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Abstract

Many studies have recently documented the orbital response of eccentric binaries accreting from thin circumbinary
disks, characterizing the change in the binary semimajor axis and eccentricity. We extend these calculations to
include the precession of the binary’s longitude of periapse induced by the circumbinary disk, and we characterize
this precession continuously with binary eccentricity eb for equal mass components. This disk-induced apsidal
precession is prograde with a weak dependence on the binary eccentricity when eb 0.4 and decreases
approximately linearly for eb 0.4; yet at all eb binary precession is faster than the rates of change to the semimajor
axis and eccentricity by an order of magnitude. We estimate that such precession effects are likely most important
for subparsec separated binaries with masses 107 Me, like LISA precursors. We find that accreting, equal-mass
LISA binaries withM< 106 Me (and the most massiveM∼ 107 Me binaries out to z∼ 3) may acquire a detectable
phase offset due to the disk-induced precession. Moreover, disk-induced precession can compete with general
relativistic precession in a vacuum, making it important for observer-dependent electromagnetic searches for
accreting massive binaries—like Doppler boost and binary self-lensing models—after potentially only a few orbital
periods.

Unified Astronomy Thesaurus concepts: Orbits (1184); Accretion (14); Hydrodynamical simulations (767);
Supermassive black holes (1663); Gravitational waves (678)

1. Introduction

Circumbinary accretion is astrophysically important for a
variety of binaries ranging from protoplanetary systems to binary
stars to massive black hole binaries. In recent years, much
numerical work has been performed to determine both the binary
orbital and disk morphologic response to in-plane, prograde
accretion (MacFadyen & Milosavljević 2008; Cuadra et al.
2009; Shi et al. 2012; Shi & Krolik 2015; D’Orazio et al. 2016;
Muñoz & Lai 2016; Miranda et al. 2017; Tang et al. 2017;
Moody et al. 2019; Duffell et al. 2020; Heath & Nixon 2020;
Muñoz & Lithwick 2020; Tiede et al. 2020; Franchini et al.
2021; Dittmann & Ryan 2022). Many of these works have
focused primarily on equal-mass binaries with circular orbits, but
the most recent studies have begun characterizing accreting
binary systems across binary orbital eccentricities. In particular,
both Zrake et al. (2021) and D’Orazio & Duffell (2021) found
that while near-circular binaries with eccentricity e 0.1 have
their eccentricity damped toward orbital circularity—where the
accretion flow causes them to expand their orbit—all other initial
binary orbital eccentricities e 0.1 are driven toward an
equilibrium eccentricity eeq∼ 0.4–0.45, and at eeq the disk
causes the binary to shrink its semimajor axis. This is in
agreement with three values of the eccentricity studied in Muñoz
et al. (2019). Siwek et al. (2023) established that this general
phenomenon holds true for all binary mass ratios q> 0.1 with an
equilibrium eccentricity that can vary from 0.25 eeq 0.5 (but
did not find a circularizing regime at small e). Tiede & D’Orazio
(2024) additionally investigated the orbital response of eccentric

binaries in retrograde disks and found, contrary to prograde
solutions, that the binary orbital eccentricity grows and the
semimajor axis shrinks at all eccentricities e� 0.8.
For all of these studies, measurements of the binary orbital

response to accretion from a circumbinary disk are focused on
the disk-mediated rate of change in the binary semimajor axis,
orbital eccentricity, and mass ratio (Duffell et al. 2020;
Dittmann & Ryan 2023). However, in order to fully
characterize disk-driven alterations to the binary orbit, one
must also consider binary apsidal precession induced by the gas
forces. Such effects have recently been noted in simulations of
stellar-mass binaries embedded inside active galactic nuclei
disks (Dittmann et al. 2023a; Calcino et al. 2023) but have not
been addressed in detail from full steady-state solutions of
isolated binaries accreting from thin disks. However, the
presence of disk-induced binary precession has the potential to
alter existing solutions for the orbital evolution of accreting
binaries as well as to leave detectable effects in the
observations of these systems with electromagnetic and
gravitational waves (GWs).
Using existing data from D’Orazio & Duffell (2021), in this

paper we calculate the disk-induced apsidal precession of the
binary continuously for all eccentricities 0< e< 0.9. In
Section 2 we briefly describe the simulations that underpin
our analysis and lay out our framework for calculating and
contextualizing the induced binary precession. In Section 3 we
present our computations for the disk-induced binary preces-
sion and an analysis on its dynamical origin. Section 4 details
how and when such precession may be important for current
and future modeling of accreting binary systems, and Section 5
addresses how and when this precession might appear in
observations of massive black hole binaries with periodic light-
curve searches and the space-based GW detector LISA.
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2. Methods

The data used in this study are the same as those from
D’Orazio & Duffell (2021, hereafter DD21). We highlight the
most germane aspects of the system setup and numerical
solution below and refer the reader to DD21 and Duffell et al.
(2020) for more specific details.

Data were generated using the grid-based, moving-mesh
hydrodynamics code DISCO to solve the 2D equations for
viscous, locally isothermal hydrodynamics in the presence of a
time-varying binary potential. The binary has equal-mass
components and is always fixed on a Keplerian orbit. The
circumbinary disk is treated in the thin-disk limit with an aspect
ratio h r 0.11~ =- (where is the Mach number of the
flow). The disk viscosity is chosen as a constant kinematic
viscosity ν= 10−3a2Ω, where a is the binary semimajor axis and
Ω is the binary orbital frequency. The system is initially fixed on a
circular orbit where it is run for 500 orbits to reach a quasi-steady
configuration, and then the eccentricity of the binary eb is
increased adiabatically up to eb= 0.9 over 2× 104 binary orbits.

