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Introduction

Soil microbial CO2 respiration drives both regional and 
global carbon (C) cycling, releasing roughly ten times more 
C per year than fossil fuel combustion (Bond-Lamberty and 
�omson 2010a, Hashimoto et al. 2015, Xu and Shang 
2016, Marland et al. 2020). �e amount of C respired by 
microbes depends on both soil temperature and water con-
tent (Hursh et al. 2017). �ough temperature nearly always 
has a positive relationship with microbial respiration (Bond-
Lamberty and �omson 2010b, Hashimoto et al. 2015), the 
relationship between microbial respiration and soil moisture is 
more complex. Soil water content is frequently positively cor-
related with microbial respiration (Orchard and Cook 1983, 
Manzoni et al. 2012, Zhang et al. 2013), but the correlation can 
become negative in overly wet or humid ecosystems (Waring 
and Hawkes 2015). Regardless of the direction, however, the 
influence of soil water content on microbial respiration means 
that changes in local precipitation patterns can alter the global 
C system. Yet there is enormous variation in how changes in 
rainfall impact microbial composition, CO2 respiration and 
microbial-driven decomposition both among and within eco-
systems (Ren et al. 2018). �is variability makes it difficult 
to predict, at local and global scales, how global change will 
impact microbial C cycling. Hence, there is an urgent need 
to understand how microbial communities and the dependent 
ecosystem processes will be affected by changes in precipita-
tion, particularly drought, during the next century.

Droughts are already increasing in both severity and 
frequency across the world (Vicente-Serrano et al. 2014, 
Diffenbaugh et al. 2015, Parolari et al. 2016). �e accom-
panying soil moisture reductions can impair microbial eco-
system function through a variety of non-mutually exclusive 
mechanisms. First, drought can alter the makeup of the 
bacterial community, either by reducing microbial biomass 
or changing community composition (Allison et al. 2013). 
Indeed, changes in microbial community composition dur-
ing drought are common and typically reflect decreases in 
fast-growing Proteobacteria and increases in slower-growing 
Acidobacteria (Castro et al. 2010, Tóth et al. 2017, Ren et al. 
2018). Second, drought can inhibit microbial activity by 
limiting water transport through soil pore spaces (Stark and 
Firestone 1995, Carson et al. 2010, Manzoni et al. 2012). 
Soil pores become hydraulically isolated when soil water 
potential reaches a ‘tipping point’ known as the diffusion 
limitation coefficient (ψth, Olesen et al. 2001). When soil 
water falls below this threshold, microbial activity is sup-
pressed due to restricted dispersal of nutrient substrates like 
carbon and nitrogen or due to the accumulation of inhibitory 
compounds like antibiotic compounds and enzymes. �is 
can lead to physiological stress (i.e. desiccation, Schimel et al. 
2007) or nutrient deficiency (Manzoni et al. 2012). It is also 
possible that changes in microbial community composition 
only occur below ψth, which would suggest that ψth is a criti-
cal threshold for drought-altered microbial processes.

Because evidence suggests that soil water must drop 
below a critical threshold for drought effects to manifest, it 
is likely that the seasonal timing of drought will determine 
the extent to which belowground processes are adversely 
impacted by drought. Specifically, the effects of drought 
might be minimal during cool, wet periods typical of late 
spring but dramatic during hot summer months with high 
evapotranspiration rates that reduce soil moisture near the 
ψth threshold (Knapp et al. 2001, Cherwin and Knapp 
2012, Hoover et al. 2014a). In other words, droughts dur-
ing specific times of the growing season might push micro-
bial communities beyond such thresholds into a state of 
lowered activity. Combined, these mechanistic changes 
induced by drought have consequences for belowground 
ecosystem function, as reductions in microbial activity and 
changes to the community composition can dramatically 
decrease decomposition rates (van der Heijden et al. 2008, 
Allison et al. 2013, Tóth et al. 2017). �erefore, examining 
the influence of drought across seasons and a range of abiotic 
conditions is essential to pinpointing when soil communi-
ties and their associated functions are most at risk. However, 
field studies rarely account for drought timing and seasonal-
ity, and the presence of such phenological ‘tipping points’ 
remains unknown.

Here, we present results from a study designed to quantify 
the effect of drought on soil microbial abundance, commu-
nity composition, and soil water diffusion across four months, 
and to then assess how drought impacts the microbial decom-
position of leaf matter. Our study system is a mesic tallgrass 
prairie that is subject to a wide range of soil moistures, from 
5 to 40% VWC, enabling us to capture potential nonlinear 
effects of soil moisture on microbial processes. Specifically, 
we tested the following hypotheses:

H1. Drought inhibits microbial activity via either 
direct or indirect pathways

Specifically, we predicted that drought-imposed reductions in 
soil moisture would inhibit microbial activity, as measured 
by CO2 respiration. �ere are three non-mutually exclu-
sive mechanisms by which drought could reduce microbial 
activity:

H1a. Reduced soil moisture decreases bacterial abundance. 
As soil moisture declines, bacteria can die from desiccation or 
lower carbon use efficiency (Schimel 2018).

H1b. Reduced soil moisture alters bacterial community com-
position. In this case, reducing soil moisture would alter the 
relative abundances of bacterial taxa by favoring the survival 
of only slow-growing, stress-tolerant species.

