

1 **Enhancing aqueous carbonation of calcium silicate through acid and**
2 **base pretreatments with implications for efficient carbon**
3 **mineralization**

4

5 **Hang Zhai,* Qiyuan Chen, Mehmet Yilmaz, and Bu Wang***

6

7 Department of Civil and Environmental Engineering, University of Wisconsin-Madison,
8 Madison, Wisconsin 53706, United States

9

10

11

12

13 ***To whom correspondence should be addressed.**

14

15 Hang Zhai

16 Department of Civil and Environmental

17 Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States;

18 orcid.org/0000-0002-8161-448X;

19 Email: hzhai25@wisc.edu

20

21

22 Bu Wang

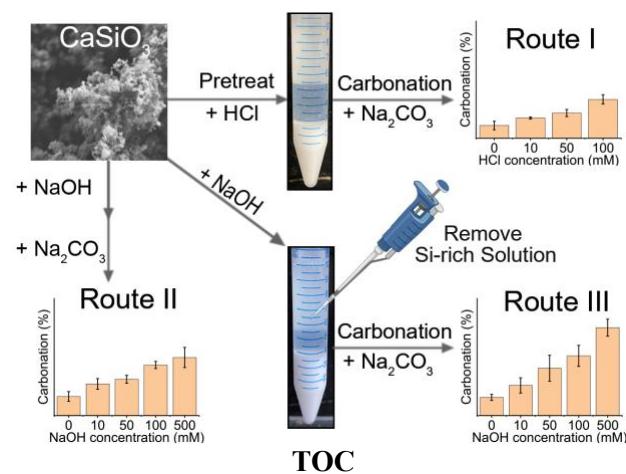
23 Department of Civil and Environmental

24 Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States;

25 orcid.org/0000-0002-9294-0918;

26 Email: bu.wang@wisc.edu

27


28 **ABSTRACT:** Carbon dioxide (CO₂) mineralization based on aqueous carbonation of alkaline
29 earth silicate minerals is a promising route towards large scale carbon removal. Traditional
30 aqueous carbonation methods largely adopt acidification-based approaches, e.g., using
31 concentrated/pressurized CO₂ or acidic media, to accelerate mineral dissolution and
32 carbonation. In this study, we investigated aqueous carbonation under basic conditions using
33 amorphous calcium silicate (CS) as an example system. We designed and tested three
34 distinctive pretreatments routes to evaluate the effect of intermediate phases formed under
35 different pH conditions on aqueous carbonation. Pretreating CS with high concentrations (100
36 mM) of HCl (Route I) or NaOH (Route II and III) enhanced their carbonation degrees. However,
37 NaOH pretreatment overall yielded higher carbonation degrees than the HCl pretreatment, with
38 the highest carbonation degree achieved through Route III, where an extra step is taken after
39 the NaOH pretreatment to remove the solution containing dissolved silica prior to carbonation.
40 The HCl and NaOH pretreatments formed different intermediate silica products on the CS
41 surface. Silica precipitated from the HCl pretreatment had minimal effect on the carbonation
42 degree. The Ca-rich intermediate phases (CIP) formed from the NaOH treatment, on the other
43 hand, can be readily carbonated. In contrast to commonly utilized acid leaching approach,
44 inducing the formation readily carbonatable CIP with basic conditions offers a more promising
45 route to accelerate aqueous carbonation, as it can mitigate the need for costly pH swing and
46 high-concentration/pressurized CO₂. The key to aqueous carbonation under basic conditions,
47 as suggested by this study, is the control of aqueous silica species that have a suppressing effect
48 on carbonation. Overall, this study highlights the critical needs for investigations of aqueous
49 mineral carbonation in a broader pH region.

50 **KEY WORDS:** CO₂ mineralization, aqueous carbonation, calcium silicate, coupled
51 dissolution-reprecipitation, secondary silicates.

52 **SYNOPSIS:** This study reveals a technology of CO₂ mineralization using acid or base-
53 pretreated silicate minerals with the associated analyses of intermediate products after the
54 pretreatments and impacts of silicon-byproducts during carbonation, which have strong

55 implications in improving the process efficiency and economics.

56

57

58

59

60

61

62

63

64

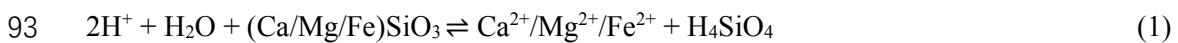
65

66

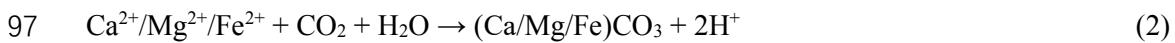
67

68

69


70

71


72 **INTRODUCTION.**

73 The continuing growth of the atmospheric carbon dioxide (CO₂) concentration is
74 posing a risk of missing the climate targets.¹ In pathways towards rapid reduction of the CO₂
75 level, large scale carbon capture and storage (CCS) become almost indispensable.²⁻⁴ As one of
76 a handful of scalable options to durably store CO₂ away from the atmosphere, ex situ
77 mineralization, wherein captured CO₂ are reacted with surficial Ca-, Mg-, or Fe-bearing
78 minerals, such as wollastonite (CaSiO₃),⁵ forsterite (Mg₂SiO₄),⁶ fayalite (Fe₂SiO₄),⁷ and
79 phlogopite (KMg₃(AlSi₃O₁₀)(F, OH)₂)⁸ to form solid carbonates, has attracted significant
80 attention. Comparing to in situ mineralization, where CO₂ is mineralized in subsurface
81 geological formations, ex situ mineralization often utilizes readily accessible industrial by-
82 products such as coal ash, iron and steel slags, mine wastes and tailings.⁹⁻¹² These by-products
83 represent significant CO₂ storage potentials, with mine wastes and tailings alone estimated to
84 have a potential to sequester 1.1-4.5 Gt CO₂ per year.¹³ Furthermore, they tend to exhibit high
85 reactivity, because these mineral by-products often contain finely ground particles and, in some
86 cases, also a high amorphous content (e.g., high-temperature processed by-products such as
87 coal ash and slag),¹⁴⁻¹⁷ which could facilitate CO₂ storage at reduced costs. As such, ex situ
88 mineralization has been widely investigated.^{18,19}

89 Aqueous carbonation, i.e., carbonating minerals in an aqueous media containing
90 dissolved carbonate species, is a commonly used method for ex situ mineralization.²⁰ It is
91 generally believed that aqueous carbonation proceeds through interfacial coupled dissolution-
92 precipitation (ICDP) reactions.^{21,22} The process involves the dissolution of minerals (eq. 1):

94 Released cations (Ca²⁺/Mg²⁺/Fe²⁺) further react with carbonate species in the solution, leading
95 to the precipitation of insoluble carbonate minerals, such as calcite and its polymorphs (CaCO₃),
96 dolomite (CaMg(CO₃)₂), and/or magnesite (MgCO₃) (eq. 2):²³

98 Regarding the ICPD mechanism, the mineral carbonation kinetics and degree can be
99 governed by both mineral dissolution (Eq. 1) and subsequent carbonate precipitation (Eq. 2)
100 reactions. It can be seen from Eq. 1 that providing more H^+ during the dissolution step should
101 facilitate cation leaching from the minerals. Therefore, a common method to accelerate aqueous
102 carbonation is to acidify the solution, sometimes in combination with adjustments to other
103 solution conditions such as temperature, salinity, and the presence of ligands.²⁴⁻²⁶ However,
104 acidic conditions are not conducive to carbonate precipitation, as suggested by Eq. 2 where H^+
105 is a product. As such, a costly pH swing step, usually achieved through the provision of base,²⁷
106 ion-exchange,²⁸ or pressure/temperature swing involving CO_2 or ammonia,^{29,30} is needed. The
107 need to accelerate mineral dissolution through acidification has also largely prohibited the
108 direct use of dilute CO_2 sources in accelerated aqueous carbonation without a dedicated capture
109 process as it is difficult to achieve fast CO_2 dissolution into acidic aqueous solutions.

110 Alternatively, it was shown recently that accelerated aqueous carbonation using Ca-
111 rich mineral feedstocks can be achieved through an autocatalytic basification process.³¹ This
112 approach involves a two-step, indirect carbonation process:

115 In the first step described by Eq. 3, aqueous carbonation is achieved with a soluble carbonate
116 salt (Na_2CO_3 in this case). The carbonation reaction results in the formation of NaOH , which
117 basifies the solution. After the carbonation step, the basic solution can be used to capture CO_2
118 from a variety of sources, described by Eq. 4, during which Na_2CO_3 is regenerated and can be
119 used again by the carbonation step. Combining the two steps, mineralization is achieved
120 without large pH swing between acidic and basic conditions.