As a diagnostic, DISCO outputs all forces f on the binary
due to the gas. The precession of the binary’s longitude of
periapse can be calculated from these forces (Murray 1994) as
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whereM is the total binary mass and ν is the orbital true anomaly.
There is no contribution to this precession from the accretion of
mass (M ), and we demonstrate this in Appendix A. There is a
small contribution from the direct accretion of momentum, but
these effects are subdominant to the gravitational forces from the
circumbinary material; so all effects herein are calculated only
from the gravitational forces on the binary.

In order to translate this precession into meaningful units, we
rewrite Equation (1) as
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where Σ0 is the density scale and v GM ab = is the average
binary orbital velocity. fĩ denotes the specific forces (accelera-
tions) measured in code units, where GM=Σ0= a= 1. simv is
the measured precession rate in code units. Therefore, the
physical binary precession rate from the circumbinary disk can
be written in terms of the binary orbital frequency
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where qD=Σ0a
2/M is the disk-to-binary mass ratio. The

magnitude of the binary precession relative to other relevant
timescales (discussed below) depends on the magnitude of qD.
Because the underlying simulations are scale free (i.e., are true
for all mass and length scales a, M, and Σ0),

3 derivatives of the

binary orbital elements are typically reported per unit mass
accreted (in units of M ) as opposed to per unit time. Thus, we
can also express the precession rate per accreted mass by noting
that in a steady state M 30 0 pnS = with M0 being the accretion
rate through the disk and ν= ν0a
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3. Results

The primary finding of DD21 was the continuous character-
ization of how an accreting binary changes its semimajor axis
a a and eccentricity eb as a function of the binary eccentricity.
In Figure 1 we plot these same curves for a a and eb and add
the new measurement of the binary apsidal precession rate

2bv p according to Equation (4). Apsidal precession is shown
by the black curve, the change in the semimajor axis by the
purple, and the change in eccentricity in orange. We observe
that disk-induced binary precession is prograde and approxi-
mately constant for eb 0.3, peaks at eb≈ 0.4, and decays
approximately linearly for eb 0.4. In Appendix B, we also
show the binary apsidal precession induced by a retrograde
CBD (Tiede & D’Orazio 2024), noting that such scenarios only
change the precession rate by at most a factor of 2.4 We include
approximate fitting functions for these curves in Appendix C.
Of primary note, we see that the apsidal precession of the

binary is a full order of magnitude faster than corresponding
changes to the binary eccentricity and semimajor axis. We can
cultivate an intuitive understanding of this by more closely
examining the forces on the binary. In particular, the disk
always exerts a comparatively large outward radial force on the
binary (except for short times at the pericenter when eb is

Figure 1. Change in binary orbital elements per unit accreted mass: longitude
of periapse (black), semimajor axis (purple), and eccentricity (orange). We see
that binary precession occurs on an order-of-magnitude faster timescale than
changes to the binary semimajor axis or eccentricity. We note that these values
can be mapped to units that depend on the disk mass qD and binary orbital
frequency through Equation (4).

3 To the extent that the assumptions of a thin, radiatively efficient, and
gravitationally stable disk hold true; this is discussed further in Section 4.

4 One might also consider inclined disks where the interplay of binary and
disk eccentricity with binary and disk inclination can follow more complex,
Kozai–Lidov-type oscillations that are tied with the disk-induced precession
(see Martin et al. 2023).
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large). This is evident in Figure 2, which shows the average
radial (orange curve) and azimuthal (green curve) force at each
binary phase (here given by the orbital true anomaly ν) for four
representative eccentricities eb= {0.1, 0.3, 0.5, 0.7}. Generally
speaking, the radial force is largest near the binary apocenter
and smallest near the pericenter because these are when the
components are nearest and furthest, respectively, from the
CBD cavity edge and the bulk of the disk. To illustrate this, a
generalized gravitational force f K r rc b

2( )= - between a
point mass placed at the disk cavity radius rc= 3a and another
particle on a Keplerian orbit with phase-dependent radius
r a e e1 1 cosb

2 /( ) ( )n= - + with the constant arbitrarily
chosen as K= 2. However, at larger eccentricities, this
approximation breaks down because of increasing amounts of
persistent intra-orbit material.

The large radial force does not contribute significantly to a and
eb because these are only affected by torques (T= rff) and
components of the work W f v f sinr r r n~ µ (see Appendix A).
The latter is almost always small because vr is antisymmetric
around pericenter/apocenter (sin n dependence), whereas the large
outward portion of fr due to the bulk of the disk is symmetric
around the same points (with varying r(ν)). Thus, only a small
antisymmetric part of fr contributes to a and e. This can be seen in
the top panel of Figure 3 which shows the cumulative sum
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). One can see that the orbit average of
f sinr n is nearly zero, such that the large radial force from the bulk
of the CBD plays a subdominant role in a and eb . However, the
precession rate is proportional to the binary acceleration as opposed
to the orbital velocity, f cosrbv nµ (see Equation (3) and
Appendix A). The bottom panel of Figure 3 illustrates the
corresponding orbital average f cosr̃ò n¢

n
, which is notably larger

than the purely antisymmetric component, giving a substantial
contribution to the binary precession. Therefore, as the binary
moves from the point of maximal outward radial velocity through
the apocenter to the point of maximal negative inward velocity, it
decelerates, and the outward radial force fights this, hence delaying
the apocenter turning point. This slows the radial oscillations of the
orbit compared to the azimuthal oscillations advancing the
pericenter angle. The opposite happens during the accelerating
portion of the binary orbit. The force near the apocenter is stronger
than that at the pericenter because the binary is closer to the
circumbinary disk, and this mismatch leads to the pericenter
advancing prograde with the orbit. Interestingly the f cosr n
symmetric part of fr does no work on the binary, and rather—in
analogy to the magnetic portion of the electromagnetic field tensor
—only changes its orientation via bv .

