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A B S T R A C T

Shared autonomous vehicles (SAVs) have been studied through analytical dispatch methods
and simulation. A common question of interest is how many customers can be served per SAV,
which necessarily depends on the network characteristics, travel demand, and dispatch policy.
We identify equations that describe the maximum set of demands that could be served if an
appropriate dispatch policy were chosen. We then provide a dispatch policy that achieves the
predicted level of passenger throughput. This is achieved for a general class of SAV behaviors
which may include ridesharing, electric SAV recharging, integration with public transit, or
combinations thereof. We accomplish this by defining a Markov chain queueing model which
admits general SAV behaviors. We say the network is stable if the head-of-line waiting times
remain bounded, which is equivalent to serving all customers at the same rate at which they
request service. We give equations characterizing the stable region 𝜦 — the set of demands
that could be served by any dispatch policy. We prove that any demand outside 𝜦 cannot
be completely served. We further prove that our dispatch policy stabilizes the network for any
demand in the stable region using Lyapunov drift, establishing 𝜦 as the maximum set of demand
that can be served. Numerical results validate our calculations using simulation, and we present
initial results on calculating 𝜦 for a large city network.

1. Introduction

Shared autonomous vehicles (SAVs) are a fleet of automated vehicles that provide mobility-on-demand services to travelers.
urrently, Waymo is offering driverless SAV services in limited locations (Gibbs, 2017). Due to the high costs of automated vehicle
technology, SAVs may be one of the first widespread uses of automated vehicles (Fagnant and Kockelman, 2015). Furthermore,
AVs may achieve travel costs that are comparable to private vehicle ownership, making them a viable mode for daily commuting
rips. Eventual large-scale use of SAVs is likely, which motivates study of how to efficiently dispatch SAVs to passengers and also
ow to predict the level-of-service that travelers can expect from widespread and frequent SAV use. These two issues are related.
sufficient fleet size is necessary for a good level-of-service, and prior work (Spieser et al., 2014; Fagnant and Kockelman, 2014;
agnant et al., 2015; Boesch et al., 2016) has attempted to find the replacement ratio of how many travelers can effectively be
erved by a single SAV. However, the efficiency of the dispatch intuitively affects the level-of-service that can be obtained from a
ixed SAV fleet. The goal of this paper is to characterize the set of travel demand that can be served by a given SAV fleet, and in
oing so provide a dispatch policy that will serve that demand.
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Modeling SAV performance is made more complex by several technological extensions that affect the behavior of individual
ehicles. At the basic level, an SAV travels empty from its current location to a passenger’s origin, carries the passenger to their
estination, then continues with the next passenger. This empty travel limits the efficiency of SAV systems. Some empty travel is
ecessary to reach the next passenger’s origin, but time spent traveling empty is not directly spent serving passengers. Dynamic
idesharing (Fagnant and Kockelman, 2018; Alonso-Mora et al., 2017a), in which SAVs can carry multiple passengers with different
rigins and/or destinations simultaneously, can reduce empty travel at the cost of higher in-vehicle travel time for some passengers.
AVs can also be integrated to provide first-mile/last-mile transportation for public transit (Shen et al., 2018; Wen et al., 2018;
urumurthy et al., 2020a), which reduces the SAV time spent per passenger by taking a passenger to/from public transit stops
nstead of directly from their origin to their destination. Other papers expect SAVs to be electric (Chen et al., 2016; Chen and
ockelman, 2016; Jäger et al., 2017; Loeb et al., 2018; Loeb and Kockelman, 2019; Zhang and Chen, 2020), which requires SAVs to
spend significant time on recharging. All of these extensions to the basic SAV problem affect optimal dispatch behavior and models
of their fleet-level performance.

1.1. Prior work on shared autonomous vehicles

SAV modeling (Narayanan et al., 2020) can mostly be characterized as optimization-based methods for SAV dispatch and agent-
based simulations of SAV performance. SAVs are often assumed to be centrally dispatched, meaning that the actions of individual
vehicles are coordinated at the city level to improve service. This coordination includes matching vehicles to passengers and
recharging behavior. Optimizing this coordination is a major topic in the literature. Fundamentally, SAV dispatch is a dial-a-ride
problem, a type of vehicle routing problem (Laporte, 1992; Toth and Vigo, 2002; Eksioglu et al., 2009), which is already known
to be NP-hard (Cordeau and Laporte, 2007) and has been studied extensively in operations research. Some of the major differences
between SAV research and existing dial-a-ride problem algorithms are the problem size (thousands of SAVs vs tens of dial-a-ride
vehicles) and stochastic demand for SAVs. Some studies build on network flow concepts (Spieser et al., 2014; Zhang et al., 2015;
Rossi et al., 2018) and network queueing models (Zhang and Pavone, 2016; Iglesias et al., 2019) in their optimization design. Others
have used model predictive control due to the presence of stochastic and unknown demand (Zhang et al., 2016; Tsao et al., 2018,
2019). Optimizing the empty rebalancing of SAVs is an important sub-problem by itself (Pavone et al., 2012; Hörl et al., 2019; de
Souza et al., 2020; Skordilis et al., 2021), and may be necessary due to limited parking availability (Winter et al., 2021b,a). It has
been optimized separately or integrated with vehicle matching (Guo et al., 2021).

Optimal dispatch studies tend to be analytically-based, but correspondingly ignore some realistic facets of SAV behavior to
reduce the problem complexity. Although large-scale SAV use is likely to affect traffic congestion, only a few studies explicitly
consider congestion in their optimization (Levin, 2017; Levin et al., 2019; Salazar et al., 2019; Wollenstein-Betech et al., 2020;
Li et al., 2021a), but the computational requirements of these models prevent them from being used on realistic problem sizes. A
few others include congestion in their simulations but not in their optimization (Iglesias et al., 2019; Guériau et al., 2020). Chen
and Levin (2019) proposed a predictive dynamic user equilibrium model of SAV trip patterns and their corresponding congestion.
User equilibrium behavioral responses were later used in a bi-level problem to optimize SAV matching and routing (Ge et al.,
2021) and SAV locations and fleet size (Li and Liao, 2020). SAV extensions add further complexity. Without ridesharing, vehicle
miles traveled are expected to increase (Moreno et al., 2018; Tirachini and Gomez-Lobo, 2020). However, ridesharing greatly
ncreases the complexity because each vehicle trip serves multiple passenger origins and destinations with a corresponding ordering
roblem (Alonso-Mora et al., 2017a,b; Cáp and Alonso Mora, 2018; Tsao et al., 2019). Electrification is beneficial for sustainability
ike reducing greenhouse gas emissions (Greenblatt and Shaheen, 2015; Bauer et al., 2018; Jones and Leibowicz, 2019), but adds
urther complexity due to SAV battery levels, recharging times, and limited recharging locations (Iacobucci et al., 2019; Boewing
t al., 2020).
Other studies have used agent-based simulation to evaluate the fleet-level performance. Agent-based simulation consists of

reating ‘‘agents’’ that represent individual vehicles and passengers. These agents exist within a simulation environment that admits
ertain forms of interaction (e.g. an SAV agent can pick up a passenger agent at the same location). Using agent-based simulation,
everal studies found that 3–10 personal vehicles could be replaced by 1 SAV (Spieser et al., 2014; Fagnant and Kockelman, 2014;
agnant et al., 2015; Boesch et al., 2016). Although initial studies used simple simulation environments, e.g. dividing up the
imulated region geographically into squares (Fagnant and Kockelman, 2014; Fagnant et al., 2015; Fagnant and Kockelman, 2018),
later studies simulate SAVs traveling through traffic networks, sometimes with dynamic congestion (Levin et al., 2017; Gurumurthy
t al., 2020b). Although including ridesharing in mathematical programs for SAV dispatch is challenging, it can easily be included in
gent-based simulation (Fagnant and Kockelman, 2018; Gurumurthy and Kockelman, 2018; Lokhandwala and Cai, 2018; Vosooghi
et al., 2019). The complexities of electric SAV recharging behavior (Chen et al., 2016; Chen and Kockelman, 2016; Jäger et al.,
2017; Loeb et al., 2018; Loeb and Kockelman, 2019; Zhang and Chen, 2020) and integration with public transit (Shen et al., 2018;
en et al., 2018; Huang et al., 2022) are also easy to include in agent-based simulation.
However, agent-based simulations lack an analytical model of fleet-level performance, and the performance depends on factors

ncluding SAV dispatch behavior, passenger waiting behavior, network topology, and the passenger trip matrix. This paper aims
o address this gap by analytically characterizing the set of demand that can be served by different SAV systems. We aim for a
eneral characterization of SAV service with specific applications to the extensions of ridesharing, electric vehicles, and integration
ith public transit. This characterization might be useful for SAV operators in their fleet decisions or for metropolitan planning
259
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1.2. Maximum stability control for shared autonomous vehicles

Characterizing the set of demand that can be served is only convincing if a dispatch policy that provides such service is also
iven. To achieve both of these goals, we approach the problem using the techniques of max-pressure control, which was originally
eveloped for communications networks by Tassiulas and Ephremides (1992) and later extended to traffic signal timing by Varaiya
(2013). Max-pressure control is focused on guaranteeing stability. A network is stable if the number of customers queued within
remains bounded over time. Intuitively, stability requires that the service rate is equal to the arrival rate of new customers. For
SAV dispatch, stability can be defined in terms of the number of customers waiting for travel via SAV. As more customers enter
the system, the number of waiting customers remains bounded only if customers exit the system (through pick-up by SAV) at the
same rate at which they enter. Although stability is trivially guaranteed in reality because passengers will not wait indefinitely for
pick-up, it is still an useful modeling concept because it requires that passengers are served quickly. Most work on max-pressure
control models the network as a Markov decision process, where the demand causes stochasticity. When the control policy is given,
the model reduces to a Markov chain, and Lyapunov drift techniques are often employed to prove long-run stability.

Applying stability analyses to SAV systems is a recent approach in the literature. It was first introduced by Kang and Levin
2021), who modeled queues of SAV customers and identified a dispatch policy to guarantee stability of those queues for basic SAV
ystems (without ridesharing, electrification, or public transit integration). However, their dispatch policy was cumbersome as it
equired a model predictive control approach. Longer planning horizons increased stability but also increased computation time.
Li et al. (2021b) used a different Markov chain approach in which the state is the waiting time instead of the queue length

t each customer node. They defined stability in terms of waiting times being bounded and identified a maximum-stable dispatch
olicy for electric SAVs including recharging. Their dispatch policy is also easier to compute than the policy by Kang and Levin
2021). They used Lyapunov stability techniques to prove that their dispatch policy achieves maximum stability, and equivalently
aximum throughput due to Little’s Law. However, their scope was limited in two major ways, and the purpose of this paper is
o demonstrate the extendability of their analytical approach. First, their model is limited to electric SAVs without ridesharing, but
e construct a generalized form that retains the stability properties yet is applicable to a wide range of SAV behaviors. Second,
hey did not analytically characterize the set of demands that can be served. As previously discussed, predicting the demand served
er SAV has been repeatedly studied in the literature using simulations but without analytical structure. As a corollary to finding
general maximum-stable dispatch policy, we also describe the set of demands that could be served by a given fleet of SAVs for a
ide range of service behaviors (e.g. ridesharing, integration with public transit).

.3. Contributions

The contributions of this paper are as follows. We extend the minimum-drift-plus-penalty (MDPP) dispatch policy of Li et al.
(2021b) to apply to general SAV systems. We discuss how this extension is applicable to electric SAVs, dynamic ridesharing, and
integration with public transit. This extension could also be applied to combinations of those SAV systems or other SAV behaviors. We
achieve this generalization by admitting general SAV path assignments that may serve multiple customers and/or include recharging
or alternative destinations (public transit stops). We also include preemptive rebalancing in our stability analysis. We provide a
general analytical characterization of the stable region which can be used to determine whether a demand rate can be served by a
given fleet size. We also prove that any demand rate within the stable region can be served by the MDPP dispatch policy, and any
demand rate outside of it cannot be stabilized, which proves that the generalized MDPP policy is maximum-stable. To demonstrate
the utility of this general dispatch policy, we show how to apply it and its stable region to the specific SAV extensions of electric
SAVs, ridesharing, and public transit integration. This is the first paper to construct a maximum-stable dispatch policy for SAVs
with ridesharing or public transit integration, and the first paper to analytically characterize the stable region for electric SAVs.
Numerical results are presented to validate the analytical work.