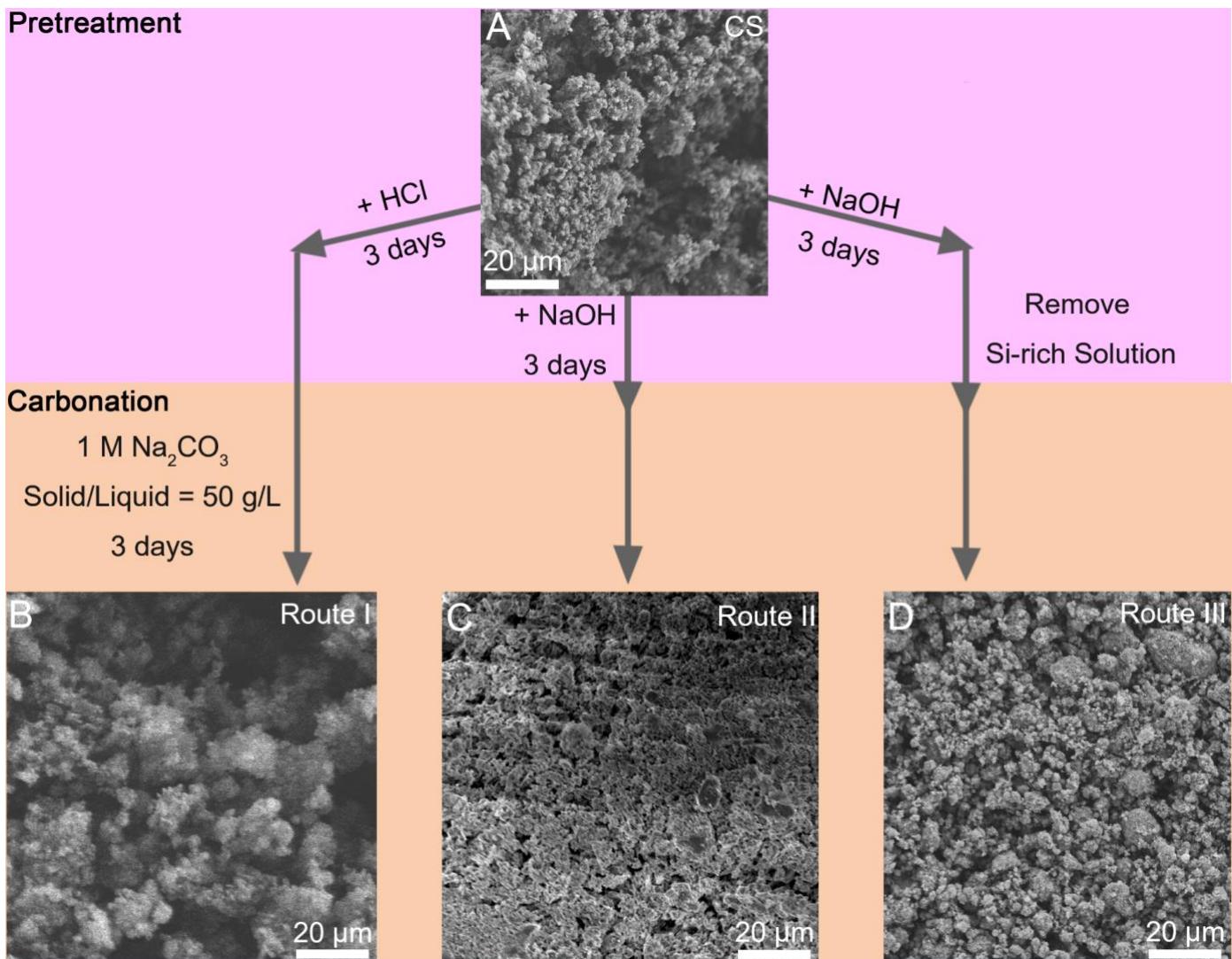
122 The acceleration in mineral carbonation by Eq. 3 is hypothesized to be resulted from
123 basification. Unlike the acidification approach where cations are leached out of the mineral,

124 it is hypothesized that basic solution convert mineral surfaces into Ca-rich intermediate
125 products (CIP) that can be easily carbonated.³¹ The carbonation of CIP further generates more
126 OH⁻, creating an autocatalytic basification process. However, the hypothesis around the
127 carbonatable CIP, especially their formation in relationship to mineral dissolution under basic
128 conditions, remains to be confirmed. Furthermore, the role of silica, which tends to precipitate
129 at low pH but remain in the solution at high pH, is unclear. If a strong coupling exists between
130 these secondary phases and carbonation, it might be possible to enhance carbonation by
131 promoting or suppressing their formation.

132 Considering this, we selected amorphous calcium silicate (CS, a representative
133 alkaline-earth silicate) to study the role of secondary phases in aqueous mineral carbonation.
134 We chose amorphous calcium silicate in this study because amorphous aluminosilicates are the
135 main reactive mineral phases in coal ash used in the previous demonstration of accelerated
136 aqueous carbonation through basification. We note that crystalline phases as well as the
137 presence of other common mineral components such as Al₂O₃ may significantly alter the
138 dissolution and carbonation behaviors, and they therefore warrant separate investigations. In
139 this study, we designed aqueous carbonation routes that incorporated acid and base
140 pretreatments of CS to investigate the effect of secondary phases formed under different
141 conditions on carbonation. We focused on aqueous carbonation under basic conditions, which
142 has been under-explored in the literature, and in particular aimed to examine the hypothesis that
143 CIP formed under basic conditions can serve as the precursor to carbonate formation. Overall,
144 we believe fundamental insights into aqueous mineral carbonation mechanisms over broad pH
145 conditions could have strong implications in improving the process efficiency and economics
146 of CO₂ mineralization.

147

148 MATERIALS AND METHODS.


149 **Materials:** Amorphous calcium silicate (CAS Number: 1344-95-2, Sigma-Aldrich)

150 was used in this study. The chemistry and amorphous nature of the sample were confirmed
151 using energy dispersive X-ray (EDX) and X-ray diffraction (XRD, Figure S1A). The surface
152 area of CS powders was determined to be 12.735 m²/g by the Brunauer–Emmett–Teller (BET)
153 method (Figure S1B). Reagent grade sodium carbonates (anhydrous) were purchased from
154 Fisher Science. Colloidal silica was prepared by dispersing nanosilica powder (Sigma-Aldrich)
155 in Na₂CO₃ solutions (Figure S2). Sodium silicate in liquid form was purchased from Sigma-
156 Aldrich. The Si concentration was confirmed by Inductively Coupled Plasma Optical Emission
157 spectroscopy (ICP-OES, CCD Simultaneous ICP-OES, VISTA-MPX, Varian, USA).

158 **Batch carbonation with acid or base pretreatment:** In this study, three carbonation
159 routes with different pretreatments were applied to amorphous CS under ambient conditions
160 (~25 °C, Figure 1A). The routes were designed as follows. Route I (Figure 1B) utilized CS
161 pretreated with HCl solutions with different concentrations (10-100 mM) for three days. H⁺ has
162 been reported as a key factor for leaching Ca²⁺ from CS (eq.1).³² However, leached H₄SiO₄
163 from CS can easily nucleate from solutions due to the low solubility (~2 mM) of SiO₂ phases
164 under acid conditions, which might subsequently affect carbonations.^{33,34} To suppress H₄SiO₄
165 nucleation, Route II uses NaOH (0-500 mM) to pretreat CS (Figure 1C). Because silica has a
166 high solubility under basic conditions,³⁵ the precipitation of hydrated silica is suppressed
167 although silica might precipitate in the form of CIP. In both routes, a liquid-to-solid ratio of 10
168 mL/g was used, and reactions took place in 15 mL polypropylene (PP) testing tubes. The tubes
169 were vibrated using a vortex mixer during the experiments to agitate the slurry.

170 A high concentration of SiO₃²⁻ accumulating in the solution could have negative effects
171 on carbonations since they can compete with aqueous carbonate species and decrease the
172 activity of Ca²⁺ ions (Table S1).³⁶ Therefore, another route with NaOH (0-500 mM)
173 pretreatment, Route III (Figure 1D), was designed as follows: after the same NaOH
174 pretreatment as Route II, the liquid phase was removed by a pipette after 5 min centrifugation
175 at 9000 g, and the remaining solid phase were used for further carbonation. The removed CS
176 accounted for less than 10 wt. % of the original CS.

177 Following the pretreatment in each route, slurry carbonation experiment was conducted
178 directly in the PP testing tube under the ambient condition ($\sim 25^\circ\text{C}$). A Na_2CO_3 stock solution
179 was added into the testing tube to reach a liquid to solid ratio of 20 mL/g and 1 M Na_2CO_3 in
180 the carbonation solution for all batch experiments. The tubes were vibrated using the vortex

181 mixer during carbonation as well.

182 **Figure 1.** The three carbonation routes investigated in this study with example SEM images of
183 the raw and carbonated calcium silicate (CS). SEM images of (A) initial CS, carbonated CS via
184 Routes (B) I, (C) II, and (D) III.

185

186

187 **Collecting carbonated samples:** After three days of carbonation, the solid and liquid
188 phases were separated using a centrifuge (Allegra 25R Centrifuge, Beckman Coulter, USA) at
189 9000 g for 5 min. Collected solids were washed three times with DI water to remove residual

190 salt solutions and then dried in an oven (Isotemp Oven Model 655F, Fisher Scientific) at 100 °C
191 for 24 h. This washing procedure was effective for removal of residual Na₂CO₃, which was
192 confirmed by EDX (Figure S4) spectrum and thermogravimetric analysis (TGA, Figure S5).

193 **Carbonation degree quantifications:** The carbonation degree was defined as the
194 percentage of carbonated calcium with respect to the total calcium content. To quantify
195 carbonation degrees, the TGA (TA 5500, USA) and ICP-OES results were combined. The TGA
196 was performed using ~15 mg of washed sample under a N₂ condition with a gas injection rate
197 of 100 mL/min and a heating rate of 10 K/min from 30 °C to 950 °C. For all samples, TGA
198 curves contained three distinct regions: (1) evaporable water loss (30-200 °C), (2) bound water
199 loss (200-550 °C), and (3) CO₂ release (i.e., calcium carbonate decomposition; 550-800 °C).
200 The CO₂ content (w_{CO_2}) was determined from TGA curves using the weight loss from 550 to
201 800 °C. To measure total CaO content (C_{CaO}) within the carbonated samples, dried powders (<
202 0.5 mg) were dissolved in 5 M HNO₃ and then diluted up to 10 times for ICP-OES
203 measurements. The CaO-conversion into CaCO₃ (η_{Ca} ; or carbonation degree) was calculated
204 with eq.3.

$$205 \eta_{Ca} = \frac{w_{CO_2} \times M_{CaO}}{M_{CO_2} \times C_{CaO}} \quad (3)$$

206 in which M_{CaO} and M_{CO_2} are molecular weights of CaO (56.08 g/mol) and CO₂ (44.01 g/mol).
207 All data presented in this study were derived from three independent experiments.

208 **Solid sample characterizations:** A scanning electron microscopy (SEM, LEO 1530,
209 Zeiss, Germany) equipped with EDX was used to observe the morphologies and determine the
210 elemental compositions of carbonated samples. Dry powders were mounted onto aluminum
211 (Al)-SEM stub stands using copper (Cu)-tapes and coated with gold (~8 nm, Prep-Leica
212 ACE600 Deposition, Leica, Germany) to increase the electrical conductivity. SEM images were
213 taken with an acceleration voltage of 5 kV and collected using the secondary electron detector.
214 For elemental analyses, EDX was performed with an acceleration voltage of 10 kV, and the

215 signal from the sample was recorded using the Quasor II EBSD System (ThermoFisher
216 Scientific, USA). To detect the crystallinity of newly formed CaCO_3 phases, carbonated
217 samples were characterized using x-ray diffraction (XRD, D8 Discovery, Bruker, Germany)
218 with incident $\text{Cu K}\alpha$ radiation ($\lambda = 1.54178 \text{ \AA}$). The data acquisition was achieved at four
219 scanning steps from 20° to 60° with a rate of 120 s/step.