The trend toward constant time-averaged bv at small e can
be understood by expanding the dominant fr term in
Equation (1) in terms of the mean anomaly M t˜ ( ),
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Averaging the above over an orbit will yield the time-averaged
value of the precession rate Pbvá ñ . As seen in the top panel of
Figure 2, at small eb we can approximate f A e M1 cosr r ( ˜ )= -

Figure 2. Average forces in the radial (orange) and azimuthal (green)
directions at each binary phase (true anomaly, ν). At nearly all phases, there is a
large outward radial force from the bulk of the CBD, which is the dominant
contribution to the total force (except at the pericenter when eb is large; e.g.,
eb = 0.7). The dashed blue line shows the linear force in a toy model between a
point mass at the disk cavity radius rc = 3 a and a particle on a Keplerian orbit
with eccentricity eb and radius r e e1 1 cosb b b

2( ) ( )n= - + as it sweeps
through true anomalies ν ä [0, 2π].
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with Ar constant. The orbital average, then, is
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which for Ar∼ 0.5, from the top panel of Figure 2, corresponds
to the value plotted in Figure 1 at e 0.2 (by Equation (4),

M M q13 2 0.77 ;D b0p ´ » W see Figure 4).
Lastly, we note that because the precession rate is dominated

by the outward radial pull of the CBD, we expect our results to
be comparatively insensitive to system uncertainties like the
disk thermodynamics (unlike the other orbital elements; see,
e.g., Tiede et al. 2020; Dittmann & Ryan 2022; Wang et al.
2023) or whether the binary is prograde or retrograde
(Appendix B).

4. Implications for CBD Modeling

4.1. Binary versus Disk Precession

Most prior solutions for eccentric binaries accreting from
steady-state disks assume that the binary is on a fixed Keplerian
orbit and does not precess.5 A primary finding for circular (and
low-eb) systems is that the CBD becomes eccentric and
precesses around the binary with a frequency comparable to

that induced by the binary potential’s quadrupole moment (e.g.,
MacFadyen & Milosavljević 2008; Shi et al. 2012; Muñoz &
Lithwick 2020)
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where q is the binary mass ratio and rc is the approximate
radius of the disk cavity. DD21 found that this holds for
eccentric binaries eb 0.2, but that for 0.2 eb 0.4 the disk
undergoes a state transition to a predominantly symmetric,
nonprecessing configuration; for eb 0.5 the disk becomes
highly eccentric and precesses around the binary slower than
the associated frequency from the binary quadrupole moment.
However, it is conceivable that such behavior could be altered
if the binary is also precessing at a comparable rate.
In order to determine the relative importance of binary

precession compared to the disk precession itself, we compare
the binary precession rate to that of a test particle in the
quadrupole potential of the binary and to the measured disk
precession rate Dv from DD21. This is illustrated in Figure 4
where the black curve is equivalent to that in Figure 1, except
given in units according to Equation (3). The colored curves in
the left panel show the precession rate from the binary
quadrupole moment with q= 1 and rc= 3.25a scaled into
equivalent units through qD. The curves in the right panel show
the same comparison to the measured disk precession rate,
again scaled to equivalent units through qD. The displayed
values of qD were chosen to highlight values of the disk-to-
binary mass ratio where the disk-induced binary precession
might compete with the precession of the disk itself. In
particular, we see that for disk masses MDM/400, the
induced binary precession is always subdominant to the
precession of the disk itself (and quadrupolar precession at
rc= 3.25a). However, for disk masses MDM/400, the
induced binary precession can compete with the precession
of the disk at most eccentricities, and for masses MDM/100,
the binary precession is always faster than that of the disk. In
these regimes, the effects of binary precession may be
significant for the full hydrodynamics solution including the
disk precession itself. The exceptions to this are for
0.2 eb 0.4 when the disk ceases to precess, causing the
binary precession to always dominate in this regime.
For intermediate values of the disk mass 1/400

qD 1/50, we can solve for the critical value where the binary
precession rate equals that of the quadrupolar rate and disk rate,
respectively; these values are shown as a function of the
eccentricity in Figure 5. The green dashed curve shows the
critical values of 1/qD for quadrupolar precession at rc= 3.25a,
and the gold-solid curve illustrates the critical values for the
empirical disk precession. The shaded regions below each
curve show disk masses where binary precession dominates.
We see, again, that because the disk ceases precession for
0.2 eb 0.4, the critical value of 1/qD diverges, and binary
precession dominates always. In this case, the bounding
timescale would be the viscous time in the disk, i.e., if binary
precession is fast and the orientation of the gravitational
potential rotates faster than the disk can relax in response to
their changing relative orientation.

