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Abstract

Non-line-of-sight imaging (NLOS) is the process of es-

timating information about a scene that is hidden from the

direct line of sight of the camera. NLOS imaging typically

requires time-resolved detectors and a laser source for illu-

mination, which are both expensive and computationally in-

tensive to handle. In this paper, we propose an NLOS-based

localization and posture classification technique that uses

an off-the-shelf projector and camera system. We leverage

a message-passing neural network to learn a visible scene

geometry and predict the best position to be spotlighted by

the projector that can maximize the NLOS signal. The neu-

ral network is trained end-to-end and the network parame-

ters are optimized to maximize the NLOS performance. Un-

like prior deep-learning-based NLOS techniques that as-

sume planar relay walls, our system allows us to handle

line-of-sight scenes where scene geometries are more ar-

bitrary. Our method demonstrates state-of-the-art perfor-

mance in object localization and position classification us-

ing both synthetic and real scenes.

1. Introduction

Non-line-of-sight (NLOS) imaging refers to the tech-

nique of imaging hidden parts of a scene that are not within

the field of view of a camera. This involves interpreting

the illumination reflected/scattered from the NLOS object

onto visible surfaces. NLOS imaging has been employed

for the identification, tracking and 3D shape reconstruction

of hidden objects. NLOS imaging techniques are rapidly

developing [11] and currently have numerous applications,

such as search and rescue [43], endoscopy [26], and hidden

pedestrian detection for autonomous driving [2].

NLOS imaging was first demonstrated by Velten et
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Figure 1. Given the polygonal mesh of a target scene, our method

predicts which area of the scene to illuminate with a spotlight and

maximize light scatter information from a hidden person. Then,

we capture RGB images of the wall visible from the camera under

optimal illumination. Finally, our neural network predicts the 2D

position and posture of the hidden person.

al. [41] using an ultra-fast laser and a streak camera. Sub-

sequent research in transient imaging leveraged a pulsed

laser with high-resolution temporal detectors such as single-

photon avalanche diodes (SPADs) [4, 30, 31, 43]. Active

transient imaging pulses a fast laser into the scene and mea-

sures the time that the photon takes to arrive back at the

temporal detector. However, high temporal resolution with

SPADs requires precise calibration and long acquisition

times. Furthermore, the time efficiency of processing SPAD

data processing is insufficient for large scenes and high-

resolution images [25, 43]. Another alternative is to use

continuous wave Time-of-Flight(ToF) cameras with mod-

ulated light sources [15, 17, 27]. ToF cameras are cheaper

than streak cameras and SPADs and are popular in real-time

NLOS applications when high resolution is not needed [27].

Cameras are by far the cheapest detectors, albeit lacking
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information on light transport, such as ToF of light. There-

fore, researchers have also explored NLOS techniques using

conventional cameras and lasers [8, 16, 20, 23] and ambient

illumination [1,3,33±35,39]. Recently, the use of scene pri-

ors and deep learning has become popular to overcome the

ill-posedness of NLOS imaging problem [17, 29, 33].

In this work, we present an active data-driven NLOS

posture classification and tracking pipeline that works with

a standard RGB camera and single spotlight illumination.

Our approach does not require optical alignment or sys-

tem calibration. It combines a graph neural network with

a physics-based differentiable renderer to optimally deter-

mine a spotlight position to maximize NLOS performance.

The goal of illumination estimation is to learn the best illu-

mination direction that maximizes the NLOS radiance that

reaches the camera, since we have knowledge of the LOS

geometry. We leverage this to improve downstream NLOS

imaging tasks. A major focus of our method is to move

beyond small-scale imaging setups with line-of-sight(LOS)

walls/ visible surfaces that are mostly planar to work across

scenes that are practically present in the real world. Chan-

dran et al. [7] proposed an approach to handle LOS scenes

with occlusions. However, their imaging model assumed

diffuse reflectance for the LOS wall and handled scenes

with limited complexity and very small NLOS volumes

(30cm×30cm×30cm). We build a large dataset of realistic

looking synthetic scenes with complex geometry, textures,

occlusions, etc. for this purpose. We also captured highly

accurate real data with human NLOS subjects and validated

our method using this dataset. Our specific contributions

include the following:

• An end-to-end neural computational imaging method to

learn the best illumination for a LOS scene mesh to

maximize NLOS performance. Our pipeline consists

of a novel message-passing neural network for estimat-

ing spotlight position, a physics-based renderer, and a

neural network for NLOS localization/posture classifi-

cation.

