L)

Check for
updates

DTRL: Decision Tree-based Multi-Objective Reinforcement
Learning for Runtime Task Scheduling in Domain-Specific
System-on-Chips

TOYGUN BASAKLAR, A. ALPER GOKSQY, and ANISH KRISHNAKUMAR, University of
Wisconsin - Madison, USA

SUAT GUMUSSOY, Siemens Corporate Technology, USA

UMIT Y. OGRAS, University of Wisconsin - Madison, USA

Domain-specific systems-on-chip (DSSoCs) combine general-purpose processors and specialized hardware
accelerators to improve performance and energy efficiency for a specific domain. The optimal allocation of
tasks to processing elements (PEs) with minimal runtime overheads is crucial to achieving this potential. How-
ever, this problem remains challenging as prior approaches suffer from non-optimal scheduling decisions or
significant runtime overheads. Moreover, existing techniques focus on a single optimization objective, such
as maximizing performance. This work proposes DTRL, a decision-tree-based multi-objective reinforcement
learning technique for runtime task scheduling in DSSoCs. DTRL trains a single global differentiable decision
tree (DDT) policy that covers the entire objective space quantified by a preference vector. Our extensive ex-
perimental evaluations using our novel reinforcement learning environment demonstrate that DTRL captures
the trade-off between execution time and power consumption, thereby generating a Pareto set of solutions
using a single policy. Furthermore, comparison with state-of-the-art heuristic—, optimization—, and machine
learning-based schedulers shows that DTRL achieves up to 9x higher performance and up to 3.08x reduction
in energy consumption. The trained DDT policy achieves 120 ns inference latency on Xilinx Zynq ZCU102
FPGA at 1.2 GHz, resulting in negligible runtime overheads. Evaluation on the same hardware shows that
DTRL achieves up to 16% higher performance than a state-of-the-art heuristic scheduler.

CCS Concepts: « Computer systems organization — System on a chip; - Hardware — On-chip re-
source management;

This work was supported in part by NSF CAREER award CNS-2114499, and DARPA (FA8650-18-2-7860). This material is
based on research sponsored by Air Force Research Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7860. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes, notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2023.

Authors’ addresses: T. Basaklar, A. A. Goksoy, A. Krishnakumar, and U. Y. Ogras, University of Wisconsin - Madison,
1415 Engineering Dr, Madison, Wisconsin, USA, 53706; emails: {basaklar, agoksoy, anish.n.krishnakumar, uogras}@wisc.
edu; S. Gumussoy, Siemens Corporate Technology, 755 College Rd E, Princeton, NJ, USA, 08540; email: suat.gumussoy@
siemens.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/09-ART113 $15.00

https://doi.org/10.1145/3609108

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

https://orcid.org/0000-0002-9312-236X
https://orcid.org/0000-0001-8679-9842
https://orcid.org/0000-0003-2419-1860
https://orcid.org/0000-0003-2064-3196
https://orcid.org/0000-0002-5045-5535
mailto:permissions@acm.org
https://doi.org/10.1145/3609108
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609108&domain=pdf&date_stamp=2023-09-09

113:2 T. Basaklar et al.

Additional Key Words and Phrases: Domain-specific system-on-chip, task scheduling, reinforcement learning,
decision trees, resource management, multi-objective optimization

ACM Reference format:

Toygun Basaklar, A. Alper Goksoy, Anish Krishnakumar, Suat Gumussoy, and Umit Y. Ogras. 2023. DTRL: De-
cision Tree-based Multi-Objective Reinforcement Learning for Runtime Task Scheduling in Domain-Specific
System-on-Chips. ACM Trans. Embedd. Comput. Syst. 22, 5s, Article 113 (September 2023), 22 pages.
https://doi.org/10.1145/3609108

1 INTRODUCTION

The growing demand for high-performance and energy-efficient processing in various domains,
including machine learning, image and video processing, and wireless communication systems,
has led to the rise of domain-specific system-on-chips (DSSoCs) [22, 25]. DSSoCs combine spe-
cialized hardware accelerators and general-purpose cores to enhance the performance and energy
efficiency of a target domain while providing programming flexibility [3, 35, 38]. For instance,
DSSoCs designed for image and video processing are often equipped with specialized hardware
accelerators like digital signal processors (DSPs) and image signal processors (ISPs), while those
designed for wireless communication systems incorporate processing elements (PEs) such as fixed-
function accelerators for fast Fourier transform (FFT), encoding, and Viterbi decoding operations.

DSSoCs comprise several heterogeneous PEs, enabling parallel execution of multiple streaming
applications [15, 30]. Scheduling a large number of tasks from concurrent applications is a mon-
umental challenge due to the NP-complete nature of the problem and a large number of design
and runtime parameters [14, 54]. While static schedulers rely solely on design-time information,
dynamic scheduling approaches leverage runtime data to make more informed decisions [52, 55].
Conventional optimization-based approaches can achieve near-optimality but are highly prohib-
itive due to their complexity and runtime overheads [62]. Heuristics are frequently employed to
tackle the complexity challenge, but they are typically designed for specific use cases, lack gener-
alizability, and often fall short of the optimal solution [52]. Certain machine learning approaches
for cluster scheduling [37] and task scheduling [30] are also explored in the literature. However,
they suffer from limitations that include sub-optimality, high runtime overheads, and substantial
developmental/training efforts. Furthermore, they focus on a single optimization objective, e.g.,
maximizing performance or minimizing power consumption, but not simultaneously. In contrast,
DSSoCs require schedulers that make near-optimal decisions considering competing objectives
within nanoseconds to be on par with the task execution times in specialized PEs.