Figure 3. Cumulative sum of the radial force times the sine (top) and cosine
(bottom) of the binary phase. The evolution of the binary semimajor axis and
eccentricity are proportional to the former, and we see that the sum over a full
binary orbit is comparatively very small because of the predominantly
symmetric nature of the radial force. The precession of the binary’s longitude
of pericenter, however, is proportional to the latter, which remains
comparatively large when summed over a full orbit.

5 However, solutions from smoothed particle hydrodynamics studies that
directly integrate the binary orbit ought to observe this effect for large enough
disk masses.
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4.2. The Viscous Limit

Similar to Section 4.1, we can compute an estimate of the disk
mass where binary precession (and the other evolution effects)may
influence the full solution by equating their characteristic timescales
to the viscous time in the disk. That is to say, we compute the disk
mass where the binary changes its orbit elements faster than the
disk can relax and communicate these changes viscously. We
compute the characteristic number of orbits τχ required for an
order-unity change to each of the binary orbital elements

a a e, , 2b b{ }  c v p= through Equation (3) (and as the inverse
of the curves shown in Figure 1). We note that we can generalize
Equation (3) to qd bsim c c= W , such that the timescale associated

with each c is set by qD. Thus, in Figure 6 we compute the value of
qD, where the timescale for changing each orbital element equals
the viscous time at the cavity wall t cavt =c n as a function of the
binary eccentricity. We see that the limit for the disk’s ability to
relax viscously to changes in a a and eb occurs at disk masses
MD≈ 10−2 M, but binary precession begins outrunning the viscous
time for order-of-magnitude less massive disks, MD≈ 10−3 M.
Therefore, for disk masses MD 10−3 M it may be important to
include disk-induced binary precession (i.e., by integrating the
binary orbit in response to forces from the CBD) in order to fully
characterize the solution. For completeness, we also overlay the
limit where the binary precession equals the empirical disk
precession from Section 4.1 as the blue dotted curve.

Figure 4. Binary precession rate due to gravitational forces from the circumbinary disk bv compared with the quadrupolar precession of the disk itself Qv (left panel; dotted,
colored curves) as well as the empirically measured precession of the disk Dv (right panel; dashed, colored curves) at different disk-to-binary mass ratios qD. In both scenarios,

bv competes with the precession of the disk when q 10 ;D
2( )~ - and disk-induced precession becomes the dominant effect at all eccentricities when qD  1/50.

Figure 5. Critical value of the binary-to-disk mass ratio 1/qD where the binary
precession rate bv is equal to the quadrupolar precession rate (green, dashed) at
the disk cavity edge rc = 3.25 a and the measured disk precession (gold, solid).
Below each curve bv dominates. Between 0.18  eb  0.4, the critical binary-
to-disk mass ratio 1/qD goes to infinity because the disk no longer precesses. In
this regime, the bounding limit is a viscous time at the disk’s cavity edge,
which yields a critical value of 1/qD ≈ 4.8 × 103.

Figure 6. Disk-to-binary mass ratios where τχ equals the viscous time at the
cavity edge t cav

n as a function of the binary eccentricity. The dashed gold line
shows the critical value of qD, where the disk-induced binary precession rate
equals the precession rate of the eccentric disk b D v v= .
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4.3. Disk Mass from Steady-state Models

Lastly, steady-state solutions for thin accretion disks around
single black holes allow one to directly calculate the mass of
the surrounding disk. Thus, using Equations (4)–(14) from
Haiman et al. (2009a) we calculate the disk-to-binary mass
ratio qD=Σka

2/M for two steady-state solutions: the α disk
where the disk viscosity is proportional to the total pressure
(gas + radiation), and the β disk where the viscosity is only
proportional to the gas pressure. Such solutions consider a disk
with three distinct regions: an inner region that is radiation-
pressure dominated with opacity given by electron scattering, a
middle region that is gas-pressure dominated with electron-
scattering opacity, and an outer region that is gas-pressure
dominated with free–free opacity. The corresponding disk
density is then taken as Σk=Σ(α,β)(r= a). Figure 7 shows
values of the disk-to-binary mass ratio qD for binary’s accreting
at the Eddington rate with mass M/Me ä [103–1010] and
separations a ä [10−5, 1] parsec (where we have chosen the
disk viscosity according to the α prescription with α= 0.3;
Shakura & Sunyaev 1973). The left panel shows solutions for α
disks and the right for β disks. The hatched, gray region
illustrates where such a steady-state solution is no longer
gravitationally stable, and the white region in the bottom right
corner shows where the ISCO of the binary components is
larger than the semimajor axis. The dashed, cyan line shows the
“viscous limit” qD= 10−3 where binary precession may
outpace the ability of the circumbinary disk to relax to the
changing binary apsides. Therefore, for binaries with masses up
to 107 Me (likely LISA progenitors) that experience an active,
gas accretion phase during their evolution through the
subparsec regime, the full description of the binary evolution
and associated observational signatures may require a solution
that includes such precession effects.