The remainder of this paper is organized as follows. Section 2 introduces the network model and generalized SAV dispatch policy,
along with examples of how to adapt it to specific types of SAV systems. Section 3 discusses the stability properties of the dispatch
policy and introduces the stable region, which is expanded in Section 4. Numerical results for validation are presented in Section 5,
and we conclude in Section 6.

2. Network model and SAV dispatch policy

For this SAV system, we assume that customers enter the network at random times. Upon entering the customer immediately
requests SAV service, and waits for the system to dispatch an SAV. An SAV will be assigned to pick up the customer and drive to an
acceptable drop-off location. (When integrating with public transit, multiple public transit stops may be acceptable.) Once an SAV
assignment is made, it is not changed. Similarly, once an SAV is dispatched to a customer, the customer can be removed from the
waiting queue because the SAV is assumed to complete the trip. As part of the dispatch, the SAV may recharge prior to picking up a
customer, or might rideshare to reduce travel times. We do not explicitly limit customer waiting times or delays due to ridesharing.
Although this is unrealistic, customers are assumed to continue waiting until an SAV is dispatched to them, as opposed to exiting
the system after some amount of waiting time has elapsed. This assumption is made because the definition of stability is based on
customer waiting times (or equivalently the number of waiting customers). If customers exit the system without service, then the
SAV dispatch would not be required to stabilize the system.
260
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Table 1
List of notation.
Notation Meaning

𝐴𝑐 (𝑡) ∈ {0, 1} Random variable that indicates whether a new customer arrives at node 𝑐 ∈ C at time 𝑡.
𝐵 Maximum battery capacity.
𝐶𝑣𝜋 (𝑡) ∈ Z+ Cost of assigning SAV 𝑣 ∈ V to path 𝜋 at time 𝑡, including empty rebalancing cost.
𝐶̄𝑞𝑟𝑠 Cost of travel from 𝑞 to 𝑟 to 𝑠.

𝐶̄𝑏
𝑞𝑟𝑠 Cost of travel from 𝑞 to 𝑟 to 𝑠 with a starting battery level of 𝑏.

𝐶̄𝜋 Average cost of assigning a SAV to path 𝜋. (The cost varies due to the empty rebalancing cost.)
𝐷𝓅(𝑡) The total cost associated with dispatch policy 𝓅. 𝐷̃(𝑡) is the total cost of dispatch policy 𝐱̃(𝑡).
𝛿𝜋𝑐 ∈ {0, 1} Indicates whether path 𝜋 serves customer node 𝑐 ∈ C.
𝐸𝑏

𝑞𝑟𝑠 Energy cost of taking trip from 𝑞 to 𝑟 to 𝑠 with starting battery level of 𝑏 (this could be negative due to
recharging).

𝑒𝑐 (𝑡) ∈ {0, 1} Indicates whether node 𝑐 ∈ C is empty at time 𝑡.
𝜖 > 0 A positive constant.
𝑓𝑖𝑗 ∈ {0, 1} Decision variable indicating whether a trip from 𝑖 to 𝑗 is used in path 𝜋.
𝐻𝑐 (𝑡) ∈ Z+ Waiting time of the head-of-line customer at node 𝑐 ∈ 𝑐 at time 𝑡. The vector of waiting times is 𝐇(𝑡).
𝐾 < ∞ A non-infinite constant.
𝜅 < ∞ A non-infinite constant.
 Set of locations, including origins, destinations, and public transit stops.
𝐿(𝐇(𝑡)) The Lyapunov function. 𝛥𝐿(𝑡) is the change in the Lyapunov function from time 𝑡 to time 𝑡 + 1

𝓵(𝐲(𝑡)) Location of SAVs after dispatch 𝐲(𝑡) is enacted at time 𝑡
Λ The stable region of demand.
Λ̂ A set of demand defined by constraints (10)–(13). Corollary 1 will prove that Λ̂ = Λ.
Λ0 The interior of the stable region of demand.
𝜆𝑐 Average arrival rate to node 𝑐 ∈ C. The vector of 𝜆̄𝑐 is 𝜆̄.
𝑀 A large positive constant.
 = V ∪C Set of all nodes.
V Set of SAV nodes. |𝑣| is the size of the SAV fleet.
 A

V (𝑡) ⊆ V Set of SAVs that are available at time 𝑡.
C Set of customer nodes. Each customer node 𝑐 ∈ C is associated with an origin and destination.
𝜂 > 0 A positive constant.
𝛱 Set of all possible SAV paths.
𝜋 A path specifying a set of locations to be visited and a set of customer nodes to be served.
𝜎𝑖 Arrival time at node 𝑖 in the ridesharing traveling salesman problem.
𝑅(𝓁(𝐲(𝑡))) Value of having SAVs at locations 𝓵(𝐲(𝑡)).
𝑐 Set of acceptable public transit stations for customer 𝑐 ∈ C to connect to public transit.
𝑇 End of the time horizon.
𝜏𝑐 (𝑡) ∈ Z+ Random variable for the inter-arrival time between the head-of-line customer and the next one.
𝑉 Penalty weight placed on SAV service time.
𝑊 (𝑡) Function describing the cost of empty rebalancing in the MDPP policy at time 𝑡. 𝑊 𝓅(𝑡) is the cost of

empty rebalancing for policy 𝓅.
𝑥𝑐 (𝑡) ∈ {0, 1} Indicates whether the head-of-line customer at node 𝑐 ∈ C is served at time 𝑡. The vector of 𝑥𝑐 (𝑡) is 𝐱(𝑡).
𝑥̄𝑐 ∈ [0, 1] Average rate of customer service to node 𝑐 ∈ C.
𝑦𝑣𝜋 (𝑡) ∈ {0, 1} Whether SAV 𝑣 ∈ V is assigned to path 𝜋 at time 𝑡.
𝑦̄𝑣𝜋 ∈ [0, 1] Average rate of SAV assignment to path 𝜋

𝛾̄𝑞𝑟𝑠 Average rate of SAV trips from 𝑞 to 𝑟 to 𝑠.
𝛾̄𝑏𝑞𝑟𝑠 Average rate of SAV trips from 𝑞 to 𝑟 to 𝑠 made with a starting battery level of 𝑏.
𝜋 ⊆ C The set of customer nodes included in path 𝜋.
𝜉𝑣𝑐,𝑟𝑠 Average number of trips from 𝑟 to 𝑠 used to serve customer 𝑐 ∈ C.

We adopt the queueing model of Li et al. (2021b) but with greater generality to admit ridesharing and public transit integration.
We distinguish between the typical traffic network, which is usually associated with physical road infrastructure, and the network
we define here. A list of notation is given in Table 1. Consider a network  = ( ,) representing customers and vehicles. C ⊊ 
is the set of customer nodes. Each customer node 𝑐 ∈ C has specific pick-up and drop-off locations. When integrating with public
transit, 𝑐 can be associated with multiple acceptable drop-off locations and different public stops. V ⊊  is the set of SAV nodes,
and are associated with individual SAVs. The geographical location of SAVs change as they move around the network. Therefore,
the cost associated with an SAV 𝑣 serving a specific customer 𝑐 varies with time. Together, the sets of customer and SAV nodes
261

comprise all nodes in this network.



Transportation Research Part B 163 (2022) 258–280M.W. Levin

a
t
f

t
s
a
o

2

b
a
a
𝓅

w

s

Let  be the set of all locations in the network. Every customer origin and destination are included in , as well as every public
transit stop that a customer could use.  also includes every intermediate node where SAVs could be located (such as charging
stations). We assume that the average travel time between any pair of nodes is known. Although  is sufficient for defining the
maximum stability dispatch policy,  is needed to explicitly characterize the stable region of demand.

We track the waiting time of the head-of-line (HOL) customer at each customer node. Let 𝐻𝑐 (𝑡) be the waiting time of the HOL
customer at node 𝑐 at time 𝑡. 𝐻𝑐(𝑡) evolves over time via

𝐻𝑐 (𝑡 + 1) = 𝑒𝑐 (𝑡)
(

𝐻𝑐 (𝑡) + 1 − 𝑥𝑐(𝑡)𝜏𝑐 (𝑡)
)+ + (1 − 𝑒𝑐 (𝑡))𝐴𝑐 (𝑡) (1)

where (⋅)+ = max {⋅, 0}, 𝑒𝑐 (𝑡) ∈ {0, 1} indicates whether node 𝑐 is empty at time 𝑡, 𝜏𝑐 (𝑡) is the inter-arrival time between the HOL
customer and the next one, and 𝐴𝑐(𝑡) ∈ {0, 1} is a random variable that indicates whether a new customer arrives. 𝑥𝑐 (𝑡) ∈ {0, 1}
indicates whether node 𝑐 is served by an SAV at time 𝑡, and is a decision variable for the SAV dispatcher. 𝑥𝑐 (𝑡) will be related to
SAV assignments later. When 𝑥𝑐 (𝑡) = 1, the HOL customer is served, and the waiting time at node 𝑐 transitions to the waiting time
of the next customer in line (with headway of 𝜏𝑐(𝑡)) or 0 if none exists. We assume that 𝜏𝑐(𝑡) and 𝐴𝑐 (𝑡) are independent identically
distributed random variables. Let 𝜆𝑐 be the average arrival rate to node 𝑐, so the probability of an arrival is 1∕𝜆̄𝑐 . Then 𝜏𝑐 (𝑡) has
mean 1∕𝜆̄𝑐 , and 𝐴𝑐 (𝑡) has mean 𝜆̄𝑐 .

SAVs are assigned to paths that serve one or more customers. Each path includes customer pick-ups and drop-offs as well as any
repositioning or recharging needed for SAV 𝑣 prior to picking up the first customer. Essentially, a path 𝜋 is a set of customer nodes
that are served together. When ridesharing, multiple customer nodes may be combined. Because ridesharing can involve multiple
orderings of customer pick-ups and drop-offs, including multiple passengers being carried within the SAV simultaneously, we do
not impose an ordering on service for the customers included in 𝜋. Let 𝐶𝑣𝜋 (𝑡) be the time cost of assigning SAV 𝑣 to path 𝜋 and
𝑦𝑣𝜋 (𝑡) ∈ {0, 1} indicates whether SAV 𝑣 is assigned to path 𝜋. 𝐶𝑣𝜋 (𝑡) varies with time because it depends on the current location
and battery level of 𝑣. When 𝜋 serves a customer 𝑐, 𝜋 must include a visit to 𝑐’s origin to pick up 𝑐 followed later by a visit to
𝑐’s destination to drop off 𝑐. It is frequently the case that 𝑣 will not be located at the start of 𝜋 at time 𝑡. If so, then 𝑣 will have
to travel empty (self-relocate) from its current location to the starting node of 𝜋. The cost of that relocation is captured in 𝐶𝑣𝜋 (𝑡),
which varies with both 𝜋 and the location of 𝑣 at time 𝑡.

Let 𝛿𝜋𝑐 ∈ {0, 1} indicate whether path 𝜋 serves customer 𝑐. It is possible for a path to serve multiple customers, such as with
ridesharing, and 𝛿𝜋𝑐 gives a definition for 𝑥𝑐 (𝑡):

𝑥𝑐 (𝑡) =
∑

𝜋∈𝛱

∑

𝑣∈V

𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐 (2)

where 𝛱 is the set of all paths. Notice that this definition of 𝜋 differs from Li et al. (2021b), which only considered paths that serve
single customer and without public transit integration. In contrast, a customer could be served by ridesharing or by transporting
hat customer to a public transit station. This definition therefore extends the generality of SAV assignments, which will be useful
or establishing the stability properties.
Using this definition of 𝜋, any SAV can be assigned to any path 𝜋, and the associated cost depends on which SAV is being assigned

o the path, hence the indices 𝑣 and 𝜋 for 𝐶𝑣𝜋 (𝑡). At any given time 𝑡, we assume that 𝐶𝑣𝜋 (𝑡) can be calculated for any SAV 𝑣 and any
et of customers 𝜋. This calculation involves a combination of shortest path and traveling salesman problems for ridesharing. With
typical vehicle capacity, the number of nodes in the traveling salesman problem is fairly low, and the solutions can be generated
ffline and stored.