H1c. Reduced soil moisture inhibits microbial activity 
via diffusive limitation. As Manzoni et al. (2012) reported, 
reduced water diffusion can cause a buildup of antimicrobial 
compounds, limit nutrient availability, or cause desiccation/
dormancy of existing microbes. Any of these changes would 
lower activity and respiration rates.
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H2. Drought inhibits microbial activity only when 
soil moisture declines below a threshold in the 
mid-to-late summer

We expected to find a non-linear relationship between soil 
moisture and microbial activity. Specifically, we predicted 
that soils would reach a threshold water content at which soil 
pores become hydraulically isolated, causing microbial activ-
ity to decline. Drought will keep soil water content closer to 
this threshold (ψth), causing reductions in activity to occur 
earlier and more frequently.

H3. Reduced microbial activity under drought 
inhibits decomposition

Ultimately, we predicted that a reduction in soil microbial 
activity in drought conditions, even briefly, would inhibit 
decomposition of either labile or refractory plant material 
throughout the growing season (Tóth et al. 2017).

Material and methods

Site description

We tested the effects of rainfall reduction on belowground 
processes at the University of Wisconsin – Milwaukee 
at Waukesha (UWM-W) field station in Oconomowoc, 
Wisconsin. �e field station encompasses about 40 ha con-
taining oak savannas, jack pine forests, maple forests, oak for-
ests and tallgrass prairie. �e tallgrass prairie is dominated 
by the C4 grasses Andropogon gerardii, Bouteloua cutripendula 
and Schizachyrium scoparium and the forbs Echinacea pal-
lida, Ratibida paradoxa, Dalea spp. and Monarda fistulosa. 
Soils are mineral soils with about 5% organic matter, 0.22% 
nitrogen and about 4.75 ppm phosphorus. Soil texture is 
56% sand, 26% silt and 18% clay. �e climate is relatively 
cool and mesic; from April – September, mean daily tem-
peratures are ~20°C and mean precipitation is ~ 520 mm 
(Fig. 1). Precipitation occurs evenly from May–November 
(Supporting information). Southern Wisconsin experiences 
1–2 severe droughts every 30 years, and the frequency of 
droughts is predicted to double by 2100 (Sheffield and Wood 
2008). Furthermore, droughts at our site are typified by daily 
rainfall shortages that occur throughout the entire growing 
season from May to September (Supporting information).

Rainfall reduction treatment

We reduced rainfall using passive shelters following the estab-
lished Drought-Net design (Yahdjian and Sala 2002). On 15 
April 2020, we marked twenty 2 × 2 m experimental plots 
randomly assigned as either ‘Ambient’ or ‘Drought’ treatments 
(n = 10 per treatment). Ambient plots had no shelters and 
received normal growing season precipitation, while drought 
plots had rainout shelters installed to mimic drought. Using 
127 years of daily recordings from a weather station (NOAA 
NCDC Station ID USC00478937, Waukesha WWTP, WI 

US), we determined that a 40% reduction in growing season 
precipitation fell below the 5th percentile for annual growing 
season rainfall and thus represented a severe drought at our 
study site (Fig. 1B). 

Passive rainout shelters consisted of a 2 × 2 m wooden 
frame covering a 1 × 1 m measurement plot, allowing for a 
0.5 m buffer on each side. Roofs were made of nine polycar-
bonate sheets (1.8 m long, 15 cm wide) evenly spaced to cover 
40% of the 2 × 2 m plot. To verify our drought treatment, we 
measured soil volumetric water content (%VWC) every two 
weeks using a Field Scout TDR 150 with 12 cm probes. We 
recorded three %VWC measurements per plot and averaged 
the estimates to produce a single value per plot. We converted 
%VWC to soil water potential using a soil water release curve 
(Supporting information), measured by �e METER Group. 
�e METER group constructed the soil water characteristic 
curve using two devices, the Hyprop 2 measures soil water 
potential in the 0 to −100 kPa range using mini-tensiometers, 
while the WP4C measures soil water potential ranges from 
−100 to −100 000 kPA using a dewpoint sensor inside a 
sealed chamber. We calculated ψth by using the equation of 
Olesen et al. (2001), which uses clay fraction, silt fraction, and 
soil bulk density to determine the soil VWC at which diffu-
sion limitation occurs. We then converted that level of VWC 
to soil water potential (ψth) using the soil water release curve.

Soil sampling

Beginning on 11 May 2020, we collected soil cores every 
other week until 1 September 2020. Specifically, we col-
lected a 7–15 g soil core from the top 10 cm of soil using a 
1 cm diameter soil corer (n = 5 randomly chosen plots per 
treatment). Cores were placed into sterile Whirl Pak bags, 
kept on ice, and transported to the lab. Once in the lab, 
soils were passed through a 1.5 mm mesh seive to remove 
roots, rocks, and other plant material. Sieves were washed 
with 70% ethanol between soil samples. Sieved soils were 
then partitioned into two batches (per core). One batch was 
allocated for immediate soil respiration analysis followed by 
soil organic content. A second batch was frozen at −70°C 
until processing for DNA. We extracted DNA from ~ 0.25 g 
soil from the second batch using DNeasy PowerSoil Pro kits 
(Qiagen). Extracted DNA was partitioned into two aliquots, 
one for qPCR and one for sequencing. Aliquots were stored 
at −70°C until analyses.

