et al. (2013).
b Stone et al. (2020).
c Duffell (2016).
d Benítez-Llambay & Masset (2016).
e Hopkins (2015); Franchini et al. (2022).
f Zrake & MacFadyen (2012).
g Price et al. (2018).
h Mignone et al. (2007).
i Westernacher-Schneider et al. (2024).
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an attempt to seed cavity eccentricity in a uniform way across
codes, we implement an initial perturbation or “kick” to the
cavity via an initial radial velocity profile of the form

⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥f= -v r v r a
r

a
sin exp

3.5
, 10r 0

6

( ) ( ) ( ) ( )

with v0= 10−4ΩBa. This initial perturbation is not included in
most binary−disk studies in the literature; it is not required for
the disk eccentricity growth, but if growth could be seeded by
our initial condition rather than numerical noise, it might aid
agreement between codes. In practice, we will find that this
initial seed choice is too small to affect the outcome, and
particle-based codes that had additional numerical noise
unfortunately did not recover the initial value of the disk
eccentricity induced by this kick. We note that we did not give
the fluid an initial inward velocity consistent with the viscous
drift rate, but this did not make a major difference in the overall
solution.

3.3. Boundary Conditions

Possibly the biggest difference between numerical setups
involves the boundary conditions. We have tried to design the
problem such that differences in boundary conditions would
not significantly affect the solution.

3.3.1. Outer

The outer boundary is typically chosen to be large enough to
not affect the solution (we will test this explicitly in
Section 6.3). Because different codes have very different
boundaries (e.g., square vs. circular, or no boundary at all in the
case of particle-based meshless codes), we do not require a
specific outer boundary condition. Disco, for example,
employs a Dirichlet boundary condition at the outer boundary,
set at r= 30a, where the hydrodynamic quantities are fixed by
the initial conditions.

3.3.2. Inner

The inner boundary condition depends on the setup. For
excised binaries, this is determined at the excision radius
(r= a). The standard boundary condition employed for excised
binaries will be a “diode” boundary condition, which is
essentially a Neumann boundary condition, unless the radial
velocity of the fluid is positive, in which case the radial velocity
is set to zero to prevent flow of gas from within the excision
radius back into the domain. While most of the nonexcised
codes resolved the origin at r= 0, the PLUTO code utilized a
grid extending down to a radius of r= 0.03a with a reflecting
inner boundary.

3.4. Sink Prescription

For nonexcised binaries, there is no explicit inner boundary
condition, but codes typically require some prescription for
accreting mass and momentum (“sink prescription”). This is
usually not done using a formal boundary condition, but
instead via some prescription for either removing gas particles
from the domain or including a sink term explicitly on the
right-hand side of the evolution equations for the gas. This
(sometimes loosely defined) nature of sink prescriptions can
pose a challenge to convergence studies.

For practical reasons, we did not attempt to employ the same
sink prescription across different codes. However, all codes
have some prescription for accretion near the individual point
masses. After discussing our fiducial model, we will also assess
the effects of different sink prescriptions, to determine their
importance and whether any one sink is a more accurate or
well-behaved choice than others.
Particle-based codes Gizmo and Phantom employed sink

particles, whereby any fluid parcel that came within a certain
distance of the sink (and met certain velocity criteria) was
instantly removed from the calculation (and in the case of a live
binary, its mass and momentum are added to the sink particle).
Grid-based and moving-mesh techniques typically employed
source terms instead; Athena++ Disco, Mara3, Sail-
fish, and Pluto all employed some version of this source
term, which took the form of an additional expression on the
right-hand side of the equations for mass and momentum
density evolution. This source term is then ideally well
resolved in both space and time, such that the size of the
affected area is at least a few computational zones across, and
the timescale gas is removed on constitutes a large number of
time steps. Employing a well-resolved sink prescription is
generally expected to improve convergence properties of the
code. Arepo employs a sink prescription that is very similar to
the grid-based codes, but instead of a slow source term that is
resolved in time, it reduces the density toward a fiducial value
every time step, effectively giving a sink timescale that is
proportional to the time step size.
Athena++ and Disco each employ different versions of a

“torque-free” sink (Dempsey et al. 2020). Roughly speaking,
the difference between a “standard sink” and a “torque-free”
sink is the choice of how much momentum to remove when
removing mass from the system. We will describe the method
in more detail in Section 6.2, but the idea of a torque-free sink
is to effectively be a subgrid model for what happens on much
smaller scales than the sink, assuming that the disk extends
down to much smaller radii. Any sink choice will naturally
have some effect on the solution at radii outside the sink, but
the torque-free sinks were designed to have as little effect as
possible, when comparing a disk that is resolved at both large
and small radii with a disk where gas is removed by the sink at
some finite radius.
Which sink should be considered “most accurate”? This

depends on the problem one wishes to solve and the physical
interpretation for the sink. If the sink is meant to describe a
finite radius where gas is accreted (such as the innermost stable
circular orbit (ISCO) of a black hole), then short-timescale
“standard” sinks might be a good choice, as they will capture
the fact that spin is being added to the point mass. However, if
one wishes to model a system where the inner radius of the disk
is meant to be on much smaller scales than that resolved by the
code, torque-free sinks are precisely designed and calibrated for
this purpose. Thus, the most accurate choice of sink depends on
the physical scenario, and code users should be mindful of the
implicit choices being made in the choice of sink prescription.

4. Diagnostics

In this section we discuss the different diagnostics we used
to compare codes. For each diagnostic the results from each
code will be presented as a function of the spatial resolution.
We note that, for particle-based/Lagrangian codes, the
resolution changes throughout the duration of the simulation.

4
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The details about how the resolution was attributed for each
diagnostic will be described in the corresponding plot caption.

4.1. Torque

In this study, when we describe “gravitational torque,” we
typically mean the transfer of angular momentum via the
gravitational force between the disk and the binary, computed
as = ´
  
T r Fg, with Fg=−∫(∇Φ)ΣdA. For a circular orbit,

this is just the radius of the binary component times the f-
component of the gravitational force:

= +f fT r F r F 111 1 2 2 ( )

ò= S -F
 
F dA. 12i i( ) ( )

The sign of the torque is defined so that a positive torque
corresponds to angular momentum being received by the
binary. Thus, positive torque works to increase the binary
angular momentum (hence separation), and negative torque
works to shrink the binary orbit.

In our initial set of runs, we did not compute “accretion
torque” or the angular momentum directly accreted onto the
binary. In the limit of a sufficiently small sink radius, or more
generally sink terms that do not contribute to the spin angular
momentum of either binary component, the orbital angular
momentum accreted by the binary is + M j M j1 1 2 2 (where Mi
and ji are the accretion rate onto and specific angular
momentum of binary member i), which for an equal-mass
binary is by symmetry WMa0.25 b

2 .
To take into account the nonnegligible sink radius, we later

found it useful to compute the angular momentum removed by
the sink. Unless otherwise specified, “gravitational torque”
computed in this study only accounts for angular momentum
transferred directly via gravity, as opposed to “accretion
torque.”

Often in this study, the torques will be “normalized” in units
of S Wa B0

4 2 , or Σ0GMa. However, we have found that the most
robust measurement of gravitational torque is obtained by
normalizing it to the accretion rate, using the dimensionless
quantity WT Ma Bgrav

2( ). This can be related to the accretion
“eigenvalue” l0 via

=
+

W


l

T J

Ma
, 13

B
0

grav acc
2

( )

where Jacc is the angular momentum directly removed by the
sinks. In the limit of small sink radii,  W J Ma0.25 Bacc

2 for an
equal-mass binary, but we found it useful to compute the
accreted angular momentum explicitly; as we will show later,
this will result in better agreement between codes.

4.2. Cavity Eccentricity

Another important diagnostic to measure is the overall
morphology of the disk solution. In the first 100 orbits of
binary evolution, the cavity becomes unstable, breaking the
initial symmetry of the system and developing an eccentricity
(e.g., MacFadyen & Milosavljević 2008). We wish to include a
diagnostic that can measure the growth and saturation of this
symmetry-breaking instability. We tested a few diagnostics and

found that the eccentricity vector

=
-

-
 v r v r v

re
GM

14
2∣ ∣ ( · ) ˆ ( )

provides the most reliable measurement of the asymmetry of
the system.
The x and y components of this vector are⎛⎝⎜ ⎞⎠⎟f f= + -f fe
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sin 1 cos 15x

r
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or, in Cartesian coordinates,

= -e
jv
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jv
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with j= xvy− yvx. Under this definition,

= +

e e e 19x y

2 2∣ ∣ ( )

is the orbital eccentricity, while ϖ is the longitude of pericenter
such that

v=


e e cos 20x ∣ ∣ ( )
v=


e e sin . 21y ∣ ∣ ( )

We computed a mass-weighted eccentricity vector between
r= a and r= 6a:

ò ò f

p
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S
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p



e
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,

35
, 22a

a6

0

2

0
2

( )
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where the denominator is a normalization constant that is
designed to reduce this integral to an eccentricity value less
than 1. The profile of e(r) is another potentially useful
diagnostic; however, it would require development of a
uniform angle-averaging and time-averaging procedure across
all codes, which we found cumbersome for a code comparison
of this size.