220 For nanoscale characterization, high resolution transmit electron microscopy (HRTEM)
221 was performed to directly observe crystallographic phases within the particles.³⁷ HRTEM
222 samples were prepared by dropping 10 μL suspension samples on to a copper grid (G200-CU:
223 Electron Microscopy Sciences gilder standard square 200 mesh copper grid) after carbonation
224 experiments. The residual solution was removed by placing a piece of filter paper at the edge
225 of the grid. Deposited particles were washed three times by dropping 10 μL DI water. HRTEM
226 images were collected using TF30 (FEI Tecnai TF30 TEM, Thermo Fisher Scientific, USA)
227 with an acceleration voltage of 300 kV. Before collecting each image, we performed focusing
228 on a nearby area to prevent beam damages. Measured *d*-spacing values were used to identify
229 crystalline species. The standard parameters for calcite (# 47-1743), aragonite (# 41-1475),
230 wollastonite (# 42-0550), and Na_2CO_3 (# 25-0815) were found in JCPDF and used as
231 references (Figure S6).

232 Acid and base pretreated samples were lyophilized (freeze-dried) and characterized
233 using TGA and X-ray photoelectron spectroscopy (XPS). XPS, for surface analyses, was
234 executed under an ultra-high vacuum condition (5×10^{-10} Torr) using a Thermo K alpha X-ray
235 Photoelectron Spectrometer (Thermo Scientific, USA) equipped with a monochromatic Al Ka
236 X-ray source ($h\nu = 1486.6 \text{ eV}$) at 75 W with a detection pass energy of 20-80 eV. All binding
237 energies were calibrated to the common C 1s peak at 284.6 eV. Thermal Advantage software
238 (Thermo Scientific, USA) was used to analyze the collected XPS data with smart background
239 methods for baseline correction and Gaussian function for peak fittings.³⁸

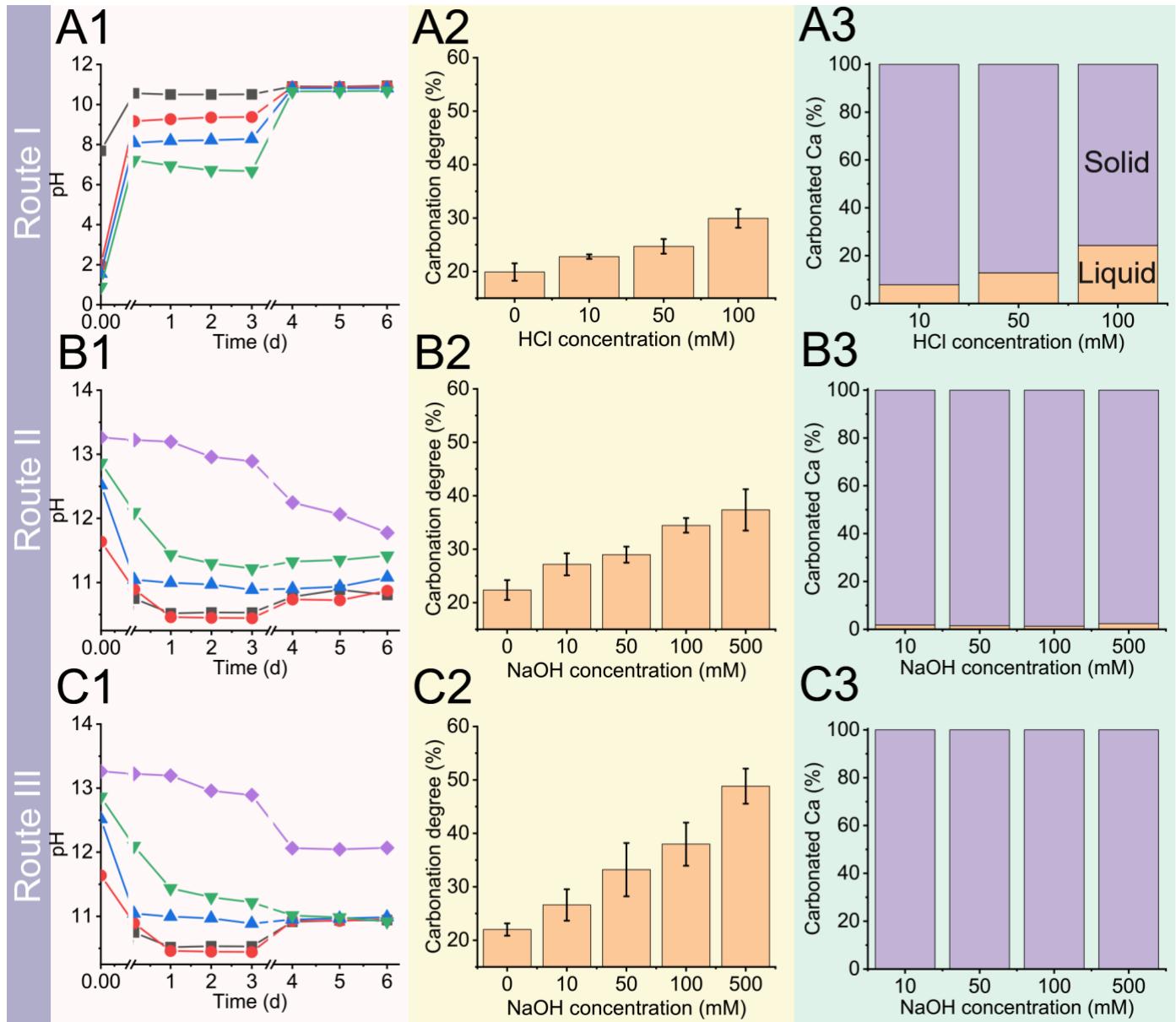
240 **Solution analyses:** After the carbonation procedures, the separated solutions were

241 passed through syringe filters (220 nm, Millex-GP, Millipore Express) to remove residual
242 particles. Then, obtained solutions were acidified and diluted up to 10 times using 0.5 M HNO₃
243 for dissolved elemental analyses using ICP-OES. All concentrations were reported as the
244 averages of three independent measurements.

245 ***In situ* observations of carbonation:** Raman Spectrometer (LabRAM HR Evolution,
246 Horiba, France) was used to monitor aqueous carbonate species *in situ*. The spectra were
247 collected with a laser at 532 nm followed a calibration by the characteristic band of silicon at
248 520.7 cm⁻¹.³⁹ The spectra of Na₂CO₃ (pH 12, adjusted by 1 M NaOH) solutions with and
249 without SiO₂ (including colloidal silica and Na₂SiO₃) were collected every 24 h up to 72 h with
250 a 10× objective lens. To quantify the CO₃²⁻, 100 mM NaNO₃ was added as a reference since its
251 concentration did not change during carbonation (Figure S7). The *in situ* Raman
252 characterizations were used to study the effects of solution silica (colloidal silica and Na₂SiO₃)
253 on CS carbonation in basic solutions. Collected Raman data were analyzed using the LabSpec
254 6 software (LabRAM HR Evolution, Horiba, France).

255 **PHREEQC simulations:** PHREEQC Interactive Version 3.3.7.11094 was used to
256 simulate carbonating reaction based on solution chemistry determined by ICP-OES with the
257 wateq4f database.⁴⁰ The solubility products of several CIP not included in the database were
258 obtained from the literature (Table S2). The simulations were performed through two steps: in
259 the first step, the initial solution was equilibrated to calculate the activities of each solute
260 (including Ca²⁺, CO₃²⁻, and H₄SiO₄). In the second step, the solution was allowed to equilibrate
261 to calculate the saturation indices (SI) with respect to possible CS/CIP/SiO₂/Ca(OH)₂/CaCO₃
262 phases. The relative supersaturation of precipitating phases can be expressed by⁴¹

263
$$\sigma = \log \text{IAP} - \log K_{\text{sp}} \quad (4)$$

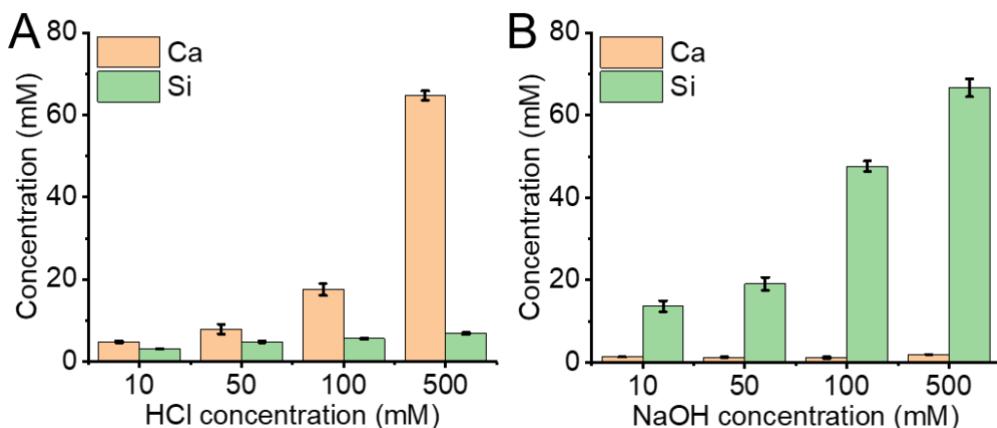

264 where σ is the saturation index ($\sigma > 0$ means thermodynamically favorable for nucleation), IAP
265 is the actual ion activity products, and K_{sp} is their corresponding values at equilibrium. For
266 instance, the σ of Ca(OH)₂ can be expressed by

267 $\sigma = \log \{[a(\text{Ca}^{2+})][a(\text{OH}^-)]^2\} - \log K_{\text{sp}}$ (5)

268 where $a(\text{Ca}^{2+})$ and $a(\text{OH}^-)$ are the activities of Ca^{2+} and OH^- ions.

269 **RESULTS AND DISCUSSIONS**

270 **CS dissolution behaviors during pretreatments.**



271 **Figure 2.** Quantifications of CS carbonations via Routes I, II, and III. (A1), (B1), and (C1)
272 respectively show the pH evolution during the pretreatment step of the three routes. (A2), (B2),
273 and (C2) show the carbonation degree calculated based on eq.3. (A3), (B3), and (C3) show the
274 source of the carbonated Ca, i.e., leached Ca precipitated from the liquid (orange) vs. solid
275 bound Ca (purple).

