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The fast committor machine: Interpretable prediction with kernels
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In the study of stochastic systems, the committor function describes the probability that a system starting from an initial
configuration x will reach a set B before a set A. This paper introduces an efficient and interpretable algorithm for
approximating the committor, called the “fast committor machine” (FCM). The FCM uses simulated trajectory data
to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional
subspaces that optimally describe the A to B transitions. The coefficients in the kernel model are determined using ran-
domized linear algebra, leading to a runtime that scales linearly in the number of data points. In numerical experiments
involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a
neural network with the same number of parameters. The FCM is also more interpretable than the neural net.

I. INTRODUCTION

Many physical systems exhibit metastability, which is the
tendency to occupy a region A of phase space for a compara-
tively long time before a quick transition to another region B.
Metastability is especially common in molecular dynamics,
where states A and B might correspond to the folded and un-
folded configurations of a protein. Metastability also arises in
continuum mechanics', biological systems?, fluids®, and the
Earth’s climate®.

Scientists can gain insight into metastable systems by nu-
merically simulating and then analyzing the transition paths
from A to B. The transition paths can be simulated by a vari-
ety of methods including transition path sampling®®, forward
flux sampling”®, the string method®!°, and adaptive multi-
level splitting!!. This work assumes that a data set of tra-
jectories has already been simulated, including one or more
transitions between A and B. A more detailed discussion of
sampling methods appears in the conclusion.

Scientists can study the transitions from A to B by evaluat-
ing the (forward) committor function>*12-18 which measures
the probability that the system starting at state « will reach B
before A, thus making a transition. In symbols, the committor
is given by

q (z) =Py (Tp < Ty),

where T4 and Tp are the first hitting times for A and B.

To numerically approximate the committor function, the
trajectory data needs to be combined with an appropriate nu-
merical method. Beyond the direct counting of A and B
transitions, there are now various machine learning methods
available, including neural networks! 214 diffusion maps15 s
Markov state models!®2!, and other tools!®. As shortcom-
ings, these methods can be slow to apply to large data sets
(diffusion maps) or difficult to interpret (neural nets).

This work describes a new method called the fast commit-
tor machine (FCM) that is both efficient and interpretable. The

Y Author to whom correspondence should be addressed: aristoff@
colostate.edu

FCM approximates the committor ¢* using a linear combina-
tion of kernel functions, as follows:

* The kernel function is defined in an interpretable way,
as the composition of an exponential kernel with an
adaptively chosen linear map. The linear map is gen-
erated by the recursive feature machine (RFM??). The
map emphasizes the low-dimensional subspaces that
make the greatest contribution to the gradient of the
committor and suppresses other subspaces.

The coefficients in the kernel approximation are opti-
mized using randomly pivoted Cholesky (RPC??). RPC
is a randomized linear algebra approach that processes
N data points using just ¢'(N) floating point operations
and O(N) storage.

The RFM and RPC were introduced in 2023-2024 and appear
to be new in the chemical physics literature. Adapting these
techniques to the committor problem requires going beyond
the original papers®>?? and introducing a new functional form
based on a variational formulation of the committor.

In summary, the FCM is a method for approximating the
committor that is based on an adaptively chosen linear trans-
formation of the phase space. In numerical experiments, the
method is more accurate and trains more quickly than a neural
network with the same number of parameters. As another ad-
vantage, the FCM is interpretable, revealing low-dimensional
linear subspaces that optimally describe the transition path-
ways from A to B.

A. Relationship to past work

Kernel methods are frequently used in chemical machine
learning®*2°, especially for calculating force fields?’°. Yet
the efficiency of the kernel methods depends on finding a suit-
able distance function between molecular configurations>!.

Two distances are currently being advocated in the chem-
ical physics literature. Diffusion maps3> provide a sophis-
ticated distance that adapts to the nonlinear manifold struc-
ture in the input data, and diffusion maps have recently been
used to approximate the committor!®. Alternatively, the vari-
ational approach to conformational dynamics® identifies a
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coordinate transformation that amplifies slowly decorrelating
dynamical modes, and VAC is often used to help visualize and
construct committor estimates>4—.

As a limitation, diffusion maps and VAC do not adapt to the
sets A and B used in the committor definition. Greater accu-
racy could be potentially obtained by modifying the distance
based on A and B. However, this modification requires a fully
adaptive learning strategy that redefines the kernel distance for
each committor problem.