4.3. Accretion

Accretion rates are measured directly by asking how much
mass was removed by the sinks over the course of a time step at
individual points in time. These accretion rates are then time-
averaged according to the prescriptions given below.

4.4. Time Averaging and Derivatives

At sufficiently late times, diagnostics at single points in time
become less useful, as there may be a great deal of temporal
variability (and this variability is also quite sensitive to the sink
prescription, which we are not keeping consistent between
codes). Therefore, we need a process to time-average
quantities. The simplest method would be to take a rolling
average or “boxcar” smoothing. However, such a prescription
needs very long duration in order to smooth out variability over
a few-orbit timescale. Ultimately, this is due to the fact that a
“top-hat” smoothing kernel has power at high frequencies. An
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alternative is to use a convolution integral, in particular with a
Gaussian smoothing kernel:

òps
= ¢ ¢ s- - ¢F t dt F t e

1
2

. 23t t
avg

1
2

2 2( ) ( ) ( )( )

By smoothing on a timescale of only σ= 2 orbits, one can
significantly suppress short-timescale variability in most codes,
making it possible to focus on long-term trends. We perform
such convolutions over the total torque, the excised torque
(r> a), and the accretion rate, to compare code performance at
late times.

It will often be useful to take the derivative of a highly
variable function with time (especially the eccentricity vector).
We can similarly define our derivatives by differentiating the
smoothed version of a function with time:

òps

º

= ¢ ¢ - ¢ s- - ¢

dF
dt

dF

dt

dt F t t t e
1

2
. 24t t

avg

3

1
2

2 2( )( ) ( )( )

Thus, our derivatives can also be defined via a convolution
integral. This helps to prevent any one data point from skewing
the derivative.

4.5. Periodograms

Temporal variability in the accretion rate is decomposed into
Fourier modes to generate periodograms. Similarly to the
smoothing procedures above, periodograms are computed over
a window of time by multiplying the accretion rate by a
Gaussian smoothing kernel:

òw
ps

= ¢ ¢ s w- ¢- ¢c dt M t e e
1

2
, 25t t i t1

2 0
2 2( ) ( ) ( )( )

where σ= 15 orbits and t0= 250 orbits. The power is then
computed via |c(ω)|2. This means that the accretion variability
is measured in a window of time roughly between
200< t< 300, but without the high-frequency artifacts that
would be present if we cut off the integrals abruptly within the
window. The choice of σ= 15 orbits means that our period-
ograms are only valid on timescales shorter than this.

5. Time Evolution

We investigate the evolution of the disk for up to 300 binary
orbits (with some codes running to 1000 orbits), by which time
the system has settled into a relaxed (quasi-)steady state. Before
this time, the solution still depends on the details of the initial
conditions; we explore the evolution from this initial state to
the final state at different stages. We first look in detail at the
first orbit, in part as a consistency check on the details of the
initial conditions.

5.1. The First Orbit

Figure 1 shows the high-resolution results obtained using the
Sailfish code after one orbit, as an example of the
calculations performed. During the first binary orbit, the
initially axisymmetric disk begins to viscously spread and is
strongly perturbed by the gravitational influence of the binary.
Nascent circumprimary and circumsecondary accretion disks
(generically “minidisks”) form, initially from the ambient gas

within the cavity, but later from gas stripped from the
circumbinary disk. Some of the gas that is stripped from the
spreading cavity walls streams past the binary member that
initially perturbed it and shocks against the gas symmetrically
perturbed by the other binary member, leading to a higher-
density bridgelike feature between them.
The first orbit provides an opportunity to test that all codes

have implemented the setup and initial conditions in precisely
the same way. Capturing the evolution of the first orbit is
reasonably straightforward; in this first orbit, all codes quickly
converge to the same solution. Figure 2 shows the torque as a
function of time during this first orbit, again showing that a
converged torque is found and agreed upon by all codes at
these times. Excised torque was computed (using contributions
from fluid elements with r> a) in part because all codes could
be compared, including those that excised the binary. However,
during the first orbit (and similarly the first 10 orbits), very little
torque comes from within r< a, as very little gas has accreted
onto the binary at this stage.
The middle panel of Figure 2 shows convergence of the

Disco code at five different resolutions, demonstrating that
the solution is very well converged. Increasing the resolution
by a factor of four has almost no effect on the curve
T(t); differences between the different resolution runs are at
the percent level.
The bottom panel of Figure 2 shows the excised torque at one

orbit as a function of resolution for all codes. All codes converge
toward the same value of this torque. The converged excised torque
at one orbit is found to be T/(Σ0GMa)=−7.2× 10−3± 10−4,
where error bars are roughly set by differences between codes. The
only (minor) deviations are from particle-based codes that have
additional Poisson noise from the positions of the initial
computational particles (or zones). These codes can still capture

Figure 1. Logarithm of the surface density in the Sailfish code after one
orbit, at the highest uniform resolution of all codes in the comparison study
(4000 × 4000, or Δx = 0.005a). For this and other 2D density maps
throughout, the spatial grid ranges from −2.5a to 2.5a in each dimension,
and the color map is linear, ranging from −3 (black) to 0.5 (yellow). The color
map is the same as in Figure 3.
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time-averaged torques reliably at these times, as seen in the next
section.
Figure 3 shows a plot of surface density at one orbit for all

numerical methods in our study. In this and future large
comparative images, all codes are using the same effective
resolution of Δx= 0.02a at r= 3a (though some codes have
higher resolution on the minidisks and lower resolution farther
out in the disk). The basic structures are captured similarly by
all codes; particle-based code Phantom exhibits less well-
defined shocks. We later demonstrate this to be a resolution-
dependent effect, which can be cured by very high particle
count; because particle-based codes typically resolve mass
elements rather than volume elements, at these early times,
when no gas is yet in the cavity, they can have very low
effective spatial resolution near the origin (though in this study
Gizmo mitigates this effect via particle splitting; see Franchini
et al. 2022 for details).

5.2. The First 10 Orbits

After the first few orbits, the accretion of gas onto the binary
settles into a fairly regular pattern, as some gas from the disk is
captured by the binary, forming minidisks. Waves have begun
to propagate outward through the circumbinary disk, and some
gas is able to flow from one minidisk to the other. An example
showing the calculation after 10 orbits at high resolution is
given in Figure 4 (using the Sailfish code as an example).
On a 10-orbit timescale, nonlinear effects make convergence
less trivial but still reasonably attainable. The minidisks have
begun to accumulate a bit of gas already, but nearly all torque
still comes from outside r> a. The cavity still appears to be
symmetric, respecting the symmetry of the binary and the
initial conditions. Figure 5 shows the torque as a function of
time in the Sailfish code at many resolutions. It is evident
that Sailfish is able to achieve a converged torque as a
function of time at sufficiently high resolution (at least for these
first 10 orbits).
The middle panel of Figure 5 compares all of the codes

during this time, using the bottom panel to highlight which
codes attain very similar torque curves. While the outliers
exhibit somewhat noisier torque curves, all codes are able to
agree on the time-averaged torque over these timescales;
Figure 6 shows the time average of the torque between 8 and
10 orbits, computed by a simple numerical integration over this
window of time. All codes at all resolutions are plotted,
demonstrating that it is possible for all codes to achieve the
converged solution at sufficiently high resolution. During the
first 10 orbits, the gravitational torque is usually negative.
Between 8 and 10 orbits, the time-averaged gravitational torque
is T/(Σ0GMa)=−0.0046± 10−4, where the uncertainty is
(roughly) quantified using the spread between different codes
in the plot at their highest resolutions.
Figure 7 shows the surface density at 10 orbits for all

numerical methods in our study. As the minidisks accumulate
mass, the particle-based codes show improved spatial resolu-
tion within the cavity, but discrepancies in minidisk morph-
ology still remain, specifically when considering the Phantom
code. In Figure 8, we demonstrate that Phantom can achieve
agreement with the other codes, when the cavity is sufficiently
well resolved. However, at 10 orbits the particle count in the
cavity is still sufficiently low in the fiducial runs that the

Figure 2. Torque convergence over the first orbit. All codes are plotted in the
top panel, lying on essentially the same curve (consistent with the highest-
resolution Sailfish run). A demonstration of convergence in the Disco
code is shown in the middle panel, showing very little deviation between
resolutions. Residuals are included (taking the difference between the output
and the highest-resolution run), showing rapid convergence of the solution. The
value of the torque at one binary orbit is plotted in the bottom panel, for all
codes, as a function of the resolution length scale. The resolution is measured
in terms of the zone size Δx/a at r = 3a.
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minidisks are yet unresolved. Interestingly, each code appears
to find a different minidisk surface density at this time, likely
reflecting discrepancies in sink prescriptions between codes.
Excised codes are able to capture the outer disk morphology
accurately.