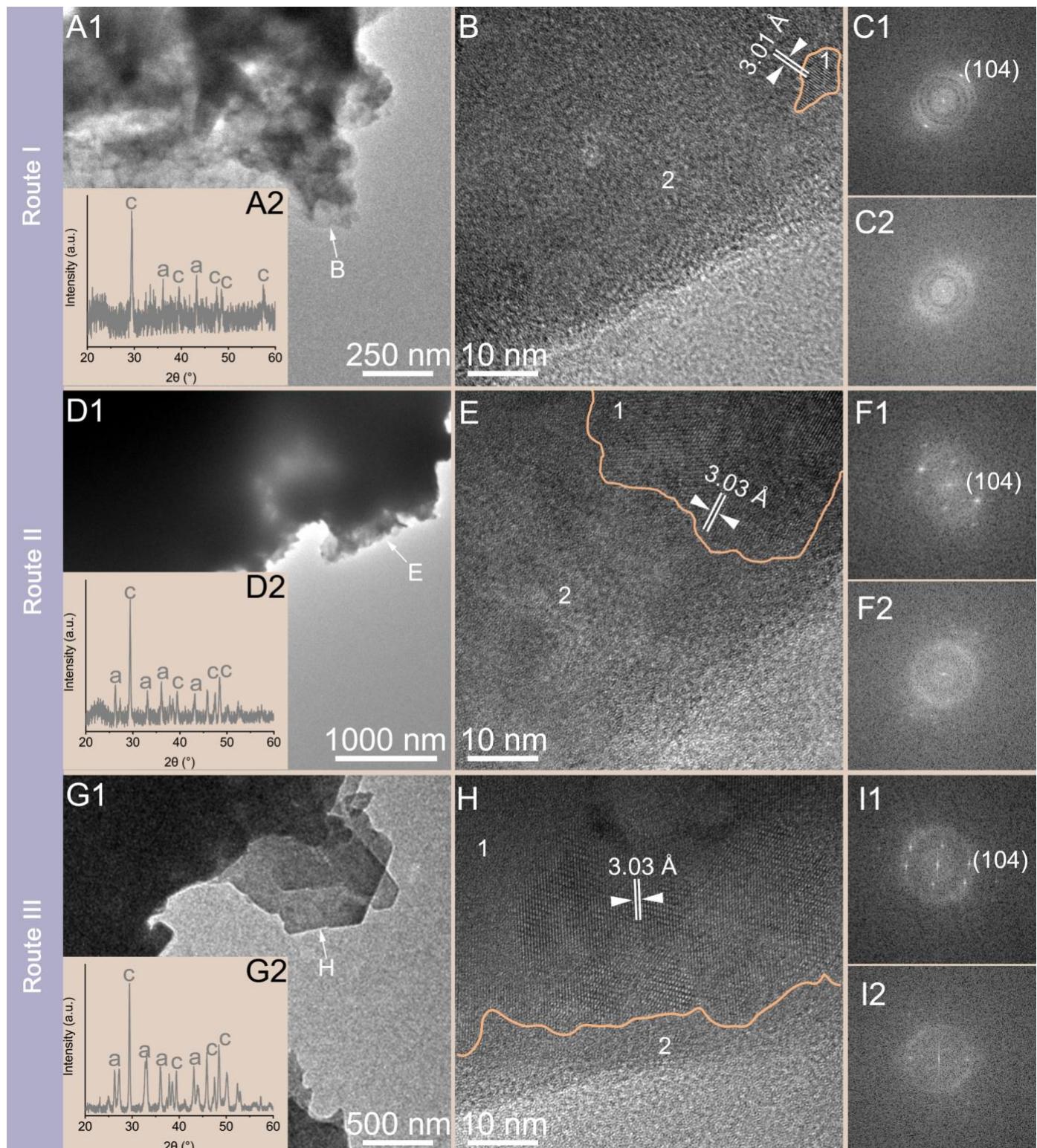
276

277 During the pretreatment, pH approached a steady state in all cases within 3 days (Figure

278 2A1, B1, and C1). In Route I, an initial rapid increase in pH was observed due to the
 279 consumption of H^+ (Figure 2A1). The final pH and $[\text{Ca}^{2+}]$ in the solution, after three days,
 280 ranged from 7 to 11 and 4.87 to 64.69 mM, respectively (Figure 3A). Even though 500 mM
 281 HCl released more Ca^{2+} into solutions, the final pH was at ~ 1.0 after pretreatment (Figure S8A).
 282 As this study focuses on carbonation under basic conditions, we limited the HCl concentration
 283 ranging from 0 to 100 mM. In contrast with the rapid release of Ca^{2+} , the Si concentrations in
 284 the liquid phases remained constant and their values (~ 5 mM) were above saturated levels of
 285 SiO_2 species (> 2 mM, Figure 3A). In Route II, the dissolution of silica led to the consumption
 286 of OH^- and a decrease in pH (Figures 2B1 and C1). After three days of reactions, the
 287 concentrations of soluble SiO_2 reached 13.65 to 66.64 mM (Figure 3B). $[\text{Ca}^{2+}]$ in the solution
 288 was very low, which is expected since CIP have very low solubilities at high pH.

289 **Figure 3.** The distribution of elements in solutions after (A) HCl and (B) NaOH pretreatments.
 290 With a higher concentration of HCl, more Ca^{2+} was leached from the samples. Conversely,
 291 NaOH pretreatments resulted in a higher release of Si into the solutions.

292
 293 **Carbonation of CS after pretreatments.** After the pretreatment, carbonation
 294 experiments were performed, and the carbonation degrees were quantified, as explained in the
 295 method section. Results of the TGA and ICP-OES analyses are included in the Supporting
 296 Information (Figure S9 and S10). As shown in Figures 2A2, B2, and C2, increasing $[\text{HCl}]$ (from
 297 0 to 100 mM) in Route I or $[\text{NaOH}]$ (from 0 to 500 mM) in Route II and III resulted in higher
 298 carbonation degrees, suggesting that enhancing dissolution through the pretreatments facilitates
 299 carbonation. In Route I, 100 mM HCl presented the highest carbonation degree of 28%.


300 Interestingly, the amount of converted Ca (0.57-0.73 mmol) far exceeded the Ca^{2+} (0.05-0.18
301 mmol) released into the solution by the HCl pretreatment. This suggested that most of
302 carbonated Ca^{2+} came directly from the remaining solids—these solid-bound Ca^{2+} ions
303 accounted for 75-91% of the total carbonation degree following the HCl pretreatment (Figure
304 2A3). However, the absolute amount of carbonated solid-bound Ca^{2+} remained roughly
305 constant at ~0.54 mmol for all HCl pretreated cases, regardless of [HCl] or dissolved $[\text{Ca}^{2+}]$.

306 Comparing to the HCl pretreatment, the NaOH pretreatments (Routes II and III) led to
307 higher carbonation degrees. In these two routes, nearly all carbonated Ca^{2+} came from the
308 residual solids (Figures 2B3 and C3). Between the two NaOH pretreatment routes, Route III,
309 in which the liquid phase was removed after the pretreatment, had a higher carbonation degree,
310 especially at higher NaOH concentrations (Figures 2B2 and C2). The highest carbonation
311 degree of 49%, among all cases in this study, was achieved with 500 mM NaOH through Route
312 III (Figure 2C2). This suggested that reducing solubilized SiO_2 can further increase carbonation
313 efficiencies under basic conditions.

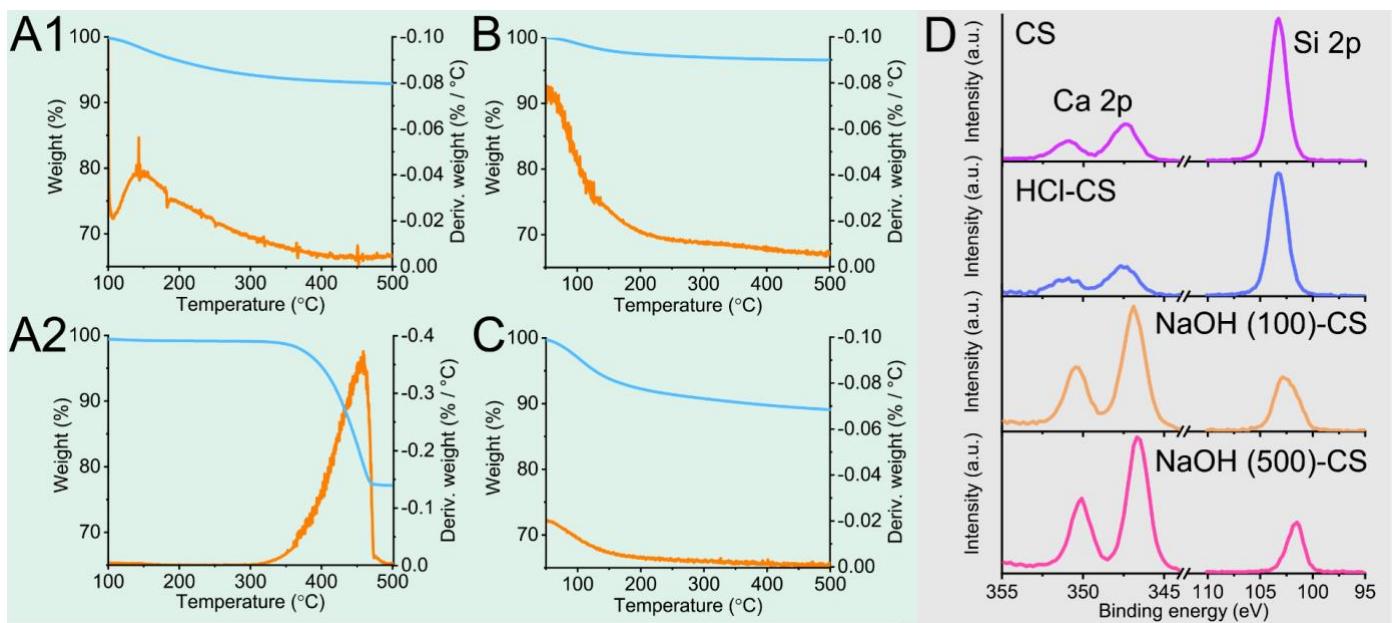
314

315 **Characterizations of carbonated CS samples.** The carbonated CS samples were
316 characterized to assess their chemistry, morphology, and mineralogy. Based on EDX analyses,
317 carbonated samples exhibited similar chemistry as uncarbonated CS except for enhanced
318 carbon content (Figure S4). The XRD spectra confirmed the presence of calcium carbonate
319 polymorphs including calcite and aragonite (Figures 4A, D, and G). Additionally, HRTEM
320 analyses identified crystalline particles (area 1) within an amorphous matrix (area 2) (Figures
321 4B, E, and H). The measured *d*-spacing (3.03 Å) of lattice planes of these crystallized phases
322 indicated that their most likely phase is calcite ($d_{(104)} = 3.0355$ Å, JCPDF 47-1743). In contrast
323 to the Route I sample (100 mM HCl pretreatment) less crystallized phases were detected (Figure
324 4B), more calcites were found at particle surfaces in samples from Routes II (100 mM NaOH,
325 Figure 4E) and III (100 mM NaOH, Figure 4H). The HRTEM confirmed that, in addition to
326 coarse, discrete calcium carbonate particles (Figure S11), the carbonation products can be