The kernel machine learning literature has recently devel-
oped a flexible approach to distance construction. Many
authors apply a linear transformation to their data before
calculating a standard exponential or square exponential
kernel’”-38. The linear map can be adapted to the input data
and also to the specific approximation task®**°. A 2024 pa-
per?? introduced the recursive feature machine (RFM), which
constructs the linear feature map based on the estimated gra-
dients of the target function. To justify the RFM, the authors
compared the linear map with the first layer of a neural net,
and they showed empirical and theoretical similarities>>#!42,
In experiments, they applied the RFM to RGB images with as
many as 96 x 96 pixels, hence 96 x 96 x 3 = 27,648 dimen-
sions. They found that the RFM suppresses irrelevant direc-
tions and emphasizes important directions, which is especially
important in high dimensions. For further justification of the
RFM’s effectiveness, see Appendix B.

The RFM provides the template for a kernel-based approxi-
mation of the committor. Yet optimizing the coefficients in the
kernel approximation remains computationally demanding.
A naive optimization would require ¢’(N?) operations and
O(N?) storage, which is prohibitively expensive for N > 10°
data points. The high computational cost of kernel methods
has been described as a fundamental limitation in the past*3.
Nonetheless, modern strategies in randomized numerical lin-
ear algebra are leading to dramatic speed-ups?>#+46,

This work applies randomly pivoted Cholesky (RPC??) to
speed up the kernel optimization and extend the numerical ex-
periments to N = 10° data points. To achieve these speed-ups,
RPC generates a randomized rank-r approximation of the ker-
nel matrix, where r is a parameter chosen by the user. The
coefficients can be optimized in just &(Nr?) operations and
O(Nr) storage. For the experiments in Sec. IV, a constant
value of » = 1000 yields nearly converged committor results.

B. Outline for the paper

The rest of the paper is organized as follows. Section II
provides context for the committor approximation task, Sec-
tion III describes the new FCM method for calculating the
committor, Section IV presents numerical experiments, and
Section V offers concluding remarks. Technical derivations
are in Appendices A and B.

TABLE I: Definitions of symbols used in this work.

Symbol Definition
x, System states
A,B initial and target sets
Q complement of AUB
(1) underlying stochastic process
T lag time
q*(x) exact committor
(7] linear coefficients in kernel approximation
qe(x) estimated committor
kng(z,2') kernel function
M scaling matrix
K kernel matrix
I identity matrix
(Zn,Yn) time lagged pairs, (0) = x,, (T) = Yy,
N number of training samples
u equilibrium density
P sampling density
wp = p(zxy)/p(2,)| weight or likelihood of @),
14,1, 10 characteristic functions of A, B, Q
£ bandwidth parameter
Y regularization parameter

C. Assumptions and notation

The FCM can be applied to any time-reversible Markovian
system () € R? which has a discrete time step 7 and equi-
librium density p. See Table I for a list of symbols and defi-
nitions.

Il. CONTEXT

The FCM is motivated by a variational principle which
states that the committor ¢*(x) = P, (73 < T4) is the unique
minimizer of

Z(q) = Eylq(=(0)) — g(x(7))

among square-integrable functions satisfying ¢ = 0 on A and
g =1 on B. The expectation £, is an average over all tra-
jectories @(¢) that are started from the equilibrium density
(0) ~ u and run forward to an end point (7). The func-
tional (1) is known as the discrete-in-time Dirichlet form, and
it appears frequently in Markov chain analysis*’~°. Here, the
Dirichlet form serves as a cost function for committor estima-
tion in machine learning®*3>.

Frequently, the Dirichlet form needs to be approxi-
mated from data. Assume the data consists of N pairs

2

; ey

pled from a density p and the end point y,, is the result of run-
ning the model forward for 7 time units. Then, a data-driven
approximation for £ (g) is the weighted average

1 X 2
L(q) = N ;Wn|51(wn) _Q(yn)| ) (2

where the weights are the likelihood ratios between the sam-



pling density p and the target density u:

_ k(=)
n = .

p(xn)
The weighted average (2) is mathematically justified. If the

data pairs (€., Yn)n—1,2,.. are ergodic and u is absolutely con-
tinuous with respect to p:

3)

p(x) >0 whenever u(x) >0,

then the estimator (2) is unbiased

and the law of large numbers guarantees L(g) — .%(q) asN —
oo, Nonetheless, consistent with the law of large numbers, the
accuracy of the weighted average may depend on generating
a large quantity of data.