Figure 7 indicates that binary−disk interaction is a
challenging problem. After only 10 orbits, significant visual
discrepancies in minidisk morphology develop across the
different codes. This visual trend will continue at later stages.
However, when measuring averaged quantities such as torque
or accretion rate, we will find that the different codes can reach
agreement. Thus, despite visual differences in the instantaneous
snapshots, it will be possible to find convergence to a common
value for bulk integrated quantities.

5.3. The First 100 Orbits

An example showing the calculation after 100 orbits at high
resolution is shown in Figure 9 (using the Sailfish code as
an example). Until this point, the disk has been nearly
symmetric. During the first 100 orbits, however, this picture

gradually changes. This eccentric “instability” was first noted
in MacFadyen & Milosavljević (2008), which used the FLASH
code with an excised binary. It has been characterized by Shi
et al. (2012) and D’Orazio et al. (2013) and has been shown to
manifest itself at mass ratios as low as q 0.01, although its
amplitude varies depending on disk and binary properties (e.g.,
D’Orazio et al. 2016; Ragusa et al. 2020; Noble et al. 2021;
Dittmann & Ryan 2024). The conditions for its stability and
growth rate as a function of all disk and binary parameters have
not yet been completely explored.
A model of the instability was given in Shi et al. (2012).

Streams carrying momentum and mass are excited by the binary
and impart energy and momentum onto fluid elements at the
cavity edge. A preference for one stream becoming stronger than
the other creates a feedback cycle that causes stream impacts on
one side of the cavity to dominate (D’Orazio et al. 2013), hence
increasing the eccentricity of the inner circumbinary disk and
cavity. An overdense “lump” builds up and orbits at the cavity
edge. This lump orbits with the orbital period of the cavity edge,
which for the 2D simulations in this work is very close to five

Figure 3. Surface density for all codes at one orbit. Codes are compared with similar zone spacingΔx = 0.02a at r = 3a. During this first orbit, tenuous streams of gas
begin to accrete onto the binary, and extremely low density minidisks begin to form. Part of each stream passes by the first binary member encountered, leading to a
higher-density shock near the barycenter.
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binary orbital periods. However, the size of the cavity and thus
its orbital period depend strongly on the properties of both the
binary and the disk (e.g., D’Orazio et al. 2013; Farris et al. 2014;
Noble et al. 2021; Dittmann & Ryan 2024), so this five-orbit
periodicity is far from universal.

Eccentricity growth impacts all measured quantities. For
example, prior to eccentricity saturation, all codes found a
negative torque on the binary, which would lead to inward
migration (for this test problem), and a sudden shift in the
torque toward outward migration occurs around the time when
the instability nears saturation. This was true for all codes,
regardless of when the cavity eccentricity saturated. The two
appear to be causally linked, but the details depend on the disk
and binary parameters. In some cases, disks that are stable and
do not achieve an eccentric cavity morphology result in inward
migration (Franchini et al. 2022; Wang et al. 2023b; Dittmann
& Ryan 2024).

We have found that the growth of this instability and
subsequent precession of the cavity are clearly represented using
the density-weighted eccentricity vector


e defined previously

(Equation (22)). The magnitude of this vector over time captures
the growth and saturation of the cavity eccentricity, while the
phase of this vector nicely tracks the precession of the cavity.

We plot each of these quantities as a function of time in
Figure 10. All codes find similar growth and saturation of the
instability, though some codes find growth beginning at
different start times from others. 3D codes notably find a
faster cavity precession rate, by ∼60%.

The growth rate Γc can be measured as G = e ec :

G º
+

+

 e e e e

e e
. 26c

x x y y

x y
2 2
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The precession rate Ωc= ∂t(ϖ), or

W =
-

+
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e e
. 27c
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Γc and Ωc are computed for all codes, at all resolutions, and the
result is plotted in Figure 11. The final saturated value of the
eccentricity depended on whether the disk was finite or infinite,
whether the binary was excised, and whether the disk was
modeled in 2D or 3D. Thus, there was no consensus on a final

Figure 4. Logarithm of the surface density in the Sailfish code after 10
orbits. The color map is the same as in Figure 7.

Figure 5. Torque comparison between all codes in the first 10 orbits. In the top
panel, the excised torque (r > a) from the Sailfish code is compared at
different resolutions, showing that the code approaches a consistent torque as a
function of time at sufficiently high resolution. All codes are plotted at their
highest resolution in the middle panel; the bottom panel highlights a subset of
eight codes that agree the most precisely during the first 10 orbits.

Figure 6. Convergence of the time-averaged torque from 8 to 10 orbits for all
codes in this study.
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saturated value of e, even though the converged growth rate
was consistent between all codes.

All codes show an exponential behavior, with a growth rate
Γc/ΩB≈ 0.012 (about a 13-orbit e-folding timescale) that
appears roughly consistent across all codes (in both 3D and

2D). The cavity precession rate is Ωc/ΩB≈ 0.004 (240 orbit
precession period) for all the 2D codes. In 3D, the cavity
precesses 60% faster, giving a period of about 150 binary
orbits. To disambiguate between effects of code choice and
effects of 3D versus 2D, we have also run Athena++ in 3D
and Gizmo in 2D. We will discuss further the differences
between 2D and 3D in Section 6.
Figure 12 shows a plot of surface density at 100 orbits for all

numerical methods in our study. At this time, it can be difficult
to compare these images directly, although this is a natural
result of the nonlinear hydrodynamic processes that we have
simulated. Because disk eccentricity was seeded by numerical
perturbations, each disk began developing eccentricity at a
different time and with a slightly different preferred orientation,
leading to a variety of cavity orientations after and leading up
to saturation.

5.4. Relaxed Disk—300 Orbits

The maximum time that most of the codes were run for was
300 orbits. As a representative example, Sailfish is shown at

Figure 7. Surface density for all codes at 10 orbits. Codes are compared with similar zone spacing Δx = 0.02a at r = 3a. Although discrepancies exist between codes
at this resolution, it should be noted that many of the codes are capable of running at much higher resolution than in this figure; the idea is to attempt to compare all
codes using roughly the same zone or particle spacing at r = 3a. Note that this means some codes will still have much better resolution near the origin.

Figure 8. Phantom code at 10 orbits, comparing resolutions of 20 million
particles (left) vs. 100 million particles (right). The color map is the same as in
Figure 3.
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high resolution in Figure 13. A total of 300 orbits is sufficient
for disk eccentricity to saturate and the disk to attain a quasi-
steady state (this is confirmed in the next subsection, where

some of the codes are run to 1000 orbits). After the disks
become visibly eccentric, codes are unable to agree at specific
moments in time. This is because the growth of the instability is
sensitive to small details. Though we tried to mitigate this
somewhat by including an initial seed perturbation
(Equation (10)), these details nonetheless offset the phase of
the cavity relative to the binary at late times, and therefore
comparing codes at a single time becomes less meaningful. We
therefore require time averaging in order to mitigate this effect
and extract long-timescale trends that can be compared
between codes. To this end, we perform a convolution integral
with a Gaussian kernel (details in Section 4.4) to time-average
the values of torque and accretion rate as a function of time,
with the results reported in Figure 14.
Torques switch sign around 100 binary orbits—coincident

with the growth and saturation of the cavity eccentricity. In
Figure 15, we plot the gravitational torque (normalized to
accretion rate) for all codes in this study, as a function of
resolution. Here we find significant discrepancies between our
codes, so it will now be necessary to diagnose these discrepancies

Figure 9. Logarithm of the surface density in the Sailfish code after 100
orbits. The color map is the same as in Figure 12.