.1. Minimum-drift-plus-penalty (MDPP) policy

We now define a generalized MDPP policy based on the assignment of vehicles to paths. We assume that only idle SAVs can
e dispatched. An SAV is idle if it is not currently completing a trip. This assumption does not reduce the generality because SAVs
re assumed to complete their current trip before starting another one anyways. Therefore, we define A

V (𝑡) ⊆ V as the set of
vailable SAVs at time 𝑡. The cost of assigning SAV 𝑣 to path 𝜋 is already defined as 𝐶𝑣𝜋 (𝑡). We define the cost associated with policy
, 𝐷𝓅(𝑡), as the sum of the SAV service times after enacting policy 𝓅 at time 𝑡:

𝐷𝓅(𝑡) =
∑

𝑣∈A
V (𝑡)

(

∑

𝜋∈𝛱
𝑦𝓅𝑣𝜋 (𝑡)𝐶𝑣𝜋 (𝑡)

)

(3)

here 𝑦𝓅𝑣𝜋 (𝑡) indicates the assignment determined by policy 𝓅.
Let 𝑉 ≥ 0 be the penalty weight placed on vehicle service time. The MDPP policy seeks to minimize the objective

min𝑉 𝐷(𝑡) −𝑊 (𝑡) −
∑

𝑐∈C

𝐻𝑐(𝑡)
∑

𝑣∈A
V (𝑡)

∑

𝜋∈𝛱
𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐

= 𝑉
∑

𝑣∈A
V (𝑡)

(

∑

𝜋∈𝛱
𝑦𝑣𝜋 (𝑡)𝐶𝑣𝜋 (𝑡)

)

−𝑊 (𝑡) −
∑

𝑐∈C

𝐻𝑐 (𝑡)
∑

𝑣∈A
V (𝑡)

∑

𝜋∈𝛱
𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐 (4a)

ubject to constraints on SAV assignment. Each SAV is assigned to at most one path:
∑

𝑦𝑣𝜋 (𝑡) ≤ 1 ∀𝑣 ∈ A
V (𝑡) (4b)
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Also, each customer node is served at most once:
∑

𝜋∈𝛱

∑

𝑣∈A
V (𝑡)

𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐 ≤ 1 ∀𝑐 ∈ C (4c)

with the requirement that 𝑦𝑣𝜋 (𝑡) is binary:

𝑦𝑣𝜋 (𝑡) ∈ {0, 1} ∀𝑣 ∈ A
V (𝑡),∀𝜋 ∈ 𝛱 (4d)

The term 𝑊 (𝑡) < ∞ in objective (4a) represents the rebalancing value of a path assignment 𝑦𝑣𝜋 (𝑡). Several studies on SAVs have
observed improvements in waiting time through preemptive rebalancing of SAVs prior to customer requests (Pavone et al., 2012;
Fagnant et al., 2015; Hörl et al., 2019). The 𝑊 (𝑡) term is used to value such rebalancing assignments in the objective, and we will
prove the stability properties of the MDPP policy with rebalancing. A suggested form of 𝑊 (𝑡) will be discussed later in Section 2.3,
but for generality we admit any bounded term.

Objective (4a) includes three components. First, 𝐷(𝑡) is the cost associated with vehicle dispatch, given by Eq. (3). We weight
this penalty by 𝑉 ≥ 0 to decide how much it influences the objective. If 𝑉 is sufficiently large, trips with a large value of 𝐶𝑣𝜋 (𝑡) will
be suboptimal. Since 𝐶𝑣𝜋 (𝑡) includes both the empty rebalancing cost and the path travel time, a larger value of 𝑉 will reduce the
time spent on empty rebalancing by waiting until vehicles near the customer are available. Second, 𝑊 (𝑡) is the rebalancing value,
as discussed above. Third, ∑𝑐∈C

𝐻𝑐 (𝑡)
∑

𝑣∈A
V (𝑡)

∑

𝜋∈𝛱 𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐 is the value of serving a customer.
∑

𝑣∈A
V (𝑡)

∑

𝜋∈𝛱 𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐 specifies
whether customer 𝑐 is served, and 𝐻𝑐 (𝑡) (the waiting time) is the value of serving customer 𝑐. Customers that have been waiting
longer are more likely to be served.

We now discuss specific implementations of the MDPP policy for different SAV behaviors.

Ridesharing. With ridesharing, one SAV trip can serve multiple customers. Two or more customers may be combined into one trip,
such as by picking up all customers first then dropping them off afterwards. Then some paths 𝜋 can also serve multiple customers,
indicated by the 𝛿𝜋𝑐 variables. In the MDPP policy, any 𝑛 customers can be combined into one path, but most ridesharing systems
add constraints on the maximum additional travel time resulting from combining customers (e.g. Fagnant and Kockelman, 2018;
Alonso-Mora et al., 2017a). Such constraints are fully compatible with the definition of the set of paths 𝛱 . Finding the cost 𝐶𝑣𝜋 (𝑡)
for SAV 𝑣 to serve path 𝜋 involves solving a small traveling salesman problem.

Integration with public transit. With public transit integration, customer 𝑐’s origin and destination can be relocated to public transit
stops. We discuss the case where customers are no longer taken to their final destination but instead dropped off at a public transit
stop. Relocating the origin of the SAV trip can be done similarly. Let 𝑐 be the set of acceptable public transit stations for customer
𝑐, and we assume that 𝑐 includes the final destination 𝑠𝑐 . Based on objective (4a) which decreases with smaller service costs 𝐶𝑣𝜋 (𝑡),
customer 𝑐 will always be dropped off at the node in 𝑐 with the shortest travel time from the origin of 𝑐. Although other options
are feasible, they would never be optimal for objective (4a). Other options may be optimal if the objective included customer travel
times, but the purpose of the MDPP policy is to achieve maximum throughput. By reducing the SAV service time per customer,
SAVs can be used to serve more customers overall, which is good for network throughput.

Electric SAVs. Li et al. (2021b) already presented a specific MDPP policy for electric SAVs. In terms of the general formulation (4),
SAVs with low battery levels must first recharge before serving a path 𝜋. Including recharging results in a larger value of 𝐶𝑣𝜋 (𝑡).

2.2. Solving the generalized MDPP policy

Like Li et al. (2021b), we observe that the solution to the generalized MDPP policy may be simplified by analyzing its structure.
Assume for now that 𝑊 (𝑡) = 0. If a path 𝜋 serves one customer 𝑐, then SAV 𝑣 will not be dispatched on 𝜋 until

𝐻𝑐 (𝑡) ≥ 𝑉 𝐶𝑣𝜋 (𝑡) (5)

However, if 𝜋 serves multiple customers through ridesharing, then 𝑣 can be dispatched by the MDPP once
∑

𝑐∈C

𝛿𝜋𝑐 𝐻𝑐 (𝑡) ≥ 𝑉 𝐶𝑣𝜋 (𝑡) (6)

We can then observe that problem (4) can be solved on an event-driven basis, which takes a potentially large problem and simplifies
it. The three events triggering a solution to problem (4) are as follows.

A SAV becomes available. When a SAV completes a trip, if there are waiting customers in the system, problem (4) should be evaluated
to determine whether that SAV should be dispatched or not.

A customer enters the system. The new customer might have an SAV dispatched immediately if it satisfies inequality (5), or might
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be combined with another customer for ridesharing if that satisfies inequality (6).
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Waiting time elapsed. After a customer 𝑐 has waited sufficiently long, inequalities (5) or (6) will favor dispatch. For any pairing of
SAV 𝑣 with path 𝜋, the time point at which dispatch is optimal can be calculated, and problem (4) can be solved at that time.

Using an event-driven solution to problem (4) (instead of a simulation based on time steps) could reduce the number of customer
and/or SAV nodes present in problem (4), thereby reducing the number of variables.

We further discuss the scenario for which SAVs are integrated with public transit and customers can be dropped off at one of
several public transit stops. If we assume that 𝑊 (𝑡) = 0, then the optimal dispatch is always to serve customers in the least time
possible, i.e. take them to the nearest acceptable public transit stop. The inclusion of 𝑊 (𝑡) may alter this behavior: it may become
optimal to take the customer to an alternative stop because of its effect on the SAV location balance.

2.3. Preemptive rebalancing in the MDPP policy

Preemptive rebalancing has been studied extensively in previous work (Pavone et al., 2012; Fagnant et al., 2015; Hörl et al.,
2019). The goal of this paper is not to extend those studies, but rather to discuss how preemptive rebalancing can be included in
stability analyses of SAV systems. We emphasize the ‘‘preemptive’’ part of rebalancing here. All SAV systems require some empty
travel between the drop-off location of one customer and the pick-up location of the next customer served. Preemptive rebalancing
refers to moving SAVs before assigning them to another customer, and often before those future customers have entered the system.
Preemptive rebalancing could also take the form of preemptively recharging SAVs in anticipation of future use. Although Li et al.
(2021b) assumed that SAVs would recharge if located at a charging station, they did not assume that SAVs would travel to a charging
station unless it was part of a customer-serving trip. Preemptive rebalancing is not necessary for stability, but prior work has shown
that it can be effective at reducing average waiting times (Hörl et al., 2019).

Our goal is to give a general definition of 𝑊 (𝑡) that can encapsulate most strategies for preemptive rebalancing to discuss their
tability properties. We first define the possibility of paths that do not serve customers. Such a path 𝜋 has 𝛿𝜋𝑐 = 0 for all customers
, but still includes SAV travel, such as rebalancing to a new location or traveling to a recharging station and recharging. The cost
f rebalancing path 𝜋 can still be expressed as 𝐶𝑣𝜋 (𝑡), and the assignment of vehicles to rebalancing paths can still be indicated
sing the 𝑦𝑣𝜋 (𝑡) variables. Define 𝓵(𝑡) to be the location vector of SAVs at time 𝑡, indexed by SAV node 𝑣 ∈ V. 𝓁𝑣(𝑡) is the current
location of 𝑣, if idle, or the destination of the trip it is currently completing. 𝓁𝑣(𝑡) could also contain information about the remaining
uration of 𝑣’s current trip. We define 𝓵(𝐲(𝑡)) to be the location vector of SAVs after dispatch 𝐲(𝑡) is enacted. 𝓵(𝐲(𝑡)) differs from 𝓵(𝑡)
hen 𝐲(𝑡) assigns idle SAVs to trips; then their location value in 𝓵(𝐲(𝑡)) changes from their current idle location to the destination
f their future trip.
Let 𝑅(𝓵(𝑡)) be a function that indicates the value of having SAVs at locations given by 𝓵(𝑡). Larger values of 𝑅(𝓵(𝑡)) indicate

AV locations that are more ‘‘balanced’’ or ideal for future operations. We assume that there exists some location vector(s) 𝓵(𝑡) that
aximize 𝑅(𝓵(𝑡)), and other location vector(s) that minimize 𝑅(𝓵(𝑡)), so that 𝑅(𝓵(𝑡)) is bounded. For instance, the state where all
AVs are idle and distributed near customer nodes according to historical demand might achieve the maximum value of 𝑅(𝓵(𝑡)).
hen we define 𝑊 (𝑡) as

𝑊 (𝑡) = 𝑅(𝓵(𝐲(𝑡))) − 𝑅(𝓵(𝑡)) (7)

hich is the improvement (or lack thereof) in 𝑅 due to assigning SAVs to trips 𝐲(𝑡).
When the waiting times 𝐻𝑐 (𝑡) are sufficiently small, it is possible that for objective (4a), 𝑊 (𝑡) >

∑

𝑐∈C
𝐻𝑐 (𝑡)

∑

𝑣∈A
V (𝑡)

∑

𝜋∈𝛱

𝑣𝜋 (𝑡)𝛿𝜋𝑐 , meaning that preemptive rebalancing is preferred to customer service. Sometimes this is intentional. For example,
ispatching an SAV to serve a customer that is far away may be less optimal than waiting for a closer SAV to become available. In
hat case, rebalancing the idle SAV may be preferable to keeping it idle.

. Network stability

The main goal of the MDPP policy is to achieve maximum stability, i.e. it serves all customers if at all possible. To prove the
aximum stability property, we must first formally define stability. We define the network to be strongly stable if there exists some
< ∞ such that

lim sup
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1

∑

𝑐∈C

E
[

𝐻𝑐 (𝑡)
]

≤ 𝜅 (8)

This definition of stability requires that waiting times for all customer nodes are bounded on average. If customer waiting times
are unbounded, then customers are waiting for increasingly long times without being served. Although 𝐻𝑐 (𝑡) refers to only the HOL
customer, customer arrivals are assumed to be independent of the HOL time and a long HOL time 𝐻𝑐 (𝑡) indicates a correspondingly
large queue of customers at 𝑐. Definition (8) of stability is therefore satisfied if and only if the dispatch policy has service rate
equal to the arrival rate of customers. In reality, 𝐻𝑐 (𝑡) will not increase to infinity because travelers will not wait infinitely long for
service. Definition (8) for stability is therefore primarily useful for studying the throughput properties of SAV dispatch rather than
as a realistic model of traveler behavior.