When the goal is variational minimization of L(g), there is
an option to use alternative weights

; “

where the multiplicative constant ¢ > 0 can be any posi-
tive number based on convenience. This makes the varia-
tional approach applicable even when the likelihood ratios
w(x,)/p(xy,) are only known up to a constant multiplicative
factor.

Il. NEW FCM METHOD FOR CALCULATING THE
COMMITTOR

This section describes the new method for calculating the
committor function ¢*, called the “fast committor machine”
(FCM).

A. Form of the committor approximation

Recall that (z,,, s )n=12... v is a sequence of simulated data
pairs. The FCM is based on a new data-driven committor ap-
proximation of the form

qgo(x) =0, TEA,

q (:l?) =1, T € B,

U s)

qo(x) =Y 6,[kns(xn, @) —kng(yn,x)], *€Q.
n=1

In this definition, Q = (AUB)¢ is the region of unknown com-
mittor values, 8 € RY is a vector of coefficients, and

exp(féHMl/z(mfa:')H), z, ' €Q
0, otherwise

knt(z, ') = {

is a kernel function with a bandwidth parameter € > 0 and a
positive definite scaling matrix M € R9*4,

The approximation gg is more parameter-efficient and em-
pirically accurate than other kernel-based parametrizations
considered in Appendix A. By construction, gg satisfies the
appropriate boundary conditions. Also, gg changes flexibly
in the interior region Q. Note that the kernel kpz(,y) is not
differentiable at = y, but this paper uses Vkps(x,x) = 0 as
the pseudogradient.

The rest of this section describes the approach for optimiz-
ing the scaling matrix M, the coefficient vector 6, and the
bandwidth € in the FCM.

B. Optimization of the scaling matrix M

The FCM incorporates a scaling matrix M € R?*¢ that
transforms the state variable € RY according to x +
M2z, The optimization of this scaling matrix is key to the
performance of the FCM.

Since the early 2000s, researchers have suggested a scaling
matrix chosen as the inverse covariance matrix of the input
data points®”-3¥. This choice of M transforms the data points
so they become isotropic. Isotropy can sometimes improve the
predictive accuracy, but there is a better approach to optimally
select M for kernel learning.

Radhakrishnan et al. recently introduced an approach for
tuning the scaling matrix called the “recursive feature ma-
chine” (RFM)??. The RFM is a generalized kernel method
that takes input/output pairs (x,,b, = f(2,))n=12,... .~ and it-
eratively learns both a regressor

N
fo(z) =Y 6ukns(z,x) ™)

n=1

and a scaling matrix M. The RFM alternates between two
steps:

 Update the coefficient vector @ so that fy minimizes the
least-squares loss

1 N
0 « argmin — ) —bal?
wgimin 3 lfos) b

using the current scaling matrix M.

» Update the scaling matrix

N
M = ;Vfg(wn)Vfg(a:n)T. (8)

using the current regressor fg.

The method iterates until finding an approximate fixed point
for fg and M, and typically 3 — 6 iterations are enough”?.

A complete analysis of the RFM lies beyond the scope
of the current work. However, as an intuitive explana-
tion, the linear map improves the “fit” between the target
function and the approximation. Specifically, the change-
of-basis z = M'/?x causes fy to have isotropic gradients
V.fo(z1),...,V.fo(zn). Thus, it becomes relatively easy to
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Algorithm 1: Fast committor machine