327 present in the form of nanocrystals enclosed in an amorphous matrix that most likely consists
328 of silica. According to PHREEQC simulations (Tables S3 and S4), silica was undersaturated
329 during carbonation in all three routes, which means the condensation of silica from the solution
330 should not occur simultaneously with the carbonate precipitation. The presence of carbonate
331 nanocrystals within the amorphous matrix suggested that the surface of pretreated CS did not
332 fully inhibit carbonation. This agrees with previous observations.⁴² However, such a layer is
333 expected to slow the diffusion of aqueous species if it is formed on the CS surface since the
334 carbonation kinetics is somewhat diffusion limited, as suggested by the reduced carbonation
335 degree under the stagnant condition comparing to the agitated condition (Figure S3A and S3B).
336 The other explanation is the direct conversion of CS/CIP to carbonates, in which CS/CIP was
337 decalcified into the silica matrix surrounding the carbonate nanocrystals.⁴³ It should be noted
338 that, even though the solution is undersaturated, the dissolution of the silica is kinetics-limited
339 and therefore significant portions of the silica matrix formed this way can still remained in the
340 solid residue.

341 **Figure 4.** Identifications of the precipitates in CS carbonated via (A-C) Route I (100 mM HCl),
342 (D-F) Route II (100 mM NaOH), and (G-I) Route III (100 mM NaOH). (A2, D2, and G2) show
343 XRD spectra confirming the presence of calcite (c, Figure S6A) and aragonite (a, Figure S6B)
344 within the carbonated CS. (A1, D1, and G1) Low magnification TEM and corresponding
345 HRTEM images (B, E, and H) of selected areas marked by arrows show the distributions of
346 calcite within the amorphous phase. The crystalline (marked by 1) and amorphous (marked by
347 2) phases are separated by orange lines. Corresponding FFT patterns collected from area 1 and
348 2 were gave in C, F, and I respectively.

349 **Characterizations of intermediate products from the pretreatments.** Results so far
350 have suggested that the carbonation degree followed the order of Route III > Route II > Route
351 I. Most notably, the increase in carbonation degree from the NaOH pretreatment (Routes II and
352 III) comparing to the HCl pretreatment (Route I) is significant. To understand the different
353 alterations of the CS samples through acid and base pretreatments, pretreated CS powders were
354 lyophilized and subsequently characterized using TGA and XPS. For both acid and base treated
355 samples, TGA only showed a small and simple weight loss (< 10%) up to 200 °C, which can
356 be attributed to water loss. No distinct dehydration behaviors associated with crystalline phases
357 (e.g., weight loss at 385 °C for $\text{Ca}(\text{OH})_2$)⁴⁴ were observed in the NaOH treated samples (Figures
358 5A1 and A2). We complemented these results with PHREEQC simulations (Tables S3 and S4).
359 Based on the solution chemistries from ICP-OES, our simulations indicated that only
360 amorphous SiO_2 is supersaturated at end of the 100 mM HCl-pretreatment, suggesting that SiO_2
361 precipitation is possible (Table S3). When it comes to the NaOH pretreatment, the solutions
362 were supersaturated with respect to various CIP products (Ca/Si 1.20~1.59).


We further performed XPS analyses to investigate the surface elemental compositions (depth range of 0-10 nm) of HCl/NaOH-treated CS samples. We used peak intensities at 348 and 103 eV, which correspond to Ca 2p^{2/3}, and Si 2p respectively, to evaluate whether surface is enriched with Ca or Si (Figure 5D). For raw CS, the intensity ratio of Ca 2p^{2/3} to Si 2p, $I(\text{Ca})/I(\text{Si})$, was ~0.24, while the ratios of HCl (100 mM)-treated and NaOH (100 mM)-treated CS were found to be ~0.2 (slightly Si-enriched) and ~2.1 (significantly Ca-enriched), respectively (Figure 5D). Higher NaOH concentrations led to further surface enrichment of Ca with $I(\text{Ca})/I(\text{Si})$ of ~2.6 observed at 500 mM. For the HCl-pretreatment, the enrichment of Si is reasonable since amorphous SiO₂ was supersaturated and the solution had high [Ca²⁺]. For the NaOH-pretreatments, the formation of Ca-rich surfaces should be due to the precipitations of CIP. It should be noted, however, compositions of the precipitated CIP may deviate from the equilibrium phases suggested by the PHREEQC simulations (Table S4). It is interesting that TGA data did not show substantial formation of hydrates in the NaOH pretreated samples

376 (Figures 5A-C). In particular, the 500 mM NaOH pretreatment resulted in lower amounts of
377 bound water than 100 mM NaOH, even though it exhibited higher Ca enrichment (i.e., more
378 CIP precipitation). This could be due to the formation of non-equilibrium phases or a shift to
379 high Ca/Si ratio hydration products. The nature of those intermediate products warrants further
380 investigation as they could play a critical role in aqueous mineral carbonation.

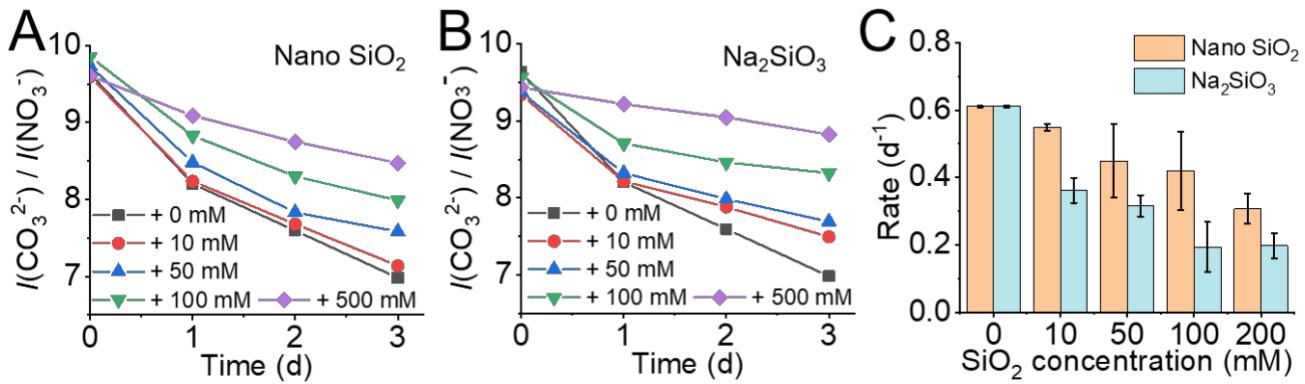
381 The surface modifications of CS through acid and base pretreatments had direct impact
382 on the carbonation degree. Most studies so far have focused on Si-rich layers formed under
383 acidic conditions. According to recent studies, such Si-rich layers formed at the particle
384 surfaces have limited effects on aqueous carbonation.^{42,45-47} Schott *et al.* (2012) found that, for
385 CS, the newly formed amorphous SiO₂ layer did not create a diffusion barrier for aqueous
386 species such carbonate ions.⁴⁸ Similar results were reported by Yujia *et al.* (2017 and 2018).^{42,45}
387 Our observations in Route I are consistent with those studies. Although increasing HCl
388 concentration led to more Ca leaching out and therefore more SiO₂ precipitation (e.g., the Si-
389 enriched surface observed by XPS), the pretreatment did not significantly affect the amounts
390 of Ca carbonated directly from the treated solids (solid-bound Ca), as discussed in the earlier
391 section. One explanation is that the Si-rich layer did not form directly on the mineral surface, a
392 phenomenon that has been observed during silicate glass dissolution.^{49,50}

393 In contrast, under basic conditions, CIP with a high Ca/Si ratio can form via coupled
394 dissolution and precipitation processes. The correlation between surface Ca enrichment and
395 carbonation degree observed in NaOH pretreated CS suggest that those CIP products serve as
396 precursors to carbonation. The decalcification of loosely packed CIP products due to
397 carbonation and subsequent condensation of the remaining silica network around the nucleated
398 calcium carbonate can explain the structures observed commonly in Route II and III samples
399 by HRTEM, i.e., formation of nanocrystals enclosed in the amorphous silica matrix. The
400 implication is that base pretreatment may be able to transform minerals like CS into
401 intermediate phases that can be readily carbonated. In another word, base pretreatment or
402 carbonation under basic conditions could offer an effective route for aqueous mineral

403 carbonation.

404 **Figure 5.** Characterizations of pretreated CS. TGA data are shown for (A1) HCl-pretreated CS,
405 (A2) $\text{Ca}(\text{OH})_2$, (B) 100 mM NaOH pretreated CS, and (C) 500 mM NaOH pretreated CS. Blue
406 and orange curves are weight-temperature and corresponding derivative weight curves,
407 respectively. (D1) shows XPS collected from pretreated CS samples.