Bacterial abundance via qPCR

We estimated bacterial abundance using quantitative PCR. 
We first created five qPCR standards from a two-fold dilution 
series of pure Escherichia coli culture. We quantified the cell 
count of each standard using a Beckman Coulter CytoFLEX 
flow cytometer. We then multiplied the estimated E. coli cell 
count by seven, the number of 16S rRNA gene in E. coli, to pro-
vide a final estimate of 16S rRNA gene copy number per sam-
ple. Our qPCR protocol was based on Fierer et al. (2005) and 
Rousk et al. (2010). Specifically, we used a 25 μl PCR reaction 

 1
6

0
0

0
7

0
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://n
so

jo
u

rn
als.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/o
ik

.1
0

2
0

1
 b

y
 M

arq
u

ette U
n

iv
ersity

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
3

/0
1

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



Page 4 of 13

containing the following: 0.5 μl of forward primer Eub338 
(10 μM concentration, ACTCCTACGGGAGGCAGCAG), 
0.5 μl of reverse primer Eub518 (10 μM concentration, 
ATTACCGCGGCTGCTGG), 12.5 μl Maxima SYBR 
Green Flourescein qPCR Master Mix, 9.5 μl ddH2O, and 
2.0 μl of template DNA. On each 96-well plate, we ran stan-
dards in duplicate, while samples and no-template controls 
(ddH2O) were run in duplicate or, where possible, triplicate. 
We used a Bio-Rad CFX96 qPCR machine with thermocy-
cler conditions set to 95°C for ten minutes, followed by 40 
cycles of 95°C for 15 s, 50°C for 30 s, and 72°C for 30 s. At 
the end of each qPCR run, we used melting curves to ensure 

that the flourescence was not due to primer dimers or other 
artifacts (Fierer et al. 2005). Following qPCR, we converted 
cycle numbers to ‘16S rRNA gene copy numbers per g dry 
soil’, where the dry soil weight was the dry weight of the soil 
used to extract DNA for each sample.

Bacterial community composition

�e second aliquot of extracted DNA samples were sent to 
Argonne National Laboratory for 16S rRNA gene amplicon 
sequencing. We amplified the V4 region of the 16S rRNA 
gene 515F (GTGYCAGCMGCCGCGGTAA) – 806R 
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Figure 1. Weather, climate, and soil moisture profiles during our experiment. (A) Daily total precipitation and average temperature for our 
study site at Oconomowoc, WI during the experimental year of 2020. Precipitation data come from a long-term weather station in 
Waukesha, WI (USC00478937), and temperature data were obtained from a nearby weather station in Brookfield, WI (USC00471062). 
(B) Histogram of total growing season (April–September) precipitation, based on 127 years of data from Waukesha, WI (USC00478937). 
Dotted blue lines show the 50th, 5th and 1st percentiles of growing season precipitation. Red lines show growing season precipitation under 
ambient conditions and in our experimental manipulations (40% reduction from ambient). (C) Soil moisture profiles during the course of 
our experiment. Points and bars show means ± 1 SE, and trend lines were fitted via a Gaussian process model. Gaussian process model 
shows the mean trend ± 1 SE. (D) Soil water potential profiles during the course of our experiment, as estimated from a soil water release 
curve. Points and bars show means ± 1 SE, and trend lines were fitted via a Gaussian process model. Gaussian process model shows the 
mean trend ± 1 SE. Orange arrows show the dates at which soil water potential declined below ψth.
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(GGACTACNVGGGTWTCTAAT) using a 12-base bar-
code on the forward primer. �e PCR mixture contained 9.5 
μl of PCR water, 12.5 μl of Quantabio’s Accustart II PCR 
ToughMix (2× concentration, 1× final), 1 μl of Golay bar-
code-tagged forward primer (5 μM concentration, 200 pM 
final), 1 μl reverse primer, (5 μM concentration, 200 pM 
final), and 1 μl template DNA. �ermocycler conditions 
were set to 94°C for 3 min to denature DNA, with 35 cycles 
at 94°C for 45 s, 50°C for 60 s, and 72°C for 90s, followed 
by a final extension of 10 min at 72°C. Samples were pooled 
into a single tube, quantified, and diluted to 2 nM. We then 
added 6.75 pM of 10% PhiX. Amplicons were sequenced on 
a 151-bp by 12-bp by 151-bp Illumina MiSeq run.

Raw sequence reads were demultiplexed using idemp 
(https://github.com/yhwu/idemp). Paired-end sequence reads 
were then processed in R (ver. 4.1.1, www.r-project.org) using 
the DADA2 pipeline (ver. 1.20.0, Callahan et al. 2016a). 
Briefly, sequences were filtered and trimmed (truncated to 
minimum 145 bp with maximum error rate of 2 for forward 
and reverse reads), an amplicon sequence variant (ASV) table 
was constructed, and chimeras were removed. Taxonomy was 
assigned using the ‘DECIPHER’ package (ver. 2.20.0, Wright 
2016, Murali et al. 2018) with the Silva database (release ver. 
138, Quast et al. 2012). DECIPHER was also used to align 
the DNA sequences for tree building and subsequent phylo-
genetic diversity metrics. Following alignment, the R package 
‘phangorn’ (ver. 2.8.0, Schliep 2011) was used to build an ini-
tial neighbor-joining tree to use as a starting point for a GTR 
maximum likelihood tree (Callahan et al. 2016b). After tax-
onomy assignment, we filtered out only the ASVs belonging 
to the domain Bacteria and removed any sequences identified 
as chloroplasts or mitochondria.