5. Observational Implications

Binary precession can leave detectable imprints in both
electromagnetic and gravitational wave emission from accret-
ing or inspiraling binaries, especially in so far as it competes

with precession from general relativity. We explore these
effects by comparing disk-induced precession rates to those
from general relativity in a vacuum. The lines in Figure 8 show
the combinations of binary massM and semimajor axis a where
the rate of disk-induced precession is equal to the orbital
precession from general relativistic (GR) precession in vacuum

b GR v v= , with

GM

a e c

3
1

, 7
b

bGR 2 2( )
( )v =

-
W

for varying binary eccentricity and a disk mass qD= 10−3. The
shaded regions show where binary precession dominates, and
the white regions where GR precession is fastest. The ratio of
binary-to-GR precession can be written as

a e c q
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, 8b Db
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2 2
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such that the colored curves in Figure 8 simply depict the linear
relationship between the mass and semimajor axis at fixed eb
when this ratio 1;b GR v v = and the eccentricity dependence
is set by the relationship in Figure 1. The dashed black line
shows the binary–disk decoupling radius where the viscous
inflow rate at the disk’s inner edge vr

( )n equals the orbital decay
rate due to gravitational wave radiation aGW (see Armitage &
Natarajan 2002). For qD= 10−3, at the limit where the disk has
sufficient time to viscously relax to the changing binary orbit,
GR precession becomes the dominant source of binary
precession markedly before the binary decouples from the
circumbinary disk. For smaller values of qD this transition
recedes to larger binary semimajor axes, while for larger
qD—although in this regime our solutions may no longer be
applicable (see Section 4.2)—disk-induced precession
encroaches on the decoupling radius, and it dominates over
GR precession all the way down to the decoupling radius when
qD∼ 0.1.

Figure 7. Contours of qD = Σka
2/M from steady-state solutions for α and β disks (left and right, respectively; Haiman et al. 2009a, Equations (4)–(14)) accreting at

their Eddington limit with Σk = Σ(α,β)(a). The dashed cyan lines show qD = 10−3 near the “viscous limit” determined in Section 4.2. Above this line, precession
effects may alter the full solution. The gray shaded region in the upper portion of the plot illustrates the limit where disks are no longer stable against their own gravity.
The white region in the lower right is where the semimajor axis is within the ISCO of the binary components. We see that disk-induced binary precession from a
gravitationally stable disk could be important for the dynamics of binaries with M  107Me, which are likely progenitors of mergers in the LISA band.
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The primary observable effect of apsidal precession, whether
or not it dominates over other forms of precession, is the
accumulation of an extra orbital phase relative to an
unperturbed orbit. We show below that this can arise in
observations of periodic light curves from eccentric accreting
binaries or in the dephasing of GW emission from super-
massive black hole binaries. To the lowest order in orbital
eccentricity, the magnitude of this change over a period is

P q2 , 9P b Db ( )dq v pá ñ » ~

where we note that bv and this dephasing do not necessarily
vanish for very small or zero eccentricities because external
forces can still alter the effective gravitational potential and the
orbital velocity of the binary (see Appendix D).

5.1. Periodic Light-curve Searches for Black Hole Binaries

The relative contributions of disk-induced precession versus
GR precession can be significant for electromagnetic searches
for massive binaries in galactic nuclei. A subset of search
methods aims to identify periodic features in target system light
curves that can be connected to the underlying orbital period of
an accreting binary (e.g., Graham et al. 2015; Charisi et al.
2016; Liu et al. 2019; Chen et al. 2020, 2024). Orbital periods
targeted in these searches range from weeks to years (e.g.,
Haiman et al. 2009b; Xin & Haiman 2021; Haiman et al. 2023).
For comparison, Figure 8 shows blue dashed–dotted lines for
three binaries periods, from top to bottom, Pbä [10 yr, 1 yr,
1 month], like those that might be identifiable in electro-
magnetic searches.

Binary models for the origin of periodic variability employ
either hydrodynamic variability caused by variations in the
binary accretion rate (e.g., D’Orazio et al. 2013; Farris et al.
2014; Tang et al. 2018; Dittmann & Ryan 2022; Gutiérrez et al.
2022; Westernacher-Schneider et al. 2022) or observer-
dependent relativistic Doppler boosts (D’Orazio et al. 2015;

D’Orazio & Haiman 2017; Charisi et al. 2018) and binary self-
lensing events (D’Orazio & Di Stefano 2018; Hu et al. 2020;
Kelley et al. 2021; Davelaar & Haiman 2022; Major Krauth
et al. 2023b)—both modulated by the binary orbit. Hydro-
dynamic accretion-rate variability would likely not be sensitive
to disk-induced binary precession for qD 10−3 when bv is
slow compared to the other relevant timescales, but it is
possible that the characteristic frequencies of accretion
variability change in the limit qD 10−3 (i.e., Figure 6); we
leave exploration of this effect to future work.
Relativistic boosting and lensing, however, are sensitive to—

and straightforwardly depend on—the orbital reconstruction. In
particular, the shape of periodic modulations caused by the
orbital Doppler boost along with the shape, magnification, and
crucially, timing of lensing flares depend on the orbital
eccentricity and argument of pericenter with respect to the
observer’s line of sight (see Figure 7 in D’Orazio &
Charisi 2023) and thus also on changes to these quantities
over time, such as the advance of pericenter. These models
sometimes include GR precession in their modeling, but
Figure 8 demonstrates that a circumbinary disk sourcing binary
accretion with qD∼ 10−3 may induce a comparable effect for
massive binaries 104M/Me 107 with orbital periods on
the order of months to years.
To estimate when precession from a circumbinary disk

would significantly affect the shape and timing of Doppler
+lensing signatures, we calculate the number of binary orbits
needed for the accumulated precession angle to equal the width
of a binary self-lensing flare.6 This limit guarantees at least an
observable change in flare timing, if not also a change in the
light-curve shape due to an altered azimuthal viewing angle
caused by apsidal precession. From Equation (9) we equate the
accumulated precession angle δθ≈ 2πqDNorb with the duration
of the lensing event divided by the orbital period (e.g.,
Equation (3) of D’Orazio & Di Stefano 2018). Then the
required number of orbits needed to accumulate significant
precession is