• Owing to the use of differentiable rendering in our

pipeline, the proposed method works significantly well

for realistic-scale scenes with non-diffuse surfaces and

self-illuminating objects.

• We used synthetic and real data to demonstrate superior

performance compared to several baselines.

Our method achieves a highly accurate localization of

unknown human subjects. We surpass the best competing

methods by more than 45 cm in terms of root mean square

error. Compared to methods that use only a single-intensity

LOS wall image, our method based on optimizing the spot-

light has clear advantages, as shown by experimental results

and ablative studies. Check our project page for more de-

tails.

2. Related Work

Active illumination in NLOS: Active illumination meth-

ods employ controlled illumination sources (e.g., lasers and

projectors) and detectors to explore the hidden parts of

scenes. Kirmani et al. [18] proposed the first framework

for transient imaging to ªlook around the corner.º Vel-

ten et al. [41] introduced a backpropagation technique for

NLOS scene reconstruction, this was later used in gated

systems [22] and SPADs [4]. Furthermore, the non-impulse

illumination was also shown worthy for NLOS tasks [19].

Passive illumination in NLOS: Passive illumination

methods [1, 3, 21, 28, 36] employ ambient light for NLOS

imaging tasks. For instance, some considered the objects in

the scene as pinspecks or pinholes [33,34,39], while others

utilized occluders [3, 45], such as doorways [21], to recon-

struct the hidden scene. Moreover, Sharma et al. [36] lever-

aged raw signals from a LOS wall to perform NLOS tasks,

while Medin et al. [28] leveraged cast shadows of objects

on LOS diffuse walls and inferred biometric information of

humans in an NLOS region.

Deep learning for NLOS: For NLOS tasks, deep learn-

ing techniques have been used with both ToF and conven-

tional RGB data. Carmazzo et al. [6] introduced a neu-

ral network, which was trained with the data captured us-

ing a SPAD setup, to perform localization and identifica-

tion tasks. Chen et al. [9] proposed a deep-learning-based

method that uses scene priors. They trained a neural net-

work using a differentiable transient renderer to perform the

NLOS imaging tasks. Xu et al. [44] performed human pose

recognition for a transient NLOS dataset characterized by

the confocal NLOS model. Chen et al. [8] utilized a U-

net-like architecture to reconstruct the scene geometry from

steady-state NLOS data. Cao et al. [5] introduced the CNN-

Based NLOS Localization Under Changing Ambient Illu-

mination (NLOS-LUCAI). He et al. [13] introduced a deep

learning framework for simultaneous real-time imaging and

tracking of dynamic targets using an RGB camera.

The work closest to ours is by Chandran et al. [7]. They

proposed an adaptive lighting framework using physics-

based optimization, estimating where on a LOS wall the

projector should illuminate to maximize NLOS informa-

tion. They also proposed a deep learning-based approach

to predict the locations of NLOS objects from intensity im-

ages. They, however, worked with only approximately pla-

nar diffuse walls with small NLOS region dimensions. In

contrast, our work goes beyond this to handle walls with

complexities, occlusions, and varying materials.

Differentiable rendering for NLOS: The utilization of

differentiable rendering has been increasing in recent times,

especially for the purpose of analysis-by-synthesis (AbS),

also known as inverse rendering. Klein et al. [20] used AbS

to track NLOS objects, formulating the problem as a non-
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linear optimization based on data from light transport sim-

ulation and real measurements. Tsai et al. [40] employed

a SPAD setup to simultaneously acquire NLOST objects’

shape geometries and reflectance properties in the AbS

manner. We propose an end-to-end approach that utilizes

a differentiable path tracer to transmit information from the

image domain to the polygon mesh that represents the scene

domain.