Data: Training points: (&, Yn, Wn)n=1,.. N>
Solution vector: b;
Kernel function: k;
Parameters: bandwidth &, regularization 7, approximation
rank r (multiple of 10);
Result: Scaling matrix M, committor estimate gg;
M I,
// Initialize M
forr=1,...,5do
M «— M /trcov({M'2x,,..., M 2xy});
// Rescale M
kimn < kng(®m, ) — kng(®m, Yn) — kng(Ym, )
+kng(Yms xn);
// Repopulate K with kernel kjs
kinn \/mkmn;
// Reweight K
S={s1,...,8} < RPCholesky(K,r);
// Apply Alg. 2
K (S,S) < K(S,S) + €macntr(K (S,5))I ;
// Regularize
7 < Solution to
[K(:,8)TK(:,S)+yNK(S,8)|n=K(:,5)"b;
// Optimize coefficients
q@(m) — Z{:] ni\/"Tsi[kM (msmm) - kM(ysmm)];
// Update gg
M «+ Zﬁ;l Vae (mn)VCIO(mn)T;
// Update M

end
return M, gg

approximate f using a linear combination of isotropic kernel
functions. See Appendix B for a proof of the isotropy property
of the RFM.

The main contributions of this work are the extension of
the RFM to the committor problem, together with an efficient
strategy for optimizing the coefficient vector 8. In homage to
the original RFM paper??, the new method is called the “fast
committor machine” (FCM).

Pseudocode for the FCM is provided in Algorithm 1. As a
helpful feature, the pseudocode normalizes the scaling matrix
M by the trace of the covariance matrix

trcov({M"?xy,... . M"*xy})

1 N
:m Z ||M1/2($m—wn)||2-

m,n=1

This makes it easier to select and interpret the bandwidth pa-
rameter € > 0. For the experiments in Sec. IV, setting € = 1
works well as a default.

C. Optimization of the coefficients 6,

To derive an efficient procedure for optimizing the coeffi-
cient vector @ € RV, the first step is to rewrite the optimiza-
tion as a standard least-squares problem. Define the rescaled

coefficients

0,=6,/\vV/w,, n=1,...N.

Also, introduce the kernel matrix K € RV*N and the solution
vector b € RV with entries given by

kmn = VWmvWn [kM (wmawn) —knr (wmvyn)
- kM(ymawn) JrkM(?Jma?Jn)] )

b, = \/VTn[lB<yn) - 13(33,1)]

Plugging the FCM into the variational principle (2), the opti-
mal vector @ € RY is the minimizer of the regularized least-
squares loss:

KO —b|>+78' K0. 9)

min |
OcRY

Notice that the loss function (9) includes a regularization term
y8' K8 with y > 0 that shrinks the norm of the coefficients to

help prevent overfitting. Specifically, (ET K@0) 1/2 is the repro-
ducing kernel Hilbert space (RKHS) norm associated with the
committor approximation gg. RKHS norms appear frequently
in the kernel literature due to their theoretical properties and
computational convenience; see Sec. 2.3 of the paper >! for an
introduction.

For large data sets with N > 10° data points, it is compu-
tationally convenient to use a randomized strategy for solving
(9). The randomly pivoted Cholesky algorithm (Algorithm 2)
selects a set of “landmark” indices

S={s1,82,-..,5}.

Then, the coefficient vector 8 € R is restricted to satisfy 0; =
0 foralli ¢ S and

0(S)=mn.
Last, the vector 7 € R” is optimized by solving

min | K, S)m bl + yn” K (S,S)m,

which is equivalent to the linear system
[K(:,$)"K(:,S)+YNK(S,S)|n=K(,5)b.

It takes just &'(Nr?) operations to form and solve this linear
system by a direct method. Moreover, there is no need to
generate the complete kernel matrix K € RV*V; it suffices
to generate the r-column submatrix K (:,S), and the storage
requirements are thus & (Nr).

D. Optimization of the hyperparameters

The last parameters to optimize are the bandwidth € > 0,
the regularization ¥ > 0, and the approximation rank r. To
select these parameters, a simple but effective approach is a
grid search. In the grid search, 20% of the data is set aside



Algorithm 2: RPCholesky?*

Data: Formula for looking up entries of K, approximation
rank r (multiple of 10);

Result: Index set S;

Initialize: F' < 0, S« 0, T < r/10, and d <+ diag(K);
// Initialize parameters

fori=0to9do

SiT4 15 8T ~ df Yj—1dj;
// Randomly sample indices

S Unique({sir41,...,5747}):
// Identify unique indices
S+ SUS’;

// Add new indices to landmark set
G+ K(,S)-FF(S,)*

// Evaluate new columns
G(S',)) « G(S,:) + emaentr(G(S',:) T ;

// Regularize
R < Cholesky(G(5',:));

// Upper triangular Cholesky factor
F(,iT+1:iT+|5|) +~ GR™;

// Update approximation
d + d — SquaredRowNorms(GR™');

// Update sampling probabilities

d < max{d,0};
// Ensure nonnegative probabilities
d(S') « 0;
// Prevent double sampling
end
return §

as validation data and the rest is training data. The FCM is
optimized using the training data. Then the loss function (2)
is evaluated using the validation data, and the best parameters
are the ones that minimize the loss.