Microbial respiration and soil organic content

We estimated microbial activity throughout the growing sea-
son in ‘Ambient’ and ‘Drought’ plots by measuring microbial 
CO2 respiration using an incubation method. One batch of 
the sieved soil sample was weighed to approximately 5 g (± 
0.2 g) and placed into a 100 ml clear glass bottle. Bottles were 
sealed and then flushed with CO2-free air. Once flushing was 
complete, bottles were incubated in a Conviron GEN1000 
growth chamber set to 25°C for one hour. After incubation, 
we recorded CO2 concentrations (ppm) using an LI-850 
CO2/H2O infrared gas analyzer modified for reading single 
samples. After respiration measurements, soils were dried at 
60°C for 24–48 h until stable mass was achieved to deter-
mine dry weight. Finally, we standardized all measurements 
to CO2 μg h−1 g dry soil−1.

To ensure that changes in soil microbial activity were not 
caused by changes in soil carbon availability, we estimated 
soil organic matter content via loss-on-ignition. After res-
piration trials, soils were dried and weighed to obtain dry 
weights. �e entire soil sample was then combusted at 550°C 
for four hours (Hoogsteen et al. 2015) and re-weighed. 
Organic content was calculated as the percent mass loss dur-
ing combustion.

Decomposition

We quantified ecosystem-level decomposition rates using the 
tea bag method (Keuskamp et al. 2013). Prior to the experi-
ment, we weighed out 2 g of dried green tea and dried rooi-
bos (i.e. red) tea into nylon tea bags. Tea bags were then heat 
sealed. On 22 June 2020, we buried one green and one red 
tea bag in the center of each plot (n = 10 per treatment) 5–8 
cm below the soil surface. On 6 September 2020, we retrieved 
tea bags. Large soil particles were removed from the outside 
of the bags, and we manually removed any small roots that 
had grown on or through the bags. One bag contained a hole 
that allowed soil to mix in with the tea and was excluded 
from analyses. After processing, the tea was removed, dried, 
and reweighed. Decomposition rate was calculated as the per-
cent mass loss for each tea type.

Statistical analyses

We analyzed microbial community diversity by first convert-
ing the number of reads into relative abundances. We then 
removed rare taxa that occurred in fewer than 5% of samples 
and dropped any samples with fewer than 12 000 reads (less 
than 50% of the average) as unreliable. For each remaining 
sample, we calculated the exponential of the Shannon diver-
sity index. Temporal trends in diversity and drought effects 
were modeled using a Gaussian process model. GPMs are 
commonly used for time-series analyses because they automat-
ically incorporate temporal autocorrelation and allow for non-
linear trends (Rasmussen and Williams 2005, Roberts et al. 
2013). �e advantage of GPMs is that the Bayesian treatment 
smooths outliers and thus avoids overfitting and mistaking 
noise for a signal (Lemoine et al. 2016, Lemoine 2019). Both 
the response variables and predictor (week of experiment) 
were standardized to N(0,1) prior to analysis.

Temporal or drought-driven changes in microbial com-
munity composition were assessed using multivariate ordi-
nation. As with diversity, we first dropped any rare ASVs 
that occurred in fewer than 5% of samples and removed any 
unreliable samples with fewer than 12 000 reads. �e ASV 
abundance table was then subject to the Wisconsin transfor-
mation for ordination: the abundance table was square-root 
transformed, each column (ASV) divided by its maximum 
value, and finally relative abundance was calculated for each 
sample (Legendre and Legendre 1998). Using the Wisconsin 
matrix, we then calculated the Bray–Curtis (relative abun-
dance) and Sørenson (presence/absence) pairwise distances 
for each sample. We also calculated the UniFrac weighted and 
unweighted pairwise distances using the ‘phyloseq’ package 
in R (www.r-project.org, Lozupone and Knight 2005, 2007, 
McMurdie and Holmes 2013). For each distance matrix, 
we analyzed differences in community composition using 
PERMANOVAs and visualized differences using NMDS. 
We analyzed taxon-specific patterns using differentially 
abundant taxa analyses based on beta-binomial regression 
(Martin et al. 2020). Following differentially abundant taxa 
analyses, we regressed relative abundance against log(VWC) 
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for all of the bacterial families exhibiting significant variabil-
ity among sampling dates.

We analyzed temporal trends in both microbial abundance 
and respiration using Gaussian process models as described 
above. Given the known relationship between soil moisture 
and microbial activity, Gaussian process models for both 
microbial load and respiration included date, drought treat-
ment, and measured VWC as predictors. We analyzed tea-
bag decomposition with a Bayesian two-factor ANOVA that 
included both tea type, drought treatment, and their interac-
tion as predictors. We placed a hierarchical N(0,1) prior on 
the standard deviation of regression coefficients. �e decom-
position mass loss was standardize to N(0,1) prior to analysis.