3. Method

This section outlines our proposed method. Section 3.1

describes our problem statement. Then, we describe the

proposed processing pipeline consisting of three compo-

nents. Section 3.2 introduces the first component, the Il-

lumination Estimation Network (IEN), a graph neural net-

work that estimates the optimal lighting position to maxi-

mize the quantity of NLOS information. Section 3.3 dis-

cusses the second component, a differentiable rendering en-

gine that uses the illumination information given by the

first component. Section 3.4 describes the last component,

a neural network that involves estimating the position and

posture of the human subject from the RGB picture calcu-

lated by the second component.

3.1. Problem Statement

Our imaging system consists of a projector P as our il-

lumination source and a camera C as our detector. We use

the projector only to illuminate a single spot, as opposed

to projecting spatially varying illumination. The imaging

system is positioned without direct field of view over the

NLOS object as shown in Figure 2. We represent the visi-

ble surface as a polygonal mesh. The light from the projec-

tor P hits the visible surface at, triangle t = (v0, v1, v2),
then reaches the NLOS object O before returning to the

LOS surface at another triangle t′, and finally captured by

the camera C. The hidden NLOS object has a location

l = (x, y) and a posture associated with it. We restrict

our attention to light effects from three-bounce paths of the

form, P → t → O → t′ → C, which represents a path

connecting the source P and camera C interacts with the

NLOS surface only once, as shown in Fig. 2. This simpli-

fication is motivated by previous observations that photons

following higher-order paths are difficult to detect using ex-

isting sensors. The image of the LOS surface I is related to

the location of an NLOS object l = (x, y) by a function F ,

i.e.,

I = F (l, α, ϕ), (1)

where α refers to the position of the illumination on the

LOS surface and ϕ refers to the other parameters that affect

the captured image, such as the material of the LOS surface,

NLOS subject posture, and noise. The forward function F

models the light transport matrix of the setup. The goal of
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Figure 2. Problem Setup: The light source P and the camera C are

focused on the LOS surface. The human subject O moves around

in the NLOS region. Light from projector P hits a visible surface

at triangle t, travels to the NLOS subject O, bounces off the LOS

surface at another triangle t′, and then, comes back into the camera

C.

our study is to invert this function F and optimize α to more

accurately recover the object location l.

3.2. Illumination Estimation Network

The active light source used for the NLOS problem plays

an important role in improving the signal-to-noise ratio

(SNR) of the NLOS information, as demonstrated by Chan-

dran et al. [7]. The primary question that our study aims to

address is finding out where to shine the spotlight on a vis-

ible surface. To address this, we introduce an illumination

estimation network (IEN). The IEN takes a mesh of a scene

and outputs the nodes of the triangle that have to be illu-

minated, to maximize NLOS information. Here, the size of

the mesh and the relative camera position against the visible

surface can be specified arbitrarily by a unit distance that

does not necessarily need to correspond to physical units

(e.g., centimeters and millimeters).

The IEN is based on a message-passing neural network

(MPNN) of Gilmer et al. [12] to handle the LOS meshes

of arbitrary sizes. We represent the input LOS mesh (ac-

quired through 3D scanning in practice) as a triangle mesh

M = (V, F ), where V and F correspond to sets of vertices

and faces, respectively. A 3D mesh is transformed into a

graph G = (X,A) where X has dimension (|V |, 3) and

defines the spatial xyz-features for each node, and the adja-

cency matrix A with dimension (|V |, |V |) defines the con-

nected neighborhood of each node. The vertex attributes of

the graph are passed to a multilayer perceptron (MLP), i.e.,

the vertex-wise feed-forward network, to obtain the vertex-

level features. Then, the output from this encoder is passed

to the graph convolutional network of Verma et al. [42]. The

feature update in each graph convolution layer is given as

h
(l)
v

= b+

M
∑

m=1

1

|Nv|

∑

u∈Nv

α(l)
m
(v, u)W(l)

m
h
(l−1)
u

, (2)
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used in training, while the light position calibration, capture stage and recognition blocks are used in real data inference.
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Figure 4. An overview of our Illumination Estimation Network. The network consists of a graph convolutional network, it is preceded by

a position-wise feed-forward network and followed by a face-wise feed-forward network.