Based on the grid search results for the numerical experi-
ments in Sec. IV, a good default bandwidth is € = 1. This
bandwidth is intuitively reasonable since it corresponds to
one standard deviation unit for the transformed data points
Mgy, M z,.

Based on the grid search results, the experiments use a regu-
larization parameter of ¥ = 107, but this value is not intuitive
and it remains unclear whether this would be a good default
for other problems. Any value of y smaller than ¥ = 10~ also
leads to a similar loss (less than 1% change). To be conserva-
tive, the highest value y = 10~° was selected.

The last parameter to optimize is the approximation rank r
that is used in RPCholesky. Raising r increases the accuracy
but also increases the linear algebra cost since the FCM op-
timization requires ¢’(Nr?) floating point operations. Typical
values of r range from 10°~10*, and the theoretical optimum
depends on the number of large eigenvalues in the full-data
kernel matrix?3. In the Sec. IV experiments, the rank is set to
r = 103, at which point the results are nearly converged (see
Fig. 3).

IV. NUMERICAL RESULTS

This section describes numerical results from applying the
fast committor machine (FCM) to two Markovian systems:
the overdamped Langevin system with a triple-well potential
(Sec. IVB) and a stochastic simulation of alanine dipeptide
(Sec. IV C). The code to run the experiments is available on
Github>?.

A. Neural network comparison

In each experiment, the FCM was compared against a fully
connected feedforward neural network. To make the compar-
isons fair, the models were designed with nearly the same
number of parameters. The FCM has r linear coefficients
and d(d + 1) /2 free parameters in the scaling matrix (d is the
phase space dimension). This adds up to 1055 parameters for
the triple-well experiment (r = 1000, d = 10) and 1465 pa-
rameters for the alanine dipeptide experiment (» = 1000, d =
30). The neural architecture includes ¢ hidden layers with p
neurons per layer and a tanh nonlinearity, together with an
outer layer using a sigmoid nonlinearity. The total number of
parameters in the neural network is thus

pd+1)+({=1plp+1)+(p+1)

and includes 1081 parameters for the triple-well experiment
(¢ =2,p=27,d =10) and 1481 parameters for the alanine
dipeptide experiment (¢ = 3, p = 20, d = 30). Larger neural
nets could potentially improve the accuracy>>, but they would
be more challenging and costly to train.

The neural nets were trained using the PyTorch package>*
and the AdamW optimizer>. Before the training, 20% of the
data was set aside for validation, and the remaining 80% was
training data. During each epoch, the optimizer evaluated all
the training data points and applied a sequence of stochas-
tic gradient updates using mini-batches of 500 points. After
each epoch, the validation data was used to estimate the loss
function (2). After 20 epochs with no improvement to the loss
function, the training was halted and the parameter set leading
to the lowest loss function was selected.

One crucial parameter when training neural nets is the
learning rate, which was set to 10~* for the triple-well ex-
periment and 5 x 10~ for the alanine dipeptide experiment.
When the learning rate is too small, the training is excessively
slow. When the learning rate is too large, the model exhibits
a significant decrease in accuracy or even fails to converge.
As a complication, changing the learning rate may require
changing the patience parameter (number of epochs with no
improvement before halting the training).

On the whole, training neural networks for committor ap-
proximation involves choosing an appropriate architecture
and an appropriate learning rate with minimal guidance about
the best choice of these parameters. In contrast, the parameter-
tuning for the FCM is more straightforward: the default band-
width € = 1 is sufficient for these experiments. Moreover,
adjusting the approximation rank r or regularization parame-
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FIG. 1: (a) The potential function V. (b) The reference
committor evaluated on the validation data points with states
A and B and the committor one-half surface indicated in red.

ter ¥ has direct and predictable impacts on training speed and
performance.