Figure 10. Eccentricity vector over time for all codes. The top panel shows the
magnitude, and the bottom panel shows the phase. The growth of the instability
and subsequent precession of the cavity begin at different times for different
codes. Nevertheless, the growth rate and precession rate have reasonably
consistent values when comparing between codes.

Figure 11. Growth rate and cavity precession rate for all codes at all
resolutions. The precession rate is measured at 150 orbits. The growth rate is
measured at a time when the eccentricity has grown to e = 3 × 10−3, when all
codes find exponential growth (this occurs at different times for different codes;
see Figure 10). The growth rate (Γc/ΩB) converges to a rate of about 0.012,
corresponding to an e-folding time of about 13 binary orbits. The cavity
precession period (2π/Ωc) converges to a period of about 240 binary orbits. 3D
codes find a shorter period, about 150 binary orbits.
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and determine whether they are code related or due to minor
differences in our code setup. At first glance it appears that there
is a cluster of codes that find torques of ~ WT Ma0.4 0.5 Bgrav

2– ,
while PLUTO, Gizmo, and Phantom all converge to much
smaller gravitational torques. In fact, taken at face value, these
three codes would find inward migration, while the rest of the
codes would predict outward migration.

The largest difference between some of codes is in the
dimensionality of the setup; Gizmo and Phantom performed
calculations in 3D, whereas the rest of the codes performed the
calculation in 2D. Actually, it is a little surprising that
differences between 2D and 3D are not more severe. We will
also show that the next major difference between codes is in the
choice of sink prescription, which is responsible for the
deviations of PLUTO from the other 2D codes. However,
discrepancies in the sink prescription can be accounted for by
properly accounting for the angular momentum eaten by the
sink. Thus, while Figure 15 appears to show significant
discrepancies between codes, we will find that these discre-
pancies can be understood and resolved (see Section 6.2). The

hydrodynamic state of all codes at 300 orbits is shown in
Figure 16.

5.5. Accretion Periodograms

As one additional code comparison at late times, we compute
accretion periodograms, by taking the Fourier transform of
M t( ) according to Equation (25) and computing the square of
the amplitude c2(ω). This is plotted in Figure 17. All codes in
our study find a variability peak on timescales of both one orbit
and four to five orbits, in addition to many other peaks in the
periodogram. However, the amplitudes of the various peaks in
the periodogram show a great deal of variation between codes.
Much of this discrepancy is likely due to the different choices
in sink prescription. We note that Athena++ and Disco, for
example, exhibit less variability than some of the other codes
on one orbit and shorter timescales. In contrast, codes such as
Sailfish and Arepo find very large variability on orbital
timescales and shorter. Particle-based codes Gizmo and
Phantom exhibit even higher degrees of variability on all
timescales.

Figure 12. Surface density for all codes at 100 orbits. Codes are compared with similar zone spacing Δx = 0.02a at r = 3a. The discrepancies in surface density
between codes result from the different rates and times at which disk eccentricity grows in each simulation, as illustrated in Figure 10. Though we seeded this
instability with a finite perturbation, the resulting growth is very sensitive to details and results in a different measured cavity phase between codes. In addition, the
cavity precession rate is about 1.6 times as fast in 3D, so that there should be no expected agreement in the orbital phase of the asymmetry between 3D and 2D.
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The differences in sink parameters used by each code are
responsible for the most major differences in the periodograms
between codes, with faster, larger, and standard (vs. torque-
free) leading to greater variability. Dittmann & Ryan (2021)
explored this in a more controlled setting, demonstrating that at
a constant sink rate “standard” sinks lead to higher-amplitude
variability than torque-free sinks and that for a given sink
method faster sinks lead to higher-amplitude variability
(though to a much smaller extent when using torque-free
sinks). The same behavior—the presence of minidisks reducing
(quasi-)periodic accretion signatures—has also been observed
on a physical rather than numerical basis in numerical relativity
simulations (e.g., Bright & Paschalidis 2023).

As for the question of which sink prescription is more
accurate, it depends on what the user intends to model on small
scales. The torque-free sinks are designed to model disks that
extend down to radii well below the grid scale. However, if the
sink is meant to represent a resolved inner radius of the
minidisk, such as the ISCO of a black hole, then a faster sink
(and one that permitted accretion of spin) might mimic such an
inner boundary condition. Ultimately, one must try to match
their sink prescription to the physical problem at hand and keep
in mind the effects of these numerical choices on the
periodicities identified by each simulation.

5.6. 1000 Orbits—Checking the Steady State

By running our codes for 1000 orbits, it becomes possible to
establish the time it takes to reach a (quasi-)steady state. The
relaxed state of this system is typically achieved after about 200
binary orbits. This timescale is determined by both the growth
rate of the instability and the number of e-foldings that the
system must grow by to reach saturation. Accretion rate as a
function of time up to 1000 orbits is plotted in Figure 18 for
those codes that employed an infinite disk model.

Because our initial conditions assumed zero angular
momentum current through the disk (see Lynden-Bell &
Pringle 1974; Muñoz & Lithwick 2020, Equation (2)) but the

angular momentum current through the disk after settling into a
quasi-steady state through interaction with the binary was
positive ( » J M0.7 ), our simulations measured greater accre-
tion rates than the steady-state value ( pn= SM 30 0). This
enhancement following underestimation of the angular

Figure 13. Logarithm of the surface density in the Sailfish code after 300
orbits. The color map is the same as in Figure 16.

Figure 14. Smoothed torque and accretion rates as a function of time for all
codes in this study. At around 100 orbits, this torque flips sign from negative to
positive, demonstrating the importance of running codes for sufficiently long
timescales to allow the instability to develop in the disk. The middle panel
shows the excised torque, from fluid elements outside r > a. The bottom panel
shows the smoothed accretion rate. The largest discrepancies in accretion rate
can be traced back to discrepancies in the initial disk models (finite vs. infinite
disk; see Section 6.3).
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momentum current was demonstrated in Miranda et al. (2017),
and relative suppression in the case of overestimation of the
angular momentum current was noted in Dittmann &
Ryan (2022).

However, our simulations do gradually approach the
asymptotic quasi-steady accretion rate, given sufficient time.
Since the viscous time at a given radius R is tν∼ R2/ν, one can
define a viscous radius Rν(t), the radius within which we have
achieved a steady state and outside of which is out of

equilibrium (and determined by initial conditions),

n~nR t t . 281 2( ) ( ) ( )
Inside of this radius, the steady state can be determined by the
flow of mass and angular momentum

pn= - S J Mj j3 , 29( )
where J and M are both positive quantities, defined as the
inward flow of angular momentum and mass, respectively. The
right-hand side of the equation is given by the advective flux of
angular momentum (first term) and the outward flow of angular
momentum due to viscosity (second term).
This equation can be inverted to determine a solution for

Σ(R) within R< Rν(t),

pn
S =

- 
R

M J j R
3

, 30( ) ( ) ( )

where j(R)= R2Ω(R) is the specific angular momentum at the
radius R. Using = W J l Ma B0

2 , this can be expressed as

pn
S =

-R M
l a R1

3
, 310( ) ( )

which is the solution within R< Rν. Outside, we can assume
that the disk has not had time to change its surface density and
Σ=Σ0. This effectively sets a boundary condition of Σ=Σ0

at R= Rν(t), so that

pn
S =

- nM
l a R t1

3
. 320

0 ( ) ( )

Now we can invert this expression to find a solution for M as a
function of time,

pnS
=

- n

M t

l a R t3
1

1
. 33

0 0

( )
( )

( )

Using expression (28) above for Rν and including a
dimensionless overall coefficient κ,

k n=nR t t , 34( ) ( )
we arrive at the following expression for M :

pn k nS
=

- -

M t
l t a3

1
1

. 35
0 0

2 2 1 4

( )
( )

( )

Using the eigenvalue l0= 0.7, we find that the coefficient
κ= 3.2 gives a good fit to the accretion rate (see Figure 18).
For an infinite disk, this accretion rate will eventually trend

toward the asymptotic value 3πνΣ0 (the value one would find
for a single point mass with no angular momentum input), but
the 1/4 power law in the angular momentum term ensures that
the approach to a steady state is extremely slow. Running our
codes for about 40,000 binary orbits would be necessary to
achieve a value within 10% of the asymptotic value. In
practical terms, the binary torques can change the resultant disk
accretion rate over very long timescales.
To summarize, the time-averaged accretion rate onto the

binary asymptotes toward a value identical to the value for a
single point mass, but the convergence toward this rate is slow
and there can be significant enhancement in the accretion rate
(by up to a factor of 2) for many viscous times. Nevertheless,
even though the accretion rate has not leveled out, the disk has
reached a “relaxed” state; for example, the ratio of torque to

Figure 15. Time-averaged gravitational torque, normalized by WMa B
2 , for all

codes at all resolutions. The top panel shows the total gravitational torque on
the binary, whereas the middle and bottom panels separate this into excised
torque (from r > a) and “minidisk torque” (from r < a). On the surface it
appears that the different codes disagree, but these discrepancies can be
resolved by considering the dimensionality of the problem and adjusting for the
sink prescription (seen in Section 6.2).
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accretion rate has reached a steady constant value, as we will
show in Section 6.3.