All analyses, with the exception of sequence processing, 
PERMANOVAs, and differentially abundant taxa analyses, 
were performed in Python ver. 3.8.13. Gaussian process 
models were fit using the sckit-learn module, and Bayesian 
models were fit using cmdSTAN 2.25.0 accessed via the cmd-
stanpy 0.9.67 module. PERMANOVAs and differentially 
abundant taxa analyses were conducted in R ver. 4.1.1 using 
the ‘vegan’ and ‘corncob’ packages. All raw data, cleaned data, 
Python scripts, and figures are available on Figshare (https://
doi.org/10.6084/m9.figshare.24281992.v1).

Results

Rainout shelters simulated drought by reducing soil 
moisture

During 2020, our field site in Oconomowoc received 522 
mm of rainfall (Fig. 1A). �e 40% rainfall reduction imposed 
by our shelters simulated a drought falling just below the 5th 
percentile of growing season precipitation, based on 127 
years of records (Fig. 1B). Our rainfall reduction treatment 
successfully reduced soil moisture in the middle and end of 
the growing season. In late spring, soil moisture was ~ 27% 
in both ‘Ambient’ and ‘Drought’ treatments (Fig. 1C). By 
early summer, soil moisture was ~ 5% lower in ‘Drought’ 
plots than in controls, though VWC remained above 25% in 
both treatments (Fig. 1C). By mid- and late-summer, VWC 
fluctuated between 15–20% in ‘Ambient’ plots and between 
10–20% in ‘Drought’ plots (Fig. 1C). In fact, rainout shel-
ters reduced VWC to 40% of the ambient value throughout 
most of the growing season, closely matching our 40% rain-
fall reduction (Fig. 1C).

As hypothesized, the reduction in soil VWC corresponded 
to a strong reduction in soil water potential (Fig. 1D). Based 
on our calculations, diffusion limitation (ψth) occurs when 
water potential falls below −5.44 MPa. Such severe reduc-
tions occurred only three times in our measurements: mid-
June, mid-August, and late-August (Fig. 1D).

Drought did not reduce bacterial abundance

We predicted that drought might directly affect microbial 
communities by reducing bacterial abundance. However, 

bacterial abundance was unaffected by reductions in soil 
water content. Bacterial abundance was constant at an aver-
age of 11.14 ± 0.44 (mean ± 1 SE) × 106 16S rRNA gene 
copies per g dry soil across the entire soil moisture gradient 
(p = 0.381, Fig. 2A). Given the lack of relationship between 
soil moisture and bacterial abundance, drought treatments 
also did not affect soil bacterial abundance, which was also 
constant throughout the growing season (Fig. 2B). �e only 
treatment difference appeared in late July, when bacterial 
abundance in ‘Drought’ plots briefly spiked above ‘Ambient’ 
plots (Fig. 2B), but it is unlikely that this difference was 
related to soil moisture (Fig. 2A).

Drought did not affect bacterial 16S rRNA gene 
composition

We hypothesized that drought alters ecosystem processes by 
changing the structure of microbial communities. However, 
drought had little effect on microbial community composi-
tion, although composition did vary throughout the growing 
season. Across the summer, diversity remained relatively stable 
between 320–360 equivalent ASVs, and drought did not alter 
diversity in any appreciable way (Fig. 3). As with diversity, 
community composition remained stable despite reduced soil 
moisture in ‘Drought’ plots, though communities did vary 
depending on time of sampling (Fig. 4A–C). Indeed, sam-
pling date had a highly significant effect on microbial commu-
nity structure for all of Bray–Curtis, UniFrac unweighted and 
UniFrac weighted distance metrics (Table 1). Most notably, 
bacterial community composition shifted markedly during a 
rainfall pulse on 11 June, but quickly returned to a relatively 
stable community composition for the remainder of the sum-
mer (Supporting information). However, drought had no 
impact on either Bray–Curtis or UniFrac weighted distances 
(Table 1, Fig. 4A–B). Results were similar for the Sørenson 
presence/absence distance metric, in which only Date had a 
significant effect (Supporting information). For the UniFrac 
unweighted distance, drought had a significant but weak 
effect (p = 0.02, Fig. 4C). Differentially abundant taxa anal-
ysis identified only two families out of 251 that exhibited 
slightly significant drought effects: Sphingomonadacaeae and 
the NS11-12 marine group (Supporting information). All 
other 249 identified families were unresponsive to drought.

�e seasonal variation in community composition 
was caused by fluctuations in the relative abundance of 
two phyla. Across all dates, the most common phyla were 
Actinobacteria (~ 25% of reads), Proteobacteria (~ 22.5% of 
reads), Acidobacteria (~ 10.5% of reads), Verrucomicrobiota 
(~ 8% of reads), and Firmicutes (~ 8% of reads). �e rela-
tive abundances of no phyla were significantly impacted by 
drought (Supporting information). However, Proteobacteria 
and Firmicutes both showed rainfall-dependent variation. 
Following a rainfall event in early June, where soil moisture 
reached the highest recorded levels (Fig. 1), the relative abun-
dance of Proteobactera declined to 17.5%, while the relative 
abundance of Firmicutes spiked to 12% before declining 
back to nominal levels (Supporting information). �us, these 
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two phyla appear to fluctuate with rainfall and extreme wet-
ting, but were relatively insensitive to soil drying.