408


409 **Effects of aqueous silica/silicate on CaCO_3 formation.** For carbonation under basic
410 conditions (Route II and Route III), the carbonation degree could be affected by the presence
411 of aqueous Si species. This can be seen when comparing Route II (the carbonating solution
412 contained dissolved Si) with Route III (the fresh carbonating solution did not contain dissolved
413 Si). To understand this phenomenon, we applied Raman spectroscopy to monitor the
414 carbonation kinetics in the presence of aqueous Si *in situ*. We prepared 1 M Na_2CO_3 solutions
415 containing 0-200 mM [Si] in two forms—colloidal SiO_2 or solubilized Na_2SiO_3 —at pH 12 and
416 subsequently used them to carbonate raw CS (Figures S12A and B). We used the peak at ~ 1066
417 cm^{-1} , corresponding to the characteristic symmetric C—O stretching mode, to monitor the
418 carbonate group in the solution ($\text{CO}_3^{2-\text{aq}}$; Figure S12C1).⁵¹ When CO_3^{2-} precipitate into CaCO_3 ,
419 the peak would shift to $\sim 1085 \text{ cm}^{-1}$ and this was utilized to track the carbonation kinetics (Figure
420 S12C2).⁵² Furthermore, we added 100 mM NaNO_3 in the solution as a reference ($\sim 1049 \text{ cm}^{-1}$
421 for NO_3^- , Figures S12D1, D2, and D3).⁵³ NO_3^- would remain in the solution during the

422 carbonation experiment, thereby allowing us to track carbonate precipitation through the
423 intensity ratio of $\text{CO}_3^{2-\text{aq}}$ to NO_3^- , $I(\text{CO}_3^{2-\text{aq}})/I(\text{NO}_3^-)$. As can be seen in Figures 6A and B,
424 $I(\text{CO}_3^{2-\text{aq}})/I(\text{NO}_3^-)$ decreased with time during the carbonation processes, indicating the
425 precipitation of aqueous carbonate groups. We compare precipitation kinetics by calculating
426 the CO_3^{2-} consumption rate, R , based on the decrease in $I(\text{CO}_3^{2-\text{aq}})/I(\text{NO}_3^-)$ over the experiment
427 period, $\Delta[I(\text{CO}_3^{2-})/I(\text{NO}_3^-)]$:

428
$$R = \frac{\Delta[I(\text{CO}_3^{2-})/I(\text{NO}_3^-)]}{t}$$

429 where $t=3$ days. Adding extra colloidal SiO_2 and Na_2SiO_3 solutions decelerated the carbonation
430 kinetics, and a higher Si concentration showed a stronger effect in suppressing the carbonation
431 kinetics (Figures 6A and B). Compared with colloidal SiO_2 , the inhibition effect of solubilized
432 SiO_3^{2-} was much greater (Figure 6C). This confirms that removing Si-rich solutions in Route
433 III should indeed help improve the carbonation degree.

434 The suppressing effect of aqueous SiO_2 on mineral carbonation can occur through
435 various mechanisms. Dissolved SiO_2 could suppress the dissolution of solid-bound Si species.⁵⁰
436 This constrains the kinetics through coupled dissolution and precipitation pathway, leading to
437 a lower degree of carbonation. Dissolved Si can also regulate and slow down CaCO_3 nucleation,
438 limiting the precipitation kinetics. This effect has been well recognized by previous studies.^{41,54}
439 According to classical nucleation theory, the inhibition of CaCO_3 nucleation in the presence of
440 soluble Si has a close relation with the Ca^{2+} activity. At pH 12, aqueous silica species and the
441 surfaces of SiO_2 colloids are negatively charged (Figure S2),⁵⁵ which leads to the sequestration
442 of dissolved Ca^{2+} ions and subsequently a decrease in the Ca^{2+} activity by forming $[\text{SiO}_2\text{-Ca}^{2+}]$
443 complexes (may involve multi-nuclear, kinetically-inert surface complexes).²⁶ Therefore, the
444 presence of aqueous SiO_2 has an inhibition effect on CaCO_3 nucleation. A similar inhibition
445 effect was also reported in previous studies with the addition of other anions, such as SO_4^{2-} .^{56,57}

446 **Figure 6.** *In situ* observation of CaCO₃ nucleation in the absence and presence of (A) silica
447 colloids (nano SiO₂) or (B) solubilized silicates (Na₂SiO₃) using a Raman microscope. (C)
448 summarizes the corresponding CO₃²⁻ consumption rates (*R*)

449

450 **ENVIRONMENTAL IMPLICATION.** Ex situ mineralization is an effective and
451 scalable pathway to remove CO₂, the main driver of global warming, from the atmosphere.⁵⁸ In
452 this study, we demonstrated three aqueous mineral carbonation routes using amorphous CS as
453 an example mineral feedstock. All three routes were based on carbonation in basic conditions
454 but involved pretreatments of CS under different solution conditions (Figure 1). As shown by
455 the results, acid and base pretreatments both promoted the dissolution of CS and enhanced the
456 carbonation degree (Figure 2). Under acidic conditions, the solution became easily
457 supersaturated with amorphous silica (~ 2 mM), and a Si-rich layer formed on the mineral
458 surface. In agreement with previous observations,⁴² the newly-forming silica layers did not
459 show strong effects on carbonation. Thus, the main effect of the HCl pretreatment was to leach
460 Ca into the solution, e.g., forming circumneutral CaCl₂ solution if no other types of dissolution
461 occur. Converting leached Ca into carbonate precipitate would consume roughly stoichiometric
462 amount of base or require a high CO₂ pressure to substantially shift equilibrium. As such,
463 traditional carbon mineralization approaches utilizing acid leaching require either a large pH
464 swing or high-pressure CO₂. The cost, energy consumption, and CO₂ footprint for generating
465 base and/or obtaining concentrated/pressurized CO₂ have been one of the main challenges for
466 carbon mineralization.

467 Alternatively, CS can be pretreated by bases, the effect of which has been relatively

468 less studied. Here, we demonstrated that, for amorphous CS, pretreatment with more
469 concentrated base (at least up to 500 mM) resulted in higher carbonation degree. Based on
470 material characterization, we attributed this effect to the formation of readily carbonatable CIP,
471 which is in agreement with the hypothesized mechanism for aqueous carbonation under basic
472 conditions.³¹ Utilizing this mechanism to achieve accelerated mineral carbonation provides a
473 critical benefit—because dissolution enhancement and carbonate precipitation are now both
474 performed under basic conditions, large pH swing can be avoided. Furthermore, through the
475 regeneration of Na₂CO₃ via Eq. 4, accelerated aqueous carbonation under basic conditions can
476 be used to directly couple mineralization with carbon capture, subsequently reducing the
477 overall energy demand and cost for carbon removal. The effectiveness and techno-economic
478 benefits of such an approach have been recently demonstrated for direct air capture and
479 sequestration of CO₂ using coal fly ashes (complex mixtures of Ca-rich aluminum silicates).³¹
480 Here, we showed that the key to this approach lies in the control of aqueous Si species including
481 solubilized silicate and colloidal silica, which may be manipulated utilizing the complex
482 behavior of silica dissolution and condensation in response to pH, ionic species, and ionic
483 strength. Identifying optimal reaction conditions or process designs to mitigate the inhibitive
484 effect of aqueous Si species on mineral dissolution and carbonate precipitation could enable
485 low-cost and highly efficient ex situ mineralization-based carbon removal methods.

486 So far, studies on aqueous carbonation involving strongly basic conditions have been
487 very limited. This study has used amorphous CS as an example system. The carbonation
488 behavior of more realistic mineral feedstocks requires further studies. Crystalline minerals and
489 the effect of other common oxide components such as magnesia and alumina in particular
490 warrant detailed investigations. Furthermore, understandings on critical issues like the nature
491 and formation mechanism/kinetics of CIP remain lacking. Overall, this study indicates that
492 fundamental studies on aqueous mineral carbonation in a much broader range of pH and
493 solution conditions are critically needed for the development of efficient aqueous mineral
494 carbonation methods.

495 **ASSOCIATED CONTENT**

496 **Supporting Information.** The Supporting Information is available free of charge on the ACS
497 Publications website.

498 Reaction constants of calcium silicate complexes (Table S1); equilibrium constants for calcium
499 silicate hydrates (Table S2); PHREEQC simulations (Table S3 and S4); characterization of
500 calcium silicate (Figure S1); characterizations of Si-species (Figure S2); mixing system (Figure
501 S3); energy dispersive X-ray spectra (Figure S4); thermogravimetric analyses (Figure S5); X-
502 ray diffractions of standards (Figure S6); NaNO₃ concentrations within carbonating solutions
503 (Figure S7); pH, [Ca], and [Si] within solutions during pretreatments (Figure S8); carbonation
504 degree analyses (Figures S9 and S10); SEM images of carbonated CS and solution grown
505 calcite crystals (Figure S11); characterizations of Si-species (Figure S12).

506 **AUTHOR INFORMATION**

507 Corresponding Authors

508 **Hang Zhai** – *Department of Civil and Environmental Engineering, University of Wisconsin-*
509 *Madison, Madison, Wisconsin 53706, United States*; orcid.org/0000-0002-8161-448X; Email:
510 hzhai25@wisc.edu

511 **Bu Wang** – *Department of Civil and Environmental Engineering, University of Wisconsin-*
512 *Madison, Madison, Wisconsin 53706, United States*; orcid.org/0000-0002-9294-0918; Email:
513 bu.wang@wisc.edu

514 Authors

515 **Qiyuan Chen** – *Department of Civil and Environmental Engineering, University of Wisconsin-*
516 *Madison, Madison, Wisconsin 53706, United States*

517 **Mehmet Yilmaz** – *Department of Civil and Environmental Engineering, University of*
518 *Wisconsin-Madison, Madison, Wisconsin 53706, United States*

519 **Notes**

520 The authors declare no competing financial interest.

521 **ACKNOWLEDGEMENTS**

522 We thank Jinhua Ji for his help with figure drawings. This material is based upon work
523 supported by the National Science Foundation under Grant No. 2132022. The information, data,
524 or work presented herein was funded in part by the Advanced Research Projects Agency-
525 Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR 0001636. The
526 authors gratefully acknowledge use of facilities and instrumentation at the UW-Madison
527 Wisconsin Centers for Nanoscale Technology (wcnt.wisc.edu) partially supported by the NSF
528 through the University of Wisconsin Materials Research Science and Engineering Center
529 (DMR-1720415).

530 **REFERENCE.**

531 (1) IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of
532 Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on
533 Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D.
534 McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G.
535 Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and
536 New York, NY, USA. doi: 10.1017/9781009157926.

537 (2) Rackley, S. Carbon Capture and Storage. *Carbon Capture and Storage* **2009**, 325
538 (September), 1–392. <https://doi.org/10.1016/C2009-0-19306-6>.