6. Dependence on Numerical Choices

We have already discussed a few discrepancies in some of
the measured diagnostics between codes. We now assess
whether these discrepancies are due to numerical choices. If so,
what controls them, and which (if any) method is more
accurate? Additionally, we would like to test the effects of
additional numerical choices, such as the gravitational soft-
ening radius, the live binary orbit, and other choices implicitly
made by our codes.

6.1. 2D versus 3D

The dimensionality of our disk is arguably not a numerical
choice but a choice of what problem to solve. Nevertheless,
some codes are tailored to run in 3D and have therefore

performed a 3D version of this problem. Here we investigate
what effect this has on our computed diagnostics.
Our measurements of the gravitational torque show significant

discrepancies. In particular, the particle-based codes Gizmo and
Phantom show a significantly lower torque than the other codes
(though PLUTO also shows a smaller torque than the others).
Interestingly, Gizmo and Phantom also find a much faster
cavity precession rate. Notably, Gizmo and Phantom are
solved 3D versions of the problem, whereas the other codes are
being run in 2D. Hence, any discrepancy could easily be
explained away by arguing that these codes are solving a
different problem than the others. Unfortunately, that would not
teach us much about how these codes compare with each other.
Thus, we have performed an experiment where a grid-based code
(Athena++) is run in 3D and a particle-based code (Gizmo) is
run in 2D, to determine which of these discrepancies can be
explained purely by the dimensionality of the system.
We first investigate the cavity precession rate. We find

strong evidence that the precession rate is very different in 3D

Figure 16. Surface density for all codes at 300 orbits. Codes are compared with similar zone spacing Δx = 0.02a at r = 3a. At this stage, the asymmetry and size of
the cavity have reached their peak, and we see the saturated state of the instability. At this point, the cavity precesses and the lump of gas responsible for accretion
variability orbits the edge of the cavity, but otherwise the disk has reached a “relaxed” state—still time dependent and therefore not in a steady state, but arguably in a
quasi-steady state.
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than in 2D, sufficient to explain entirely the discrepancy seen
earlier. Athena++ finds a precession rate of Ωc/ΩB≈ 0.008
(125 orbit period) in 3D, whereas at the same resolution in 2D
the precession rate was found to be Ωc/ΩB≈ 0.004, consistent
with the converged value in 2D. So 3D gives a precession rate
that is faster by about a factor of 2. This was similarly tested by
running Gizmo in 2D. In 3D, the converged precession rate
was Ωc/ΩB≈ 0.007 for Gizmo. In 2D, we found a slower
precession rate of Ωc/ΩB≈ 0.004, in agreement with the other
codes.

The simplest explanation for the difference in precession rate
between 2D and 3D follows from the smaller cavity sizes
observed in the 3D simulations, which cause the circumbinary
disk to experience a more non-Keplerian potential and thus
precess more rapidly (e.g., Muñoz & Lithwick 2020). How-
ever, in 3D there is an additional pressure term in the evolution
equation for the disk eccentricity, which can potentially provide
a comparable contribution to the precession rate (e.g., Good-
child & Ogilvie 2006; Teyssandier & Ogilvie 2016). This

discrepancy in the precession rate between 2D and 3D is likely
some combination of the two effects.
A more complicated issue is the torque. Gizmo and Phantom

exhibited a significantly lower gravitational torque than the other
codes: low enough that one might expect the binary to migrate
inward, rather than outward. Moody et al. (2019; using the grid-
based Athena++ code) also found smaller torques in 3D, but
the discrepancy was not as large; Moody et al. (2019) predict
outward migration in both 2D and 3D.
We can shed some light on this puzzle by separating the

torque into two components: an “excised torque” that adds up
contributions with r> a and a “minidisk torque,” i.e., the
remaining component, from the minidisks themselves (r< a).
When comparing 2D and 3D torques from Athena++ and
Gizmo, we find that the excised torque (r> a) is significantly
different between 2D and 3D, enough to explain a large portion
of the discrepancy between codes. However, the minidisk
torque (r< a) does not show a large discrepancy between 2D
and 3D, and instead the spread between codes is much smaller
(this remaining discrepancy is caused by the differences in sink
prescription; see Section 6.2). Thus, we can reasonably confirm
that all codes correctly compute a converged excised torque
that agrees between codes, but there is a different answer in 2D
than in 3D, a difference of about WMa0.16 B

2 , which was noted
in Moody et al. (2019).
We find a remaining significant discrepancy in the minidisk

torque, but here there is no major dividing line between codes
—as seen in the bottom panel of Figure 15, every code seems
to converge to a different minidisk torque, with a general
spread of about WMa0.5 B

2 . Our next step is to investigate
whether this remaining discrepancy could be caused by
discrepancies in our sink prescriptions.

6.2. Sink Prescription

After accounting for the differences between 2D and 3D
versions of the same problem, a (smaller but finite) discrepancy
remains between different codes (see the bottom panel of
Figure 15). For codes running the same number of dimensions,
the biggest difference in our methods is the sink prescription,
which varies significantly between codes. It would be a major
practical challenge to implement the same sink prescription

Figure 17. Accretion rate periodograms for a subset of the codes in our study. The choice of sink prescription or boundary condition can alter predictions for
variability on different timescales. This is related to how much minidisk buffering is expected for a given inner truncation radius of the minidisk. Short-timescale
variability will depend on this choice; it is possible that eccentric binaries might have variability less dependent on the sink or boundary choice. The left panel
demonstrates what this looks like in the form of a time series; the excised Athena++ run (cyan) was included just to demonstrate the most extreme version of this
effect. As the cavity was excised in that run, there can be no minidisk buffering at all.

Figure 18. Comparison of the accretion rate reported by codes with infinite
disks and the asymptotic value for accretion onto a single point mass (dashed
gray line). M matches the analytical expression (35), which very slowly
asymptotes to the single-mass value after many thousands of orbits. In this
transient period, the accretion rate is enhanced by the presence of the binary.
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across all codes; particle-based codes tend to remove gas
instantaneously after a particle satisfies some conditions,
whereas grid-based codes often employ a sink term to the
equations, removing gas on a finite timescale. Ideally our
solutions would not depend on these choices at all, so the fact
that different codes use different sinks is a concern that we
address and quantify here.

After some experimentation, we found that our measure for
the torque (Tgrav; Equation (11)) i.e., the moment arm crossed
with gravitational force integrated over all fluid elements, is
sink dependent (if sink particles are not treated carefully;
Dittmann & Ryan 2021). The sink dependence is because the
total torque on the binary is partitioned between gravitational
and accretion torques. When angular momentum is removed
from the system by the sink, that angular momentum is no

longer available to be exchanged with the binary via
gravitational torques, and therefore it reduces the measured
gravitational torque.
In the limit of very small sinks, the spin angular momentum

removed, Jspin, should be zero, and the orbital angular momentum
removed should be = å J M j, ,i i iorb or WMa0.25 B

2 for the equal-
mass binaries studied here. However, for finite-sized sinks (as all
codes require) this can only be the case when using a careful sink
treatment (e.g., Dempsey et al. 2020; Dittmann & Ryan 2021).
We found that the different codes in our study with different

sink prescriptions removed different amounts of both orbital
and spin angular momentum from the system, leading to
different predictions for the gravitational torque. It is also true
in physical systems such as black hole accretion that there will
be a real Jspin, due to spin angular momentum removed at the
ISCO, but for the purposes of this study we consider the ISCO
to be at a much smaller radius than we are able to resolve.
However, this shows that such effects in real physical systems
may be capable of altering the sign of the torque (by stealing
angular momentum from the system and giving it to the spin of
the binary instead of the orbit).
That sinks could artificially change the measured gravita-

tional torque (sufficiently to change its sign) was first noted by
Tang et al. (2017). On the other hand, Muñoz et al. (2019)
computed the total angular momentum given to the binary by
measuring the flow rate of angular momentum through the disk
in a steady state and argued that this measurement should be
independent of the details of the sink prescription.
Many of the codes in our study are not set up to compute the

angular momentum flux through the disk. Nevertheless, we can
compute the total angular momentum given to the binary by
adding the gravitational torque to the accreted angular
momentum per unit time (both spin and orbital contributions).
The hope is that while Jacc and Tgrav are sink dependent, their
sum might not depend on the sink.
In order to compute these diagnostics, we must define Jacc in

terms of the sink term S r t,sink( ). Assume that the hydro-
dynamics equations can be expressed as

