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Abstract

We consider a test problem for Navier–Stokes solvers based on the flow around a cylinder that
exhibits chaotic behavior, to examine the performance of various numerical methods. We choose
a range of Reynolds numbers for which the flow is time-dependent but can be characterized as
essentially two-dimensional. The problem requires accurate resolution of chaotic dynamics over a
long time interval. It also requires the use of a relatively large computational domain, part of which
is curved. We review the performance of different finite element methods for the proposed range of
Reynolds numbers. These tests indicate that some of the most established methods do not capture
the correct behavior. The key requirements identified are pressure-robustness of the method, high
resolution, and appropriate numerical dissipation when the smallest scales are under-resolved.

Keywords: Drag coefficient, Chaotic flow, Strouhal period, H(div)-conforming, numerical dissi-
pation
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1 Introduction

We consider a classic fluids problem, the chaotic flow around a cylinder, as a challenge for numerical
schemes. As reviewed in [45], there is ample experimental data with which to compare simulations.
To make the challenge more tractable, we focus on 2D simulations and a range of Reynolds numbers.
Illustrating the difficulty posed by this problem, we review some published examples where erroneous
results were obtained. We also show that some commonly used techniques fail to give acceptable results
at Reynolds numbers of interest.

Flow around a cylinder is not only a fundamental problem in fluid dynamics but also a practical
problem of interest in energy generation. For example, so-called bladeless turbines [3, 48, 15] have
been proposed as a viable energy generation method. The design of such systems requires accurate and
efficient simulations of the flow around cylinders. Another area of recent development in which such sim-
ulations are necessary is new design spaces for electric aircafts, such as ground-effect transportation [7]
and air taxis [36].

As computational simulation has emerged as a new form of experimentation in physics, it is essential
to have some benchmarks that give guidance, as we present here. For many flow problems, there is
no dispute regarding the Navier–Stokes equations as a suitable model, as we do here. However, this
requires reliable methods to decide fundamental physics questions, such as whether the resulting flow
is chaotic at a given Reynolds number.
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1 Introduction

A critical factor in obtaining reliable results at high Reynolds numbers and avoiding erroneous chaos,
is for a numerical method is to have an appropriate mechanism to deal with the energy from under
resolved scales [8]. This usually takes the form of numerical dissipation and can come from different
stabilization terms in the discrete method. However, it is also critical for the method not to be overly
dissipative, which would again yield erroneous results. In this work, we cover a number of schemes with
different dissipative mechanisms providing significant data clarifying this.

Flow around a cylinder has been proposed as a test problem before [40, 25]. What is different here
is that we focus on a range of Reynolds numbers for which the flow appears to be chaotic [45]. Thus,
appropriate metrics must be used to compare different numerical methods. In particular, we focus on
statistics predicting the periodicity of the flow, i.e. the Strouhal period [49], rather than just minimal
and maximal drag and lift coefficient values. Moreover, the time interval for the simulation is quite
long, so this simulation evaluates the ability of different discretizations with regard to accumulation of
numerical error and challenges the implementations with regard to efficiency.

For a straightforward analysis of the resulting flow, we focus on simple metrics so that different
methods can be compared easily. The Strouhal number or period of the time-dependent flow is such a
quantity. This can be computed by analyzing the phase-diagram of the drag and lift coefficients, which
are computed easily. It is vital to compute the period by considering the drag and lift simultaneously,
as both have local maxima and minima making it difficult to determine the period in cases where the
flow is not perfectly periodic. In [45], a simple approach was used to estimate the periodicity of chaotic
flow. We present a slightly improved method compared to [45] for evaluating the Strouhal period that
provides an indication of the transition to chaos. Additional metrics, such as the Lyapunov exponent
and the fractal dimension of the attractor, provide a finer level of detail regarding the flow dynamics
[45].

Evaluating computational methods for fluid flows is already viable in two spatial dimensions and
sufficiently challenging to differentiate between them. We, therefore, focus on two dimensional flows.
When the Reynolds number is more than 104, the flow becomes three-dimensional [23]. Thus, we
restrict ourselves to Reynolds numbers in the range [102, 104] for simplicity. Three-dimensional effects
of a different kind are seen [51] at lower Reynolds numbers due to the finite length of cylinders used in
experiments. However, these are potentially like so-called blocking effects in two-dimensional flow [39],
which become less significant at higher Reynolds numbers.

In this paper, we consider a variety of well-studied finite element methods with a solid theoretical
foundation. These are low and high-order Taylor–Hood, with and without grad-div stabilization, Scott–
Vogelius finite elements and a mass-conserving mixed stress (MSC) based formulation using H(div)-
conforming velocities. The latter we consider both with an upwind and central flux in the convective
term. It is rare for different numerical methods to be compared head-to-head on a challenging physical
problem of interest. We hope that this paper will empasize the value of doing so. Although we
have studied several commonly used methods, and we compare results with other published simulation
methods, there are many more methods that have been proposed for simulations of the type we do
here. We hope our benchmark problem will attract others to determine to what extent their methods
compare with the results presented here. Finally, we compare their performance to a method used in
[45], and we find that the simulations in [45] were under-resolved for higher Reynolds numbers.

Our main conclusion is that high-order methods are necessary to obtain reliable results at higher
Reynolds numbers. Surprisingly, the commonly used, lowest-order Taylor–Hood method is not accurate
enough to be used even at the lowest Reynolds numbers considered here. A secondary conclusion is
that it appears that methods that result in exactly divergence-free velocity solutions have a significant
advantage at higher Reynolds numbers, even though one that we investigate is non-conforming. Fur-
thermore, we also conclude that a viable method at high Reynolds numbers needs to contain the correct
amount of numerical dissipation to capture the flow dynamics on coarser meshes. Finally, one of the
main conclusions from [45] was that the simulation drag values differ substantially from experiments,
as shown in Figure 1. We confirm this conclusion here, suggesting that cylinder vibration likely plays
a significant role in practice [52].