Reinforcement learning (RL) has shown promise in addressing several challenging problems,
including intelligent chatbots [41], healthcare [61], autonomous driving [42], and scheduling [26,
36, 37]. RL trains a policy that maximizes the reward function by interacting with an environment.
During the training, RL algorithms learn optimal decisions using the current state of the system
and the desired performance objectives. Real-world problems often include multiple objectives
that may conflict with each other. In contrast to single-objective environments, the performance of
such problems is evaluated using multiple objectives. Therefore, multiple Pareto-optimal solutions
may exist depending on the preference between objectives [40]. Multi-objective reinforcement
learning (MORL) approaches [24] address this challenge by maximizing a vector of rewards instead
of a scalar reward. Existing MORL methods transform the multidimensional objective space into
a single dimension using per-objective static weights and then employ standard RL algorithms
to obtain a policy optimized for those weights [34]. However, a distinct policy for each objective
is impractical due to storage and design-time requirements, necessitating a set of Pareto front

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

https://doi.org/10.1145/3609108

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:3

solutions with a single policy. Therefore, obtaining a set of Pareto front solutions that covers the
entire preference space with a single training is crucial [7, 11, 58, 60].

Considering the requirements of DSSoCs and the strengths of MORL techniques, we develop
the following insights that help us design a runtime task scheduling framework:

Key Insight 1: We can use RL to effectively explore the vast solution space and address the
sub-optimality challenges of heuristic approaches and the complexity of optimization-based
techniques.

Key Insight 2: We can exploit MORL techniques to jointly optimize for conflicting optimiza-
tion objectives in DSSoCs, such as maximizing performance and minimizing power con-
sumption.

Key Insight 3: We can combine the benefits of the low inference overheads of decision tree
classifiers with MORL to design runtime scheduling policies that co-optimize multiple ob-
jectives while incurring minimal inference latency overheads.

This paper presents DTRL, a decision-tree-based multi-objective reinforcement learning tech-
nique for runtime task scheduling in DSSoCs. DTRL uses a multi-objective variant of the proximal
policy optimization (PPO) [45] algorithm and a differentiable decision tree (DDT) policy. We adopt
a DDT policy since decision trees provide significantly lower inference latency overheads due to
fewer computations than commonly used neural networks, such as multi-layer perceptrons and
convolutional neural networks. To efficiently train an RL algorithm for runtime task scheduling,
we also developed a novel RL environment for DSSoCs, utilizing an open-source DSSoC simula-
tor [10] as the foundation of this environment. We also note that our RL environment supports any
DSSoC simulation framework. The proposed DTRL framework trains the DDT policy by interact-
ing with this environment to maximize a joint objective function weighted by a preference vector.
Furthermore, the framework trains the policy with several preferences enabling it to produce an
optimal policy for any preference vector specified at runtime.

DTRL is evaluated with six wireless communication and radar systems domain applications.
We employ a complex DSSoC configuration comprising sixteen PEs, including Arm big.LITTLE
cores and fixed-function energy-efficient accelerators for matrix multiplication, fast Fourier trans-
form, and Viterbi decoding. We compare DTRL with heuristic— [28], optimization—, and machine
learning—based [30] schedulers. Extensive experimental evaluations using our novel reinforcement
learning environment demonstrate DTRL achieves high performance on par with performance-
optimized integer linear programming (ILP) solution and state-of-the-art heuristic-based sched-
uler ETF [28] when the highest preference is given to execution time. At the same time, the same
DTRL policy achieves up to 3x lower energy consumption than these schedulers when higher pref-
erence is given to power consumption. Similarly, DTRL also achieves similar energy consumption
to power-optimized schedulers when the highest preference is given to the power consumption
objective while outperforming them by up to 9x lower execution time when the preference is
given to the execution time objective. We also implement DTRL on Xilinx Zynq ZCU102 FPGA
running at 1.2 GHz, using an open-source emulation framework [1], and measure its runtime
overhead. Hardware evaluations show that DTRL has 120 ns inference latency, resulting in negli-
gible runtime overhead. Evaluation on the same hardware shows that DTRL achieves up to 16%
higher performance than the state-of-the-art heuristic-based scheduler ETF [28]. We emphasize
that DTRL successfully learns the trade-off between execution time and power consumption and
achieves a Pareto set of solutions that covers the entire preference space using a single DDT policy. To
the best of our knowledge, this is the first decision-tree-based multi-objective reinforcement learning
framework for runtime task scheduling in DSSoCs.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:4 T. Basaklar et al.

The main contributions of this work are as follows:

e The DTRL framework, a decision-tree-based multi-objective reinforcement learning ap-
proach for runtime task scheduling in DSSoCs,

o A novel reinforcement learning (RL) environment for DSSoCs, utilizing a DSSoC simulation
framework,

e Extensive experimental evaluations of the proposed DTRL framework demonstrating
performance and energy consumption improvements against state-of-the-art heuristic—,
optimization—, and machine learning-based schedulers, and

e Hardware emulation platform measurements for comparisons against a state-of-the-art
heuristic scheduler and runtime overhead analysis.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
provides the necessary background for the proposed DTRL framework. Section 4 presents an en-
vironment for a simple and standardized evaluation of DTRL. Then, the DTRL framework is de-
scribed in Section 5. The extensive experimental evaluations and comparisons with state-of-the-art
techniques are presented in Section 6, followed by conclusions and directions for future work in
Section 7.