N
q

q
GM

c P

q M
M

P

1 2

1.2
10 10 2yr

. 10

b

D

D

orb

1 2

5 3 3
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1 3
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1 3
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1 3

⎜ ⎟ ⎜ ⎟

⎜ ⎟⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠
( )

( )


p
+

»

-

-

- -

In the second line we evaluate for qb= 1 and a binary at the
edge of the disk-precession-dominated regime in Figure 8.
Hence, before relativistic apsidal precession becomes domi-
nant, the disk-induced precession can cause significant changes
to the Doppler-lensing periodic modulations over only a few
orbital periods. This motivates including disk orbital precession
when modeling periodic variability due to binary self-lensing.
Moreover, such light-curve models with the inclusion of disk
precession allow for the measurement of the local disk mass
and can provide otherwise lacking constraints.
Forces from the disk that cause pericenter precession also

alter the orbital velocity of the binary away from the Keplerian
value. In our case, the dominant contribution is from outward
radial disk forces, which do not strongly affect orbital evolution

Figure 8. Contours of binary mass and separation where 1b GR v v = for five
values of the binary eccentricity with a disk mass qD = 10−3. The lightly
shaded regions above the curves indicate where disk-mediated binary
precession would dominate over GR precession for each eccentricity. The
black dashed line shows binary separations where orbital decay from the
emission of GWs causes the binary to decouple from the CBD (e.g., is faster
than the viscous inflow of the disk at its inner edge, rc = 3.25a). The blue
dashed–dotted lines show binary periods Pb of 10 yr, 1 yr, and 1 month from
top to bottom.

6 This assumes at least one lensing flare has been temporally resolved and so
deviation from the nonprecessing model can be verified by measuring a later
flare that is offset by more than one flare width.
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(see Section 3) but do act to slow down the binary compared to
the Keplerian value for a given separation and binary mass. For
Doppler+lensing signatures, this effect would bias the binary
parameters that one would recover assuming an orbit in
vacuum by an albeit very small amount of order qD.

5.2. Dephasing of Gravitational Waves in LISA

Disk-induced precession in the late stages of massive binary
evolution could also potentially have important consequences
for near-equal-mass binary inspiral events that will be detected
by LISA. Binaries in the LISA band (103M/Me 107) can
stay coupled to their circumbinary disks anywhere from ∼1 yr
down to minutes prior to merger (Major Krauth et al. 2023a;
Dittmann et al. 2023b); or they may not decouple at all (Avara
et al. 2023). Therefore, even though the disk-induced
precession in band is likely small compared to that from GR,
the responsible disk forces could still feasibly alter gravitational
wave emission and could leave a detectable imprint on LISA
signals.

In accordance with LISA expectations, we focus on sources
with very low eccentricity.7 Apsidal precession is then best
understood as a change in orbital frequency of magnitude bv~ .
However, for a monochromatic source with an observed GW
frequency fGW, there would be no simple way to distinguish
between a vacuum source emitting at the “Keplerian”
frequency fGW/2= fk, or at a slightly perturbed frequency

f
f f

f
f2

1 , 11p k
k

GW ⎜ ⎟⎛⎝ ⎞⎠ ( )= = +
D

where f P q f2 k P D k
1( )p dqD = á ñ »- , assuming the binary

eccentricity is small and 1simv ~ . The two sources would
generally only be distinguishable by their frequency evolution
(or chirping) because they radiate gravitational energy at
slightly different rates. Here we provide a simple estimate of
this effect.

The radiated energy flux is E f a fGW GW
6 4 ~ ~ such that a

binary observed at fGW that is perturbed by surrounding gas
will exist at a slightly modified separation
a f f2p pGW

2 3( ) ( )p~ - (compared to that on a Keplerian orbit
in vacuum, ak). Thus, the modified chirp evolution can be
expressed:

f

f

a f

a f
q1 . 12p

k

p

k
D

GW
4

GW
4

8 3( )
( )

( ) ( )


 ~ ~ + -

The total accumulated phase of a GW signal is
f f f df2 pGW( ) òf p= such that the difference in accumulated

phase between the perturbed source and one in vacuum (for
small Δf ) is

q
16

3
, 13k D kGW ( )df f f

p
f= - »

where fk∼ f−5/3 is the total phase accumulated by a source in
vacuum. Such a dephasing is considered detectable in the LISA
band (without accounting for degeneracies) if δf 10×
S/N−1 with S/N being the signal-to-noise ratio of the event

(Kocsis et al. 2011). Thus, Equation (13) gives a detectability
condition for the disk mass as a function of the event S/N and
the total number of orbits in band N∼ fk/2π,

q N
N

3
32

10
S N

0.1
S N

. 14D 2
1 ( )

p
»