B. Triple-well potential energy

The first numerical experiment is based on the overdamped
Langevin dynamics

dz(t) = —VV(x(t))dt + /2B Tdw(t).  (10)

The potential function V (x) is constructed as
V(x) = Vo(efz,e]x) +2Zl.1:03(e,~T:c)2,

where V, is the three-well potential'! that is illustrated in Fig-
ure 1, and e; is the ith basis vector. The equilibrium density
for this dynamics is the Gibbs measure

e_ﬁv(m)
u(m) - fe,ﬁv(y)dyv

where 3 > 0 is the inverse-temperature parameter.

The goal of the experiment is to calculate the committor
function associated with the inverse temperature 8 = 2 and
the states

A={zecR": (efz+1)2+ (elx)? <0.3%},

B={xcR: (elx 1)+ (el x)* <0.3%}.
The definitions for A and B depend only on coordinates 1 and
2. Coordinates 3—10 are nuisance coordinates which have no
effect on the committor but increase difficulty of the commit-
tor approximation. Because the committor only depends on
coordinates 1 and 2, the finite elements method can solve the
two-dimensional PDE formulation of the committor problem
to generate a highly accurate reference; see Figure 1 for an
illustration.

The data set was generated by a two-stage process. In
the first stage, the initial states (x,)1<,<y Were sampled by
running the Langevin dynamics (10) at the inverse tempera-
ture B; = 1 and storing the positions after N = 10° uniformly

wall clock time
= =
=] (=}
3 2
.
.
N
°

mean SqllélI'Cd error
o
=
<
°

10~ o . o FCM
e " . x NN

10! 10° 10° 10* 10° 10°
sample size sample size
(@) (b)

FIG. 2: Comparison of neural net (NN) and FCM
performance for the triple-well system, with standard error
bars computed from 10 independent runs of the FCM. (a)
Mean squared error computed using the reference committor.
(b) Runtime in seconds.

spaced time intervals. The low f; value was needed to en-
sure adequate phase space coverage. Since the sampling dis-
tribution diverged from the target distribution, the initial states
were weighted according to w,, = e(Bs=B)V(=n)  This weight
definition is consistent with eq. (4), which states that the
weights are likelihood ratios multiplied by an arbitrary con-
stant factor.

In the second stage, the model was run forward for an ad-
ditional T = 1072 time units at the target inverse temperature
B =2, starting from x(0) = x, and ending at a new point
2(7) = y,. This process was repeated for each data point for
n=1,...,10°.

Figure 2 evaluate the performance of the FCM and the feed-
forward neural network across 10 data sizes logarithmically
spaced between N = 10> and N = 10°. The largest experi-
ments use the full data set with N = 10° data points, while
the other experiments use data pairs chosen uniformly at ran-
dom. For all sample sizes N < 10°, the FCM achieves higher
accuracy than the neural net and also trains more quickly.

The detailed runtime and accuracy comparisons between
the FCM and the neural net committor approximation may
depend on implementation choices (neural net structure, stop-
ping criteria, optimization method, etc.). Nonetheless, these
tests suggest that the FCM is a competitive method for the
triple-well experiment.

As an additional advantage, the FCM exhibits robustness
during training. Figure 3 shows that the FCM error decreases
and then stabilizes after a few iterations. In contrast, the neural
net error behaves unpredictably with epochs unless the learn-
ing rate is very small. To interpret the plot, recall that the FCM
updates the scaling matrix M once per iteration and runs for
5 iterations, while the neural net updates the neural net param-
eters many times per epoch and runs for a variable number of
epochs based on the stopping rule.

Last, Figure 4 displays the square root of the scaling matrix,
which shows the most significant subspaces for committor es-
timation. After convergence, the transformation M 1/2 maps
away the nuisance coordinates 3—10. The leading eigenvec-
tor of M'/2 nearly aligns with coordinate 1, signaling that
coordinate 1 is the most essential and coordinate 2 is the sec-
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FIG. 3: Training performance for single instances of the
triple-well experiment, with error computed using the
reference committor from Fig. 1. (a) The FCM with different
approximation ranks 7. (b) The neural net with different
learning rates [r.
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FIG. 4: Square root of scaling matrix for the triple-well
system when N = 10° and r = 1000. (a) After 1 iteration. (b)
After 5 iterations, corresponding to convergence.

ond most essential. While the two-dimensional figures make
it seem that the FCM is solving an easy problem in two-
dimensional space, the FCM is actually solving a harder prob-
lem in ten-dimensional space. Nonetheless, the FCM is re-
ducing the problem to two dimensions through the automatic
identification of the active subspaces.