Let Λ be the stable region, i.e. the set of arrival rates 𝝀̄ such that there exists some stabilizing dispatch policy. Let Λ0 be the
interior of the stable region. For any arrival rate 𝝀̄ ∈ Λ0, there exists a dispatch policy 𝐱̃(𝑡) and an 𝜖 > 0 such that

E
[

𝑥̃𝑐 (𝑡)|𝐇(𝑡)
]

≥ 𝜆̄𝑐 + 𝜖 ∀𝑐 ∈ C (9)

Eq. (9) holds because 𝝀̄ ∈ Λ0, so 𝜆̄𝑐 + 𝜖 must be within the set Λ (possibly on its boundary). Without loss of generality, we assume
̃
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that 𝑊 (𝑡) = 0. One such policy is the S-only algorithm of Neely (2006) as used by Li et al. (2021b).
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3.1. Characterizing the stable region

Li et al. (2021b) was able to prove stability of their MDPP policy without an explicit characterization of 𝜦. However, the
haracterization of 𝜦 is particularly useful for determining the fleet size needed to serve a given demand. We therefore develop
more formal characterization in this paper. Conceptually, stability requires that the service rate to customer nodes satisfies their
rrival rates:

∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 ≥ 𝜆̄𝑐 ∀𝑐 ∈ C (10)

here 𝑦̄𝑣𝜋 is the average rate of assignments of vehicle 𝑣 to path 𝜋, defined as

𝑦̄𝑣𝜋 = lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
𝑦𝑣𝜋 (𝑡) (11)

q. (11) gives the average rate of customer service 𝑥̄𝑐 :

𝑥̄𝑐 =
∑

𝑣∈V

∑

𝜋∈𝛱
𝛿𝜋𝑐 𝑦̄𝑣𝜋 (12)

lso, each vehicle cannot be overscheduled:
∑

𝜋∈𝛱
𝐶̄𝜋 𝑦̄𝑣𝜋 ≤ 1 ∀𝑣 ∈ V (13)

ote that the average cost of traveling path 𝜋, 𝐶̄𝜋 , includes any rebalancing or recharging travel time required to reach the starting
ocation of 𝜋. Therefore, rebalancing is not an explicit part of the characterization of the stable region because rebalancing time is
ncluded in constraint (13). These costs will be explored further in Section 4.
Let 𝜦̂ be the set of 𝝀̄ such that there exists a 𝐲̄ satisfying constraints (10)–(13). We want to show that 𝜦̂ = 𝜦. We first prove that

if 𝝀̄ ∉ 𝜦̂, then the network is unstable (Proposition 1). We also show that if 𝝀̄ ∈ 𝜦̂0 (where 𝜦̂0 is the interior of 𝜦̂), then inequality
(9) holds (Proposition 2). After proving that the MDPP policy is stable if inequality (9) holds (Proposition 3), we will have shown
hat 𝜦̂ = 𝜦.

roposition 1. If 𝝀̄ ∉ 𝜦̂, then the network is unstable.

roof. If constraint (13) is violated, then the vehicle assignments are impossible to fulfill. Consider any vehicle assignments 𝐲̄
satisfying constraint (13). Since 𝝀̄ ∉ 𝜦̂, there always exists at least one customer 𝑐 such that

𝜆̄𝑐 −
∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 > 0 (14)

From Eq. (14),

E
[

𝑥𝑐 (𝑡)
]

=
∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 < 𝜆̄𝑐 =

1
𝜏𝑐

(15)

ncorporating Eq. (15) into (1), when 𝑒𝑐 (𝑡) = 1 (i.e. node 𝑐 is not empty) we have

E
[

𝐻𝑐 (𝑡 + 1) −𝐻𝑐 (𝑡)
]

= E
[

(

1 − 𝑥𝑐 (𝑡)𝜏𝑐
)+

]

≥ 𝜂 (16)

for some 𝜂 > 0. Expanding Eq. (16),
𝑡

∑

𝑡′=1
E
[

𝐻𝑐 (𝑡′ + 1) −𝐻𝑐 (𝑡′)
]

= E
[

𝐻𝑐 (𝑡) −𝐻𝑐 (0)
]

≥ 𝜂𝑡 (17)

Then

1
𝑇

𝑇
∑

𝑡=1
E
[

𝐻𝑐 (𝑡)
]

≥ 1
𝑇

𝑇
∑

𝑡=1
𝜂𝑡 (18)

which violates Eq. (8) for stability. □

Proposition 1 derives an upper bound on the stable region of demand by showing that Eqs. (10)–(13) are the boundary of the
table region. Since the stable region describes the set of demand that can be served by any dispatch policy, Proposition 1 establishes
that Λ̂ is the maximum set of demand that can be served by any dispatch policy, including others that have previously been published
in the literature. This helps us compare the throughput of the MDPP policy to all other policies by establishing an upper bound on
throughput that the MDPP policy will seek to achieve.

̄ ̂ 0
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Proposition 2. If 𝝀 ∈ 𝜦 , then Eq. (9) holds.



Transportation Research Part B 163 (2022) 258–280M.W. Levin

P

Proof. Since 𝝀̄ ∈ 𝜦̂0, there exists a 𝐲̄ such that for all customer nodes 𝑐
∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 ≥ 𝜆̄𝑐 + 𝜖 (19)

Then by Eq. (11) there exists a dispatch policy 𝐱(𝑡) such that

E
[

𝑥𝑐 (𝑡)
]

≥ 𝜆̄𝑐 + 𝜖 (20)

which is equivalent to Eq. (9). □

The 𝜖 > 0 term in Eq. (9) is essential for proving stability. Proposition 2 establishes that for any demand in the interior of the
stable region Λ̂, Eq. (9) will always hold. This prepares us for using that 𝜖 term to establish that the MDPP policy stabilizes any
demand in Λ̂. Next, we prove the maximum stability property of the general MDPP policy. In Section 4, we further develop the
equations defining 𝜦̂ for specific types of SAV systems (electric SAVs, ridesharing, and integration with public transit).

3.2. Stability properties

We first define the Lyapunov function 𝐿(𝐇(𝑡)) as

𝐿(𝐇(𝑡)) = 1
2

∑

𝑐∈C

𝜆̄𝑐 (𝐻𝑐 (𝑡))2 (21)

We next define 𝛥𝐿(𝑡) as the expected difference in the Lyapunov function from 𝑡 to 𝑡 + 1:

𝛥𝐿(𝑡) = E [𝐿(𝐇(𝑡 + 1)) − 𝐿(𝐇(𝑡))|𝐇(𝑡)] (22)

As we use the same definitions as Li et al. (2021b) for the Lyapunov function, their Lemma 1 can be used directly here:

Lemma 1 (of Li et al., 2021b). There exists a constant 0 < 𝐾 < ∞ such that

𝛥𝐿(𝑡) ≤ 𝐾 −
∑

𝑐∈C

𝐻𝑐(𝑡)E
[

𝑥𝑐 (𝑡) − 𝜆̄𝑐 |𝐇(𝑡)
]

(23)

holds for all 𝑡 > 0.

Lemma 1 is used to simplify the remainder of the proof of the stability properties. Proposition 3 states the maximum stability
properties of the generalized MDPP policy. We follow the form of Li et al. (2021b) but generalize the proof to be valid for more
complex SAV assignments. Inequality (24a) provides a bound on the customer waiting times, satisfying definition (8) of stability.
Inequality (24b) provides a further bound on the dispatch cost of the MDPP policy.

Proposition 3. When 𝝀̄ ∈ Λ0, there exist constants 0 < 𝐾 < ∞ and 0 < 𝜖 < ∞ such that

(a) lim sup
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1

∑

𝑐∈C

𝐻𝑐 (𝑡) ≤
1
𝑇 𝜖

𝑇
∑

𝑡=1

(

𝑉 E
[

𝐷̃(𝑡)
]

− E
[

𝑉 𝐷MDPP(𝑡)
]

+ E
[

𝑊 MDPP(𝑡)
])

+ 𝐾
𝜖

(24a)

(b) lim sup
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1
E
[

𝐷MDPP(𝑡)
]

≤ 1
𝑇

𝑇
∑

𝑡=1
E
[

𝐷̃(𝑡)
]

+ 𝐾
𝑉

(24b)

roof. Since 𝝀̄ ∈ Λ0, by assumption there exists a policy 𝐱̃(𝑡) satisfying Eq. (9). From Eq. (23) of Lemma 1, adding
𝑉 E

[

𝐷MDPP(𝑡)|𝐇(𝑡)
]

+𝑊 MDPP(𝑡) to both sides of the inequality yields

E
[

𝑉 𝐷MDPP(𝑡) −𝑊 MDPP(𝑡)|𝐇(𝑡)
]

+ 𝛥𝐿(𝑡)

≤ E
[

𝑉 𝐷MDPP(𝑡) −𝑊 MDPP(𝑡)|𝐇(𝑡)
]

+𝐾 −
∑

𝑐∈C

𝐻𝑐(𝑡)E
[

𝑥𝑐 (𝑡) − 𝜆̄𝑐 |𝐇(𝑡)
]

(25)

By the definition of the MDPP policy,

E
[

𝑉 𝐷MDPP(𝑡) −𝑊 MDPP(𝑡)|𝐇(𝑡)
]

−
∑

𝑐∈C

E
[

𝐻𝑐 (𝑡)𝑥MDPP
𝑐 (𝑡)|𝐇(𝑡)

]

≤ E
[

𝑉 𝐷̃(𝑡) − 𝑊̃ (𝑡)|𝐇(𝑡)
]

−
∑

𝑐∈C

E
[

𝐻𝑐 (𝑡)𝑥̃𝑐 (𝑡)|𝐇(𝑡)
]

(26)

so Eq. (25) becomes

𝑉 E
[

𝐷MDPP(𝑡) −𝑊 MDPP(𝑡)|𝐇(𝑡)
]

+ 𝛥𝐿(𝑡)

≤ E
[

𝑉 𝐷̃(𝑡) − 𝑊̃ (𝑡)|𝐇(𝑡)
]

+𝐾 −
∑

𝐻𝑐 (𝑡)E
[

𝑥̃𝑐 (𝑡) − 𝜆̄𝑐 |𝐇(𝑡)
]

(27)
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Since 𝑊̃ (𝑡) = 0, we can drop this term from the remaining equations. By Eq. (9),

E
[

𝑉 𝐷MDPP(𝑡) −𝑊 MDPP(𝑡)|𝐇(𝑡)
]

+ 𝛥𝐿(𝑡) ≤ E
[

𝑉 𝐷̃(𝑡)|𝐇(𝑡)
]

+𝐾 − 𝜖
∑

𝑐∈C

𝐻𝑐 (𝑡) (28)

Taking expectations and summing from 𝑡 = 1 to 𝑇 yields
𝑇
∑

𝑡=1
E
[

𝑉 𝐷MDPP(𝑡) −𝑊 MDPP(𝑡)
]

+ E [𝐿(𝐇(𝑡))] − E [𝐿(𝐇(0))]

≤
𝑇
∑

𝑡=1
𝑉 E

[

𝐷̃(𝑡)
]

+ 𝑇𝐾 − 𝜖
𝑇
∑

𝑡=1

∑

𝑐∈C

𝐻𝑐 (𝑡) (29)

Rearranging the terms in Eq. (29) and dividing by 𝑇 𝜖 yields

1
𝑇

𝑇
∑

𝑡=1

∑

𝑐∈C

𝐻𝑐(𝑡) ≤
1
𝑇 𝜖

𝑇
∑

𝑡=1

(

𝑉 E
[

𝐷̃(𝑡)
]

− E
[

𝑉 𝐷MDPP(𝑡) +𝑊 MDPP(𝑡)
])

+ 1
𝑇 𝜖

E [𝐿(𝐇(0))] + 𝐾
𝜖

(30)

which yields result (24a). Rearranging the terms in Eq. (29) a different way and dividing by 𝑉 𝑇 yields

1
𝑇

𝑇
∑

𝑡=1
E
[

𝐷MDPP(𝑡)
]

≤ 1
𝑇

𝑇
∑

𝑡=1
E
[

𝐷̃(𝑡)
]

+ 𝐾
𝑉

(31)

which yields result (24b). □

At this point, we can complete our proof that 𝜦̂ = 𝜦.