The remainder of this paper is structured as follows. In Section 2, we discuss the equations and
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Figure 1: Relf experimental data [37] compared to the data computed in [45] with the Scot–Vogelius finite elements
scheme and the new data presented here.

the quantities under consideration. In Section 3, we then present the details of the computational
setup for our computations. Section 4 covers the details of the numerical methods under consideration.
In Section 5, we present and discuss the numerical results achieved. In particular, we start at a low
Reynolds number to illustrate how established methods struggle to achieve the correct dynamics. We
then cover a range of Reynolds numbers up to Re = 8000. Finally, we give some concluding remarks in
Section 6.

2 Setting the problem and model equations

Suppose that (u, p) is a solution of the time-dependent Navier–Stokes equations in a domain Ω ⊂ Rd

containing an obstacle with boundary Γ ⊂ ∂Ω. This fulfills the equations

∂tu − ν∆u + u · ∇u + ∇p = 0 in Ω,

∇· u = 0 in Ω,
(1)

with the kinematic viscosity ν, and together with boundary conditions

u = g on ∂Ω\Γ, u = 0 on Γ. (2)

For the well-posedness of these equations, see [17].

2.1 Weak formulation of the Navier–Stokes equations

While this test problem is not limited to finite-element simulations, we expect many will be done with
finite elements. To this end, we require a variational formulation of (1). The Navier–Stokes equations
can be written in a weak (or variational) form as follows:

Find v ∈ H1
g (Ω) and p ∈ L2

0(Ω) such that

(∂tu, w)L2(Ω) + a(u, w) + b(w, p) + c(u, u, w) = 0 ∀w ∈ (H1
0 (Ω))d,

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(3)

The space H1
g (Ω) is the space of vector-valued H1 functions with trace g on the (outer) boundary,

H1
0 (Ω) is the space of H1 functions with trace 0 on the boundary and L2

0(Ω) is the space of L2 functions
with mean zero. The bilinear forms a(·, ·) and b(·, ·) are defined as

a(v, w) :=
∫

Ω

ν

2 D(v) : D(w) dx, and b(v, q) := −
∫

Ω
q(∇ · v) dx,
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3 Problem Set-up

respectively, where D(v) = ∇v + ∇vt and the colon (:) indicates the Frobenious inner-product of
matrices. The convective (nonlinear) term takes various forms. By default, we take it to be

c(u, v, w) = cconv(u, v, w) :=
∫

Ω
(u · ∇v) · w dx.

For divergence-free H1 functions, the various forms of the convective term are equivalent. Hence, we
may take the above so-called convective form of the trilinear form for exactly divergence-free meth-
ods. However, for non-divergence-free methods, other forms are beneficial and for non-H1-conforming
methods are necessary.

2.2 Drag and lift evaluation

The flow of fluid around an obstacle generates a force called drag, which is a fundamental concept in
fluid dynamics [28]. It plays a critical role in determining the behavior of objects in flight and has been
studied since the time of d’Alembert [18]. Drag is composed of two components: pressure drag βp and
viscous drag βv, which can be calculated by evaluating the following functions using v = (1, 0):

βv(v) =
∫

Γ

(
(νD(u))v

)
· n ds, βp(v) =

∫
Γ

−pv · n ds.

The full drag β is defined by β = βv + βp. Similarly, lift is computed using v = (0, 1).

2.2.1 Alternate drag evaluation

Another way [25] to evaluate β is to test the weak formulation (3) with a non-conforming test function.
This results in the functional

ω(v) =
∫

Ω
∂tu v dx +

∫
Ω

ν

2 D(u) : D(v) + (u · ∇u) · v − p∇· v dx,

Then ω(v) = β(v) for all v ∈ H1(Ω)d [25, 19]. This approach may be traced back to [2]. It is also
known that, for the case of strongly imposed Dirichlet boundary conditions, this approach of testing
the residual with a non-conforming test-function doubles the rate of convergence for the drag and lift,
see, for example [6] for the proof in the steady case.

Having two ways to compute drag and lift provides a valuable internal check of the accuracy of the
simulation.

3 Problem Set-up

For our simulations, we consider the domain

Ω = {(x, y) : −30 < x < 300, |y| < 30, x2 + y2 > 1}.

The boundary condition is set as g = (1, 0)T and the cylinder diameter is the reference length, so the
Reynolds number is given by Re = 2/ν. We consider the time interval [0, 500].

3.1 Challenge computation

The data in Figure 1 suggests a significant disagreement between computation and experiment. This
could be for a variety of reasons. The most obvious is some flaw in the computational scheme. Thus,
we propose this problem as a computational challenge to see what other methods predict.

Another reason for the disagreement could be that the model is wrong. Some people who have
published experiments (see [45]) have raised the issue that the cylinders used could vibrate. In particular,
the Relf data in Figure 1 is based on flows past thin wires, used in musical instruments for their
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vibrational qualities. Thus, one response to the challenge is to allow the cylinder to vibrate back and
forth in response to the oscillating lift and drag. The question would be to evaluate how oscillations of
the cylinder change parameters describing the flow, such as drag, lift, and Strouhal number, representing
the frequency of the generated vortices. One study with forced vibrations [33, Figure 6.9, page 179]
suggests that the change could be substantial.

4 Discretization methods

The simulations in this paper are done using finite element methods (FEM). We, therefore, begin by
presenting some details of the finite element approach.

To discretize the weak formulation (3) with finite element methods, we take a mesh of the domain Ω
with characteristic length h, denoted as Th. Finite element spaces then discretize (3) by approximating
the spaces H1(Ω) and L2(Ω) with spaces of piecewise polynomials on each element of the mesh, with
varying degree of discontinuity of these polynomials over element edges.