where b is a bias vector, α
(l)
m (v, u) is the attention weight

obtained by the m-th attention block, W
(l)
m is the linear

transformation matrix associated with a graph convolution

layer, Nv is the set of adjacent vertices of a target vertex

v (including v itself), and |Nv| is the set’s cardinal. The

attention weights α
(l)
m (v, u) are calculated as

α(l)
m
(v, u)=

exp
(

u
(l)
m · (h

(l−1)
u −h

(l−1)
v )+c

(l)
m

)

M
∑

m=1

exp
(

u
(l)
m
·(h(l−1)

u
−h

(l−1)
v

)+c(l)
m

)

, (3)

where u
(l)
m and c

(l)
m are learnable parameters, specific to

each layer l. The attention coefficients are normalized so

that they sum to 1, i.e.,
∑

M

m=1 α
(l)
m (i, j) = 1. The encoded

node-level features are then sequentially passed through a

stack of three feature-steered convolutional layers. Each of

these layers aggregates messages from two attention heads.

The two labels correspond to either light on or light off. Fi-

nally, the refined node-level features are passed the predic-

tion block built with an MLP, which outputs the probability

of how likely each triangle should be spotlighted.

3.3. Physics-Based Differentiable Rendering

We exploit a differentiable renderer in our proposed

pipeline. Our rendering engine is built upon ªrednerº [24],

a differentiable renderer based on edge sampling. With this

engine, we can obtain an RGB picture of the LOS surface

visible from the camera through physically-based rendering

in a differentiable manner. Since our pipeline is trained end-

to-end, the differentiable path tracer is essential to back-

propagate the image-domain features to the mesh domain.

In our case, the goal of the renderer is to compute the gradi-

ents of an illuminated LOS surface with respect to the posi-

tion of the light used in the illumination. This offers the core

of our contribution, identifying the best position at which a

spotlight should shine on the LOS surface.

3.4. NLOS Network

The goal here is to perform NLOS localization and pos-

ture classification, that is, we identify the posture performed

by the human and also obtain the 2D location of the person.

We assume that the position of the light is largely based on

the location of the human and not the posture performed

by the hidden human. Thus, to train our pipeline, we use

the mean square error (MSE) between the predicted loca-
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tion l′ and the NLOS ground truth location l. But, as shown

in Fig. 3, we also have an NLOS subnetwork that predicts

posture based on input RGB images, for which we use the

standard cross-entropy loss between the predicted posture

label and the ground-truth posture label. We use a ResNet-

18 [14] as our feature extractor, this is then fed to two sub-

networks. For both the tracking and posture classification

tasks, we use an MLP decoder, which consists of three fully

connected layers with a ReLU activation and is followed by

the last fully connected layer that outputs the (x, y) coordi-

nates. On the contrary, the last layer is activated with the

softmax function for posture classification.

3.5. Training and Inference

All of our training is done on synthetic data, and the in-

ference performance is evaluated with both synthetic and

real data. Refer to Sec. 4.1 for details of the simulated

data used for the training. During training time, the en-

tire pipeline including the IEN, differentiable renderer, and

NLOS network is trained from end to end. During inference

on real data, we used the trained weights of the IEN to esti-

mate where the spotlight should be placed. Refer to Sec. 4.2

for specific details of real data capture. The captured LOS

mesh is decimated and then passed into the IEN which gives

the estimate of the spotlight position. After that, we proceed

to capture an RGB image of the visible surface with the

given illumination. Lastly, the RGB image is passed to the

NLOS network to obtain localization or posture classifica-

tion results. During inference, our method takes about 7ms

per estimation on average to process the RGB input and out-

put the posture classification and tracking predictions. More

details are available in the supplemental material.