Corollary 1. Eqs. (10)–(13) define a set 𝜦̂ such that 𝜦̂ = 𝜦.

Proof. By Proposition 1, if 𝝀̄ ∉ 𝜦̂, then 𝝀̄ cannot be stabilized, so 𝝀̄ ∉ 𝜦 also. By Proposition 2, if 𝝀̄ ∈ 𝜦̂0, then Eq. (9) holds, which
eans that 𝝀̄ ∈ 𝜦0 by Proposition 3. □

.3. Discussion

Corollary 1 analytically compares the throughput of the MDPP policy to every other policy. Specifically, it proves that the MDPP
olicy achieves at least as much throughput as all other policies. We accomplish this through the following steps. First, we create
definition of stability in Eq. (8) that is equivalent to serving all demand. If some demand is not served, then the average waiting
imes will continuously increase with time. Second, we prove that if 𝝀̄ ∉ 𝜦, then no dispatch policy can stabilize the network
Proposition 1). This establishes an upper bound on the throughput of every other policy. Finally, we prove that if 𝝀̄ ∈ 𝜦0 (the
nterior of 𝜦) then the MDPP policy will stabilize it (Proposition 3). Therefore, the MDPP policy becomes 𝜖 close to the maximum
hroughput possible by any policy, where 𝜖 → 0.
In the process, we have also derived a general characterization of 𝜦, the stable region of demand. Any demand outside of 𝜦 cannot

e served by any dispatch policy, and any demand in the interior of 𝜦 can be served by the MDPP policy. Therefore, the boundary
f 𝜦 determines whether a demand rate 𝝀̄ can be served by the given SAV fleet. In other words, given certain origin–destination
ustomer demand rates, we can determine analytically the minimum number of SAVs are needed to serve them. This addresses the
eplacement ratio problem. The analytical characterization of 𝜦 could be used to determine whether a demand rate 𝝀̄ is contained
ithin the set 𝜦 by evaluating whether there exists a 𝐲̄ satisfying Eqs. (10) and (13).
Eq. (24a) establishes an upper bound on the expected value of the waiting time. Deriving a hard upper bound on all waiting

imes is not possible: a large number of customers entering the system simultaneously, which is possible due to stochastic demand,
ould exceed any hard upper bound on waiting times. However, the expected waiting time is bounded by Eq. (24a). The upper
ound in Eq. (24a) depends on 𝜖, which is the difference between Λ and Λ0. In other words, 𝜖 is the excess capacity available to
he system. Increasing 𝜖, or equivalently increasing the excess capacity, will reduce the bound on waiting times. 𝜖 can be increased
y reducing the demand for a fixed fleet size. In other words, Proposition 3 can be used to derive an upper bound on the maximum
emand that can be served while maintaining a given bound on waiting times.

.4. Impacts of preemptive rebalancing on performance bounds

Recall that the term 𝑊 (𝑡) represents the anticipated reduction in waiting time achieved by the MDPP policy (4). 𝑊 (𝑡) > 0
ndicates a reduction. However, a positive value of 𝑊 (𝑡) increases the upper bound on headway in inequality (24a), which seems
ounterintuitive. Mathematically, we can see that 𝑊 MDPP(𝑡) switches signs in Eq. (30) to form the upper bound on 𝐻𝑐 (𝑡). Eventually,
nce𝐻𝑐 (𝑡) becomes sufficiently large,

∑

𝑐∈C
𝐻𝑐(𝑡)

∑

𝑣∈V

∑

𝜋∈𝛱 𝑦𝑣𝜋 (𝑡)𝛿𝜋𝑐 will dominate𝑊 (𝑡), and the optimal solution to problem (4)
ill serve passengers instead of scheduling rebalancing. Until 𝐻𝑐(𝑡) is sufficiently large, vehicles might rebalance instead of serving
assengers. Although a good rebalancing strategy will anticipate future demand, future demand is always somewhat uncertain. In
he worst case, such rebalancing adds to the waiting time of passengers. Inequality (24a) provides an upper bound on the worst
267

ase, not a tight value on the average passenger waiting time.
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4. Characterizing the stable region

Previous work (Spieser et al., 2014; Fagnant and Kockelman, 2014; Fagnant et al., 2015; Boesch et al., 2016) has attempted to
determine the replacement ratio, or how much demand can be served by a single SAV. In terms of stability, for a given demand we
need to find a fleet size such that the demand is within the corresponding stable region 𝜦. Of course, the size of 𝜦 increases with
the number of SAVs. Eqs. (10) and (13) describe 𝜦 at a high level. Eq. (10) is fairly explicit, but the term 𝐶̄𝜋 in Eq. (13) is not easily
omputable. However, if we know the starting location 𝑞 of the SAV, then 𝐶𝑞𝜋 can be computed. Many of these equations will be
xtended using the tuple (𝑞, 𝜋) as SAV flow indices instead of 𝜋 alone.
Our previous results rely on the average SAV flows 𝑦̄𝑣𝜋 on path 𝜋, which is indexed by 𝑣. In other words, the indices of these

ariables suggest that we might require different path flows for each individual SAV to achieve maximum stability. Such path flows
ould be difficult to generalize to arbitrarily-sized fleets of many SAVs. It is helpful to first observe that 𝑦̄𝑣𝜋 is independent of the
ndividual SAV 𝑣. To do that, we show that we can choose a value of the SAV-dependent average flows 𝑦̄𝑣𝜋 that is constant per SAV
n Proposition 4.

roposition 4. Suppose that 𝝀̄ ∈ 𝜦. Then there exists values of 𝑦̄𝑣𝜋 such that 𝑦̄𝑣𝜋 = 𝑦̄𝑣′𝜋 for all 𝑣, 𝑣′ ∈ V satisfying Eqs. (10) and (13).

roof. Because 𝝀̄ ∈ 𝜦, there exists some 𝑦̄′𝑣𝜋 satisfying Eqs. (10) and (13). Take

𝑦̄𝑣𝜋 = 1
|V|

∑

𝑣∈V

𝑦̄′𝑣𝜋 (32)

for all 𝜋 and 𝑣. Then
∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 =

∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄′𝑣𝜋𝛿
𝜋
𝑐 ≥ 𝜆̄𝑐 ∀𝑐 ∈ C (33)

and
∑

𝜋∈𝛱
𝐶̄𝜋 𝑦̄𝑣𝜋 = 1

|V|

∑

𝑣∈V

∑

𝜋∈𝛱
𝐶̄𝜋 𝑦̄

′
𝑣𝜋 ≤ 1 (34)

here the last inequality holds because 𝑦̄′𝑣𝜋 satisfies constraint (13), which verifies that 𝑦̄𝑣𝜋 satisfies Eqs. (10) and (13). □

Since we can find a single value of 𝑦̄𝑣𝜋 that applies to all SAVs, we can now show that we can observe that the demand rates that
can be served increase linearly with the fleet size. A similar result was obtained by Kang and Levin (2021) but only for SAVs without
ridesharing, electric vehicles, or public transit integration. We can provide a more general result here. When papers (e.g. Fagnant
and Kockelman, 2018) discuss a replacement ratio, they implicitly assume that the fleet size required to serve customers increases
linearly with the demand via the replacement ratio. It is not immediately obvious that the relationship is linear. Proposition 5
establishes that the relationship is linear, and equivalently establishes the existence of the replacement ratio.

Proposition 5. If the fleet size increases by a rate 𝛼, then the average demand rates that can be served also increase by 𝛼.

Proof. By Proposition 4 there exists a 𝑦̄𝑣𝜋 which is identical for all 𝑣 satisfying constraints (10) and (13). Then constraint (10) can
be rewritten as

𝜆̄𝑐 ≤
∑

𝜋∈𝛱

∑

𝑣∈V

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 = |V|

∑

𝜋∈𝛱
𝑦̄𝑣𝜋𝛿

𝜋
𝑐 ∀𝑐 ∈ C (35)

Suppose that the fleet size increases from 𝐹 to 𝛼𝐹 . Then inequality (35) becomes

𝛼𝜆̄𝑐 ≤ 𝛼𝐹
∑

𝜋∈𝛱
𝑦̄𝑣𝜋𝛿

𝜋
𝑐 ∀𝑐 ∈ C (36)

which indicates that 𝛼𝜆̄𝑐 demand can be served. □

The purpose of this section is to expand Eq. (13) for different types of SAV services. We start by considering the simple case of one
customer per trip and non-electric SAVs (without recharging delays), then expand to ridesharing, electric SAVs, and integration with
public transit. We note that although (Li et al., 2021b) developed a maximum-stable MDPP policy for electric SAVs with recharging,
they did not characterize the stable region explicitly or expand their results to other variations of SAV behavior.

The difference between 𝜦 and its interior 𝜦0 can be described in terms of inequalities (10) and (13). If both inequalities are strict,
then they describe the interior of the stable region 𝜦0. In our stable region analyses, it is therefore sufficient to expand Eqs. (10)
and (13) to define 𝜦, and then the characterization of 𝜦0 follows immediately.

4.1. One customer per SAV trip

We start by focusing on the simple system where each SAV trip serves one customer (without electric SAVs or public transit
2
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integration). Then customer node 𝑐 can be rewritten as origin–destination pair (𝑟, 𝑠) ∈  . In other words, a customer waiting at
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node 𝑐 is equivalently waiting for travel from 𝑟 to 𝑠. In a slight overload of notation, we define 𝐶̄𝑟𝑠 as the average travel time from
𝑟 to 𝑠. We assume that travel times may vary randomly due to traffic conditions and therefore use the average time from 𝑟 to 𝑠.
However, 𝐶̄𝜋 ≠ 𝐶̄𝑟𝑠 because the SAV may not be located at 𝑟, which necessitates additional travel time to reach 𝑟. We therefore
want to identify the average number of trips spent traveling from 𝑞 to 𝑟 (to pickup customer 𝑐) then from 𝑟 to 𝑠, which sufficiently
describes 𝐶̄𝜋 . To that end, we define 𝐶̄𝑞𝑟𝑠 to be the average travel time from 𝑞 to 𝑟 to 𝑠. Let 𝛾̄𝑞𝑟𝑠 be the average flow of SAVs from
𝑞 to 𝑟 to 𝑠.

∑

𝑞∈
𝛾̄𝑞𝑟𝑠 =

∑

𝑣∈V

𝑦̄𝑣𝜋 (37)

where 𝜋 is serving the customer from 𝑟 to 𝑠, but includes information about the starting location 𝑞 also. By Proposition 4, we can
choose 𝑦̄𝑣𝜋 = 1

|V|
𝛾̄𝑞𝑟𝑠 to obtain 𝑦̄𝑣𝜋 from 𝛾̄𝑞𝑟𝑠. By conservation of flow, the average flow into 𝑞 must also equal the average flow out

of 𝑞. Therefore,
∑

(𝑟,𝑠)∈2

𝛾̄𝑞𝑟𝑠 =
∑

(𝑠,𝑟)∈2

𝛾̄𝑠𝑟𝑞 ∀𝑞 ∈  (38)

The cost associated with path assignments of 𝛾̄𝑣𝑞𝑟𝑠 is
∑

𝑣∈V

∑

𝜋∈𝛱
𝐶̄𝜋 𝑦̄𝑣𝜋 =

∑

𝑞∈

∑

(𝑟,𝑠)∈2

𝛾̄𝑞𝑟𝑠𝐶̄𝑞𝑟𝑠 ≤ |V| (39)

to match Eq. (13). Constraint (10) becomes
∑

𝑞∈
𝛾̄𝑞𝑟𝑠 ≥ 𝜆̄𝑟𝑠 ∀(𝑟, 𝑠) ∈ 2 (40)

where 𝜆̄𝑟𝑠 is used to mean 𝜆̄𝑐 for customers traveling from 𝑟 to 𝑠. Constraints (38)–(40) characterize the stable region when each
vehicle serves 1 customer at a time.