539 (3) Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P.
540 S.; Fuss, S.; Galindo, A.; Hackett, L. A.; Hallett, J. P.; Herzog, H. J.; Jackson, G.;
541 Kemper, J.; Krevor, S.; Maitland, G. C.; Matuszewski, M.; Metcalfe, I. S.; Petit, C.;
542 Puxty, G.; Reimer, J.; Reiner, D. M.; Rubin, E. S.; Scott, S. A.; Shah, N.; Smit, B.;
543 Trusler, J. P. M.; Webley, P.; Wilcox, J.; Mac Dowell, N. Carbon Capture and Storage
544 (CCS): The Way Forward. *Energy Environ. Sci.* **2018**, *11* (5), 1062–1176.
545 <https://doi.org/10.1039/c7ee02342a>.

546 (4) Ma, J.; Li, L.; Wang, H.; Du, Y.; Ma, J.; Zhang, X.; Wang, Z. Carbon Capture and
547 Storage: History and the Road Ahead. *Engineering* **2022**, *14*, 33–43.
548 <https://doi.org/10.1016/j.eng.2021.11.024>.

549 (5) Daval, D.; Martinez, I.; Guigner, J. M.; Hellmann, R.; Corvisier, J.; Findling, N.;
550 Dominici, C.; Goffé, B.; Guyot, F. Mechanism of Wollastonite Carbonation Deduced
551 from Micro- To Nanometer Length Scale Observations. *Am. Mineral.* **2009**, *94* (11–12),
552 1707–1726. <https://doi.org/10.2138/am.2009.3294>.

553 (6) Todd Schaeff, H.; McGrail, B. P.; Loring, J. L.; Bowden, M. E.; Arey, B. W.; Rosso, K.
554 M. Forsterite [Mg₂SiO₄]) Carbonation in Wet Supercritical CO₂: An in Situ High-

555 Pressure X-Ray Diffraction Study. *Environ. Sci. Technol.* **2013**, *47* (1), 174–181.
556 <https://doi.org/10.1021/es301126f>.

557 (7) Qafoku, O.; Kovarik, L.; Kukkadapu, R. K.; Ilton, E. S.; Arey, B. W.; Tucek, J.; Felmy, A. R. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO
558 2. *Chem. Geol.* **2012**, *332–333*, 124–135.
559 <https://doi.org/10.1016/j.chemgeo.2012.09.028>.

560 (8) Shao, H.; Ray, J. R.; Jun, Y. S. Dissolution and Precipitation of Clay Minerals under Geologic CO 2 Sequestration Conditions: CO2brinephlogopite Interactions. *Environ. Sci. Technol.* **2010**, *44* (15), 5999–6005. <https://doi.org/10.1021/es1010169>.

561 (9) Renforth, P. The Negative Emission Potential of Alkaline Materials. *Nat. Commun.* **2019**, *10* (1). <https://doi.org/10.1038/s41467-019-09475-5>.

562 (10) Pan, S. Y.; Chen, Y. H.; Fan, L. S.; Kim, H.; Gao, X.; Ling, T. C.; Chiang, P. C.; Pei, S. L.; Gu, G. CO2 Mineralization and Utilization by Alkaline Solid Wastes for Potential
563 Carbon Reduction. *Nat. Sustain.* **2020**, *3* (5), 399–405. <https://doi.org/10.1038/s41893-020-0486-9>.

564 (11) Molahid, V. L. M.; Kusin, F. M.; Syed Hasan, S. N. M. Mineralogical and Chemical
565 Characterization of Mining Waste and Utilization for Carbon Sequestration through
566 Mineral Carbonation. *Environ. Geochem. Health* **2023**, *45* (7), 4439–4460.
567 <https://doi.org/10.1007/s10653-023-01513-y>.

568 (12) Lu, X.; Carroll, K. J.; Turvey, C. C.; Dipple, G. M. Rate and Capacity of Cation Release
569 from Ultramafic Mine Tailings for Carbon Capture and Storage. *Appl. Geochemistry* **2022**, *140* (January), 105285. <https://doi.org/10.1016/j.apgeochem.2022.105285>.

570 (13) Bullock, L. A.; James, R. H.; Matter, J.; Renforth, P.; Teagle, D. A. H. Global Carbon
571 Dioxide Removal Potential of Waste Materials From Metal and Diamond Mining. *Front. Clim.* **2021**, *3* (July), 1–12. <https://doi.org/10.3389/fclim.2021.694175>.

572 (14) Yip, C. K.; Lukey, G. C.; Provis, J. L.; van Deventer, J. S. J. Effect of Calcium Silicate
573 Sources on Geopolymerisation. *Cem. Concr. Res.* **2008**, *38* (4), 554–564.
574 <https://doi.org/10.1016/j.cemconres.2007.11.001>.

575 (15) Angulo, S. C.; Guilge, M. S.; Quarcioni, V. A.; Cincotto, M. A.; Nobre, T. R. S.;
576 Pöllmann, H. The Role of Calcium Silicates and Quicklime on the Reactivity of
577 Rehydrated Cements. *Constr. Build. Mater.* **2022**, *340* (November 2020).
578 <https://doi.org/10.1016/j.conbuildmat.2022.127625>.

579 (16) Wei, G.; Dong, B.; Fang, G.; Wang, Y. Understanding Reactive Amorphous Phases of
580 Fly Ash through the Acidolysis. *Cem. Concr. Compos.* **2023**, *140* (April), 105102.
581 <https://doi.org/10.1016/j.cemconcomp.2023.105102>.

582 (17) Pan, S. Y.; Chang, E. E.; Chiang, P. C. CO2 Capture by Accelerated Carbonation of
583 Alkaline Wastes: A Review on Its Principles and Applications. *Aerosol Air Qual. Res.* **2012**, *12* (5), 770–791. <https://doi.org/10.4209/aaqr.2012.06.0149>.

584 (18) Hills, C. D.; Tripathi, N.; Carey, P. J. Mineralization Technology for Carbon Capture,
585 Utilization, and Storage. *Front. Energy Res.* **2020**, *8* (July), 1–14.
586 <https://doi.org/10.3389/fenrg.2020.00142>.

587 (19) Zevenhoven, R.; Eloneva, S.; Teir, S. Chemical Fixation of CO 2 in Carbonates : Routes
588 to Valuable Products and Long-Term Storage. *2006*, *115*, 73–79.
589 <https://doi.org/10.1016/j.cattod.2006.02.020>.

590 (20) Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M. M. A Review of

600 Mineral Carbonation Technologies to Sequester CO₂. *Chem. Soc. Rev.* **2014**, *43* (23),
601 8049–8080. <https://doi.org/10.1039/c4cs00035h>.

602 (21) Miller, Q. R. S.; Schaeff, H. T.; Kaszuba, J. P.; Gadikota, G.; McGrail, B. P.; Rosso, K.
603 M. Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends,
604 Mechanistic Insights, and Research Frontiers. *Environ. Sci. Technol. Lett.* **2019**, *6* (8),
605 431–442. <https://doi.org/10.1021/acs.estlett.9b00301>.

606 (22) Monasterio-Guillot, L.; Di Lorenzo, F.; Ruiz-Agudo, E.; Rodriguez-Navarro, C.
607 Reaction of Pseudowollastonite with Carbonate-Bearing Fluids: Implications for CO₂
608 Mineral Sequestration. *Chem. Geol.* **2019**, *524* (December 2018), 158–173.
609 <https://doi.org/10.1016/j.chemgeo.2019.06.011>.

610 (23) Romanov, V.; Soong, Y.; Carney, C.; Rush, G. E.; Nielsen, B.; O'Connor, W.
611 Mineralization of Carbon Dioxide: A Literature Review. *ChemBioEng Rev.* **2015**, *2* (4),
612 231–256. <https://doi.org/10.1002/cben.201500002>.

613 (24) Min, Y.; Jun, Y. S. Wollastonite Carbonation in Water-Bearing Supercritical CO₂:
614 Effects of Water Saturation Conditions, Temperature, and Pressure. *Chem. Geol.* **2018**,
615 *483* (January), 239–246. <https://doi.org/10.1016/j.chemgeo.2018.01.012>.

616 (25) Kashim, M. Z.; Tsegab, H.; Rahmani, O.; Abu Bakar, Z. A.; Aminpour, S. M. Reaction
617 Mechanism of Wollastonite in Situ Mineral Carbonation for CO₂ Sequestration: Effects
618 of Saline Conditions, Temperature, and Pressure. *ACS Omega* **2020**, *5* (45), 28942–
619 28954. <https://doi.org/10.1021/acsomega.0c02358>.

620 (26) Pokrovsky, O. S.; Shirokova, L. S.; Bénézeth, P.; Schott, J.; Golubev, S. V. Effect of
621 Organic Ligands and Heterotrophic Bacteria on Wollastonite Dissolution Kinetics. *Am.
622 J. Sci.* **2009**, *309* (8), 731–772. <https://doi.org/10.2475/08.2009.05>.

623 (27) Scott, A.; Oze, C.; Shah, V.; Yang, N.; Shanks, B.; Cheeseman, C.; Marshall, A.;
624 Watson, M. Transformation of Abundant Magnesium Silicate Minerals for Enhanced
625 CO₂ Sequestration. *Commun. Earth Environ.* **2021**, *2* (1), 1–6.
626 <https://doi.org/10.1038/s43247-021-00099-6>.

627 (28) Bustillos, S.; Prentice, D.; La Plante, E. C.; Wang, B.; Sant, G.; Simonetti, D. Process
628 Simulations Reveal the Carbon Dioxide Removal Potential of a Process That
629 Mineralizes Industrial Waste Streams via an Ion Exchange-Based Regenerable PH
630 Swing. *ACS Sustain. Chem. Eng.* **2022**, No. 2.
631 <https://doi.org/10.1021/acssuschemeng.2c00458>.

632 (29) Kodama, S.; Nishimoto, T.; Yamamoto, N.; Yogo, K.; Yamada, K. Development of a
633 New PH-Swing CO₂ Mineralization Process with a Recyclable Reaction Solution.
634 *Energy* **2008**, *33* (5), 776–784. <https://doi.org/10.1016/j.energy.2008.01.005>.

635 (30) Rim, G.; Wang, D.; Rayson, M.; Brent, G.; Park, A. H. A. Investigation on Abrasion
636 versus Fragmentation of the Si-Rich Passivation Layer for Enhanced Carbon
637 Mineralization via CO₂ Partial Pressure Swing. *Ind. Eng. Chem. Res.* **2020**, *59* (14),
638 6517–6531. <https://doi.org/10.1021/acs.iecr.9b07050>.