Likewise, differentially abundant taxa analysis found 
52 of 251 families exhibited significant variation by date 
(Supporting information). In particular, Micrococcaceae, 
Rhizobiaceae, Chitinophagaceae, Methyloligellaceae and 
Rubrobacteriaceae were among the most variable (Fig. 5). 
Interestingly, variability in abundance among sampling dates 
appeared to result from phenological changes in soil moisture, 
but only for some taxa (Supporting information). Examining 
the eight bacterial taxa that varied most among sampling dates 
revealed that common bacterial families, such as Bacillaceae, 
Chitinophagaceae and Rubrobacteriaceae, had strong relation-
ships between abundance and soil moisture (Fig. 5), suggest-
ing that seasonal changes in soil moisture drive the abundance 

of these bacterial groups. Abundances of rare taxa, like 
Micrococcaceae, Hyphomicrobiaceae and Methyloligellaceae, 
varied among dates but had no relationship with soil moisture 
(Fig. 5). Rare taxa might therefore exhibit stochastic fluctua-
tion among dates, while the abundances of common taxa were 
determined to large extent by environmental drivers.

Drought-induced diffusion limitation reduced 
microbial respiration

Despite the stability of bacterial communities under drought, 
microbial respiration was highly dependent on soil moisture 
content. Microbial respiration exhibited a curvilinear relation-
ship with VWC; respiration increased rapidly with increasing 
water content when soils were dry (< 20% VWC), but the 
relationship weakened in wetter soils (Fig. 6A). Likewise, soil 
water potential exerted a strong control over microbial activ-
ity. Respiration rates declined in a log-linear fashion with soil 
water potential (Fig. 6B). However, only a few points fell 
below ψth, nearly all from the ‘Drought’ plots (Fig. 6B). �e 
dependence of microbial respiration on soil moisture led to 
strong drought effects on soil microbial respiration (Fig. 6C). 
Importantly, respiration was adversely affected by drought 
only at three time points: mid-June, mid-August, and late-
August (Fig. 6C). During these time points, drought reduced 
soil microbial respiration by 20–30% (Fig. 6C). Importantly, 
these are the same time points at which drought reduced 
soil water potential below the ψth (Fig. 1D). In other words, 
despite drought reducing soil moisture throughout most of 
the growing season, adverse effects of drought on microbial 
respiration appeared only in the time points during which 
soil pores became hydraulically isolated. �e strong reduc-
tion in microbial respiration during late summer ultimately 
reduced cumulative soil respiration throughout the growing 
season by ~ 10% (Fig. 6D).
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p = 0.381
R2 = 0.01

Bacterial Abundance (x106 16s rRNA gene
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16

Bacterial Abundance (x106 16s rRNA gene

copy number per g dry soil)

Ambient Drought

Figure 2. Drought did not affect bacterial abundance. (A) Scatterplot between bacterial load (×106 16 s copies per g dry soil) and gravimet-
ric water content of the soils for which respiration was measured. (B) Time series of bacterial abundance (×106 16 s copies per g dry soil) 
during the course of our experiment. Points and bars show means ± 1 SE, and trend lines were fitted via a Gaussian pProcess model. 
Gaussian process model shows the mean trend ± 1 SE.

Figure 3. Drought did not affect bacterial diversity. Time series of bac-
terial diversity during the course of our experiment. Points and bars 
show means ± 1 SE, and trend lines were fitted via a Gaussian process 
model. Gaussian process model shows the mean trend ± 1 SE.
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�e seasonal and drought-driven changes in soil microbial 
respiration were not caused by changes in soil organic mat-
ter. Loss-on-ignition remained stable between 7–8% for the 
entire growing season, and drought had no effect on this esti-
mation of organic matter content (Supporting information).

Drought reduced decomposition of refractory leaf 
material

Decomposition was affected by drought, but varied by 
type of tea (Pr(Interaction) = 0.95). As expected, green tea 
decomposed more readily than red tea (Pr(Green tea > Red 
tea) = 0.99, Fig. 7). However, drought had no effect on green 
tea decomposition: green tea lost 48 ± 3% of mass under 
ambient conditions and 45 ± 3% of mass in drought condi-
tions (Pr(Drought < Ambient | Green tea) = 0.20, Fig. 7). 
Drought did significantly impact red tea decomposition, 
however. Under ambient conditions, red tea lost 23 ± 3% of 
mass. Drought reduced decomposition of red tea by almost 
half, to 12 ± 3% mass loss (Pr(Drought < Ambient | Red 
tea) = 0.99, Fig. 7). 

Discussion

We tested the hypothesis that drought would reduce decom-
position rates by inhibiting microbial activity below a thresh-
old of soil water potential. Specifically, we predicted that 
drought would minimize or eliminate the ‘hydraulic safety 
margin’ in soils, thereby making microbial communities 
more susceptible to fluctuations in precipitation and tem-
perature throughout the mid-to-late growing season. �ough 
we found that drought had surprisingly little direct effect on 
bacterial abundance or composition, we did find that cellular 
respiration was water-limited only during time periods when 
soil water potential declined below ψth. Although sporadic 
throughout the growing season, these brief reductions in 
microbial activity translated into large impacts on ecosystem 
function, cumulative CO2 release by microbes throughout 
the growing season declined by 10% and decomposition of 
refractory rooibos tea declined by 50%. �us, it appears that 
drought inhibits microbial-driven ecosystem processes dur-
ing even brief dry-down events in the mid- to late summer, 
which can have lasting effects on ecosystem function.