2 RELATED WORK

Runtime task scheduling in DSSoCs is crucial to exploit their full potential but is highly challenging
due to several factors. First, the heterogeneous PEs in an SoC provide diverse power and perfor-
mance characteristics, thereby increasing the decision-making complexity. Second, the parallelism
offered by DSSoCs allows several applications to execute in parallel. The simultaneous application
execution requires highly effective runtime decision-making to utilize the PEs and maximize per-
formance and energy efficiency. Scheduling decisions must incur negligible latency and energy
overheads since the tasks can execute in the order of nanoseconds in DSSoCs. Finally, different
applications in a target domain may have contrasting requirements that require schedulers to dy-
namically support multiple and contrasting objectives. This work addresses all these aspects, and
hence, we classify prior work into the following categories and summarize them in Table 1.

Scheduling Techniques: Most scheduling approaches in literature use directed flow graphs
(DFGs) to model applications [14, 21, 31, 52]. Optimization-based techniques for DFG schedul-
ing, such as integer linear programming (ILP) and constraint programming (CP) [13, 56, 59], pro-
vide optimal design-time solutions. However, these techniques have significant drawbacks. First,

Table 1. Comparison of the Proposed DTRL Framework with Prior Approaches on the Basis of Desired
Metrics such as Optimality, Runtime Overheads, Ability to Support Multiple Objectives, and Capability
to Adapt Online

Prior Ovtimalit Complexity and Multi-Objective Online
Approaches ptimaiity Runtime Overheads Support Adaptability
Optimization Techniques . .

[1%, 56, 59] d High Very High No No
Static Techniques

[14, 44, 52] Low Low No No
Dynamic Techniques .

[8},/18, 30, 31] d Moderate High No No
RL Approaches . .

(26, 36, 37, 50] High High No Yes
?guitzl-(z)gf ective Techniques Moderate-High High Yes No
DTRL (Proposed approach) High Low Yes Yes

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:5

optimization-based approaches struggle to derive the optimal decisions in reasonable runtimes
for complex scenarios such as DSSoC scheduling due to a large number of variables and con-
straints. Secondly, it is highly impractical to re-run the optimization approach for every possible
system state, considering factors like PE utilizations, injection rate, workload, and SoC config-
uration. Thirdly, deploying optimization-based approaches for runtime scheduling is not feasi-
ble due to the scheduling overheads and computational resource requirements involved. Despite
the existence of Pareto front optimization approaches, they cannot be employed for runtime task
scheduling in DSSoCs due to the aforementioned challenges.

The heuristic class of scheduling algorithms trades off runtime with optimality. List scheduling
techniques populate the DFG nodes in a list and schedule the tasks to PEs at design time [32, 44, 51].
While design time techniques are suitable for small problem sizes that involve sequential execution,
they are insufficient to handle the complexity posed by streaming simultaneous application execu-
tion in DSSoCs [23, 30]. Dynamic scheduling techniques exploit the available runtime information
to make more effective decisions [8, 18, 31]. However, they are highly sub-optimal and designed
for specific objectives. Furthermore, they still incur high runtime overheads, leaving significant
scope for improvements.

The advent of machine learning has led to novel scheduling approaches [30, 36, 37, 50, 57]. Im-
itation learning (IL) approaches such as [30, 57] achieve low latency overheads but suffer from
sub-optimality. IL techniques also lack the ability to adapt to the workload and platform configu-
ration changes. RL-based approaches are highly promising due to the rapid algorithm development
in this field, which we review next.

Reinforcement Learning: RL has emerged as a promising approach for solving complex prob-
lems and exploring large solution spaces, including runtime task scheduling in DSSoCs. However,
prior RL-based approaches have several limitations, including being unable to run on heteroge-
neous SoC architectures, having high training complexity, and exhibiting high runtime overheads
due to unnecessarily complex algorithmic structures [26, 36, 37]. Furthermore, they have shown
limited performance on high-intensity workloads and only support a single objective, making them
unsuitable for adapting to various objectives [49]. Therefore, developing RL-based approaches that
deliver low overheads, efficiently support multiple objectives, and overcome these limitations is
crucial.

Multi-Objective Dimensions to Scheduling and RL: The desired objectives and metrics of task
scheduling, such as power, performance, quality of service, reliability, and energy consumption, of-
ten conflict with each other. Furthermore, different applications have varying requirements that
need schedulers to support these multiple and contrasting objectives. Therefore, multi-objective
optimization support is vital for task scheduling models in DSSoCs as they require schedulers
that can make optimal decisions while considering multiple competing objectives in runtime. The
multi-objective aspect of task scheduling has always triggered interest since it can help balance
competing objectives and optimize for multiple metrics simultaneously. Optimization, genetic, evo-
lutionary, and heuristic algorithms such as [6, 12, 29] optimize for multiple objectives but suffer
from complexity and overhead drawbacks, similar to their single-objective counterparts. Conven-
tional RL algorithms support multiple objectives by designing a unique scheduling policy for each
preference vector for multiple objectives [58]. A fine-grained sweep of the preference space can
result in a large number of policies, leading to explosive memory requirements [11, 60].