¶ S +  S = -Sv 36t i i sink( ) ( )
d¶ S +  S + = -SF - S *v v v P v . 37t j i i j iij grav sink( ) ( ) ( )

Then, the sink term S sink contains information about the rate of
removal of mass and angular momentum from the system,

ò= S M dA, 38sink ( )

ò= S ´ * J r v dA, 39acc sink ( )

where *v is the velocity associated with the removed mass and
momentum given above. For “standard” sinks, gas is removed
at the velocity of the fluid element, so =*v vhydro. However, for
alternative sink methods, such as the “torque-free” sink in
Athena++ and in Disco (Dempsey et al. 2020; Dittmann &
Ryan 2021), the velocity v* is chosen to avoid introducing
spurious torques to the system. For Athena++, this is
accomplished by boosting to the frame of the sink and
subtracting off the spin component of *v , i.e., only keeping a
radial component in the frame of the sink. For Disco (in this
study), this is accomplished in a simpler manner, by setting

=*v vsink, so that =*v 0 in the frame of the sink (although this
also affects the radial component of the velocity near each

Figure 19. Torques after being corrected by the sink term Jacc. While different
codes disagree on the value of the minidisk torque (Tgrav within r < a; top
panel) and disagree on the angular momentum eaten by their sink prescription
( Jacc), we find the sum + T Jgrav acc to converge to the same value for all codes
(shown in the middle panel). Note that if we only include the “orbital angular
momentum” accreted ( - J J ;acc spin bottom panel), the discrepancy persists.
Thus, to compute an orbital evolution of the binary that is consistent between
all codes, one must simply take all angular momentum accreted by the sink
(whether spin or orbital angular momentum) and give it to the orbital angular
momentum of the binary.
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sink). For the standard sinks employed in most codes, *v is the
local fluid velocity. Note that particle-based codes accrete gas
particles discretely, and in this study *v is simply the velocity of
the removed particle, i.e., the local fluid velocity.

Additionally, we have computed a separate quantity, the
accreted spin,

òº S - ´ -* J r r v v dA, 40s sspin sink( ) ( ) ( )

where rs and vs are the position and the velocity of the sink
particle. One can then define the accreted orbital angular

momentum:

º -  J J J . 41orb acc spin ( )

Figure 19 shows the minidisk torque in all our (nonexcised)
codes, after correcting for the sink term Jacc. The top panel
shows the raw minidisk torque (gravitational torque measured
within r< a) in units of WMa B

2 . The middle panel shows the
minidisk torque plus the total angular momentum accreted,

+ T Jmini acc, again in units of WMa B
2 , showing much better

agreement between codes. Note that this agreement disappears
if one only includes = -  J J Jorb acc spin.
How should we interpret this result? Because each code

handled accretion differently, the spin, accretion, and gravita-
tional torques measured in each code depend on these
numerical parameters (see Table 2). However, the angular
momentum current through the disk is largely set by viscosity
and the gravitational influence of the binary on the disk. Then,
thanks to Newton’s third law and the conservation of angular
momentum, this angular momentum current through the disk
directly determines the total torque on the binary. Thus, while
various codes find discrepant values of the gravitational,
accretion, and spin torques, the measured values of the
accretion eigenvalue l0 tend to be in good agreement,
regardless of accretion prescriptions or whether the binary
was on the grid or excised.
Figure 20 plots the accretion eigenvalue l0 (total angular

momentum given to the binary in units of WMa B
2 ) for all codes

at all resolutions in our study. We find that all 2D codes
converge toward l0≈ 0.7 and that 3D codes converge toward a
smaller value, l0≈ 0.5. All of this is consistent with previous
studies, which have found l0= 0.68 in 2D (Muñoz et al. 2019)

Table 2
Sink Prescriptions for Nonexcised Codes

Code γ/ΩB RS/a Type  J Macc
 J Mspin

Arepo ∞a 0.03 Standard 0.2794 0.04489
Athena++ 1.33 0.05 Torque-Free 0.24996 10−20

Disco 1 0.05 Torque-Free 0.2503 0.00075
Gizmo ∞b 0.05 Standard 0.4311 0.09650
Mara3 10 0.05 Standard 0.3332 0.08096
Phantom ∞b 0.05 Standard 0.3273 0.17258
PLUTO 103 0.075 Standard 0.5073 0.18770
Sailfish 10 0.05 Standard 0.3395 0.00602

Notes. Fargo3D was not included in this table, as this method excised the
binary for all runs.
a Arepo removed a fraction (up to 50% nearest the sink particle) of the mass
within each cell within the sink region every time step, resulting in a
comparatively large but time-dependent sink rate.
b Gizmo and Phantom removed particles within the sink region
instantaneously.

Figure 20. Final comparison between all codes on the total angular momentum delivered to the binary, after including the sink term Jacc. Vastly better agreement is
found between codes after accounting for this contribution. 2D codes consistently converge toward an eigenvalue of l0 ≈ 0.7.
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and l0= 0.56 in 3D (Moody et al. 2019). All 11 numerical
techniques find outward migration for the binary in the relaxed
state of the disk, so long as the code’s resolution is sufficiently
high. In practice, this requires a resolution of around
Δx 0.01a in the vicinity of the minidisks and a resolution
of Δx 0.03a at r= 3a for grid codes, while particle-based
codes require higher resolution (by this metric) to achieve
convergence.

6.3. Finite versus Infinite Disk

The effect of a finite disk has already been investigated by
Muñoz et al. (2020). Nevertheless, we can empirically
demonstrate any difference between a finite and infinite disk,
by comparing the two choices for f (r) in Equation (3). Surface
density evolution of the two different models is plotted in
Figure 21. Torque as a function of time for the two models is
plotted in Figure 22. When one waits for a sufficiently long
time, the torque and accretion rates are reduced in the finite-

disk case, due to the fact that the disk mass is being depleted
and the disk is spreading. However, even in this case, if one
plots the ratio of torque to accretion rate, one achieves an
identical answer between finite and infinite disks. Therefore,
both models provide an equivalent measurement of the torque.

6.4. Live versus Fixed Binary

Most of these calculations employ a binary on a fixed
circular orbit, assuming the limiting case where the binary
orbital evolution is slow compared to the relaxation time of the
disk. Such a choice is only valid in the limit of a low disk mass,
akin to a test particle in orbital dynamics. If one wishes to
follow the interaction of a binary with a substantially massive
disk, the binary orbit should react accordingly. We measure
whether this effect is significant for low disk mass by analyzing
orbital evolution in the Phantom code run, where the orbit is

Figure 21. Evolution of our two disk models over time in the Disco code.
During the first 100 orbits or so, the finite and infinite disks exhibit similar
surface density. However, as time evolves, the finite disk accretes mass and
spreads, reducing the surface density to half its original value over 1000 orbits.
The infinite disk reaches a reasonably steady configuration at Σ ∼ Σ0. At late
times, the disk structure is completely different, but the torque (when
normalized to M ) is nearly identical, as shown in Figure 22.

Figure 22. Finite and Infinite disk models compared in the Disco code over
1000 orbits. As shown in Figure 21, the disk structure at 1000 orbits is
completely different, such that the torque and accretion rate are about half as
large in the finite disk as they are in the infinite disk. However, their ratio T M
is identical for the finite and infinite disk; this ratio does not appear to depend
on disk structure at all, though a more systematic investigation of different disk
models might be able to demonstrate this explicitly.
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not fixed a priori but the disk mass is assumed to be negligible,
i.e., Md/M= 5× 10−6, in order to minimize the change in
binary orbit due to the interaction with the disk.