C. Alanine dipeptide

The previous example may seem cherry-picked for the
FCM’s success since there is so clearly a reduction to two
dimensions. Yet many stochastic systems can be described
using low-dimensional subspaces, even high-dimensional
biomolecular systems?!. As a concrete example, alanine
dipeptide is a small molecule whose dynamics can be reduced
to a low-dimensional subspace.

The experiments in this section are drawn from a metady-
namics simulation of alanine dipeptide based on the tutorial>®.
Details of the simulation can be found on Github®’. After
excluding the hydrogen atoms, the alanine dipeptide data set
contains (x, Yy, z)-coordinates for the ten backbone atoms, lead-
ing to 30-dimensional data points. Figure 5 shows that ¢ and
y dihedral angles give a simple description of the free energy

referenipe poenubbor

05
o
L a

free energy

-20

-25

(b)

FIG. 5: (a) Free energy surface of alanine dipeptide in ¢ and
v coordinates, compared to reference committor half-surface
(red). (b) The reference committor in ¢ and y coordinates
with states A and B and the committor one-half surface
indicated in red.
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FIG. 6: Comparison of neural net (NN) and FCM
performance for alanine dipeptide, with standard error bars
computed from 10 independent simulations. (a) Mean
squared error, computed with respect to the reference. (b)
Runtime in seconds.

surface, containing two prominent metastable states.

The goal of the alanine dipeptide experiment is to estimate
the committor function for the two metastable states, labeled
as A and B. See Figure 5 for a picture of the precise A and
B definitions and a reference committor which is generated
by running the FCM with the largest data set (N = 10°) and
approximation rank r = 2000.

Figure 6 shows the mean squared error and runtimes of the
neural network and the FCM with r = 1000, as compared to
the reference committor. The results again show the FCM
is more accurate than the neural network and trains more
quickly. These results may depend on the details of the neural
network optimization, but they imply the FCM is a competi-
tive method for the alanine dipeptide experiment.

Last, Figure 7 shows the square root of the FCM scaling
matrix. The matrix has two eigenvalues that are much larger
than the rest, signaling that a two-dimensional linear subspace
is closely aligned with the gradients of the committor. Linear
regression confirms that the top 2 eigenvectors explain 95% of
the variance in the committor values, whereas the nonlinear ¢
and y coordinates only explain 62% of the variance. See the
right panel of Fig. 7 for a picture of the reference committor
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FIG. 7: Results of applying FCM to alanine dipeptide when
N = 10° and r = 1000. (a) M /2 after 5 iterations of
Algorithm 1, corresponding to convergence. (b) Reference
committor mapped onto top 2 eigenvectors of M with
reference committor one-half surface indicated in red.

mapped onto the top 2 eigenvectors.

V. CONCLUSION

The FCM is a method for efficiently solving the commit-
tor problem which shows promising results when applied to
triple-well and alanine dipeptide systems. As the main con-
ceptual feature, the method identifies a scaling matrix that em-
phasizes low-dimensional subspaces with maximal variation
in the committor values. The method also uses randomized
numerical linear algebra to achieve a training time faster than
a neural net with the same number of parameters.

The next research goal is testing the FCM on high-
dimensional stochastic systems arising in molecular dynamics
and other areas of science. In these systems, it may be chal-
lenging to generate an appropriate data set, since the states A
and B might be separated by large free energy barriers, which
make transition events rare and justify the use of enhanced
sampling. Even for the 10- and 30-dimensional experiments
in this paper, importance sampling and metadynamics were
needed to ensure a large density of sample points in the tran-
sition region where the committor is 0.1-0.9. These sampling
approaches were applied heuristically, and future progress
will require a more careful mathematical and empirical study.
To that end, a promising approach that was recently devel-
oped for committor approximation>® involves umbrella sam-
pling with a sequence of bins emphasizing different ranges
of committor values, including many bins near the committor
one-half surface. Building on this strategy, there is hope to
develop a fully adaptive FCM method that generates data and
a corresponding committor estimate using only the A and B
definitions.