To the best of our knowledge, DTRL is the first DSSoC task scheduling approach that pro-
vides superior metrics (maximizing performance and energy efficiency), low runtime overheads
using decision tree classifiers, and support multiple optimization objectives using a single policy at
runtime.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:6 T. Basaklar et al.

ﬁ

System State-1 System State-2
Less busy, low utilizations Highly busy, high utilizations

(a) (b)

App-1 App-2 App-3

Fig. 1. (a) An illustration of two different system states showing different levels of utilization of system
resources (or PEs), and (b) an illustrative example of applications represented as directed flow graphs (DFGs).
Nodes in a DFG represent tasks (key computational components) in an application. The edges denote the
dependency between tasks and the weight of the edges represents the communication volume between tasks.

3 BACKGROUND AND OVERVIEW

This section overviews the key components of DTRL. Section 3.1 explains the representations of
streaming applications as task graphs. Section 3.2 discusses the difference between single- and
multiple-objective reinforcement learning formulations. Finally, Section 3.3 describes the differen-
tiable decision tree used as the policy in DTRL.

3.1 Runtime Task Scheduling

DSSoCs provide numerous processing elements for task execution at runtime. As illustrated in
Figure 1(a), a system can be in different states that arise from varying utilization levels. Appli-
cations with streaming behavior, where multiple frames are repeatedly injected into the system
with different rates, pose significant challenges due to varying conditions such as system con-
figuration, utilization, busy states, and concurrent applications. This work models applications
as directed flow graphs (DFGs), as shown in Figure 1(b). Nodes represent the key computational
components of applications (also called tasks). The edges denote the dependencies between tasks,
and the weights of the edges denote the communication volumes between tasks. The scheduling
granularity in this work is at the task level, i.e., the nodes of the DFGs are assigned to processing
elements.

3.2 Multi-Objective Reinforcement Learning (MORL)

Task scheduling, at its core, is an NP-hard sequential decision-making problem [14, 54]. It can
be formulated as a Markov Decision Process (MDP) defined by the tuple (S, A, P,r,y), where S,
A, P(s’ls,a), r, and y represent state space, action space, transition distribution, reward vector,
and discount factor, respectively. Reinforcement Learning is a class of algorithms that aims to find
an optimal policy for an agent to maximize its cumulative reward in an MDP. According to the
state s of the environment and the current policy 7, the agent chooses an action a. Based on this
action, the environment returns the next state s’ and reward r. The expected cumulative rewards
starting from state s following a policy 7 can be represented as state value function, V7 (s). The
RL algorithm then iteratively updates the agent’s policy () and value function (V”) based on
the feedback received from the environment in the form of rewards. This process continues until
the agent reaches a terminal state or a maximum number of steps.

In a multi-objective setting, each objective is associated with a reward signal, which transforms
the scalar reward into a vector r = [r1, s, . .., ra]T, where M is the number of objectives. This vec-
torized reward can be represented by a vectorized state value function MV” (s) [24], as illustrated

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:7

(a) RL MORL (b)
Non-optimal
Agent Agent ~ ® 9 ® Paretop
Ab Y S S © e
state : & reward action ! state: : 1yi1;y sy} action E N\ front
HH HH H 5
Environment i Environment '_%' \) ®
Optimal state value function Optimal vectorized state value function © O
V*(s) = max V™ (s) MV*(s) = max MVT(s) S o
™ T
s.t. MV™(s) = [V(s), .., VF(s), 1" Objective 1

Fig. 2. (a) A transformation of the RL setting to MORL. (b) An example of a Pareto front curve that trades
off between two different optimization objectives.

in Figure 2(a). In the RL domain, scalarization is the most commonly used approach to solve multi-
objective optimization problems [11, 43, 58, 60]. This approach transforms the reward vector into
a single scalar, f,,(r) = w”r. The MDP is then transformed into a multi-objective Markov decision
process (MOMDP), defined by the tuple (S, A, P, r, Q, f,), where r and Q represent the reward
vector and preference space, respectively. Using a preference w € Q, the function f,(r) = @'r
yields a scalarized reward. If we fix w as a vector, the MOMDP can be treated as a standard MDP
and solved using conventional RL methods. Nonetheless, if we consider all possible returns and
preferences in Q, we can obtain a set of non-dominated policies referred to as the Pareto front. As
depicted in Figure 2(b), this set includes non-optimal solutions. A policy 7 is considered Pareto
optimal if no other policy 7" enhances the expected return for an objective without causing degra-
dation in the expected return of any other objective.

In our framework, we extend the standard proximal policy optimization (PPO) algorithm to a
multi-objective (MO-PPO) variant by considering a vectorized reward (r) and state value function
(V7). Both the policy and the state value function take preference vector w as input, efficiently
learning the multi-dimensional objective space. The details of MO-PPO are provided in Section 5,
while the base PPO algorithm details are given in Appendix A.1.

3.3 Differentiable Decision Tree (DDT)

A decision tree (DT) consists of root node 7,, decision nodes 14, and leaf nodes 7;. Considering an
input x € RF where F is the number of features, the root node 1, and each decision node 74 are
represented with a boolean expression p, = xy, — ¢,. Here, xy, and ¢, denote the chosen feature
and splitting threshold for node 7, respectively. Based on these node expressions, the objective is
to identify the optimal path until a leaf node is reached. Each leaf node 1; has a learned probabil-
ity distribution Q;. Based on this distribution, a corresponding label is returned as the output of
the tree. The transparency and interpretability of decision trees are mainly due to the simplicity
with which the feature f and the threshold ¢; can be extracted from every decision node [33].
Nevertheless, traditional DTs have a tendency to overfit and fail to generalize well [20].