4.2. Ridesharing

We next consider the stable region for ridesharing path assignments. Here 𝜋 indicates a set of customers to be served. For instance,
with two customers, 𝜋 = {𝑐1, 𝑐2} where 𝑐1 ≠ 𝑐2 because a single customer node is never served twice by one path. We again want to
calculate 𝐶̄𝜋 , the average travel time to serve customers in 𝜋. We define 𝐶̄𝑞𝜋 to be the average travel time to serve customers 𝜋 with
the SAV starting at node 𝑞. With multiple travelers to be served, finding 𝐶̄𝑞𝜋 depends on the order in which travelers are served.
This is a traveling salesman problem with node ordering. A customer’s origin node must be visited before their destination node.
Assuming that minimizing the time required for 𝑣 to serve customers in 𝜋 is desired, the problem can be formulated as follows.
Let 𝜋 = {𝑟𝑐 , 𝑠𝑐 ∶ 𝑐 ∈ 𝜋} be the set of nodes to visit, which includes the origin 𝑟𝑐 and destination 𝑠𝑐 for every customer 𝑐 in 𝜋.
If multiple customers have the same origin or destination, we create duplicate co-located nodes for clarity in the formulation. We
form a network with nodes 𝑞𝜋 = {𝑞} ∪ 𝜋 ∪ {⋄} and links between the nodes where ⋄ represents the dummy node. The cost of
travel between any node and ⋄ is 0. Let 𝑓𝑖𝑗 ∈ {0, 1} indicate whether 𝑣 travels from 𝑖 to 𝑗, and let 𝐶̄𝑖𝑗 be the average travel time
from 𝑖 to 𝑗. Let 𝜎𝑖 indicate the order in which 𝑖 is visited, which is necessary to ensure that the origin node for a customer is visited
before their destination node. The cost of visiting nodes in a specific order given by the 𝑓𝑖𝑗 variables is defined by objective (41a).
The remainder of problem (41) defines the constraints needed to ensure that 𝑓𝑖𝑗 specifies service for all customers in 𝜋 .

min 𝐶̄𝑞𝜋 =
∑

(𝑖,𝑗)∈𝑞𝜋

𝑓𝑖𝑗 𝐶̄𝑖𝑗 (41a)

s.t.
∑

𝑗∈𝑞𝜋

𝑓𝑞𝑗 = 1 (41b)

𝑓𝑖𝑞 = 0 ∀𝑖 ∈ 𝑞𝜋 (41c)
∑

𝑖∈𝑞𝜋

𝑓𝑖⋄ = 1 (41d)

𝑓⋄𝑗 = 0 ∀𝑗 ∈ 𝑞𝜋 (41e)
∑

𝑖∈𝑞𝜋

𝑓𝑖𝑟𝑐 = 1 ∀𝑐 ∈ C (41f)

∑

𝑖∈𝑞𝜋

𝑓𝑖𝑠𝑐 = 1 ∀𝑐 ∈ C (41g)

∑

𝑗∈𝑞𝜋

𝑓𝑟𝑐 𝑗 = 1 ∀𝑐 ∈ C (41h)

∑

𝑓𝑠𝑐 𝑗 = 1 ∀𝑐 ∈ C (41i)
269
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𝜎𝑟𝑐 ≤ 𝜎𝑠𝑐 + 1 ∀𝑐 ∈ C (41j)

𝜎𝑖 ≤ 𝜎𝑗 + 1 +𝑀𝑓𝑖𝑗 ∀(𝑖, 𝑗) ∈
(

{𝑞} ∪𝜋
)2 (41k)

𝑓𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈
(

{𝑞} ∪𝜋
)2 (41l)

Constraint (41k) ensures that 𝜎𝑖 < 𝜎𝑗 if link 𝑓𝑖𝑗 is used, which enables constraint (41j) to check that the origin 𝑟𝑐 of customer 𝑐 is
visited before the destination 𝑠𝑐 . The dummy node ⋄ is used to ensure that constraint (41i) always holds, as ⋄ is the last node visited.
Like other traveling salesman problems, problem (41) is NP-hard. However, for the typical 2–4 customer capacity of a passenger
car, the number of possible orderings is fairly small.

SAVs typically have capacity limits on the number of passengers that can simultaneously be traveling in the same SAV. Since
our SAV dispatch is defined in terms of paths, limiting the number of passengers in an SAV is equivalent to limiting the number of
customers served by a single path. We solve problem (41) to find a path 𝜋 that serves all customers in some set 𝜋 . To limit the
number of passengers served, we need to limit the size of 𝜋 . For instance, if SAVs can hold at most 4 passengers, then we only
onsider grouping passengers into sets 𝜋 satisfying |𝜋 | ≤ 4.
In problem (41), we assume that the SAV seeks to serve the passengers in 𝜋 as quickly as possible. In general, it is possible to

create examples such that choosing a suboptimal 𝐶̄𝑞𝜋 with a different end node 𝑠𝑞𝜋 could reduce the empty travel costs for the next
passenger being served. Choosing such a path requires some knowledge of the next passenger that would be served by the SAV, and
is not necessary for stability by Proposition 3.

Once 𝐶̄𝑞𝜋 is determined by problem (41), we can more explicitly characterize the stable region. In a slight overload of notation,
let 𝑠𝑞𝜋 be the last node visited when customers 𝜋 is served by an SAV starting from node 𝑞. Conservation of flow requires that the
number of trips leaving node 𝑞 relates to the number of trips arriving at node 𝑞:

∑

𝜋∈𝛱
𝛾̄𝑟𝜋 =

∑

𝑞∈

∑

𝜋∶𝑠𝑞𝜋=𝑟
𝛾̄𝑞𝜋 ∀𝑟 ∈ ,∀𝑣 ∈ V (42)

Like constraint (39), we can rewrite constraint (13):
∑

𝑣∈V

∑

𝜋∈𝛱
𝐶̄𝜋 𝑦̄𝑣𝜋 =

∑

𝑞∈

∑

𝜋∈𝛱
𝛾̄𝑞𝜋𝐶̄𝑞𝜋 ≤ |V| (43)

onstraints (42) and (43) together with (10) characterize the stable region with ridesharing.
In this ridesharing scenario, it is possible that grouping customers into one set 𝜋 does not offer any benefits over treating them

eparately. For instance, suppose that 𝜋 = {𝑐1, 𝑐2} but the optimal solution to problem (41) is to first visit the origin and destination
1 and only after to visit the origin and destination of 𝑐2. Then we could equivalently form sets 𝜋1 = {𝑐1} and 𝜋2 = {𝑐2} and observe
hat 𝐶̄𝑞𝜋 = 𝐶̄𝑞𝜋1 + 𝐶̄𝑠𝑞𝜋1𝜋2

. In other words, grouping customers 𝑐1 and 𝑐2 results in the same travel cost to 𝑣.
However, the main challenge of finding the best average vehicle flows satisfying constraints (10), (42), and (43) is that the

umber of possible paths greatly increases with the number of customers served per path. With 2 customers served per SAV trip,
he number of possible 𝛾̄𝑞𝜋 variables is 𝑂

(

5) because each customer has an origin and destination location. It is still not obvious
ow to solve this problem for large networks.

.3. Integrating SAVs with public transit

We consider again the case where |𝜋| = 1, but now assume integration with public transit. The SAV no longer needs to carry
ustomer 𝑐 from their origin to their destination. Instead, they can carry customer 𝑐 to an acceptable public transit station. Recall
hat 𝑐 is the set of acceptable public transit stations for customer 𝑐, with 𝑠𝑐 ∈ 𝑐 . Like in Section 4.1, each SAV trip from 𝑞 serving
ustomer set 𝜋 can again be described as the tuple (𝑞, 𝑟, 𝑠) ∈ 3, meaning that constraints (38) and (39) describe the set of valid
verage path assignments.
The challenge in defining public transit service is that each customer has multiple valid destination nodes (the set 𝑐). These

estination nodes can overlap with other customers, meaning that examples exist where a trip from 𝑟 to 𝑠 could be a valid service for
everal different customers. With the assumption of one customer per trip, we need to distinguish which customer is being served.
et 𝜉𝑐,𝑟𝑠 be the average number of trips 𝑟 to 𝑠 used to serve customer node 𝑐. Obviously, 𝜉𝑐,𝑟𝑠 = 0 if 𝑠 ∉ 𝑐 or 𝑟 ≠ 𝑟𝑐 . Then we can
isaggregate the number of trips from 𝑟 to 𝑠 by which customer is being served:

∑

𝑐∈C

𝜉𝑣𝑐,𝑟𝑠 =
∑

𝑞∈
𝛾̄𝑞𝑟𝑠 (44)

o ensure that each customer is served, stable region constraint (10) can be rewritten as
∑

(𝑟,𝑠)∈2

𝜉𝑐,𝑟𝑠 ≥ 𝜆̄𝑐 ∀𝑐 ∈ C (45)

Constraint (39) together with constraint (44) suggests that when the demand rate 𝝀̄ is small, SAVs can serve customers by taking
hem directly to their destination while retaining stability. Choosing (𝑟, 𝑠) pairs with larger 𝐶̄𝑞𝑟𝑠 reduces the number of (𝑞, 𝑟, 𝑠) trips
erved by constraint (39) but if 𝝀̄ is small enough, then those (𝑞, 𝑟, 𝑠) trips are sufficient for stability. On the other hand, when 𝝀̄
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s larger, the cost required to serve each customer can be reduced by choosing different (𝑟, 𝑠) pairs. Instead of taking customer 𝑐
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directly to 𝑠𝑐 , the SAV can instead take them to some public transit stop in 𝑐 with a lower 𝐶̄𝑞𝑟𝑠 cost. That enables more (𝑞, 𝑟, 𝑠) trips
o be made by constraint (39), which increases the number of customers per hour that can be served.
The MDPP policy objective (4a) chooses the minimum cost paths to serve each customer, which of course ensures stability. The

bove discussion suggests that other maximum-stable policies exist which are more generous to customers when demand is small.
inding such policies and showing their stability properties in an interesting question for future work.

.4. Electric SAVs with recharging

We again consider one customer per trip, but now assume that SAVs are electric and require recharging. Unlike internal
ombustion engine vehicles, recharging requires significant time which adds to the time required to pickup a passenger. The stability
roperties of electric SAVs were previously studied by Li et al. (2021b) using a very similar model, but they did not characterize the
table region. This section therefore describes the first attempt to give equations that identify which demand rates can be served.
Like in Section 4.1, we assume that customers are served one at a time, meaning that every SAV trip can be described by the

uple (𝑞, 𝑟, 𝑠) ∈ 3. However, the cost depends on whether recharging is required, which depends on the SAV battery level. Let 𝐶𝑏
𝑞𝑟𝑠

e the travel time required for trip (𝑞, 𝑟, 𝑠) to serve customer (𝑟, 𝑠) with an initial battery level of 𝑏. Let 𝐵 be the maximum battery
apacity. We discretize 𝐵 into different levels denoted by 𝑏 to index the decision variables. More intervals achieves a more precise
haracterization of the stable region but at the cost of more variables.
If recharging is not required, then the SAV can travel directly from 𝑞 to 𝑟 to 𝑠. However, if the initial battery level is low and

equires charging, then the SAV must first travel from 𝑞 to some recharging station, spend time recharging, and only afterwards
roceed to 𝑟. We assume that the battery capacity is sufficient for customer (𝑟, 𝑠) to be served for a fully charged SAV departing any
harging station in the network. This is likely realistic for most cities and typical electric vehicle battery capacity.
Let 𝐸𝑏

𝑞𝑟𝑠 be the energy cost of taking that trip, so the final charge upon reaching 𝑠 would be 𝑏 − 𝐸𝑏
𝑞𝑟𝑠. Some trips have multiple

recharging options, such as recharging fully or only partially. For simplicity, we will assume that a single recharging option is chosen
per (𝑞, 𝑟, 𝑠) trip with initial battery level 𝑏, but this approach can easily be modified to represent multiple recharging options albeit
with more decision variables. We admit 𝐸𝑏

𝑞𝑟𝑠 < 0, meaning that the SAV recharged as part of the trip. We further require that the
final charge 𝑏 − 𝐸𝑏

𝑞𝑟𝑠 is sufficiently high for the SAV to reach another recharging station. In other words, the SAV cannot become
stuck due to lack of charge after arriving at 𝑠.