We utilize many well-established simulation methods for which extensive numerical analysis is avail-
able, establishing not only convergence but also detailed simulation properties.

4.1 H(div)-conforming FEM

We consider an H(div)-conforming finite element method based on [20, 21]. This discretization is based
on a mass-conserving mixed formulation with symmetric stresses, known as the MCS formulation.
This approach discretizes the velocity in H(div) using Brezzi–Douglas–Marini (BDM) elements [47].
That is, the normal component of the velocity is continuous across element boundaries, while the
tangential component is discontinuous. The pressure is discretized using discontinuous elements. This
method is exactly mass conserving and pressure-robust. From a numerical point of view, pressure-robust
methods have several advantages. First, the velocity remains unchanged by irrotational changes in any
external forcing term, a property that most methods do not preserve on the discrete level [31]. More
importantly, pressure-robust methods have the property that the velocity error is independent of the
pressure error [26]. This contrasts classical Galerkin discretizations of the (Navier)-Stokes equations,
where the velocity error depends on 1

ν times the pressure error. From a physical point of view, exactly
divergence-free methods have the advantage that, in addition to mass, kinetic energy, linear momentum,
and angular momentum are conserved on the discrete level [10, 44].

This formulation introduces an additional variable σ = ν∇u which is discretised in the function space
H(curl div). Thus the energy form is modified to

a′(σ, τ) := 1
ν

∫
Ω

σ : τ dx,

and a new form is defined by

b′(τ, u) :=
∑

T ∈Th

∫
T

∇· (τ) · u dx +
∑

F ∈Fh

∫
F

JτnnKu · n ds,

where Th is the triangular mesh, and Fh is the set of element edges. The expression JτnnK denotes the
jump in the normal-normal component of the tensor τ across the edge e, and n is the normal to the edge.
Note that the orientation of the normal is not material. As the velocity is H(div), we have to modify
the convective term to account for the discontinuity of the velocity in the tangential direction, and there
are multiple choices available. For the most part, we consider the upwind flux for the convective term,

cupw(uh, uh, wh) :=
∑

T ∈Th

∫
T

−(uh · ∇wh) · uh dx +
∫

∂T

uh · n v̂h · wh ds, (4)

where v̂h is the upwind flux, i.e., v̂h = uh if uh(x) · n(x) ≥ 0 and otherwise v̂h = uoth
h , where uoth

h is
the value of uh from the neighboring element. An alternative choice is a central flux. In this case the
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convective term can be written as

ccf (uh, uh, wh) :=
∑

T ∈Th

∫
T

(uh · ∇uh) · wh dx −
∫

∂T

uh · n(ûh − uh) · wh ds, (5)

where ûh = 0.5(uh−uoth
h ) is the centered flux. In general we shall use the upwind flux, and will therefore

only specify if the centered flux is used. We note that the upwind choice is dissipative, whereas a central
flux would not add any dissipation, i.e., is conservative.

Combining the above, the formulation is

a′(σh, τh) + b′(τh, uh) = 0 ∀τh ∈ Σh,

(∂tuh, vh)L2(Ω) + b′(σh, vh) + cupw(uh, uh, vh) + b(vh, ph) = 0 ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh.

Here, Σh is a space of discontinuous piecewise polynomials of degree k, whose values are trace-zero
tensors satisfying continuity of the ‘normal-tangential component’ across edges and where the normal-
tangential component is a polynomial of order k − 1 on each edge, Vh denotes the BDMk finite-element
space of order k, and Qh consists of discontinuous piecewise polynomials of degree k − 1.

As H(div) spaces are characterized by normal continuity across facets, the boundary condition for
the normal components are imposed strongly. The implementation uses hybridization for the tangential
component of the velocity. That is, a second finite element space is used to couple the tangential
component across element facets and the tangential part of the boundary condition is enforced strongly
on the facet space.

For time-stepping we use a second-order implicit-explicit (IMEX) scheme known as SBDF2 [1]. This
scheme uses the BDF2 scheme to discretise the time-derivative, the Stokes term is fully implicit, and
the non-linear convective term is treated explicitly with a second order extrapolation. This results in
the fully discrete problem to find (σh, uh, ph) ∈ Σh × Vh × Qh, such that

a′(σn
h , τh) + b′(τh, un

h) + b′(σn
h , vh) + 1

∆t ( 3
2 un

h − 2un−1
h + 1

2 un−2
h , vh)L2(Ω)

+ 2cupw(un−1
h , un−1

h , vh) − cupw(un−2
h , un−2

h , vh) + b(vh, pn
h) + b(un

h, qh) = 0,

holds for all (τh, vh, qh) ∈ Σh × Vh × Qh. To regularize the saddle-point system and to fix the pressure
constant in the case of pure Dirichlet boundary conditions, we may add a small perturbation to the
lower right pressure block of the block-system resulting from the above equation. That is, we modify
the equation for the divergence constraint to

−
∫

Ω
qh(∇ · un

h) + ϵ

∫
Ω

pn
hqv dx = −

∫
Ω

qh((∇ · un
h) − ϵpn

h) dx = 0, (6)

with some ϵ > 0. Since our discrete spaces Vh, Qh satisfy the discrete de-Rahm complex [26], we have
the property that ∇ · Vh = Qh. Consequently, we can replace qh with ∇ · vh in (6). This gives us
an equation for the pressure, which we may plug into the second equation in the above saddle-point
system. This leads to the discrete system,

a′(σn
h , τh) + b′(τh, un

h) + 1
∆t ( 3

2 un
h, vh)L2(Ω) + b′(σn

h , vh) − b(vh, 1
ϵ ∇ · uh). (7)

This is a smaller linear system to solve, and the system is no longer a saddle point problem, making
it an easier system to solve numerically. We want to choose ϵ small to keep the perturbation from the
divergence constraint small. However, this means that the 1

ϵ -scaled term causes the linear system (7) to
be very ill-conditioned. Consequently, we need to use direct linear solvers to handle these ill-conditioned
linear systems, which in turn limits us with respect to the maximal size of the system we can solve and
the parallel scalability. With the small perturbation, the divergence of uh is no longer exactly zero, but∥∥∇· un

h

∥∥
L2 ≤ ϵ

∥∥pn
h

∥∥
L2 . In the computations, we chose ϵ = 10−12/ν.
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We will refer to the approach above as MCSk, where k is the order of the velocity finite element space.
When we use the central flux in the convective term, we refer to the method as MCScf

k . These approaches
are implemented using Netgen/NGSolve [42, 41] and based on a template available on github∗.