Differentiable decision trees (DDTs) have been introduced to address the limitations of tradi-
tional DTs by combining the interpretability of traditional decision trees with the differentiability
of neural networks [19, 20, 46]. DDTs leverage a continuous relaxation of the original decision tree
structure, which enables gradient-based optimization methods to be employed during training. In
DDTs, the boolean expression p,, is replaced by a sigmoid function [46, 48]:

Pﬂ:“(“ﬂ (W;x_‘ﬁv)) = 1

1+ e_(arl(wr?x_‘lf'n))
where w, and ¢, are the weights and bias of the node 5. a, is the steepness parameter of the
sigmoid function and is also a learnable parameter. This expression linearly combines input x
with node weights and compares it to a bias term to traverse the tree, as shown in Figure 3. This

(1)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:8 T. Basaklar et al.

Traditional Decision Tree Differentiable Decision Tree

=== (W x— 4,) |

Decision
>
Nodes

Fig. 3. An overview of a traditional decision tree and a differentiable decision tree.

means that all input features are used at each node to make a decision. With this modification, the
tree can now be trained using gradient descent for parameters w, ¢, and a.

4 RL ENVIRONMENT FOR DSSOCS

OpenAl Gym [16] is a widely popular platform for developing and validating RL algorithms since
it provides standardized environments [53]. It allows users to plug-and-play different components,
such as the RL algorithm and simulated environments. Gym also provides standard API to interact
with environments and serves as a benchmark to compare RL algorithms. Therefore, we enhance
the capabilities of an open-source DSSoC simulator [2] to integrate it into a Gym environment. We
plan to release our integrated infrastructure to the public to stimulate future research.

4.1 End-to-End Training Flow with Novel RL Environment for DSSoCs

Training RL algorithms for task scheduling in DSSoCs involves integrating three distinct compo-
nents: (1) DSSoC simulator, (2) RL agent and (3) Gym environment. The first step in the process
involves instantiating the DSSoC simulator within a standard Gym environment template, shown
in Figure 4. This template includes the essential functionalities of initialization, reset, and step.
The states, actions, and variables are initialized in the corresponding functions. The most critical
function within the Gym environment is the step function, which enables the environment to tran-
sition from one state to another by taking action and generating a reward. It is crucial to carefully
design the control flow between the functionalities of the RL environment and DSSoC simulator
to ensure that the RL agent can effectively correlate the state, action, and reward.

OpenAl Gym Env for DSSoC

DSSoC Simulator

Wait for ready tasks (T) ‘

state (S) | | [Receive actions for task ‘ | L\ Wait for reward
l \ scheduling generation

next_state (s’)

RL | Action (a) ‘] I
Agent ‘ Assign tasks to PEs Return state, DTRL Enhancements
i reward and end of |1 © Support Gym based
episode status RL algorithms
reward (r) Generate rewards ‘

Fig. 4. The DTRL framework enrolls a DSSoC simulator as an OpenAl Gym environment to enable compat-
ibility with the community standard practice of evaluating RL algorithms.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:9

RL Training DSSoC Gym DSSoC

Algorithm Environment Simulator RL Agent
Start -
training flow | "= ===—ae____
""--~~-______ Initialize simulator
_ DSSoCenv | ___ommmmmmmmmmmm T and start execution
step ()
--------- > Task is
step() | TTTmeeal ready Current
function| T ;eeo ____ State (s))
) ‘------___“) Action,
Assigntask | ___oa--- m=—=mmmT a =Agent (s)
to PE Action (a)
_______ Generate
Collect | __o==="" (_——ﬁ;xt reward
s,a,r,s— €= state (8)
. Update weights
Train at of the model
end of
episode

Fig. 5. The end-to-end RL training flow with the DSSoC simulator as a Gym environment. The dashed lines
denote the event-driven handshake between the different components in the training process.

To this end, we design handshake events to facilitate communication between the simulator and
the RL environment. Figure 5 illustrates the complete end-to-end RL training flow with the DSSoC
simulator acting as a Gym environment. The RL training algorithm triggers the training process
and initializes the DSSoC simulator. The step function then initiated, running the simulator until
a task becomes available for scheduling. The current state (s) is characterized by input features
describing the task, whereas the simulator populates the system state. Based on the current state,
the RL agent generates an action and relays it to the simulator. The simulator then assigns a pro-
cessing element (PE) to the task and generates a reward, which is transmitted back to the RL agent.
The algorithm tracks the current state (s), action (a), next state (s”), and reward (r) for several
tasks until the end of the episode and then updates the parameters of the model. The workload is
considered complete when the environment executes all of the tasks.

4.2 Environment Dynamics

We ensure that the dynamics of the environment allow DTRL to adapt to any DSSoC configuration
and streaming applications. The DSSoC comprises several PEs, and similar PEs are grouped into C
processing clusters. A user-selected number of frames are generated during each episode based on
the domain applications, with each frame containing several tasks. An episode terminates when all
the tasks in the workload complete execution. Scheduling is performed for each task in the work-
load, and hence the step function transitions between ready tasks, as described in Section 4.1. State,
action, and rewards are generated for each task, meaning that each time step ¢ in the environment
corresponds to a ready task.