4. Dataset

4.1. Simulated Data

Our goal for training was to generate a dataset that is

close to real-world scenarios both in terms of realism (tex-

tures, compositions, objects, occlusions, etc.) and also in

terms of scale. We generated 30 LOS scenes for this pur-

pose. Most learning-based active or passive NLOS methods

make use of very small-scale NLOS setups and NLOS ob-

jects. For example, NLOS objects, such as a 3D-printed

bunny, dragon, etc., have been conventionally used in the

imaging community. They are not as realistic as the variety

of objects that can be found in real-world settings. Thus,

to enhance the realism of synthetic scenes, we collect pub-

licly available meshes and arrange them in the scenes using

SolidWorks.

Since our goal is posture classification and localiza-

tion of human subjects, we use human models to gener-

ate our data. We perform similar activities to the ones in

Sharma et al. [36]. This includes standing, sitting, crouch-

ing, hands at 90◦ with respect to the floor, and hands at

45◦ (to mimic waving). In addition to this, we also have

random gestures that are generated for classification as un-

recognized activity.Generating a great deal of scene data

is a lengthy process. To increase the number of synthetic

scenes, we have implemented a data augmentation step in

Blender. We have created a plugin for Blender to do this,

the specifics of which are in the supplemental material.

4.2. Real Data

We collected a real-world dataset consisting of 8 indoor

scenes with 5 human subjects of varying heights between

5.0±6.2 ft. This includes LOS surfaces in classrooms, con-

ference rooms, storage rooms, and bedrooms. Some sample

scenes are shown in the supplemental document. The sub-

ject was at a distance of approximately 2.0±8.0 ft from the

LOS surface. We used an InFocus IN3138HDa projector

to create a spotlight illumination and a Sony α6000 mirror-

less camera to capture the illuminated LOS scene. We also

considered the presence of ambient light while adjusting the

exposure parameters.

LOS mesh: We use the Polycam LIDAR capture feature

app on the iPhone 13 Pro to get a mesh of the visible surface.

The LIDAR sensor on the iPhone has a maximum range of

5.00 m. The captured LOS meshes originally consisted of

3000±10,000 vertices, depending on the complexity of the

wall. These meshes were decimated to consist of 500±1000

vertices to reduce computational complexity.

Ground truth acquisition: We used the OptiTrack motion

capture system to get high-quality localization as ground

truth values with 0.50 mm precision. The human subjects

wore a suit with IR markers for motion capturing. To in-

crease the diversity of data, we also captured several indoor

scenes without a motion-capture rig. This was performed

with a USB camera on the ceiling and an ArUco marker put

on the subject’s head. Given the marker size in the image

captured by a camera with calibrated intrinsic and extrinsic

parameters, we obtained the 2D position of the subject in an

NLOS region using off-the-shelf pose estimation software.

5. Experiments

In this section, we will cover the training specifics, the

metrics used to assess the performance of our approach, and

the competing methods we compared it to. We will then

present the results of our proposed method and provide a

more in-depth analysis of it. Here are several assumptions

that we made in our experiments. When we shine a light on

the spot proposed by the IEN, we manually focus the projec-

tor on that spot, although there could be some illumination

on adjacent triangles too. For all of our experiments, we

consider that there is only one human subject acting around

the NLOS region at a time.
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5.1. Training Details

The pipeline is implemented using PyTorch, where

the graph convolutional network is constructed using the

MessagePassing module provided by the PyG li-

brary [10]. We train the network using Adam optimizer with

a learning rate of 10−2 with a weight decay of 10−5. On a

computer with two NVIDIA GTX 1080 Ti graphics cards,

the training takes approximately two days. Note that the test

data set consisted of LOS surfaces that were not present in

the training data set.

5.2. Comparisons

Since our method works on RGB image inputs to the

NLOS network, it fundamentally distinguishes it from

methods based on SPADs. Given this difference in the input

data, a direct comparison with SPAD-based methods would

not provide meaningful insights. Instead, we compare our

method against the following state-of-the-art methods, cho-

sen specifically for their similarity in acquisition setup.