Remark 4.1 (Other H(div)-conforming methods). We note there are other H(div)-conforming mass
conserving finite element methods that do not reformulate the problem into a first-order system. These
include [11, 43] and hybridized approaches, e.g., [30, 29].

4.2 Taylor–Hood

To compare with more established methods, we also consider Taylor–Hood elements consisting of H1-
conforming finite elements of order k ≥ 2 for the velocity and order k − 1 for the pressure.

To stabilize this scheme, we optionally add grad-div stabilization to improve the conservation of
mass [34, 16]. That is, we add the term

jh(uh, vh) := γgd

∫
Ω

∇ · uh∇ · vh dx, (8)

to our bilinear form. In our computations, we take γgd = 103, and we refer to this method as gdTHk,
where k is the order of the velocity space. In case no grad-div stabilization is used, we refer to the
method as THk. Furthermore, we note that it is known that for γgd → ∞, the grad-div stabilized
Taylor–Hood solution converges to the Scott–Vogelius solution [9, 32].

For the convective term, there are multiple choices possible. We take the divergence form [24]

cdiv(u, v, w) = cconv(u, v, w) + 1
2

∫
Ω

(∇ · u)v · w dx, (9)

which is equivalent to the standard convective form on the continuous level, but vanishes under less
restrictive conditions for v = w on the discrete level.

Thus the variational formulation takes the form

(∂tuh, wh)L2(Ω) + a(uh, wh) + b(wh, ph) + jh(uh, wh)
+ cdiv(uh, uh, wh) = 0 ∀wh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh,

(10)

where Vh is the standard Lagrange space of continuous, piecewise polynomials of degree k ≥ 2, and Qh

is the standard Lagrange space of continuous, piecewise polynomials of degree k − 1.
To discretize in time-we use the fully implicit Crank–Nicolson scheme, that is we solve for (uh, ph) ∈

Vh × Qh, such that

1
∆t (un

h − un−1
h , wh)L2(Ω) + 1

2
(
a(un

h, wh) + cdiv(un
h, un

h, wh)
)

+ b(wh, pn
h)

+ jh(un
h, wh) + 1

2
(
a(un−1

h , wh) + cdiv(un−1
h , un−1

h , wh)
)

+ b(un
h, qh) = 0,

(11)

for all (vh, qh) ∈ Vh × Qh. Note that we do not take into account the pressure from the previous time
step, nor do we add the grad-div stabilization term from the last time step. This is because the method
needs to correctly reflect that the pressure is the Langrange-multiplier to weakly enforce the divergence
constraint [38, Section 4.1.4]. Similarly, the role of the grad-div form is to penalize deviations from the
divergence constraint.

We use a quasi-Newton method with line search to solve the nonlinear systems arising in every
time step. More precisely, we only recompute the factorization of the inverse Jacobian if the residual
decreases by less than a factor of 0.3. The line search consists of a check that the Newton update has
decreased the residual. Otherwise, we reduce the size of the update by half recursively until the residual
has decreased compared to the previous iteration. We start each quasi-Newton iteration with (uh, ph)

∗https://github.com/NGSolve/modeltemplates
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4 Discretization methods

Figure 2: Left: Left section of mesh for the TH, SV, and MCS methods with h = 8. Right: Zoom in to the cylinder of
the same mesh.

from the previous time step. As the scheme is fully implicit, we can use time steps independent of the
mesh size, and as the Jacobian rarely has to be refactorized, the method is essentially as efficient as
IMEX schemes.

The Taylor–Hood methods are also implemented using Netgen/NGSolve. The meshes used are con-
structed as those for the H(div)-conforming method in Section 4.1.

4.3 Scott–Vogelius

As a final method, we also consider the Scott–Vogeluis finite element pair. This finite element pair is very
similar to the Taylor–Hood pair, using H1-conforming finite elements for the velocity but discontinuous
elements of order k − 1 for the pressure. Consequently, we use the same variational formulation time-
stepping scheme used for the unstabilized Taylor–Hood method. For k ≥ 4 in two dimensions, this
method is inf-sup stable on meshes without nearly singular vertices [50, 46] and for k ≥ d = 2 on
barycentric refined meshes [35, 53]. This method is also exactly divergence-free and pressure-robust.

There are different ways that the Scott–Vogelius method [47] can be implemented. In [45], the iterated
penalty method was used to avoid explicit knowledge of the pressure space. However, this approach was
plagued by nearly singular vertices [19] in the meshes used. Here, we utilize the Netgen mesh generator,
which, for the cylinder problem, does not have any singular or nearly singular vertices. Thus, the
mixed-method implementation of Scott–Vogelius can be used, and in this case, there is only one change
from the (unstabilized) Taylor–Hood method, namely, the pressure elements are discontinuous instead
of continuous. One drawback of this approach is the linear systems are larger, and it appears that
for Reynolds number 8000 (Table 7), it is no longer possible to keep the divergence very small. Upon
closer examination, it was found that the Newton step was not converging at a few time steps, and
the divergence also spiked there. In general, the divergence was very small except at these few times.
Furthermore, it is worth mentioning that, unlike the unstabilized Taylor–Hood method, the lack of
convergence of Newton’s method did not lead to a blow-up of the solution.