State Space: consists of features that describe the task, application, and state of the DSSoC at a
given time instant (S € R“+%). The task-related features include the position of the task in DFG,
the application type and ID, and the execution times among the different processing clusters. The
DSSoC state is described is described by the earliest availability times of the PEs within a cluster,
indicating their busy or free status. A complete list of the features that comprise the state space is
presented in Table 2.

Action Space: consists of selecting from a set of C processing clusters, (A C N°). In this study,
we utilize a configuration comprising of five processing clusters. At each step, the action space is

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:10 T. Basaklar et al.

Table 2. The List of Features That Constitute the State Space

Feature Information Dimension Feature Information Dimension
Task ID R Execution time on C clusters RC
Depth of task in DFG R Application ID N
Application type N Earliest availability of C clusters RC

used to select the processing cluster for task execution. Once a cluster is selected, the processing
element (PE) with the earliest availability is chosen to execute the task within the cluster.
Reward Vector: comprises execution time and power consumption since DTRL aims to learn
the trade-off between these objectives. Both components must be minimized to maximize energy
efficiency. Therefore, the negative values of the expected execution time and power consumption
of the task on the chosen PE construct the reward vector. The DSSoC simulator generates the
values of these quantities using the profiling information in its database.

5 DTRL: DECISION TREE BASED MULTI-OBJECTIVE REINFORCEMENT LEARNING
ALGORITHM

The number and complexity of tasks processed in each episode can vary significantly. These varia-
tions can lead to high gradient variance and unstable learning progress. To address this challenge,
we utilize a multi-objective variant of the Proximal Policy Optimization (MO-PPO) algorithm,
which can learn multiple objectives and ensure stability of policy updates across all optimization
steps. Finally, DTRL employs a differentiable decision tree, rather than a neural network, as the
actor to reduce inference latency overheads and enhance the interpretability. This section present
the details of the proposed DTRL framework.

5.1 Invalid Action Masking

DSSoCs typically consist of general-purpose cores and fixed-function accelerators (e.g., fast Fourier
transform (FFT), forward error correction (FEC), finite impulse response (FIR)). These accelerators
do not support all tasks streaming into the DSSoC. Consequently, some tasks involve invalid ac-
tions during training. DTRL should be able to manage invalid actions for efficient and stable train-
ing. The most common approach to penalize invalid actions is giving a high negative reward [27]
such that the agent learns to maximize the reward by not taking any invalid action. However, this
approach suffers from low explorative capabilities and spends a vast amount of time learning in-
valid actions at each state, especially when the action space dimension is large. Therefore, in our
work, we use invalid action masking [27] to constrain the DTRL agent to only choose clusters of
PEs that support the given task.

In our algorithm, the policy (rg) generates logits (I;, i = 1,...,|A|), which are subsequently
converted to action probabilities (7g(a;|s)) via a softmax operation. During training, an action is
selected by sampling from a distribution of these probabilities, denoted as 7y (:|s). The policy is
updated using gradient descent, similar to other policy gradient approaches. Invalid action mask-
ing is applied by setting the logits of invalid actions to a large negative number, typically —1 x 108.
This ensures that the probability of these masked actions is zero, without compromising the gra-
dient update. In fact, this technique enhances the gradient update, as the gradient corresponding
to the logits of masked actions becomes zero.

5.2 Multi-Objective PPO with DDT as an Actor: Algorithm Details

This work aims to obtain a single policy that covers the entire preference space for multiple ob-
jectives in a runtime task scheduling problem. To achieve this, we adopt an approach similar to

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:11

the existing literature on Multi-Objective Reinforcement Learning (MORL) [17, 58] to extend the
PPO to a multi-objective version (MO-PPO). For this extension, we first consider that the environ-
ment returns a vector of reward as exemplified in Section 3.2. The value network is vectorized
to efficiently learn to model multiple objectives for a given preference vector w. Specifically, the
value network takes state s and preference vector w as inputs and outputs [A| X M state values, as
explained in Algorithm 1, where M is the number of objectives. Therefore, the state value function
becomes Vi (s, w), which returns a vector of expected returns for a given state s and preference
by following a current policy 7y. During training, the vectorized value network is updated by
minimizing the mean-squared error between estimated and target values using gradient descent
as the optimization algorithm:

T
1
Ly == Vs,w—r+Vs,w2 2
’ T;wm)= e+ YV (501,) (@)
The vectorization of the reward and state value function results in a vectorized advantage func-
tion, as presented in Equation (3):

A(st, ap, @) = 1 + YV (Sp41, @) — Vi (54, @) (3)

To compute the modified advantage function, @’ A(s;, a;, @), a weighted-sum scalarization is ap-
plied to the advantage function, similar to the state value function. Furthermore, in our implemen-
tation, the policy takes the preference vector, w, as an additional input along with the state s, to
make a decision. The policy loss for the multi-objective PPO (MO-PPO) is then given by:

T
Ly = % Z min(p(0)w’ A(s;, ar, @), clip(p(0),1—€,1+ €)' A(s;, a,) 4)
t=0
7o (asls;, o)
)= —————
p(6) Too1d(as|se, @)

To ensure efficient runtime task scheduling, having a neural network with high inference overhead
is not desirable. Instead, we use a differentiable decision tree (DDT) as the policy with sigmoid as
the activation function at each node. The MO-PPO algorithm can be used for the DDT policy
without requiring modifications. For the value network, fully connected layers with hyperbolic
tangent activation functions are employed.