For a circular equal-mass binary, the orbital angular
momentum is

= W =J Ma M GMa0.25 0.25 . 42B
2 ( )

As the orbit and mass of the binary change, one can compute
= W J l Ma B0

2 in terms of a and M ,

= + =
   J
J

M
M

a
a

l
M
M

3
2

1
2

4 . 430 ( )

This reduces to an expression for a in terms of M ,

= -
 a
a

l
M
M

8 3 , 440( ) ( )

which can be solved to determine the separation as a function
of mass a(M),

µ -a M . 45l8 30 ( )
In general, we expect our assumption to neglect variations of

the binary orbit not to be valid when the disk mass is significant
in comparison to the binary mass (see, e.g., Franchini et al.
2023; Tiede et al. 2024, for a discussion). In particular, at the
resolution tested, with an eigenvalue l0= 0.39, we obtain the
scaling a(M)∝M0.1, consistent with the numerical result by
Phantom, as shown in Figure 23.
Note that an artificial period of inspiral occurs (consistent

with the negative torque seen in all codes for the first 100
orbits). This highlights the need for long-duration computations
to ensure that such artificial start-up transients do not dominate
the solution. This is important because in the first 100 orbits the
solution should depend on our choice of initial density profile,
whereas the late-time behavior does not. For example,
Figures 21 and 22 show that very different disk models give
nearly identical accretion eigenvalues l0 in a steady state; this
was also shown previously by Muñoz et al. (2020).
It should also be noted that the live binary setup in

Phantom only includes the orbital angular momentum
accreted, Jorb, not the total accreted angular momentum—i.e.,
it neglects Jspin, assuming that this term does not contribute to
the total angular momentum of the binary (e.g., assuming that
the point mass is a black hole and the spin is accreted and spins
up the hole). Thus, for the live binary setup of Phantom, the
expansion of the binary will follow

µ -*a M , 46l8 3 ( )
where

=
+

W*


l
T J

Ma
, 47

B

grav orb
2

( )

which explains the somewhat slower expansion rate than one
would expect by including both orbital and spin angular
momentum accreted. Nevertheless, the migration of the binary
orbit does not affect the measured torques or accretion rates,
and the migration is consistent with the gravitational torque
combined with the accreted orbital angular momentum term.

6.5. Gravitational Softening

One approximation that was made for the sake of uniformity
across codes was the form of the gravitational potential,

f =
- +

 
GM

r r
, 48i

i

i
2 2( )

( )

with ò= 0.05. As a simple test of how much this affects our
solutions, we ran this same problem using the Athena++ code
using a range of values of ò. The results of this series of
calculations appear in Figure 24. We find that for sufficiently
small ò 0.15a our measured torque is independent of the
choice of ò, suggesting that the gravitational softening does not
affect our results. This also suggests that the precise form of the
potential did not matter in the vicinity of the point masses (as
some studies favor cuspier potential forms, e.g., using spline
softening). A softening of ò∼ 0.15a is quite large, comparable
to the size of the minidisks. We did not test the eccentric case,
but it is likely that this nice “plateau” behavior would occur at

Figure 23. Employing a “live binary” in the Phantom code. For sufficiently
low surface density Σ0, the impact of the live binary is negligible and the
binary migrates according to Equation (46) (orange dashed line), with
l* ≈ 0.39 consistent with the measured torques. Additionally, there is an
artificial start-up transient consistent with the negative torques seen in the first
150 orbits, highlighting the need for long-duration computations.

Figure 24. Gravitational softening was varied in the Athena++ code. The
value of ò represents the length scale being smoothed over. This demonstrates
that our fiducial value ò = 0.05a is much smaller than necessary to give
converged torques. The criterion turns out to be ò  0.15a. This criterion would
likely vary with the Mach number, mass ratio, or eccentricity of the binary.
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smaller scales if the binary were of unequal mass or on an
eccentric orbit, or orbiting retrograde to the disk (see softening
studies in Dittmann & Ryan 2024; Tiede & D’Orazio 2024), so
we can only say what value and form of the potential are
sufficient for this specific test problem. For example, the value
of ò found in this study is sufficiently small that softening is
negligible beyond the Roche lobe of each sink; naturally, this
scale would become smaller near the pericenter of an eccentric
orbit or around lower-mass objects. Regardless, for this test
problem, our softening length is sufficiently small and, as
shown in Dittmann & Ryan (2021), the precise form of the
potential is immaterial.

7. Conclusions

We have developed a straightforward code test that exhibits
the basic fundamental features of the binary−disk problem. We
have tested 11 very different numerical schemes on this same
problem, to assess code performance and to test whether very
different codes can agree on the solution to the same underlying
physics problem. Our code outputs have been made public on a
static Zenodo repository at doi:10.5281/zenodo.10557951
(Duffell 2024) and online.26 Although there are some expected
differences between 2D and 3D setups, overall we find general
agreement between codes, with small deviations that we
believe can be accounted for or understood.

Over the first 1–10 orbits, all codes can achieve high-
precision convergence (this includes both excised runs and
calculations performed in 3D), and this work can therefore
provide a convenient code test for checking one’s initial setup,
diagnostics, and code convergence.

Over the first 100 orbits, the disk becomes eccentric, and
agreement between codes becomes more difficult to determine. We
find agreement in the growth rate of the instability Γc/ΩB≈ 0.012
and the precession rate of the cavity Ωc/ΩB≈ 0.004. Here is where
we first see differences between 2D and 3D, as the cavity is
smaller in 3D and the precession rate is faster (more like 0.045 per
binary period). The instability growth rate, however, seems to be
comparable between 2D and 3D.

For the problem studied here, torque saturates to a steady state
in a few hundred orbits. At this time,  J M is independent of the
disk size (as also shown previously by Muñoz et al. 2020), as
demonstrated by Figures 21 and 22. This suggests that this code
test can be extended to more complicated and disk models. The
final average gravitational torque was » WT Ma0.5 Bgrav

2 , albeit
with significant discrepancies between codes.

The biggest contribution to this discrepancy was the fact that
some codes were run in 2D, while others simulated these
models in 3D. By running Athena++ in 3D and Gizmo in
2D, we were able to determine how much of the discrepancy
was due to the dimensionality of the problem. This accounts for
a discrepancy of d » WT Ma0.16 B

2 , with 3D calculations
experiencing a lower (but still positive) torque. This difference
between 2D and 3D torque is consistent with the difference
found by Moody et al. (2019).

After accounting for this discrepancy, smaller discrepancies
remained between codes, which were caused by the different
sink prescriptions employed. However, the total angular
momentum current through the disk should be largely
independent of most sink choices, and thus the total torque on

the binary should not depend on the sink prescription. This also
leads to good agreement between excised codes and those that
simulate the binary itself. This also shows that, in a real physical
system, if the point masses remove angular momentum from the
disk and contribute it to the spin (e.g., if the black hole ISCO is
sufficiently large), this could remove angular momentum from
the circumbinary disk without giving it to the binary’s orbit,
affecting the rate or direction of an object’s migration.
After accounting for both dimension and sink discrepancies,

there are still (much smaller) deviations in the torque between
codes, which could reflect how precisely these codes are able to
converge. Nevertheless, all codes are sufficient to predict the
direction of migration.
For this test problem, all codes found outward migration.

Most codes fixed the binary orbit and mass, but some used a
live binary, which obeyed the scaling

µ -a M , 49l8 30 ( )
consistent with the angular momentum eigenvalue

=
+

W


l

T J

Ma
. 50

B
0

grav acc
2

( )

Thus, for sufficiently low disk mass, including the live
reaction of the binary orbit to the gas forces is not vital for
determining the orbital evolution of the system. This can be
understood in the limit where the disk is modeled as a “test
fluid” and hence the orbital evolution of the binary is sufficiently
slow that it can be well approximated by a fixed orbit.
Overall, we found 2D codes converged to an eigenvalue of

l0≈ 0.7 (with 3D codes converging to a lower value, l0≈ 0.5)
and that this eigenvalue was very consistent across all 2D
codes, so long as accreted angular momentum was accounted
for. Codes that excised the binary were able to recover this
eigenvalue so long as the angular momentum flow through the
excision radius was accounted for.
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Appendix
Code Descriptions

In the following, we provide details for each code and the
various algorithmic choices employed in this work.