4.4 Meshes

We used several meshes for our experiments. For the methods described in Section 4, the meshes are
unstructured simplicial meshes constructed using Netgen [42] using a bulk mesh parameter hmax and a
local mesh size hmin = hmax/250 on the boundary of the cylinder. The part of the mesh containing the
cylinder with hmax = 8 is visualized in Figure 2. This is the coarsest mesh considered.

For hmax = 8, 4, 2, the Taylor–Hood finite element space with k = 4 has a total of 69947, 163107, and
437439 degrees of freedom (dofs), respectively, for the saddle point system. The Scott–Vogelius saddle
point systems have 87858, 205176, and 551434 dofs, respectively, due to the larger pressure space. On
the same meshes, the MSC method with k = 4 has 95856, 224487, and 604047 dofs for the stress and
velocity space in which we solve the problem. However, we emphasize that a direct comparison of dofs
is not useful to compare methods, as different types of systems must be solved for each method, and
the methods have significant differences regarding their approximation power.
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5 Computational experiments

4.5 Computing the period

Following [45], we estimate the period of the drag-lift trajectory as follows. For selected points along the
trajectory (about 100 per period), we consider points from roughly one-half period away to three-halfs
away and determine the point of closest approach. We start with an estimated average period, and for
each initial point we, obtain an estimated period. Histograms of such estimates are given in Figure 6.
Taking the average period from this data gives an estimate of the Strouhal period that can be used to
refine the process, providing a new estimated average period. To allow for estimates of the period at
a finer grain than the individual time steps, we used a quadratic interpolation of estimated periods to
allow for prediction of the period to second order. That is, we found the trajectory error at the optimal
point and then considered the error at the time steps on either side of this. Fitting this data with a
quadratic and finding the minimum of the quadratic provided an estimated period to within a fraction
of ∆t.

5 Computational experiments

We consider Reynolds numbers between 120 and 8000. The results for Reynolds numbers 120, 250,
500, 1000, 2000, 4000, and 8000 are shown in Tables 1 to 7. Furthermore, results for Reynolds numbers
between 1100 and 1800 are shown in Table 8. Finally, the vorticity of the resulting flow computed on
the finest mesh with the MSC method is shown for Reynolds numbers 500, 1000, and 2000 in Figures 3
to 5.

5.1 Reynolds 120–500

We began with a small Reynolds number (120) to provide a low bar for diverse methods. Nevertheless,
Table 1 shows that unstabilized, low-order (k = 2) Taylor–Hood, which is commonly thought of as the
workhorse for fluid flow, struggled to get a viable result. By contrast, all of the high-order methods
agree to several digits in the prediction of the Strouhal period and drag. The stabilized Taylor–Hood
for k = 2 is between the high-order predictions and the unstabilized k = 2 results. Note that at this
Reynolds number, stabilization of high-order (k = 4) Taylor–Hood does not make a difference, except
on the size of the divergence error.

Table 2 tells a similar story with Reynolds number 250. The high-order methods are in agreement
and the low-order methods are substandard, in particular suggesting erroneous chaotic behavior. This
chaotic behavior was also observed in [45], leading to the suggestion that the flow should become chaotic
at lower Reynolds numbers compared to some of the literature. We now understand this to be due to
under-resolved simulations in [45], where high-frequency errors get amplified by the non-linear term.

For Reynolds numbers 500 and higher, we decided to drop the lowest-order Taylor–Hood simulation
data. This is due to the method’s poor performance at the lower Reynolds numbers. In some cases,
the unstabilized method did not even continue to time 500, with the Newton iteration failing and the
solution blowing up. For Reynolds number 500, c.f. Table 3, even the stabilized lowest-order Taylor–
Hood simulation data is not viable. For higher Reynolds numbers, we no longer report results using
this method. Finally, the vorticity of the velocity solution from the MCS method on the finest mesh
is shown in Figure 3. Here, we see the periodic flow in the wake of the cylinder for about 70 spatial
units, after which the flow transitions away into more chaotic behavior. However, since our mesh is
very coarse in this part of the domain compared to the resolution around the cylinder, c.f. Figure 2, we
do not claim that this is the fully resolved behavior so far downstream in the channel.

5.2 Reynolds 1000 and higher

For Reynolds numbers 1000 and higher, only the high-order grad-div stabilized Taylor–Hood, Scott–
Vogelius and the MCS method remain viable. To better understand the behavior of the methods
regarding their numerical dissipation, we also consider the MCS method with the centered flux for the
convective term. This remains an exactly divergence-free but does not include any numeric dissipation,
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Table 1: Results for Reynolds number 120. The consensus values for the average drag is 1.348 and for the Strouhal
period is 11.34.

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 8 / 0.032 0.005 280 480 1.3486 11.339 ± 0.00073 NA
MCS4 4 / 0.016 0.0025 280 480 1.3485 11.337 ± 0.00085 NA
MCS4 2 / 0.008 0.00125 280 480 1.3482 11.337 ± 0.00098 NA

SV4 8 / 0.032 0.01 280 480 1.3542 11.303 ± 0.00354 2.83 × 10−7

gdTH4 8 / 0.032 0.01 280 480 1.3541 11.304 ± 0.00350 3.44 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.3492 11.339 ± 0.00005 1.52 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.3476 11.338 ± 0.00010 5.72 × 10−4

gdTH2 8 / 0.032 0.01 280 480 1.4633 11.139 ± 0.28907 1.35 × 10−2

gdTH2 4 / 0.016 0.01 280 480 1.3222 11.814 ± 0.05813 1.10 × 10−2

TH4 8 / 0.032 0.01 280 480 1.3443 11.379 ± 0.00049 3.74 × 100

TH4 4 / 0.016 0.01 280 480 1.3492 11.339 ± 0.00005 2.57 × 100

TH2 8 / 0.032 0.01 280 380 1.1136 9.518 ± 3.01488 8.61 × 101

TH2 4 / 0.016 0.01 280 480 1.0662 7.898 ± 2.89044 5.42 × 100

TH2 2 / 0.008 0.01 280 480 1.2397 9.368 ± 2.66038 2.35 × 100

Table 2: Results for Reynolds number 250. The consensus values for the average drag is 1.376 and for the Strouhal
period is 9.680.