Algorithm 1 outlines the training process of the DTRL framework. At the beginning of each
episode during training, we randomly sample a preference vector (w € Q : Zf:o w; = 1) from
a uniform distribution. To determine the workload intensity of the task scheduling problem, the
simulation framework takes the target throughput (e.g., frames per milliseconds) as input. Thus,
at the start of each episode, we randomly sample a target throughput y.

A vectorized architecture with a single policy to gather transitions from multiple environments
is a common technique in [9, 45]. To increase the sample efficiency of our algorithm, we adopt a
similar strategy. We initialize P child processes with different seeds. The DDT policy and the value
network are shared among child processes and the main process. We divide the preference space
into P sub-spaces (Q) and assign a subspace to each child process. Each child process is responsi-
ble for its own preference sub-space, and in each child process, a preference vector is randomly
sampled from its assigned sub-space. Using the policy 7y, we collect T amount of samples. Using
these samples, advantages A;, target values r; + Vg (s;4+1, @), and the probabilities g, (a;|s;, ®)
are obtained. The original PPO implementation uses generalized advantage estimation (GAE) to
calculate advantages [9, 45]. We also employ this technique with GAE parameter of 0.95. These

©)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:12 T. Basaklar et al.

ALGORITHM 1: DTRL Framework
Input: Total number of time steps N, Number of steps to run per policy rollout T, Discount factor y,
Number of epochs to update the policy and value network K, Minibatch size b, Number of child
processes P, clipping value e.
Initialize: DDT policy 7 and value network Vg with parameters 6 and ¢, Random policy 7.
while Total Number of Steps < N do

// Child Process

Reset the environment to state sy and randomly initialize target throughput y.

Sample a preference vector from the subspace Q.

fort=0:T do
Choose a; according the current policy 7y and invalid action mask a}*.

L Collect samples {s;, as, ¢, s; @, done} by interacting with the environment using action a;.

Obtain A¢, rt + Vg (st+1, @), and 7y, , (at|s¢, w) using DDT and the value network.
Transfer populated (s, a,r,s’, ,a™, A, r + V¢(s, w), 1y, (als, w)) to main process.
// Main Process
Store the incoming transitions from child processes in a trajectory buffer with size P X T.
for k=1: K do
for i=0: (P xT/b) do
idxsart = d X (b -1)
idxeng = d x (b)
Sample a minibatch from the trajectory buffer according to start and end indices.
Obtain value estimates and new ry.
Calculate Ly and L
Update 0 and ¢ by applying SGD to Ly and L.

old(

child processes run in parallel to collect transitions and do necessary computations using the same
DDT policy and value network. The obtained transitions are then transmitted to the main process,
where they are stored in a trajectory buffer of size P X T.

The algorithm then updates both the value network and the DDT policy parameters (¢, 0) ac-
cording to the loss functions described in Equations (2) and (4). The total number of optimization
steps required to update the parameters is determined by the number of epochs K and the mini-
batch size b. We use an Adam optimizer with a learning rate of 3E-4 for both the DDT policy and
the value network. The hyperparameters for DTRL are presented in Table 3.

6 EXPERIMENTAL EVALUATION

This section evaluates the proposed DTRL framework for runtime task scheduling in DSSoCs.
Section 6.1 first presents the domain applications, DSSoC configuration, and the simulation and
emulation frameworks used for evaluation in this work. Then, it introduces the baseline task sched-
ulers that are used for comparison. Finally, Section 6.2 presents detailed experimental evaluations
showing performance and energy consumption improvements of the proposed DTRL framework
over the baseline scheduling approaches. This section emphasizes the generalizability of DTRL
learning the trade-off between two conflicting objectives, average execution time and power con-
sumption, as a Pareto front set of solutions.

6.1 Experimental Setup

Domain Applications: The evaluation of DTRL involves six applications in the domain of
wireless communications and radar systems: WiFi transmitter, WiFi receiver, range detection,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:13

Table 3. Definition and Hyperparameter Values used in This Paper

Hyperparameter Description Value
P Number of parallel processes 10
Nrayer Number of hidden layers in the value network 1
Nyeuron Number of hidden neurons in the value network 64
depth Depth of DDT policy 3

N Total number of time steps for the entire training 3% 107
T Number of steps to run per policy rollout 1024

Y Discount factor 0.99

A GAE Parameter 0.95

€ Clipping factor 0.1

K Number of epochs to update the policy and value network 20

b Minibatch size 64

Ir Learning Rate 3% 107

single-carrier transmitter, single-carrier receiver, and temporal mitigation. Workloads comprising
100 frames each are constructed using a mix of the six applications.

DSSoC Configuration: The configuration of DSSoC consists of sixteen PEs classified into five
clusters based on their functionalities. These clusters comprise four LITTLE Arm A57 cores, four
big Arm Cortex-A53 cores, and fixed-function accelerators, which include two matrix multipli-
cation (MM) cores and four fast Fourier transform (FFT) cores, and two Viterbi decoding cores.
The PEs are chosen to fulfill the computational demands of the targeted domain applications. The
domain applications and DSSoC configuration employed in this study represent the most compre-
hensive configuration currently available within the DSSoC simulator[10].