A.1. Arepo

Arepo (Springel 2010) is a moving-mesh hydrodynamics
code based on a dynamic Voronoi tesselation of the
computational domain performed each time step. Arepo was
originally designed for cosmological simulations but has been
adapted for the solution of the Navier–Stokes equations
(Muñoz et al. 2013) and the study of astrophysical disks
(e.g., Muñoz & Lai 2016), especially protoplanetary disks and
circumbinary disks. The mesh motion helps by performing
hydrodynamic calculations in the frame of the otherwise
supersonic (Mach 10 in this study) flow. Additionally,
Arepoʼs resolution is naturally adaptive in nature, resulting
in much higher resolution in the minidisks surrounding each

point mass than farther out in the disk (the zone size near each
binary component is nearly an order of magnitude smaller than
it is at a radius of a few times the binary separation).

A.2. Athena++

Athena++ is a finite-volume code, supporting Cartesian,
cylindrical, and spherical geometries in addition to both static
and adaptive mesh refinement (Stone et al. 2020). Athena++
is a rewrite of the Athena code (Stone et al. 2008) using
C++, which introduced new features such as block-based
adaptive mesh refinement (e.g., Stout et al. 1997) and dynamic
task scheduling. In this work, Athena++ has been used to
solve the equations of viscous hydrodynamics in both 2D and
3D, using both Cartesian coordinates with the binary on the
grid and cylindrical coordinates with an excised binary.
The 2D Cartesian simulations used the Roe approximate

Riemann solver (Roe 1981), the third-order piecewise parabolic
spatial reconstruction (Felker & Stone 2018), and the second-
order van Leer (VL2) predictor–corrector time integrator
described in Stone & Gardiner (2009). We also carried out a
limited number of 3D simulations in Cartesian geometry,
utilizing piecewise linear spatial reconstruction (van Leer 1974),
the VL2 time integrator, and the HLLC approximate Riemann
solver (Toro et al. 1994).

A.3. Disco

Disco is a finite-volume code that employs a moving,
shearing polar grid (Duffell 2016). The numerical method is
essentially the “moving-mesh” technique of Arepo, but rather
than using Voronoi cells, Disco employs moving volumes
that are wedgelike annular segments (as in a fixed polar grid
code) that can shear azimuthally. The moving mesh reduces
advection errors as it does in Arepo, but the smooth shearing
of the zones reduces numerical noise, which can be
advantageous for many problems, especially where subtle or
weak nonlinear effects must be evolved and measured along-
side the large bulk Keplerian shear flow of the disk.
In this comparison, Disco was run in two configurations,

one in which the grid extended to r= 0, and another with an
excised inner region. In the former, the grid spacing was
logarithmic at large radii and linear near the origin, and the
azimuthal resolution was varied in each annulus to maintain a
roughly constant aspect ratio. In the latter configuration, a
diode boundary condition was applied at the excision radius
(r= a, where a is the binary separation). Notably, both versions
of Disco used in this study employed a simplified version of
the viscous terms in the hydro equations (see Duffell 2016,
Section 2.9 and the Appendix, for the precise equations being
integrated). When compared with a version of the code that
includes all viscosity terms in the equations, one finds only
minor deviations for equal-mass binaries such as those studied
in this comparison (see Appendix A of Dittmann & Ryan 2021),
but larger deviations have been found for unequal-mass
binaries (see Appendix B of Dittmann & Ryan 2024).

A.4. Fargo3D

Fargo3D (Benítez-Llambay & Masset 2016), the successor
of the FARGO code, is a versatile multifluid HD/MHD code
that runs on clusters of CPUs or GPUs, with special emphasis
on protoplanetary disks. An important aspect of Fargo3D,
which makes it ideal for the study of protoplanetary disks, is
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the orbital advection scheme originally developed in the
FARGO code (Masset 2000), for use with tracking highly
supersonic orbital motions. The code’s name being Fargo3D
may cause some confusion, as it has only been run in 2D in this
study (though, as the name suggests, it is capable of 3D).
Distinguishing features of FARGO3D include its use of a
staggered grid with face-centered velocity components and an
artificial von Neumann–Richtmyer artificial viscosity as in
Stone & Norman (1992).

A.5. Gizmo

Gizmo is a multimethod and multiphysic code for hydro-
dynamics simulations that implements smoothed particle
hydrodynamics (SPH), meshless finite volume (Gaburov &
Nitadori 2011), and meshless finite mass schemes (Hopkins
2015). The last are very similar to moving-mesh methods,
except that the Riemann problem is solved across smooth
boundaries (“faces”) between particles instead of using the
faces resulting from a Voronoi tessellation. In particular, the
method employed here is the meshless finite mass one, which
implicitly assumes a deformation of the face between particles
such that there is no mass flux between them, effectively
making the method Lagrangian.

In this study, Gizmo has been used coupled with adaptive
particle splitting for numerical refinement of the gas dynamics
inside the disk cavity (see Franchini et al. 2022, 2023, for
details). The kernel size for the hydrodynamic interaction is
defined by an effective number of neighbors equal to 58
(Franchini et al. 2022). The binary is modeled using two sink
particles (Bate et al. 1995), each with sink radius rsink= 0.05a
(particles within this radius are removed from the simulation).

A.6. Mara3 and Sailfish

Mara3 and Sailfish both use a fixed-mesh second-order
Godunov solver. They solve the locally isothermal and vertically
averaged Navier–Stokes equations in Cartesian coordinates.
Mara3 is an older code originally configured to study relativistic
MHD turbulence (Zrake & MacFadyen 2012). Features have
been added specifically for simulations of the binary accretion
problem, including the locally isothermal equation of state,
viscous fluxes (constant-ν or constant-α), fixed-mesh refinement,
test particles, and post-processing. Mara3 was used to calculate
gas-driven orbital evolution in Tiede et al. (2020) and Zrake
et al. (2021) and to study kinematic aspects of binary accretion
using test particles in Tiede et al. (2022). Sailfish is a GPU-
accelerated version of Mara3 that also includes post-processing
modules to synthesize light curves of thermal disk emission. It is
the code that was used in Westernacher-Schneider et al. (2022),
Major Krauth et al. (2023), and Westernacher-Schneider et al.
(2024). Sailfish is very fast (109 zone updates per second
for this problem on an A100 GPU), and it runs efficiently on
multi-GPU nodes.

A.7. Phantom

Phantom is an SPH (Gingold & Monaghan 1977;
Lucy 1977; Monaghan 1992) and smoothed particle magneto-
hydrodynamics (Price 2012) 3D code (Price et al. 2018),
developed for applications in the context of stellar, galactic,
planetary, and high-energy astrophysics. The code has been
used widely for studies of accretion disks (e.g., Lodato &
Price 2010) and turbulence (e.g., Price & Federrath 2010), from

the birth of planets (e.g., Dipierro et al. 2015) to how black
holes accrete (e.g., Nealon et al. 2015; Ragusa et al. 2016), and
more specifically for circumbinary disks (e.g., Facchini et al.
2013, 2019, 2021; Nixon et al. 2013; Ragusa et al. 2017;
Smallwood et al. 2019; Hirsh et al. 2020).
In this work, the binary is modeled using two sink particles

(Bate et al. 1995; Nixon et al. 2013; particles are removed from
the simulation when they cross rsink= 0.05a and other criteria
are met). Viscosity is calculated including the viscous stress
term using two first derivatives (Price et al. 2018) and constant
ν= 10−3, as prescribed for this code comparison setup. The
artificial viscosity parameter for each particle is allowed to vary
between 0.1< αAV,i< 1 using the Cullen & Dehnen (2010)
switch for shock capturing and βAV= 2 to avoid particle
interpenetration. Individual particle time stepping has been
used to speed up the simulations. For this work, five
simulations differing for their resolution have been performed
(using 1M, 10M, 20M, 50M, and 100M particles). Among
them, only those with 1M, 10M, and 20M particles reached 300
binary orbits. Results from the 50M- and 100M-particle runs
will be used for diagnostics in the first 10–15 binary orbits. The
resolution Δx/a used to compare the various diagnostics has
been calculated as the mode of the distribution of the particle
smoothing lengths in the region of reference prescribed.

A.8. PLUTO

PLUTO is a finite-volume grid code developed by Mignone
et al. (2007) using Cartesian, cylindrical, or spherical grids.
PLUTO was created to solve astrophysical problems that require
hydrodynamical, magnetohydrodynamical, and relativistic hydro-
dynamical prescriptions. The version used in this project is a
GPU-capable modification by Thun et al. (2017). The numerical
setup generally follows Thun et al. (2017). We use an HLL-
solver and a VL2 for the simulations. The binary is modeled in a
2D polar configuration with a radially logarithmic spaced grid up
to 0.3a and another 30 cells linearly spaced down to 0.03a. The
inner boundary reflects radial velocities and density, such that no
mass is lost at the inner radius near the origin.
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