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 8 / 0.032 0.005 280 480 1.3750 9.681 ± 0.00011 NA
MCS4 4 / 0.016 0.0025 280 480 1.3769 9.673 ± 0.00013 NA
MCS4 2 / 0.008 0.00125 280 480 1.3760 9.680 ± 0.00023 NA

gdTH4 8 / 0.032 0.01 280 480 1.3867 9.658 ± 0.01316 5.77 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.3749 9.679 ± 0.00007 3.84 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.3765 9.684 ± 0.00009 1.21 × 10−3

gdTH2 8 / 0.032 0.01 280 480 1.3531 9.460 ± 1.79078 1.67 × 10−2

gdTH2 4 / 0.016 0.01 280 480 1.3529 9.732 ± 0.35677 1.47 × 10−2

TH2 2 / 0.008 0.01 280 480 1.0144 9.488 ± 2.64040 1.22 × 102

Table 3: Results for Reynolds number 500. The consensus values for the average drag is 1.448 and for the Strouhal
period is 8.82.

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 8 / 0.032 0.002 280 480 1.4464 8.836 ± 0.00004 NA
MCS4 4 / 0.016 0.001 280 480 1.4499 8.811 ± 0.00006 NA
MCS4 2 / 0.008 0.0005 280 480 1.4477 8.822 ± 0.00016 NA

gdTH4 8 / 0.032 0.01 280 450 1.4537 8.823 ± 0.43717 7.82 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.4488 8.877 ± 0.00796 4.77 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.4483 8.811 ± 0.00007 2.85 × 10−3

gdTH2 8 / 0.032 0.01 280 480 1.3838 8.966 ± 1.90009 2.09 × 10−2

gdTH2 4 / 0.016 0.01 280 480 1.3753 8.716 ± 1.20772 1.82 × 10−2
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5 Computational experiments

Figure 3: Vorticity of the flow with Reynolds number 500 at t = 300 computed using the MCS4 method on the mesh
with hmax = 2.

similar to Scott–Vogelius with Crank–Nicolson time-stepping. This will allow us to judge the effect of
the numerical dissipation from the upwind convective term in the MCS method used so far, and better
judge the effect of the pressure-robust methods. The results are presented in Table 4 for Reynolds
number 1000. Additionally, the vorticity of the MSC method on the finest mesh at time t = 300 is
shown in Figure 4.

At Reynolds number 1000, the drag-lift dynamics are very close to periodic but have a very small
standard deviation in the computed period. In particular, we see in Figure 4 that the solution remains
periodic for about 40 units downstream of the cylinder before the solution transitions into chaos. How-
ever, we again cannot claim high accuracy of the solution in this part of the domain, compared to close
to the cylinder. Furthermore, the MCScf

4 , gdTH4 and SV4 drag-lift dynamics are only periodic on the
finest mesh considered.

In particular, it is interesting to see in Table 4 that the MCS method with the upwind convective term
results in a periodic solution on all three meshes. This is in stark contrast to the MCS method with
the centered flux in the convective term, Scott–Vogelius, and grad-div stabilized Taylor–Hood results.
In these methods, the standard deviation of the period is very large on the coarsest mesh, and the
periodic solution is obtained only using the finest mesh. We note that both the MCS with a centered
flux and the Scott–Vogelius method do not contain any numerical dissipation and that the grad-div
stabilized Taylor–Hood has extra numerical dissipation through the stabilization term. Interestingly,
on the second mesh, the MCS method with centered flux has a smaller standard deviation than the
Scott–Vogelius method, and the grad-div stabilized Taylor–Hood has the largest standard deviation on
the second mesh. Furthermore, we see that the time-step choice is not the critical factor here, as the
gdTH4 results are comparable with those using a smaller time step.

Overall, it is harder to get a close agreement for the average drag and even harder for the Strouhal
period at this and higher Reynolds numbers. This illustrates the need for very good methods at higher
Reynolds numbers.

In Table 5, we see for Reynolds number 2000 that the drag-lift dynamics is no longer periodic, as
also observed in [12]. Similar to [12, Fig. 7], we observe an oscillation of the wake of the flow behind
the cylinder in Figure 5.

As the drag-lift dynamics is no longer periodic at Reynolds number 2000, we computed the flow for a
sequence of Reynolds number values between 1000 and 2000 to see how the chaos emerges, as shown in
Table 8. We obtain a plausibly periodic solution at Reynolds number 1125, but with an ever-increasing
standard deviation of the Strouhal period as the Reynolds number increases, even on the finest meshes.

For Reynolds numbers 4000 and higher, we no longer attempt to provide consensus values for the
Strouhal period or drag; see Table 6 and Table 7. Furthermore, Figure 6 illustrates how the spread in
the computed Strouhal period increases with increasing Reynolds number.
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Table 4: Results for Reynolds number 1000. The consensus values for the average drag is 1.54 and for the Strouhal
period is 8.36.