´
-

Equal-mass mergers in the LISA band will have typical S/Ns
of order 10 101 3( – ) and will spend N∼ 10–103 orbits in band
(with the exception of the most massive 107Me binaries which
will have S/N∼ 10–100 and N∼ 1–10).
Figure 9 illustrates the critical disk mass qD,crit necessary to

satisfy Equation (14) as a function of the total source frame
binary mass M and redshift z by calculating S/N(M, z) and
fk(M, z) from PhenomA model waveforms (Ajith et al. 2007)
and an approximate LISA sensitivity curve (Robson et al.
2019). The blue dashed line indicates the qD= 10−3 viscous
limit determined from Section 4.2 such that the majority of
LISA sources are detectable for qD 10−5 and the most nearby
sources for qD 10−6. However, this estimate serves only as a
lower bound on the disk mass required to induce a detectable
dephasing in LISA8 because we have ignored degeneracies in
the induced chirp behavior (e.g., Garg et al. 2022), have
assumed each source spends the maximum amount of time in
band possible for a 4 yr mission lifetime, and have neglected
the disk mass evolution with shrinking semimajor axis; and for
the lowest values of qD this signal may start to compete with
the frequency resolution of the detector. Furthermore, a more
rigorous treatment ought to self-consistently connect the
circumbinary disk forces to the time evolution of the binary
quadrupole moment and the resultant chirp behavior. We
reserve this calculation for future work but emphasize that
because disk-induced precession dominates over the other
orbital perturbations, it is the most likely candidate for
detectable disk-induced signals in LISA detections of near-
equal-mass binaries.

Figure 9. Critical disk mass qD,crit required to induce a detectable dephasing in
an LISA source with source frame total mass M at redshift z. The blue dashed
line indicates the viscous limit qD ∼ 10−3 determined in Section 4.2.

7 This is consistent with estimates for the in-band eccentricity
eb ∼ 10−3–10−4 for equal-mass binaries that have had their eccentricity driven
near the equilibrium eccentricity by a prograde circumbinary disk (Zrake et al.
2021; Garg et al. 2023).

8 However, LISA progenitors are canonically thought to possess CBDs 1–2
orders of magnitude thinner than those considered for this study, and such
CBDs in a steady state have been associated with larger density pileups at the
cavity edge (e.g., Rafikov 2016; Tiede et al. 2020; Dittmann & Ryan 2022).
The resultant increased outward radial force (see Section 3) could amplify the
precession rate and the detectability of such observational effects.
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6. Conclusions

We have calculated from viscous hydrodynamics simula-
tions the apsidal precession of eccentric binaries accreting from
circumbinary disks. Such simulations have previously been
used to compute the disk-driven rate of the change to the binary
semimajor axis and eccentricity, and we have found that the
induced precession effect is an order of magnitude faster than
these changes (Figure 1). Moreover, we identify the primary
source of this precession and the fundamental reason for its
comparative significance as the relatively strong and symmetric
outward radial gravitational force from the bulk of the
circumbinary disk (Figures 2 and 3).

The degree to which bv competes with other timescales in
the problem scales with the disk-to-binary mass ratio qD, and
for sufficiently large disk masses it is possible that this
precession could alter the full solutions on which previous
orbital evolution results and our own findings are based. We
estimated these disk masses by first comparing bv to the
precession of a test particle in the quadrupole moment of the
binary’s potential and of the circumbinary disk itself (Figure 4).
We found that the disk-induced binary precession generally
dominates over these timescales when qD 1/300 with the
exception of binaries with 0.2 eb 0.4, where the circum-
binary disk is empirically found not to precess. We compared
the timescale for bv to the viscous time in the disk (Figure 6)
and found that for disk masses qD 10−3 the induced binary
precession may occur faster than the disk can viscously relax to
the changing binary apsides and that such situations may
warrant more dedicated study to determine if the precession of
the binary alters the full solution. We additionally computed
physical values of qD from α and β steady-state disk solutions
(Figure 7) and determined that circumbinary accretion solutions
and orbital evolution modeling for binaries with masses up to
∼107 Me and at subparsec separations may need to consider
the effects of disk-induced binary precession.

For observational purposes, we compared the disk-induced
binary precession to precession rates from general relativity
(Figure 8) and discussed implications for both electromagnetic
and gravitational wave searches for accreting and coalescing
massive binaries. In particular, we determined that disk-
induced precession may be significant over only a few orbital
periods for modeling sources with Doppler-lensing periodic
modulations and that the precession may source an extra phase
accumulation in accreting LISA systems that is generally
detectable (in the best-case scenario and ignoring degeneracies)
for equal-mass binaries with disk-binary mass ratios
qD 10−5. Thus, we have concluded that the effects of
precession on existing solutions for binary orbital evolution and
circumbinary accretion signatures warrant future, more detailed
investigation and that it should be considered in both current
and future observations of accreting massive binaries in
electromagnetic surveys and gravitational wave experiments.
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Appendix A
Bv Derivation with Accretion

Starting with the elliptic equation

r
a e

e
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1 cos
, A1b

b

2( ) ( )
n

=
-

+

where ν= θ−ϖb is the true anomaly, θ is the position angle
measured from the line of nodes, ϖb is the longitude of
pericenter, a is the semimajor axis, and e ℓ E1 2b