RGB Images: We directly used the RGB images without

active illumination (only ambient light) in the scene to train

the proposed NLOS localization/posture classification net-

works. The goal of this baseline is to reveal the importance

of the IEN of our method.

Adaptive Lighting: This setup is the one presented by

Chandran et al. [7], which proposes an adaptive lighting

method to determine which one or more spots of light

should be focused on the scene. This approach uses an

optimization technique rather than our learning-based ap-

proach to determine where to shine the light. We leverage

the code shared by the authors for our implementation. For

all the NLOS scenes in our training dataset, we used only

the LOS geometry and obtained the best illumination patch

to shine light on according to their method. Then we render

the scenes in the dataset using the given illumination and

train on their CNN architecture.

Flash Photography: This setup is the one presented by

Tanick et al. [38], they use a regression network and gen-

erative network for NLOS-based scene reconstruction. This

setup is similar to ours in terms of involving a flashlight and

a normal RGB camera. We re-implement the network de-

scribed in [38] and train it in our data set. Their regression

network performs both localization and classification, and

we adapt the architecture of the classification network so

that the last layer accounts for our 6 posture classes.

DL-NLOS: This setup is the one presented by He et

al. [13], which introduces deep learning for NLOS local-

ization solely on RGB images captured under ambient illu-

mination. Their localization consists of five convolutional

layers followed by three fully connected layers. We reim-

plement their proposed network architecture based on the

details in the paper. We update the last layers with softmax

Table 1. Result of posture classification against synthetic and real

scenes, where the numbers in this table show correct recognition

ratio in units of %.

Scene type NLOS Posture

RGB

Images

Adaptive

Lighting

Flash

Photo.

DL-

NLOS Ours

Synthetic

Standing 56.6 75.5 69.2 75.2 97.1

Sit 52.6 77.3 66.3 74.7 96.8

Crouch 52.1 74.3 66.1 73.2 96.2

Hands (90) 53.8 76.2 68.4 74.8 94.5

Hands (45) 54.2 75.8 67.9 74.3 94.3

Unknown 50.8 70.1 65.3 71.3 97.7

Real

Standing 50.9 72.9 63.5 72.6 94.1

Sit 48.1 72.1 61.2 71.5 88.8

Crouch 49.7 70.1 62.1 69.6 87.2

Hands (90) 47.2 70.6 61.2 71.1 86.2

Hands (45) 44.3 71.7 62.8 70.9 85.0

Unknown 44.9 65.2 59.9 66.4 82.9

to perform posture classification as well. We have made ad-

justments to the baselines to the best of our ability to match

and adopt to our problem statement.

5.3. Posture Classification Performance

The full results for both synthetic and real data are

shown in Table 1. Our posture classification network iden-

tified human posture with 96.1% accuracy for 10 unknown

LOS synthetic scenes. The average performance by RGB-

only training is 53.2%, flash photography method is 67.2%,

this was bettered by He et al. [13] with 73.9% and Chan-

dran et al. [7] by about 74.8%. For real scenes, our method

has a classification accuracy of 87.4%, and the closest best-

performing methods were [7,13] with 70.4% accuracy. Re-

fer to supplemental material for further analysis.

5.4. Localization Performance

We evaluate the accuracy in localization using the av-

erage distance (i.e., localization error) between the ground

truth positions in the moving trajectory and those predicted

by our method. For both synthetic and real data, Tab. 2

shows comparisons of our method with competing meth-

ods, where the average distances are denoted in units of

centimeters. The average localization error for synthetic

scenes for our method is 6.33 cm for subjects performing

known activities, while 9.86 cm for subjects performing un-

known activities that the network did not see during train-

ing. For real scenes, the errors for known and unknown

activities are 31.45 cm and 45.14 cm, respectively. Com-

pared to baseline methods, errors are 124.76 cm for RGB-

only training, 87.09 cm for the adaptive lighting method [7],

100.83 cm for flash photography [38], and 85.90 cm for DL-

NLOS [13]. According to these results, the performance

improvement over the network trained only on RGB im-

ages validates the importance of the IEN. Moreover, our
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Figure 5. Results of real-world tracking. (a) shows a bird’s eye

view of the human walking in the NLOS space, (b) shows photos

of the LOS wall, and (c) shows the trajectory plot of the ground

truth and our prediction for test video sequences. Refer to our

supplementary video for more information.
Table 2. Results of localization against synthetic and real scenes,

where the average distance between ground truth and predicted

positions are shown in units of centimeters.