Last, there remain challenging mathematical questions
about the FCM’s performance. For example, why does the
method take so few iterations to converge and what makes the
exponential kernel (6) preferable over other choices? Adddi-
tionally, there is a deep question at the core of the FCM about
why the linear rescaling is so successful, how to describe it
mathematically, and what nonlinear extensions would be pos-

sible.
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Appendix A: Justification for the kernel approximation

The FCM is based on two choices regarding the shape of the
kernel function and the coefficients used in the optimization.
This appendix justifies the choices that were made.

The exponential kernel (6) is used throughout the paper. In
the Sec. IV experiments, the exponential kernel outperforms
the popular square exponential kernel

knt (2,2') = exp(—e7*| M (z —2')|?).

Nonetheless, there may be an opportunity to further improve
the FCM by using an alternative kernel of the form

ki (2,2') = 9(e7' | Mz —2)])

for an optimized univariate function ¢ : R — R.

The most general data-driven approximation using the ex-
ponential kernel is a linear combination of kernel functions
centered on the input data points @, or the output data points
y,. The functional form can be written as

N N
Gea(®) =Y cakng(zn, @)+ Y dukng (yn, ),
n=1 n=1

where ¢ € RN and d € RY are variational parameters to be
optimized. Yet, this form can be simplified. Theorem A.1
shows the optimal coefficients must satisfy ¢ = —d, which
leads to a more specific and concise committor approximation

qo(x) = ; On [knt (. ) — kvt (yn, ).

The proof relies on direct linear algebra calculations.

Theorem A.1. Define the least-squares loss function

= S0 ol o

where the positive semidefinite kernel matrix

Kll K12
K= |:K21 K22 )



consists of four blocks with entries
Ky = v/ W/ W kg (T, ),
krlnzn = \/VTmmkM(wmayn)7
ki = N/ W/ W knt (Y, @)
kﬁfn = Mmkm(ym,yzl)o

Then, the loss function Ly(c,d) has a minimizer that satisfies
c+d=0.

Proof. The loss function is convex, so any minimizers can be
identified by setting the gradient equal to zero:

L] <] e -

The equation can be rearranged to yield

el [4] (3] e[ ) 7] [

Therefore, there is a minimizer which comes from choosing ¢
and d to satisfy the positive definite linear system

[ ol DLl

(All other minimizers come from adding a vector in the
nullspace of K). Last, multiply the system (A1) on the left
by [I I]toreveal c+d=0. O

Appendix B: The scaling matrix

In any learning task, it can be helpful to model a function
f:RY = R as the composition of an invertible linear map
A :R? - R? and a function g4 that is more amenable to
learning:

f(x) =ga(Ax), xecR%

One way to ensure the learnability of the function g4 is by
selecting the matrix A so that the gradients

Vga(z1),...,Vga(zn)
are isotropic, where
Z,':Awi, i:172,...,N

are the linearly transformed data points. The optimal transfor-
mation can be characterized as follows:

Proposition B.1. The following are equivalent:

(i) A is invertible, and the sample gradients
Vga(z1),...,Vga(zn) are isotropic, that is,

1 N
N Y [u'Vga(z) =1
i=1

for any unit vector u € RY.

(ii) The average gradient product

N
M = % Y V(@) V()
i=1

is invertible, and A = QM /2 for an orthogonal matrix
Q c R4 ><d'

(iii) M is invertible, and A transforms distances according
to

|A(z—a)| = |M"(x—a)|,
for each x,x' € R,

Proof. Either of the conditions (i)-(ii) implies the linear map
A is invertible. Therefore calculate

1 ¥ 1 ¥ _

=Y [u'Vea(z)P = Y [u" ATV ()

N,':1 Ni:l
—uwlATMA .

The above display is 1 for each unit vector u € R? if and only
if ATMA~" =1 and M'/2A~" is an orthogonal matrix.
Thus, (i) and (ii) are equivalent.

Clearly, (ii) implies (iii). Conversely, if | Az|| = || M/ ?z||
for each = € RY, it follows that

M=ATA.

Consequently, if A =UXVT is a singular value decomposi-
tion, M = VX2V is an eigenvalue decomposition and

A= QMI/Z, where Q = UV is orthogonal.  (B1)

This shows that (ii) and (iii) are equivalent. O]
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