2 2m= + - is

the orbital eccentricity. ℓ a e1 b
2( )m= - is the specific

angular momentum, E=−μ/2a is the specific orbital energy,
and μ=GM with M being the total mass. Therefore, we write
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Differentiating with respect to time while keeping the
instantaneous radius fixed (e.g., because of some external
force) yields
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The energy and angular momentum derivatives are given as
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such that all terms proportional to m in Equation (A3) cancel.
Therefore, as expected, there is no contribution to the binary
precession from the accretion of mass. Solving for bv , then,
gives
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where ℓ̃ and Ẽ are the change in energy and specific angular
momentum due only to an external specific force f
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where we have used the fact that v a e e1 sinr b b
1 2( )m n= --

and v a e e1 1 cosb b
1 2( ) ( )m n= - +f

- . Lastly, we take
0q = because we are only considering in-plane forces, fixing

the binary longitude of the ascending node (Murray &
Dermott 2000). Plugging into Equation (A5) yields
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Appendix B
Retrograde CBDs

Tiede & D’Orazio (2024) also explored the orbital response
of equal-mass binaries accreting from retrograde CBDs. For
completeness, we measure the disk-induced precession for
retrograde solutions; this is shown in Figure B1 as the blue
curve alongside bv from the prograde configuration. Despite
the comparative symmetry and lack of resonances in the
retrograde scenario (see Tiede & D’Orazio 2024 for a detailed
discussion), a retrograde CBD still drives prograde apsidal
precession in the binary. This disk-induced precession in
retrograde configurations is ∼2× faster than in prograde disks
at low binary eccentricity eb 0.15 but decreases monotoni-
cally with growing eb such that the effect is comparable by
eb 0.4. The comparatively large precession rate in retrograde
solutions is consistent with the relatively large magnitudes
measured for a a and eb , and we posit that these effects are due
to stronger gravitational forcing associated with a less truncated
CBD (especially at low eb) that is more tightly coupled to the
binary. Nevertheless, all analyses presented in this paper would
change by, at most, a factor of 2 if considering retrograde
instead of prograde accretion scenarios.

Appendix C
Bv Fitting Functions

Figure B1 also includes as dashed lines approximate fitting
functions for bv in both prograde (black) and retrograde (blue)
configurations. The piecewise fitting function for prograde
solutions is taken as



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B e e
B m e e e e e
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where B0= 0.770, B1= 0.878, B2= 0.680, m1= 0.600,
m2=−5.351, m3=−0.860, and e0= 0.198, e1= 0.378,
e2= 0.415. For retrograde solutions, we approximate the
disk-induced precession as


M
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C n e e e

C n e e e
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0 0 0 0

1 1 0

⎧⎨⎩ ( )

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where C0= 1.810, C1= 1.503, n0=−2.738, n1=−1.242,
and e 0.2120¢ = .

Appendix D
Phase Accumulation from Osculating Orbits

The angle tracking the true position of the orbit in the sky is
θ= ν+ϖb, where the true anomaly ν denotes the angle with
respect to the argument of pericenter bv . The true anomaly
under perturbations can be expressed as

, D1k b ( )  n n v= -

where kn is the Keplerian value of the true anomaly advance.
However, by definition

, D2b ( )  q n v= +

so that k
 q n= . This implies that the only variation in q is

caused by the perturbed Kepler equation. Thus, under
perturbed orbital elements χp= χ0+ χ1, the rate at which the
binary sweeps out this true longitude can be expressed as

p
e1 cos , D3k p
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p p3
2( ) ( ) ( ) q n c

m
n= = +

where p= a(1− e2), and dt
t

t
1

0
òc c= is proportional to the

magnitude of the perturbing force and so assumed small over
an orbit. We expand the true anomaly by writing

k0 b  n n v= - and integrate—without yet specifying the time
dependence of bv —so that νp(t)= νk0(t)−ϖb(t). Here, νk0 is
shorthand for νk(χ0). We expand in the limit of slow precession
and small perturbations, keeping only quantities to the first
order in these small quantities (e.g., ap= a0+ a1 and so forth)
such that Equation (D3) becomes
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Dephasing is from the second term, and ϖb(t) enters only in the
last term. Expanding the phase-dependent cos and sin terms in

Figure B1. Binary precession from a retrograde CBD compared to the
prograde solution. The fitting functions provided in Appendix C are shown by
the associated dashed lines.
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time via the mean anomaly M tb˜ = W to the first order in e0, we
write
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Now consider the contribution from each of the perturbed
quantities after one orbit, ϖb(Pb), a1(Pb), and e1(Pb), in the
small e0 limit where orbital dephasing is most relevant for
LISA sources. To see the contribution from ϖb(Pb) we expand
e0 bv as
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where we have once again expanded the oscillating functions
of the true anomaly in mean anomaly (time) to linear order in
e0. Then the leading order contribution to ϖb and the
dephasing will depend on the functional dependence of the
forces.

For prograde coplanar accretion, the radial force dominates
fr? ff, and for small e0 it is almost constant in time. For larger
e0, fr has significant Mcos ˜ components (see Figure 2).
Therefore, we consider two specific scenarios: that of
constant radial force fr= Ar and that where f A Mcosr r ˜= - .
For each of these scenarios a a e e f e,1 0 0 1 0( )~ +f (as
discussed in Section 3), and the dominant term in dq is the
precession term.

For the constant force, the largest contributions to ϖb will be
those that do not vanish in the integral over an orbit. To leading
order,
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and the dephasing over an orbit is given by
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where we have used A a qr D0
2( )m ~ because the force is

proportional to the disk mass.
For, instead, f A Mcosr r ˜= - ,
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Hence, for both scenarios, the dephasing from apsidal
precession is to leading order given by q P2 D bbp v~ .
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