Our study demonstrates that drought encourages hydrau-
lic isolation which can create a tipping point for microbial 
activity that can occur prior to changes in microbial abun-
dance or composition. Soil microbial activity declined signifi-
cantly only when drought drove soil water potential below 
ψth during the hottest, driest points of the year. �ere are 
many, non-mutually exclusive reasons why diffusion limita-
tion might inhibit microbial activity. First, limited water flow 
might encourage the buildup of antimicrobial compounds or 
other enzymes that inhibit microbial activity. Many micro-
organisms, especially Actinobacteria, produce antibiotic 
enzymes that can accumulate in soil pores when water dif-
fusion is limited (Bouskill et al. 2016). Second, diffusion 
limitation can also decrease nutrient supply to soil microbes, 
thereby limiting growth (Manzoni et al. 2012). Finally, 
reduced water availability can impose physiological costs, 
such as osmolyte accumulation or eventual desiccation, that 
reduce microbial activity and growth (Schimel et al. 2007). 
For all of these reasons, some researchers have suggested that 
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Figure 4. Drought did not affect bacterial community composition. Non-metric multidimensional scaling (NMDS) plots for bacterial com-
munity composition for three distance metrics: (A) Bray–Curtis, (B) UniFrac unweighted and (C) UniFrac weighted. Each small point 
shows a single sample, the large circles show the centroid ± 1 SE. Time series of NMDS profiles are available as Supporting information.

Table 1. Results of PERMANOVAs for microbial community compo-
sition for each of the three pairwise distance metrics. ANOVA table 
shows type II sums-of-squares for main effects tested in the absence 
of an interaction, which was not significant for any distance metric. 
PERMANOVA were conducted using the ‘adonis’ function in the 
package ‘vegan’ in R (www.r-project.org).

Factor df SS MS F p

Bray–Curtis
Date 9 3.09 0.34 1.38 < 0.001
Drought 1 0.28 0.28 1.14 0.115
Date × Drought 9 1.97 0.23 0.08 1.00
UniFrac 

unweighted
Date 9 1.85 0.21 1.36 < 0.001
Drought 1 0.19 0.19 1.26 0.02
Date × Drought 9 1.24 0.14 0.90 1.00
UniFrac weighted
Date 9 0.19 0.02 4.24 < 0.001
Drought 1 0.01 0.01 0.98 0.35
Date × Drought 9 0.03 0.003 0.04 1.00
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diffusion limitation might be the most important factor lim-
iting microbial activity during soil drydown, especially for 
mineral soils like those at our study site (Stark and Firestone 
1995, Carson et al. 2010).

It is interesting, however, that diffusion limitation did not 
inhibit decomposition of green tea, only of red tea. Red tea 
has a lower water content, higher insoluble fraction, and lower 
nitrogen content and is thus more refractory than green tea 
(Keuskamp et al. 2013). Green tea typically decomposes faster 
than red tea, but red tea decomposition is often affected more 
by environmental and biotic factors than green (Desie et al. 
2023). �ese patterns would suggest that drought affects 
the decomposition of labile and refractory materials differ-
ently, and it is likely that some combination of both physi-
ological stress and substrate limitation contribute to lower 
decomposition rates at our study sites. Microbial dormancy 
due to physiological stress could account for the impacts of 
drought on microbial physiological profiles (Preece et al. 
2020), but we do not have those data to state how drought 
impacted microbial substrate use at our site. Regardless, our 
study confirms that neither microbial biomass nor diversity 
appear to be directly related to ecosystem processes (Balser 
and Firestone 2005), which are instead contingent on soil 
pore connectivity at certain time points throughout the year.

�e overall stability of our studied microbial communities 
under drought conditions might reflect the fact that a 40% 
reduction in rainfall is still relatively wet, considering the 
Wisconsin climate. However, the 40% growing season rainfall 
reduction imposed here does represent an extreme drought 
for southern Wisconsin, confirmed by VWC of 10% dur-
ing the driest points of the growing season (Fig. 1). �ough 
10% soil VWC might be wet in arid regions (Cherwin and 
Knapp 2012), soil moisture in wet prairies does not usually 
fall below 20% except during severe droughts (Knapp et al. 
2001, Hoover et al. 2014b, Felton et al. 2019). In addition, 

the 10% VWC in the clay-rich soils at our study site trans-
lated to a soil water potential of −8 to −16 MPa (Fig. 1). 
�ese low water potentials resulted in hydraulic isolation of 
soil pores, which occurs at ψth = −5.44 MPa. Importantly, 
drought did not reduce soil water potentials below ψth for 
the entire growing season, but did so only during the hottest 
points in the middle to late summer months. �us, drought 
kept soil water content closer to hydraulically tipping-points, 
wherein high temperatures increased evaporation and drove 
soil water below the hydraulic threshold. �e relative stability 
of bacterial communities to drought mirrors the response of 
the aboveground communities at this site, where drought had 
no detectable impact on plant photosynthesis or primary pro-
duction (Lemoine and Budny 2022). It is also worth noting 
that we did not measure fungal biomass or community com-
position. Fungal activity can account for a significant fraction 
of activity in restored tallgrass prairies (Bailey et al. 2002), 
although fungi rarely comprise more than 30% of microbial 
biomass in grasslands (de Vries et al 2006). Still, the role of 
fungi in driving belowground responses to drought in this 
ecosystem remains an important topic of further exploration.