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 8 / 0.032 0.001 280 480 1.5420 8.351 ± 0.00005 NA
MCS4 4 / 0.016 0.0005 280 480 1.5504 8.322 ± 0.00036 NA
MCS4 2 / 0.008 0.00025 280 480 1.5384 8.361 ± 0.00318 NA

MCScf
4 8 / 0.032 0.0005 280 480 1.5238 8.516 ± 1.29090 NA

MCScf
4 4 / 0.016 0.0005 280 480 1.5615 8.295 ± 0.05556 NA

MCScf
4 2 / 0.008 0.00025 280 480 1.5320 8.393 ± 0.00879 NA

gdTH4 8 / 0.032 0.01 280 480 1.5343 8.481 ± 1.30527 1.07 × 10−2

gdTH4 4 / 0.016 0.01 280 480 1.5162 8.297 ± 0.42448 6.79 × 10−3

gdTH4 4 / 0.016 0.005 280 480 1.5163 8.302 ± 0.41216 6.78 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.5444 8.365 ± 0.00169 5.13 × 10−3

SV4 8 / 0.032 0.01 280 480 1.5400 8.550 ± 1.31361 9.78 × 10−6

SV4 4 / 0.016 0.01 280 480 1.5168 8.278 ± 0.24277 4.40 × 10−7

SV4 2 / 0.008 0.01 280 480 1.5444 8.365 ± 0.00157 1.18 × 10−7

Figure 4: Vorticity of the flow with Reynolds number 1000 at t = 300 computed using the MCS4 method on the mesh
with hmax = 2.

Table 5: Results for Reynolds number 2000. The consensus values for the average drag is 1.65 and for the Strouhal
period is 8.4.

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 8 / 0.032 0.001 280 480 1.6447 8.441 ± 0.99875 NA
MCS4 4 / 0.016 0.0005 280 480 1.6470 8.417 ± 0.95675 NA
MCS4 2 / 0.008 0.00025 280 480 1.6411 8.407 ± 0.94202 NA

SV4 2 / 0.008 0.01 280 480 1.6603 8.066 ± 0.68569 1.75 × 10−7

gdTH4 4 / 0.016 0.01 280 480 1.5798 8.902 ± 1.27449 9.55 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.6524 8.365 ± 0.96296 5.61 × 10−3

Table 6: Results for Reynolds number 4000.

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 8 / 0.032 0.001 280 480 1.7778 7.867 ± 1.32713 NA
MCS4 4 / 0.016 0.0005 280 480 1.5922 9.030 ± 2.33259 NA
MCS4 2 / 0.008 0.00025 280 480 1.7717 7.792 ± 1.32658 NA

SV4 2 / 0.008 0.01 280 480 1.4719 8.904 ± 2.68945 1.28 × 10−6

gdTH4 4 / 0.016 0.01 280 480 1.6283 8.941 ± 2.01980 1.25 × 10−2

gdTH4 2 / 0.008 0.01 280 480 1.5620 8.997 ± 2.61238 9.48 × 10−3
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Figure 5: Vorticity of the flow with Reynolds number 2000 computed using the MCS4 method on the mesh with
hmax = 2. Top: t = 310, Bottom: t = 350.4.

Table 7: Results for Reynolds number 8000

Method hmax/hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2)

MCS4 4 / 0.016 0.0004 280 480 1.6900 8.924 ± 2.46617 NA
MCS4 2 / 0.008 0.0002 280 480 1.7262 9.252 ± 2.32805 NA

SV4 2 / 0.008 0.01 280 480 1.6481 9.353 ± 2.23443 3.52 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.5174 8.883 ± 2.27784 1.29 × 10−2

gdTH4 2 / 0.008 0.01 280 480 1.6522 9.135 ± 2.38565 1.17 × 10−2

Table 8: Investigating at what Reynolds number the flow becomes chaotic.

Re Method hmax/hmin ∆t tstart tend Drag Period

1100 MCS4 8 / 0.032 0.001 280 480 1.5581 8.279 ± 0.00258

1125 MCS4 8 / 0.032 0.001 280 480 1.5628 8.262 ± 0.00822

1150 MCS4 8 / 0.032 0.001 280 480 1.5660 8.245 ± 0.02200

1175 MCS4 8 / 0.032 0.001 280 480 1.5718 8.230 ± 0.07870

1200 MCS4 8 / 0.032 0.001 280 480 1.5743 8.206 ± 0.33194
1200 MCS4 4 / 0.016 0.0005 280 480 1.5811 8.245 ± 0.91742
1200 MCS4 2 / 0.008 0.00025 280 480 1.5728 8.227 ± 0.48112

1400 MCS4 8 / 0.032 0.001 280 480 1.5961 8.534 ± 1.07792
1400 MCS4 4 / 0.016 0.0005 280 480 1.5947 8.576 ± 1.17649
1400 MCS4 2 / 0.008 0.00025 280 480 1.5959 8.536 ± 1.11533

1600 MCS4 8 / 0.032 0.001 280 480 1.6103 8.520 ± 1.15913
1600 MCS4 4 / 0.016 0.005 280 480 1.6137 8.504 ± 1.16444
1600 MCS4 2 / 0.008 0.0025 280 480 1.6136 8.507 ± 1.05176

1800 MCS4 8 / 0.032 0.001 280 480 1.6312 8.462 ± 1.00298
1800 MCS4 4 / 0.016 0.005 280 480 1.6305 8.475 ± 1.06059
1800 MCS4 2 / 0.008 0.0025 280 480 1.6327 8.481 ± 0.98248
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Figure 6: Histogram of the computed periods of the flow at Reynolds numbers 1000, 2000, 4000 using the MCS4
method with hmax = 2.