639 (31) Ragipani, R.; Sreenivasan, K.; Anex, R. P.; Zhai, H.; Wang, B. Direct Air Capture and
640 Sequestration of CO₂ by Accelerated Indirect Aqueous Mineral Carbonation under
641 Ambient Conditions. *ACS Sustain. Chem. Eng.* **2022**, *10* (24), 7852–7861.
642 <https://doi.org/10.1021/acssuschemeng.1c07867>.

643 (32) Baston, G. M. N.; Clacher, A. P.; Heath, T. G.; Hunter, F. M. I.; Smith, V.; Swanton, S.
644 W. Calcium Silicate Hydrate (C-S-H) Gel Dissolution and PH Buffering in a
645 Cementitious near Field. *Mineral. Mag.* **2012**, *76* (8), 3045–3053.

646 https://doi.org/10.1180/minmag.2012.076.8.20.

647 (33) Lakshtanov, L. Z.; Stipp, S. L. S. Interaction between Dissolved Silica and Calcium
648 Carbonate: 1. Spontaneous Precipitation of Calcium Carbonate in the Presence of
649 Dissolved Silica. *Geochim. Cosmochim. Acta* **2010**, *74* (9), 2655–2664.
650 https://doi.org/10.1016/j.gca.2010.02.009.

651 (34) Kellermeier, M.; Gebauer, D.; Melero-García, E.; Drechsler, M.; Talmon, Y.; Kienle,
652 L.; Cölfen, H.; García-Ruiz, J. M.; Kunz, W. Colloidal Stabilization of Calcium
653 Carbonate Prenucleation Clusters with Silica. *Adv. Funct. Mater.* **2012**, *22* (20), 4301–
654 4311. https://doi.org/10.1002/adfm.201200953.

655 (35) J.D.Rimstidt; H.L.Barnes. The Kinetics of Silica-Water Reactions. *Geochim.
656 Cosmochim. Acta* **1980**, *44*, 1683–1699.

657 (36) Gal, A.; Weiner, S.; Addadi, L. The Stabilizing Effect of Silicate on Biogenic and
658 Synthetic Amorphous Calcium Carbonate. *J. Am. Chem. Soc.* **2010**, *132* (38), 13208–
659 13211. https://doi.org/10.1021/ja106883c.

660 (37) Zhai, H.; Wang, L.; Qin, L.; Zhang, W.; Putnis, C. V.; Putnis, A. Direct Observation of
661 Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
662 *Environ. Sci. Technol.* **2018**, *52* (6), 3493–3502.
663 https://doi.org/10.1021/acs.est.7b06479.

664 (38) Zhai, H.; Bendikov, T.; Gal, A. Phase Separation of Oppositely Charged Polymers
665 Regulates Bioinspired Silicification. *Angew. Chemie Int. Ed.* **2022**.
666 https://doi.org/10.1002/ANIE.202115930.

667 (39) Zhai, H.; Wang, L.; Hövelmann, J.; Qin, L.; Zhang, W.; Putnis, C. V. Humic Acids
668 Limit the Precipitation of Cadmium and Arsenate at the Brushite-Fluid Interface.
669 *Environmental Science and Technology*. 2019, pp 194–202.
670 https://doi.org/10.1021/acs.est.8b05584.

671 (40) Ho, H. J.; Iizuka, A.; Shibata, E.; Tomita, H.; Takano, K.; Endo, T. Utilization of CO₂
672 in Direct Aqueous Carbonation of Concrete Fines Generated from Aggregate Recycling:
673 Influences of the Solid–Liquid Ratio and CO₂ Concentration. *J. Clean. Prod.* **2021**, *312*
674 (June), 127832. https://doi.org/10.1016/j.jclepro.2021.127832.

675 (41) De Yoreo, J. J. Principles of Crystal Nucleation and Growth. *Rev. Mineral.
676 Geochemistry* **2003**, *54* (1), 57–93. https://doi.org/10.2113/0540057.

677 (42) Min, Y.; Li, Q.; Voltolini, M.; Kneafsey, T.; Jun, Y. S. Wollastonite Carbonation in
678 Water-Bearing Supercritical CO₂: Effects of Particle Size. *Environ. Sci. Technol.* **2017**,
679 *51* (21), 13044–13053. https://doi.org/10.1021/acs.est.7b04475.

680 (43) Liu, P.; Zhang, M.; Mo, L.; Zhong, J.; Xu, M.; Deng, M. Probe into Carbonation
681 Mechanism of Steel Slag via FIB-TEM: The Roles of Various Mineral Phases. *Cem.
682 Concr. Res.* **2022**, *162* (September), 106991.
683 https://doi.org/10.1016/j.cemconres.2022.106991.

684 (44) Madrid, J. A.; Lanzón, M. Synthesis and Morphological Examination of High-Purity
685 Ca(OH)₂ Nanoparticles Suitable to Consolidate Porous Surfaces. *Appl. Surf. Sci.* **2017**,
686 *424*, 2–8. https://doi.org/10.1016/j.apsusc.2017.03.210.

687 (45) Min, Y.; Jun, Y. S. Wollastonite Carbonation in Water-Bearing Supercritical CO₂:
688 Effects of Water Saturation Conditions, Temperature, and Pressure. *Chem. Geol.* **2018**,
689 *483* (October 2017), 239–246. https://doi.org/10.1016/j.chemgeo.2018.01.012.

690 (46) Wang, T.; Yi, Z.; Guo, R.; Huang, H.; Garcia, S.; Maroto-Valer, M. M. Particle

691 Carbonation Kinetics Models and Activation Methods under Mild Environment: The
692 Case of Calcium Silicate. *Chem. Eng. J.* **2021**, *423* (February), 130157.
693 <https://doi.org/10.1016/j.cej.2021.130157>.

694 (47) Wang, T.; Huang, H.; Hu, X.; Fang, M.; Luo, Z.; Guo, R. Accelerated Mineral
695 Carbonation Curing of Cement Paste for CO₂ Sequestration and Enhanced Properties
696 of Blended Calcium Silicate. *Chem. Eng. J.* **2017**, *323*, 320–329.
697 <https://doi.org/10.1016/j.cej.2017.03.157>.

698 (48) Schott, J.; Pokrovsky, O. S.; Spalla, O.; Devreux, F.; Gloter, A.; Mielczarski, J. A.
699 Formation, Growth and Transformation of Leached Layers during Silicate Minerals
700 Dissolution: The Example of Wollastonite. *Geochim. Cosmochim. Acta* **2012**, *98*, 259–
701 281. <https://doi.org/10.1016/j.gca.2012.09.030>.

702 (49) Hellmann, R.; Cotte, S.; Cadel, E.; Malladi, S.; Karlsson, L. S.; Lozano-Perez, S.; Cabié,
703 M.; Seyeux, A. Nanometre-Scale Evidence for Interfacial Dissolution-Reprecipitation
704 Control of Silicate Glass Corrosion. *Nat. Mater.* **2015**, *14* (3), 307–311.
705 <https://doi.org/10.1038/nmat4172>.

706 (50) Geisler, T.; Dohmen, L.; Lenting, C.; Fritzsche, M. B. K. Real-Time in Situ
707 Observations of Reaction and Transport Phenomena during Silicate Glass Corrosion by
708 Fluid-Cell Raman Spectroscopy. *Nat. Mater.* **2019**, *18* (4), 342–348.
709 <https://doi.org/10.1038/s41563-019-0293-8>.

710 (51) Wu, J.; Zheng, H. Quantitative Measurement of the Concentration of Sodium Carbonate
711 in the System of Na₂CO₃-H₂O by Raman Spectroscopy. *Chem. Geol.* **2010**, *273* (3–4),
712 267–271. <https://doi.org/10.1016/j.chemgeo.2010.03.001>.

713 (52) Tlili, M. M.; Amor, M. Ben; Gabrielli, C.; Joiret, S.; Maurin, G.; Rousseau, P. Study of
714 Electrochemical Deposition of CaCO₃[Sub 3] by In Situ Raman Spectroscopy. *J. Electrochem. Soc.* **2003**, *150* (7), C485. <https://doi.org/10.1149/1.1579483>.

715 (53) Rusli, I. T.; Schrader, G. L.; Larson, M. A. Raman Spectroscopic Study of NaNO₃
716 Solution System - Solute Clustering in Supersaturated Solutions. *J. Cryst. Growth* **1989**,
717 97 (2), 345–351. [https://doi.org/10.1016/0022-0248\(89\)90216-9](https://doi.org/10.1016/0022-0248(89)90216-9).

718 (54) De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam,
719 S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.;
720 Michel, F. M.; Meldrum, F. C.; Cölfen, H.; Dove, P. M. Crystallization by Particle
721 Attachment in Synthetic, Biogenic, and Geologic Environments. *Science (80-)* **2015**,
722 349 (6247). <https://doi.org/10.1126/science.aaa6760>.

723 (55) Annenkov, V. V.; Danilovtseva, E. N.; Pal'shin, V. A.; Verkhozina, O. N.; Zelinskiy, S.
724 N.; Krishnan, U. M. Silicic Acid Condensation under the Influence of Water-Soluble
725 Polymers: From Biology to New Materials. *RSC Adv.* **2017**, *7* (34), 20995–21027.
726 <https://doi.org/10.1039/c7ra01310h>.

727 (56) Kontrec, J.; Kralj, D.; Brečević, L.; Falini, G.; Fermani, S.; Noethig-Laslo, V.;
728 Miroslavljević, K. Incorporation of Inorganic Anions in Calcite. *Eur. J. Inorg. Chem.*
729 **2004**, No. 23, 4579–4585. <https://doi.org/10.1002/ejic.200400268>.

730 (57) Ben Amor, Y.; Bousselmi, L.; Bernard, M. C.; Tribollet, B. Nucleation-Growth Process
731 of Calcium Carbonate Electrodeposition in Artificial Water-Influence of the Sulfate
732 Ions. *J. Cryst. Growth* **2011**, *320* (1), 69–77.
733 <https://doi.org/10.1016/j.jcrysgro.2011.02.005>.

734 (58) Florides, G. A.; Christodoulides, P. Global Warming and Carbon Dioxide through
735 Sciences. *Environ. Int.* **2009**, *35* (2), 390–401.

737 [https://doi.org/10.1016/j.envint.2008.07.007.](https://doi.org/10.1016/j.envint.2008.07.007)

738