Let 𝛾𝑏𝑞𝑟𝑠 be the average number of (𝑞, 𝑟, 𝑠) trips undertaken with a starting battery level of 𝑏. Then the associated cost is

∑

𝑣∈V

∑

𝜋∈𝛱
𝐶̄𝜋 𝑦̄𝑣𝜋 =

∑

𝑞∈

∑

(𝑟,𝑠)∈2

𝐵
∑

𝑏=0
𝛾̄𝑏𝑞𝑟𝑠𝐶̄

𝑏
𝑞𝑟𝑠 ≤ | | (46)

which replaces Eq. (10). Rewriting Eq. (13) requires expanding conservation to include both vehicle locations and their battery
levels. Starting with the conservation Eq. (38),

∑

(𝑞,𝑟)∈2

∑

𝑏′∶𝑏′+𝐸𝑏′
𝑞𝑟𝑠=𝑏

𝛾̄𝑏
′

𝑞𝑟𝑠 =
∑

(𝑟,𝑞)∈2

𝛾̄𝑏𝑠𝑟𝑞 ∀𝑠 ∈ ,∀𝑏 ∈ [0, 𝐵] (47)

The right hand side of Eq. (47) refers to trips departing 𝑠 with battery level 𝑏. Conservation means that an incoming trip must have
arrived at 𝑠 with battery level 𝑏. This is achieved if SAV 𝑣 starts trip (𝑞, 𝑟, 𝑠) with battery level 𝑏′ and 𝑏′+𝐸𝑏′

𝑞𝑟𝑠 = 𝑏, which is indicated
on the left hand side of Eq. (47).

5. Numerical results

Li et al. (2021b) explored the waiting time properties of the MDPP policy for electric SAVs. Rather than repeat their results for
other types of SAVs systems, we focus on validating the stable region predicted by Eqs. (10) and (13). These equations can be used
to quickly compute the minimum fleet size needed to serve a given demand.

Proposition 3 established that the MDPP policy stabilizes any demand in 𝜦0, and Corollary 1 proved that Eqs. (10)–(13) establish
a set 𝜦̂ = 𝜦. We now aim to explore the relationship between 𝜦̂ and 𝜦 through simulation. We can only verify stability of demand
vectors 𝝀̄ ∈ 𝜦0, which requires the existence of some 𝜖 > 0 difference between 𝝀̄ and the boundary of 𝜦, as given by Eq. (9). When
𝜖 is very small, then Eq. (24a) predicts the bound on ∑

𝑐∈C
𝐻𝑐 (𝑡) to be large, which makes stability difficult to detect numerically.

Some differences between the simulated stable region and the predicted boundary are to be expected based on the minimum 𝜖
needed.

5.1. Theoretical stable region

We assume that customer demand proportions are constant but vary the total number of customers. In other words, 𝜆̄𝑐 is constant
but we introduce a factor 𝛼 such that the total demand is 𝛼∑𝑐∈C

𝜆̄𝑐 . To predict the boundary of the stable region, we solve the
problem

max 𝛼 (48a)

s.t.
∑ ∑

𝑦̄𝑣𝜋𝛿
𝜋
𝑐 ≥ 𝛼𝜆𝑐 ∀𝑐 ∈ C (48b)
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Fig. 1. Illustration of HOL time 1
𝑇

∑𝑇
𝑡=1

∑

𝑐∈C
𝐻𝑐 (𝑡).

Eq. (13)

where 𝛼 is an additional decision variable, 𝜆̄𝑐 is constant, Eq. (48b) is based on (10) with the addition of serving 𝛼𝜆̄𝑐 demand, and
constraint (13) is expanded as discussed in Section 4. We could alternatively use the objective max

∑

𝑐∈C
𝜆̄𝑐 with 𝜆̄𝑐 as a decision

variable. However, certain demand patterns (e.g. symmetric vs. asymmetric demand) can be served with less empty travel, but
realistic travel demand does not follow ideal patterns. Therefore, problem (48) assumes that the demand proportions are fixed and
seeks to serve as much demand as possible with those proportions. We used IBM CPLEX to solve problem (48)., then calculated the
replacement ratio as 1

|V|

∑

𝑐∈C
𝛼𝜆̄𝑐 customers per hour served per SAV.

We can write another program to find the minimum fleet size needed to serve demand rates 𝝀̄. By Proposition 4, only a single
vehicle index 𝑣 is required.

min 𝐹 (49a)

s.t. 𝐹
∑

𝜋∈𝛱
𝑦̄𝑣𝜋𝛿

𝜋
𝑐 ≥ 𝜆̄𝑐 ∀𝑐 ∈ C (49b)

Eq. (13)

ince problems (48) and (49) are equivalent, we will focus on demonstrating problem (48) in the numerical results. Problem (49)
s more useful for finding the minimum SAV fleet size.

.2. Simulated stable region

Finding the stable region from simulation is difficult. The left hand side of stability definition (8) can easily be calculated for
ny given simulation. However, determining whether it is bounded is more difficult for two reasons. The E

[

𝐻𝑐(𝑡)
]

term can be
pproximated through Monte Carlo simulations but not calculated directly. Definition (8) holds as 𝑇 → ∞, but an infinite time
orizon is not practical for simulation either. Fig. 1 illustrates the HOL times from two different demand rates on the Sioux Falls
etwork. Even when the network is stable, and with a 24hr simulation time horizon, fluctuations in the average HOL time are
bserved which make erroneous misidentification of stability possible. To reduce the impact of fluctuations, we take a 1hr moving
verage of Eq. (8). Then, we identify the network as stable if the average increase in averaged HOL time for the last 2 h of simulation
s less than 0.1s per hour per customer. 10 Monte Carlo simulations are used to approximate E

[

𝐻𝑐 (𝑡)
]

. Theoretically, there should
e an 𝛼 defined in problem (48) at the boundary of the stable region such that any 𝛼′ > 𝛼 will result in an unstable network and any
′ < 𝛼 will result in a stable network. Due to stochasticity, this is not guaranteed for any random realization of demand. However,
fter the use of Monte Carlo simulations, we assume that such properties of 𝛼 can be identified in simulation too. We use a line
earch to find that maximum 𝛼 such that demand of 𝛼𝝀̄ is stable for a given fleet size |V|, and report the value of 𝛼|𝝀̄| as the
aximum stable demand. Results in Section 5.3 validate that this method of detecting stability achieves results similar to those
redicted mathematically.

.3. Validation of stable region calculations

For the purposes of validation, we use the Sioux Falls network with 24 nodes and 76 links, shown in Fig. 2. This network has
een modified from original versions to include bus routes from Levin et al. (2019) and electric SAV charging stations. The bus
outes and charging stations were chosen arbitrarily to highlight SAV behaviors and are not intended to represent reality. We use
272

he free flow travel times for all links. Since travel times are assumed to be exogenous constants, the use of these travel times is



Transportation Research Part B 163 (2022) 258–280M.W. Levin

f
m

5

v
S
c
b

N

Fig. 2. Sioux Falls network with added bus routes and electric vehicle charging stations. Colored arrows indicate different bus routes, and red squares around
nodes indicate charging stations.

not limiting. The Sioux Falls network is chosen for its size because many simulations can be quickly run on this network. The goal
of this section is to validate the use of Eqs. (10) and (13) to determine the stable region, which admits the use of those equations
or calculating the stable region on other networks. In Section 5.4, we will explore the effects of different SAV behaviors on the
aximum stable demand for a larger network.

.3.1. One passenger per SAV
We first focus on the simple case where each SAV carries one passenger at a time without public transit integration or electric

ehicle recharging. Fig. 3 shows the simulated and calculated maximum stable demand with fixed origin–destination proportions.
ome differences are to be expected due to the challenges in detecting stability discussed in Section 5.2. However, the simulated and
alculated lines match up very closely. Surprisingly, the simulated stable demand has a slightly larger slope. This is best explained
y a decrease in the average time spent serving a passenger, 𝐶̄, calculated by:

𝐶̄ = lim
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1

∑

𝜋∈𝛱 𝑦𝑣𝜋 (𝑡)𝐶𝑣𝜋 (𝑡)
∑

𝜋∈𝛱 𝑦𝑣𝜋 (𝑡)
(50)

As ∑𝑐∈C
𝜆̄𝑐 → ∞, 𝐶̄ from simulation should approach the value predicted by the stable region Eqs. (10) and (13), calculated as

𝐶̄ =

∑

𝑣∈V

∑

𝜋∈𝛱 𝐶̄𝜋 𝑦̄𝑣𝜋
∑

𝑣∈V

∑

𝜋∈𝛱 𝑦̄𝑣𝜋
(51)

ote that Eqs. (50) and (51) are equal due to Eq. (11), but Eq. (50) can be approximated by simulation and Eq. (51) is found as a
byproduct of solving problem (48).

𝐶̄ is shown in Fig. 4 for the maximum stable demand in simulation plotted in Fig. 3. Note that since link travel times are constant,
the in-vehicle travel time for this scenario is fixed. Therefore, any increase in 𝐶̄ is due to empty travel time while SAVs travel to their
assigned customer pick-up location. For simulation, 𝐶̄ is observed to be generally decreasing with the fleet size. The reason for this
trend is that as the demand and fleet size increase, it is easier to match passengers with nearby SAVs. In other words, discretization
of SAVs and customers creates less overhead for the dispatch as fleet size increases, and the simulated value of 𝐶̄ approaches the
calculated value. The decreasing trend in 𝐶̄ with respect to the fleet size explains the relative increase in the maximum stable
demand estimated from simulation. The simulated stable region still closely follows a linear trend as predicted by Proposition 5.

The stable region detected through simulation also depends on the parameter 𝑉 in the MDPP. Fig. 5 shows the change in 𝐶̄
with respect to 𝑉 . For small values of 𝑉 , such as around 0.6, SAVs are dispatched more quickly, which reduces the dispatch delay.
273
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Fig. 3. Simulated and calculated maximum stable demand (using fixed origin–destination proportions) for the Sioux Falls network with one passenger per SAV
trip.

Fig. 4. Simulated and calculated average 𝐶̄ for the Sioux Falls network with one passenger per SAV trip.

However, lower values of 𝑉 also cause 𝐶̄ to be higher because the MDPP dispatches SAVs immediately, meaning that SAV-to-
ustomer assignments may be less efficient. Therefore when 𝑉 ≤ 0.5, the dispatch delay is actually quite high because as SAVs
re assigned on inefficient paths, they are less available for customers. If the number of waiting customers becomes sufficiently
arge, the efficiency would return but at the cost of having large average waiting times for dispatch. In contrast, larger values of 𝑉
educe 𝐶̄ but increase the dispatch delay because SAVs are not dispatched immediately when a customer arrives. As 𝑉 increases,
̄ approaches the minimum value calculated by Eq. (51). At some larger values of 𝑉 , 𝐶̄ from simulation actually is slightly lower
han the value from Eq. (48), but that could be caused by stochasticity in the demand in simulation.

.3.2. Integration with public transit
We adopt the fictional bus routes of Levin et al. (2019) for the Sioux Falls network (shown in Fig. 2) to evaluate the stable

region demand. Due to their significant coverage of the network, many customers can be served entirely by bus, and others can be
served more quickly by dropping them off at a bus stop. However, bus transfers were not considered: if a transfer was required,
SAVs would be used to take a customer directly to a bus route that reaches their destination. The maximum walking distance to
and from bus stops was assumed to be 0.25 miles. When determining how to serve a customer, the objective is to maximize the
number of customers served. Hence, SAVs will prefer for customers to use a bus route as much as possible to reduce the time that
SAVs spent on service.

Fig. 6 compares the simulated and calculate stable demand. Overall, the results are similar to Fig. 3, but slightly more differences
are observed between the simulated and calculated values at large fleet sizes. The discrepancy is partly due to the large number of
customers served entirely by public transit, which makes detection of a stable demand in simulation more difficult. Public transit
does not have capacity limitations, yet customers served mostly or entirely by public transit still affects the denominator when
calculating the average increase in average HOL time. We also note that the simulated stable region is slightly higher than the
calculated stable region. Again, this is due to the difficulty in determining whether a demand is stable from simulation alone.

Fig. 7 shows the average simulated and calculated 𝐶̄. Unlike Fig. 4, the simulated 𝐶̄ does not appear to be converging to the
calculated 𝐶̄. We note that even at | | = 100, the difference between the simulated and calculated values of 𝐶̄ are quite small
274
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Fig. 5. Change in 𝐶̄ and average dispatch delay with respect to parameter 𝑉 in the MDPP.

Fig. 6. Simulated and calculated maximum stable demand (using fixed origin–destination proportions) for the Sioux Falls network with public transit integration.

Fig. 7. Simulated and calculated average 𝐶̄ for the Sioux Falls network with public transit integration.

lready. Although the fleet sizes in Fig. 7 are the same as shown in Fig. 4, the number of customers included is much higher because
ublic transit admits many more passengers served. More total customers reduces the error due to assigning discrete SAVs to discrete
ustomers and also reduces the effects of stochastic demand on the simulated 𝐶̄.