5.2.1 Just enough numerical dissipation

As far as we know, there are no direct comparisons between conforming and non-conforming pressure-
robust methods, so our results give some data on this issue. A direct comparison between fully discon-
tinuous Galerkin and an H(div)-conforming method was performed in [14]. Our results indicate that
the H(div)-conforming MCS method with an upwind stabilized convective term is the most accurate
scheme considered here, in particular at higher-Reynolds numbers. This is in line with the fact that at
high Reynolds numbers, some artificial dissipation is needed unless all scales are resolved [8]. This is
due to the non-linear coupling in the Navier–Stokes equations pushing energy (enstrophy in our present,
two-dimensional case) to ever higher frequencies. Consequently, for a computational method for high
Reynolds number flows to be globally energy consistent with respect to the resolved scales and give
optimal resolution where the solution is smooth, it is argued in [8] that the method should have opti-
mal convergence properties for the numerical or artificial dissipation when the solution is smooth and
respect the power spectrum where it is rough.

That this is the case for an H(div)-conforming method with upwind stabilization is indicated by
the fact that in the inviscid limit, an H(div)-conforming finite element approximation with an upwind
flux leads to an optimal error estimate of order O(hk+0.5) [4], something which is not obtained with
the conservative central flux [22]. Furthermore, in the divergence-free and conforming case, extra
stabilization is needed to obtain the optimal order error estimate in the inviscid limit [5].

Furthermore, we note that in [14], it was also concluded that for an H(div) method, the extra
dissipation from the upwind flux in the convective term is of benefit, for three-dimensional under resolved
Navier–Stokes flows. Finally, it is argued in [13] that numerical schemes should contain some numerical
dissipation in the convective term to overcome problems caused by discretely energy-conserving schemes,
such as the inability to represent physical dissipation in the inviscid limit and the resulting accumulation
of energy in small scales.

5.2.2 Computational effort

Finally, to give insight into the computational effort required by the studied methods, we present the
timings for computation required to reach t = 10 on the same computer hardware for the MCS4, gdTH4
and SV4 methods at Re = 1000 in Table 9. Here, we see that the matrix factorization of the resulting
sparse linear(ized) systems and the application of each time step are the cheapest for the MCS method
and most expensive for the stabilized Taylor–Hood method. However, since the time step must be
chosen smaller in the IMEX time-stepping scheme in the MCS method, the time-to-solution is faster for
the fully implicit time-stepping schemes on each considered mesh. Nevertheless, we note that because
our quasi-Newton scheme reuses the factorization of the Jacobian matrix, as long as this reduces the
residual by a factor of 0.1, only one matrix factorization was necessary during the first 1000 time steps
where the vortex street has not yet developed.

As seen in Table 4, the coarsest MSC discretization provided the most accurate estimates of the
drag and Strouhal period, while both stabilized Taylor–Hood and Scott–Vogelius required finer meshes
to resolve all the necessary scales. To estimate the computational time for an extended solution, we
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Table 9: Timings for computation until t = 10 at Re = 1000 on the three considered meshes for the MCS4, gdTH4
and SV4 methods. Matrix factorizations computed using the sparse direct solver PARDISO through the Intel
Math Kernel Library. Computed using four shared memory threads on an Intel Core i7-13700F processor.

Method hmax / hmin ∆t Total Time (s) Time Factorizing (s) # Matrix Factorizations

MCS4 8 / 0.032 0.001 258.1 0.8 2
MCS4 4 / 0.016 0.0005 1125.0 2.0 2
MCS4 2 / 0.008 0.00025 6781.4 5.0 2

gdTH4 8 / 0.032 0.01 90.8 1.9 1
gdTH4 4 / 0.016 0.01 208.4 5.1 1
gdTH4 2 / 0.008 0.01 613.9 56.2 1

SV4 8 / 0.032 0.01 65.6 1.6 1
SV4 4 / 0.016 0.01 151.4 3.7 1
SV4 2 / 0.008 0.01 407.8 10.8 1

extrapolate the data in Table 9 to t = 500†. The computational wall time for the MSC method on
the coarsest mesh is approximately 4h. The grad-div stabilized Taylor–Hood computation on the finest
mesh required 135 updates of the Jacobean. This gives an approximate computational time of 10h. The
Scott-Vogelius method required 425 updates of the Jacobean. This gives an approximate computational
time of 7h. Consequently, the MSC method (with upwinding) provided an effective tool for exploration
on coarser meshes, as indicated in the first four entries in Table 8. On the other hand, to resolve the
drag and period to high precision required more resolution in some cases.

5.3 Other methods

We survey briefly other methods that have been used for simulating flow around a cylinder.

5.3.1 Vortex blob

The publication [12, Figure 5] suggests that drag and lift for flow around a cylinder is nearly periodic
at Re = 1000, in agreement with our findings, with chaotic flow for Re ≥ 2000.

5.3.2 OpenFoam

OpenFoam may not be the ideal discretization approach for low Reynolds numbers. In [27], Strouhal
numbers and frequencies computed with OpenFoam were found to be in error by greater than a factor
of two for Re ∈ [55, 161].

6 Conclusions

We considered several finite element methods for solving flow past a cylinder. All of these methods
are well studied both computationally and theoretically. We found that high-order and pressure-robust
methods with the correct amount of numerical dissipation are necessary to obtain reliable results at
higher Reynolds numbers. The widely-used, lowest-order Taylor–Hood method was not accurate enough
to give appropriate results, even at relatively low Reynolds numbers. We were able to confirm some
earlier results by other researchers. We found that exact incompressibility and appropriate numerical
dissipation are important at higher Reynolds numbers. This is particularly the case when not all scales
are resolved, which is often the case at high Reynolds numbers. In particular, we found that both H1-
conforming and H(div)-conforming pressure-robust methods without any numerical dissipation from
the convective term did not lead to accurate results unless very fine meshes where considered. Finally,
we studied in detail how chaos appears to emerge for Reynolds numbers just above 1000 using the

†The actual runs were performed on different nodes of the cluster “oscar” at Brown University with different compu-
tational hardware and without control over other computations effecting computational run time.
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pressure-robust MSC method with upwinding which appears to have the correct amount of numerical
dissipation for reliable results.
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