Despite the extreme reduction in both soil VWC and 
MPa, bacterial communities remained numerically and com-
positionally unaffected by our drought treatment throughout 
the experiment. While unexpected, our results mirror other 
studies that report similarly drought-resistant bacterial com-
munities. In some cases, microbial load as measured by either 
16S copy number (via qPCR) or bulk microbial C (via fumi-
gation) is unaffected by drought (Balser and Firestone 2005, 
Canarini et al. 2016, Jurburg et al. 2018). Likewise, the 
effects of drying on soil bacterial composition varies among 
studies (Schimel 2018), with many reporting no effect of 
changing soil moisture on bacterial community composition 
(Balser and Firestone 2005, Evans and Wallenstein 2012, 
Canarini et al. 2016). �ere are several potential reasons why 
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Figure 5. �e relationship between soil moisture and relative abundance varied among bacterial families. Linear regressions between relative 
abundance and soil VWC for the eight bacterial families showing the strongest effect of date during differential analysis. Graphs for all other 
taxa are available on Figshare (https://doi.org/10.6084/m9.figshare.24281992.v1).
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our bacterial communities were unaffected by drought. First, 
environmental context can dictate how some communities 
respond to drying, in some situations, soil microbiomes were 
only drought-sensitive in the presence of large grazing mam-
mals (Jurburg et al. 2018), which are absent from our site. 
Second, our use of 16s rRNA gene amplicons for both qPCR 
and sequencing might make microbial communities appear 
more functionally stable than they actually are. For exam-
ple, it is possible that portions of our community may have 
become dormant but were not eliminated across our study, 
but our metabarcoding process could not account for this. 

Other methods, such as 16S rRNA or phospholipid fatty acid 
profiles, might more accurately capture the composition of 
active bacterial communities (Schimel 2018, Osburn et al. 
2022). However, less than 25% of DNA in soils is relic DNA, 
and relic DNA does not often influence estimates of microbial 
diversity, richness, or community composition (Lennon et al. 
2018). Moreover, the fact that we captured variability in taxa 
abundances across high temporal resolution sampling dates 
suggests that our 16S sequencing was sensitive enough to 
identify short-term changes in community composition on 
the scale of two weeks. We should therefore have been able to 
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Figure 6. Drought reduced microbial activity during times of year when soil water potential was below ψth. (A) Scatterplot relating soil micro-
bial respiration to plot-level soil water content. Orange line shows the best-fit line for a Michaelis–Menten model (Table 2). (B) Scatterplot 
relating soil microbial respiration to the log10 of plot-level soil water potential. Vertical bar represents ψth, and points are colored by treatment 
to illustrate that almost all measurements wherein soil water potential fell below ψth were drought plots. Note that water potential is repre-
sented as −1 × MPa, such that higher values indicate more negative (drier) soils. (C) Time series of soil microbial respiration during the course 
of our experiment. Points and bars show means ± 1 SE, and trend lines were fitted via a Gaussian process model. Gaussian process model 
shows the mean trend ± 1 SE. Orange arrows show the dates at which soil water potential declined below ψth as in Fig. 1D. (D) Cumulative 
soil microbial respiration (estimated from the Gaussian process model ± 1 SE) over the course of our experiment.
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detect significant changes in community composition due to 
drought had they occurred. Instead, our results demonstrate 
that seasonal phenology, specifically weekly changes in rain-
fall, is a much stronger driver of bacterial community compo-
sition in our study system than a season-long drought. Other 
studies have reported remarkably stable microbial communi-
ties within a season in both grasslands (Lauber et al. 2013) 
and forests (Rasche et al. 2011), and our results challenge 
this common perception that microbial communities within 
a given site are relatively stable throughout the growing sea-
son (Kostin et al. 2021, Fox et al. 2022).

Seasonal precipitation patterns can influence microbial pro-
cesses through drying-rewetting cycles. Variable soil moisture 
can stimulate microbial activity beyond what would be expected 
from a stable environment (Evans and Wallenstein 2012). It 
is unclear whether the dry-down or rewetting has a stronger 
influence on the pulse of microbial activity (Schimel 2018), 
but is highly likely that both the precipitation and freeze-thaw 
seasonality of our study site contributes to the season-long 
resistance of soil communities to drought (Fierer et al. 2003, 
Schimel et al. 2007). Given that the variability of precipitation 
is expected to increase as the climate changes, it is possible that 
the largest impact of climate change on belowground function 
at our study site will be the alteration of seasonal drying–rewet-
ting cycles rather than season-long droughts.

More frequent and severe droughts are expected to disrupt 
ecosystem processes across the globe. Given their importance 
to global carbon cycling, we must develop a thorough under-
standing of how drought impacts soil microbial processes. 
Many studies focus on how drought affects soil microbial 
composition (Ochoa-Hueso et al. 2018) and/or physiological 
profiles (Preece et al. 2020). However, in order to understand 
how global change will impact belowground processes, we 

need a detailed understanding of how microbial commu-
nities, soil moisture, and ecosystem processes like decom-
position are linked (Balser and Firestone 2005). Our study 
highlights that sublethal effects of drought on microbial com-
munities can have large impacts on microbial carbon release 
or decomposition, and it is necessary incorporate such mea-
sures into future studies.
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