.3.3. Electric SAVs
We next compare the predicted stable region with the stable demand in simulation for electric SAVs. As shown in Fig. 2,

echarging stations were placed at nodes 4 and 19, which required travel to and from these nodes for charging. SAV battery capacity
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Fig. 8. Simulated and calculated maximum stable demand (using fixed origin–destination proportions) for the Sioux Falls network with electric SAVs.

Fig. 9. Simulated and calculated average 𝐶̄ for the Sioux Falls network with electric SAVs.

was set at 80 miles, with 1 h required to recharge. These values are based on parameters in Chen et al. (2016), but are not intended
o provide a prediction of current or future technology. Instead, the goal is to choose values from the literature that provide a
ignificant and easily discernable impact on SAV service.
Fig. 8 presents the maximum stable demand both from problem (48) and estimated through simulation. Unlike Figs. 3 and 6,

Fig. 8 exhibits a significant difference between the simulated and calculated maximum stable demand. This difference is due to how
the recharging behavior of electric SAVs introduces large variations in service times. When electric SAVs run low on battery, they
must recharge as part of their dispatched assignment. Based on the given parameters, recharging itself can require up to 1 h, but
is also combined with empty travel to and from the charging station. When calculating the stable region, this recharging behavior
is anticipated and expected. However, for the MDPP, such recharging behavior means that low-battery SAVs will not be dispatched
until the HOL time has increased to match, i.e. we need 𝐻𝑐 (𝑡) > 𝐶𝑣𝜋 (𝑡) where 𝐶𝑣𝜋 (𝑡) includes the recharging. Such recharging
reduces the number of SAVs dispatched, thereby increasing the average HOL time and making stability more difficult to detect.
Consequently, the simulations shown in Fig. 8 do not detect stability at the same demand levels predicted by problem (48).

Figs. 9 and 10 further illustrate the issue. In Fig. 9, the average 𝐶̄ is larger than the calculated 𝐶̄ for small fleet sizes, then
actually decreases below the calculated 𝐶̄ for |V| ≥ 400. Fig. 10 shows the time spent traveling empty at different fleet sizes,
which is always greater than the calculated empty time. The difference is larger than the empty time without recharging shown in
Fig. 4; this is because problem (48) can plan recharging behavior, but the MDPP will not be as successful in planning such recharging
behavior unless the number of waiting customers is large. Correspondingly, SAVs have to travel more to get to recharging stations
than expected by problem (48) unless the simulation runs sufficiently long. The 12 h of simulation used in these results was not
sufficiently long to converge to average behavior. When the simulated 𝐶̄ is smaller than the calculated 𝐶̄ in Fig. 9, it indicates
larger stochasticity in demand and the corresponding recharging requirements or a lack of recharging resulting from low-battery
vehicles no longer being assigned to customers by the MDPP due to their high dispatch cost. Either way, these results suggest that
achieving the throughput predicted by problem (48) may come with unacceptable level-of-service for customers. Planning for a
margin between the expected demand and the maximum throughput may provide smaller waiting times. Furthermore, the dispatch
276

of electric SAVs to recharging stations by the MDPP as formulated in this paper or by Li et al. (2021a) could be further improved.
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Fig. 10. Simulated and calculated average empty travel time for the Sioux Falls network with electric SAVs.

Table 2
Maximum stable demand on the Sioux Falls network.
SAV system Maximum stable demand 𝐶̄ Empty travel time Recharging time

Basic SAV 6.95 pass/h/SAV 8.62 min 0.00 min N/A
Ridesharing 10.64 pass/h/SAV 11.07 min 0.14 min N/A
Electric SAVs 3.18 pass/h/SAV 17.15 min 0.23 min 8.85 min
SAVs with public transit 23.70 pass/h/SAV 7.77 min 2.64 min N/A

5.3.4. Summary of Sioux Falls results
Table 2 summarizes the predictions of the stable region calculations. The demand appears to be almost symmetric as the basic

SAV system theoretically requires less than 0.01 min of empty time. Electric vehicle recharging results in a massive decrease in the
customers per hour served per SAV. That decrease is almost entirely due to the large time spent recharging. Despite only two nodes
having charging stations in these experiments, the empty time increases only slightly. This can be accomplished by having SAVs
visiting the charging stations while serving nearby customers. The 80 mile battery range is sufficient for multiple customer trips
before recharging is required, which also reduces the charging time spent per customer trip. The large recharging time of 21.74 min
per trip reflects the 4hr recharging time required to completely charge an empty battery. However, note that these results are
heavily dependent on the SAV battery capacity and their recharging rate. As these parameters improve, the impacts of recharging
on customer service should decrease.

We attempted to investigate the stable region of ridesharing through simulation. Although 1 simulation of ridesharing can be
erformed easily, the computation times were prohibitive for a line search with 10 Monte Carlo repetitions. This occurs because of
he large number of ridesharing paths; we found that 260,680 paths with 2 customers could be created where no customer exceeds
he direct travel time by more than 20%. Consequently, we only report the calculated stable region in Table 2. Ridesharing included
at most 2 customers, and each customer could be inconvenienced by at most 20% of their normal time. Nevertheless, ridesharing
was effective at increasing the passengers served per hour. The average trip cost increased from 8.62 min to 11.07 min, but the
addition of multiple customers per trip for some trips more than made up for that increase.

When public transit is integrated, the number of customers served per SAV increases significantly, but much of this increase
is due to customers that can be served by transit alone. We still calculated the customers served per hour using the maximum 𝛼
from problem (48) although some customer nodes do not require SAV service at all. The time per customer service decreases only
slightly, but the SAV trips are no longer symmetric and necessitated greater empty time.

5.4. Estimating the stable region on downtown Austin network

We now use Eqs. (10) and (13) to explore how different SAV behaviors affect the stable region on a realistic city network. We
use the downtown Austin network since it includes realistic bus routes. The downtown Austin network, which has 171 zones, 546
intersections, 1247 links, was calibrated to match observed AM peak data in 2011 by the Network Modeling Center of The University
of Texas at Austin. Levin et al. (2017) provides more information on this network. However, it was too large to solve problem (48)
with ridesharing; the problem size exceeded the available computer memory. Even solving problem (48) with a large number of
discrete battery levels was exceeding memory requirements. With only 2 battery levels, CPLEX was unable to solve problem (48)
on a Windows computer with 16 GB of memory. These results suggest that solving problem (48) on city-size networks with EVs or
ridesharing may require further work to be useful.

Table 3 reports the customers served per hour per SAV for different types of SAV systems. Because of Proposition 5, this number
is constant with respect to the fleet size. Table 3 also shows how using SAVs as a first-mile collector service for public transit can
increase the demand served by the combined SAV-public transit system. Because the network models the AM peak and most bus
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Table 3
Maximum stable demand on the downtown Austin network.
SAV system Maximum stable demand 𝐶̄ Empty time

Basic SAV 5.88 pass/h/SAV 9.75 min 2.49 min
SAVs with public transit 10.02 pass/h/SAV 5.97 min 1.94 min

routes in the downtown Austin network are designed to take travelers downtown, we focused on a first-mile collector service but
not a last-mile service. We assumed a 0.25mile walking distance to and from bus stops. For simplicity, we did not consider transfers
between bus routes. Instead, travelers transferred from an SAV to a bus route, or traveled directly there on SAV, whichever had
less SAV travel time. As expected, integration with public transit increases the maximum stable demand and decreases the average
time spent per customer. However, the improvement is less than observed in Sioux Falls. Part of the reason is that our experimental
version of Sioux Falls had a very extensive public transit system to demonstrate the benefits of integration. Another possibility is
that the larger geographical area is not fully covered with the bus system, so more SAV trips are used.

6. Conclusions

The definition of the stable region 𝜦 for general types of SAV systems is particularly useful because it characterizes whether a
given demand rate 𝝀̄ can be served by a fleet size |V|. Until now most estimations of 𝜦 have been based on simulations and were
dependent on the network topology and the specific dispatch policy. Corollary 1 establishes that Eqs. (10)–(13) describe whether
a given demand 𝝀̄ ∈ 𝜦 by showing that these equations identify whether a 𝝀̄ can be stabilized by the MDPP policy or cannot be
stabilized at all. (Proposition 1). We also prove that the MDPP policy serves as many customers as any other dispatch policy. These
results hold for a general class of SAV behaviors, including ridesharing, electric SAVs with recharging, and integration with public
transit. Numerical results verify the calculations of the maximum stability demand and demonstrate their application on a large city
network.

Although the MDPP policy is proven to have maximum stability, it may not minimize waiting times. In particular, SAVs are
not dispatched to customers until the weighted cost of dispatch 𝑉 𝐶𝑣𝜋 (𝑡) exceeds the customer waiting time 𝐻𝑐 (𝑡), which may result
in a dispatch delay when 𝑉 > 0. Therefore, it is likely possible to achieve maximum stability with lower customer waiting times.
Preemptive rebalancing is also useful for reducing waiting times (Pavone et al., 2012; Fagnant et al., 2015; Hörl et al., 2019), which
is included in the stability analysis but not explored directly. The stability properties of other dispatch policies can be evaluated
using the concepts developed here, such as evaluating whether stability definition (8) holds analytically or numerically. Fig. 1
demonstrates how to evaluate stability numerically, and Proposition 3 provides one approach to establishing stability properties
analytically. Overall, the general work in this paper may lead to new SAV dispatch policies which maximize stability while
improving waiting times for customers. However, excessively high waiting times are unrealistic, as customers without an assigned
vehicle will eventually exit the system and find alternative transportation. Therefore, future work should also consider stability in
models with customer abandonment.

Adding exiting passengers to this methodology requires significant modifications. We can define 𝑧𝑐 (𝑡) to be the number of
customers abandoning the system, and 𝜔𝑐 (𝑡) to be the total number of abandoned customers, at node 𝑐 at time 𝑡. Then

𝜔𝑐 (𝑡 + 1) = 𝜔𝑐 (𝑡) + 𝑧𝑐 (𝑡) (52)

because exited passengers cannot be picked up by an SAV. Then Eq. (1) becomes

𝐻𝑐 (𝑡 + 1) = 𝑒𝑐 (𝑡)
(

𝐻𝑐 (𝑡) + 1 − (𝑥𝑐(𝑡) + 𝑧𝑐 (𝑡))𝜏𝑐 (𝑡)
)+ + (1 − 𝑒𝑐 (𝑡))𝐴𝑐 (𝑡) (53)

We can redefine stability as there exists a 𝜅 < ∞ such that

lim sup
𝑇→∞

1
𝑇

𝑇
∑

𝑡=1

∑

𝑐∈C

(

E
[

𝐻𝑐 (𝑡)
]

+ E
[

𝜔𝑐 (𝑡)
])

≤ 𝜅 (54)

ince 𝜔𝑐 (𝑡) is non-decreasing with time, stability requires that E
[

𝑧𝑐(𝑡)
]

= 0, i.e. the average number of customers abandoning the
ystem due to lack of service is 0. That definition is consistent with maximum throughput, but it is not clear how to prove that
[

𝑧𝑐 (𝑡)
]

= 0.
A separate problem exists for calculating 𝑧𝑐 (𝑡). We could enforce a maximum waiting time 𝐻max

𝑐 by defining 𝑧𝑐(𝑡) as

𝑧𝑐 (𝑡) =

{

1 𝐻𝑐 (𝑡) > 𝐻max
𝑐

0 else
(55)

Another possible assumption is that 𝑧𝑐 (𝑡) = 𝐴𝑐(𝑡) when the number of waiting customers at 𝑐 reaches some threshold, which
essentially enforces a finite buffer size for customers waiting at 𝑐. However, we would need to modify the state to explicitly
track the number of waiting customers to determine when the threshold is reached. In summary, it appears that tracking customer
abandonment within this model is possible with some modification, but proving stability with customer abandonment is far more
difficult. Since customer abandonment is a realistic feature of mobility-on-demand systems, we believe that future work should
278

consider addressing it.
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We also noticed another challenge in these analyses: solving linear program (48) can become computationally intensive for more
omplex SAV systems. In particular, the linear programs for electric SAVs and SAVs with ridesharing exceeded the available computer
emory on a typical desktop for the downtown Austin network when using IBM CPLEX. The number of variables increases greatly
ecause of the extra dimensions involved in tracking battery levels or multiple passengers per trip. Further work on simplifying
hese problems for larger networks could improve the practical utility of this method.
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