Scene type NLOS Posture

RGB

Images

Adaptive

Lighting

Flash

Photo.

DL-

NLOS Ours

Synthetic

Standing 19.89 10.34 13.02 9.56 5.43

Sit 18.16 12.84 14.78 11.41 7.56

Crouch 20.02 12.91 17.45 13.16 7.81

Hands (90) 20.31 14.72 19.87 12.02 5.12

Hands (45) 21.90 15.06 19.73 12.89 5.71

Unknown 29.14 17.89 20.72 15.21 9.86

Real

Standing 107.12 82.80 92.98 82.11 28.43

Sit 130.89 84.86 97.41 85.31 30.71

Crouch 125.67 86.77 100.43 86.01 32.51

Hands (90) 110.73 88.12 102.50 85.76 28.67

Hands (45) 121.56 88.64 102.98 86.52 33.89

Unknown 156.90 90.53 110.32 90.62 45.14

method outperforms all competing methods and, further-

more, its accuracy surpasses that of the best of the compet-

ing methods by more than 50.00 cm for both known and un-

known activities. Fig. 5 shows tracking trajectories obtained

by our method for real data. We have included real video

test results in our supplemental video. It should be noted

that the trajectories of our method in the figure have been

smoothed by the Savitzky±Golay filter [32] to improve the

estimation of the trajectory by refining the noisy raw output

from the network. This smoothing operation is a practical

step, which can be seamlessly integrated into our system,

making it a justified part of the evaluation process.

5.5. Importance of Spotlight Position Optimization

We assess the contribution of the IEN to the NLOS task

by conducting an additional experiment. We compare our

Table 3. Results of ablative studies to validate the effectiveness

of the illumination predictions. We group the results based on the

average trajectory error and average posture classification across

all the test data. The localization metrics are presented in units of

centimeters, and the correct recognition ratios are in units of %.

The results shown here are for simulated data.

Task

IEN

+CNN

AL

+ResNet

Random

+ResNet

Center

+ResNet Ours

Localization (↓)

(Average Error [cm])
10.71 14.23 19.16 22.63 8.10

Posture Classification (↑)

(Accuracy [%])
91.28 79.84 67.36 64.09 96.13

(a) Sample Scene (b) Our Method (c) Adaptive Lighting (d) Center of LOS (e) Random Illumination

Figure 6. (a) shows the sample scene with ambient lighting

present, (b) is the scene with the LOS surface illuminated by our

IEN prediction direction, (c) is the scene with spotlight direction

selected by [7], (d) is illumination in the center of the scene, (e) is

a randomly selected spotlight direction that is chosen.

method with the following four alternatives.

IEN+CNN: We construct a model that comprises the IEN

followed by the CNN for localization and classification pro-

posed by Chandran et al [7].

AL+ResNet: We use the spotlight position selected by

adaptive lighting [7] and use that as input to the NLOS

network consisting of ResNet+MLP used in our proposed

method. It is assumed that the walls of the line-of-sight

(LOS) are diffuse, as is the case with the adaptive lighting

technique.

Random+ResNet: We also compare with alternatives in

which the location of the spotlight is selected randomly

somewhere on the LOS surface. For NLOS tasks, the same

network consisting of our ResNet+MLP is utilized.

Center+ResNet: As with the above, we also compare an

alternative in which the spotlight always illuminates the

center of the field of view. Again, the same network con-

sisting of ResNet + MLP as ours is utilized for NLOS tasks.

The visual comparison of our method and the following

alternatives is shown in Fig. 6. Table 3 shows the compar-

ison between the proposed method and these alternatives.

This table demonstrates that our approach is superior to the

other options, indicating that our method was successful in

identifying the most suitable area to illuminate, resulting in

maxmimizing NLOS signal to the detector. Obviously, the

proposed method outperforms Random+ResNet and Cen-

ter+ResNet which are based on simple heuristics.

Our method also outperforms AL+ResNet, the adaptive
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Figure 7. Plot shows the effect of decimation on posture classifica-

tion accuracy and average trajectory error. The decimation factor

varies between 0.1 to 1, where 1 refers to the highest resolution of

capture and 0.1 refers to decimating the total number of vertices in

the LOS mesh is reduced by a factor of 10.

lighting method [7] extended by our NLOS network. The

lower performance of AL + ResNet suggests that the dif-

fuse assumption by [7] does not work well when the scene

includes specular surfaces (e.g., mirrors, glasses), metal-

lic surfaces, translucent materials (e.g., wax, plastics), and

strongly textured surfaces. The adaptive lighting method is

indeed prone to shining a light on a position on the diffuse

surface. For example, the bottom row of Fig. 6 shows that

the adaptive lighting [7] overlooks the refrigerator on the

right, which may reflect more light. In contrast, our method

appropriately shines the light on the refrigerator, which re-

flects the light from the NLOS object the most. Clearly,

when IEN+CNN and our method are compared, it is ev-

ident that the ResNet backbone does improve the NLOS

performance of our method. We did not conduct any ex-

periments to evaluate the effects of different network back-

bones, feature extractors, etc. on the NLOS task, as our aim

is to demonstrate the significance of spotlight optimization.

Also, it must be noted that, the size of spotlight is directly

related to the area of the decimated patch that has to be illu-

minated.

5.6. Effect of Mesh Decimation

To understand how the mesh resolution of the LOS area

affects the NLOS performance, we alter the resolution of

the scene mesh at different ratios by decimating it. The LOS

meshes we captured have a diverse number of vertices, as

described in Sec. 4.2. To ensure a fair evaluation across the

test set, we select LOS meshes with approximately the same

number of vertices (i.e., 9000±11000 vertices), and reduce

them up to about one-tenth of their original size (approx-

imately 1000 vertices). The meshes with different resolu-

tions are then input to the pipeline. The experimental results

in Fig. 7 show that the performance of the NLOS task does

not increase significantly only by using a high-resolution

mesh. It is attributed to the increasing difficulty of ob-

taining an adequate feature from a higher-resolution mesh.

This observation suggests that the original high-resolution

meshes contain much more geometric details than what is

required to interpret the scene geometry. Therefore, we may

decrease the mesh resolution to approximately 50% of the

original, where the geometric details are visually retained.

This also indicates the robustness of our technique to the

accuracy of the LOS scan.

6. Conclusion

In this work, we demonstrate the importance of choos-

ing the optimal position to be illuminated in an active LOS

imaging system using a projector and standard RGB cam-

era. We verified our method with synthetic and real data

from real-world scenes with a human in the NLOS region.

We showed the proposed method’s state-of-the-art tracking

and posture classification performance in challenging sce-

narios where the LOS region may be partly occluded and

consist of components with non-diffuse materials. The pro-

posed method was successful in posture classification for

unknown real-world scenes, achieving an accuracy of ap-

proximately 87%. It also achieved a highly accurate lo-

calization of unknown human subjects moving around the

NLOS region, with a root mean square error of approxi-

mately 45 cm.The localization error of our method is ap-

proximately one-half of those obtained by the best of the

state-of-the-art methods that we compared. These results

highlight the importance of optimizing the position of the

spotlight, the primary focus of this study.

For future work, we plan to explore the use of spatially

varying illumination that could be more optimal than a sin-

gle spotlight. The NLOS region size that can be handled

by our method is currently limited by the low SNR sig-

nals from the NLOS objects. Hence, our method was tested

only on a single human subject in the NLOS region. To

overcome the limitation of subject type and number of sub-

jects, we would like to investigate incorporating computa-

tional imaging hardware into the end-to-end optimization

loop [27, 37].
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