Simulation and Emulation Frameworks: We first evaluate DTRL using our novel OpenAI Gym
environment integrated with an open-source DSSoC simulator, DS3 [2], as described in Section 4.
This simulator is validated against two commercial SoCs, Odroid-XU3 and Xilinx Zynq ZCU102.

We measure the hardware runtime overhead of the global multi-objective DDT scheduling pol-

icy by implementing it within CEDR [35] (an open-source Linux-based emulation and runtime
environment) on the Xilinx Zynq ZCU102 platform.
Baseline and State-of-the-Art Approaches for Comparison: To begin our comparative anal-
ysis, we employ an optimization-based approach that employs integer linear programming (ILP)
through IBM ILOG CPLEX Optimization Studio [5]. However, this approach suffers from severe
time and complexity issues, especially for high-intensity workloads (high target throughput)
due to a large number of variables and constraints. The solver takes several hours to days to
derive the solution and even fails to achieve an optimal decision in several cases. Therefore, we
enforce a timeout value of two minutes for each solver invocation. The ILP scheduler is reported
as a reference point, and it is not feasible at runtime due to its prohibitive runtime overhead (in
the order of minutes).

We also choose heuristic schedulers for comparisons with DTRL. The earliest task first
(ETF) [28] scheduler efficient scheduling decisions by iterating through all the ready tasks and
available PEs to determine the task with the earliest finish time, thereby making it a suitable
choice for comparison. We modify ETF to target different objectives such as power consumption,
energy consumption, and energy-delay product. The different ETF variants contribute to distinct
comparison points in our evaluation. We also compare DTRL with a machine-learning-based
scheduler that uses imitation-learning for task scheduling (ILS) [30]. This framework uses ETF as
the Oracle and trains a regression tree to approximate the Oracle decisions. State-of-the-art MORL

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:14 T. Basaklar et al.

approaches [58, 60] are introduced to address specific applications, such as continuous robotics
tasks and grid world games. However, these approaches do have certain drawbacks. For instance,
the Envelope algorithm [60] requires the action space to be discrete and suffers from sample
inefficiency, while PG-MORL [58] necessitates a continuous action space and both objectives
to be positive. Nevertheless, when it comes to the task scheduling problem, which involves
mixed-sign objectives and invalid discrete actions, these approaches are unable to effectively
handle such scenarios. Furthermore, these MORL approaches typically involve neural networks
with dense layers, resulting in a significantly higher runtime overhead compared to DTRL and
ETF (as provided in Section 6.2.4) when implemented on real hardware platforms. The runtime
overhead of these neural network-based approaches can be two to three orders of magnitude
greater than that of DTRL and ETF [30]. Therefore, to provide an additional basis for comparison,
we introduce a modification of an existing MORL method [39]. This modified method, referred
to as Scalarized-MOPPO, involves performing updates after computing the inner product of the
vectorized value function and the preference vectors. Notably, in Scalarized-MOPPO, the policy
DDT and the value network no longer take preferences as inputs, as the method trains separate
policies for various preference ratios of the different objectives.

6.2 DTRL Evaluation

A global DDT scheduling policy is obtained by employing the training procedure described in
Section 5. The DDT is constructed with 16 input features (including objective preferences) and
uses a maximum depth of 3. Each workload comprises 100 frames, and the frames are dynamically
injected into the system based on an exponential distribution. The average metrics from simu-
lations with 10 random seeds are used to avoid bias in the distribution. The target throughput is
varied between 1-50 frames per millisecond. The vector indicating the preference for the execution
time and power consumption objectives is denoted by {a, b} respectively.

6.2.1 Performance and Energy Consumption Evaluation. Figure 6(a) compares the average frame
execution time of DTRL with baseline and state-of-the-art schedulers. At high target throughputs,
frames are injected faster than they are processed; hence, newly injected frames overlap with ex-
isting frames. The overlap results in significant competition for the shared computing resources,
thereby resulting in a higher frame execution time, as observed in Figure 6. The DTRL policy in
Figure 6(a) uses a preference vector of {1,0}, whereas the results for Scalarized-MOPPO are

-©-ETF [28] +-ETF-EDP - ETF-Energy -=-ETF-Power <-ILP -7-ILS [30] = Scalarized-MOPPO ([39]-Adapted) 4 DTRL
T T T T T T T T T T T

~
o
o
g
o
©

o
=]

o

| |
B-s___g

Avg. Exec. Time (us)
&
o
Avg. Energy Cons. (mJ)
P
o

e

o

@
.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Normalized Throughput (b) Normalized Throughput

Fig. 6. Comparison of (a) average frame execution time and (b) average energy consumption between

ETF [28], ETF-EDP, ETF-Energy, ETF-Power, ILP solution, ILS [30], Scalarized-MOPPO ([39]-Adapted) and

DTRL to schedule a workload comprising six streaming applications. The x-axis in Figures 6(a) and 6(b) is
normalized to the throughput achieved by the ILP solution.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:15

O ETF [28] * ETF-EDP ++ ETF-Energy O ETF-Power) ILP </ ILS [30] Scalarized-MOPPO ([39]-Adapted) -4 DTRL

£ 08 v

©

-

},

E 06

g o

804

£] Wl o

w

> 0.2 >

2

2 a b c

§ o I ® I © I
100 200 300 805 100 350 600 4286 100 600 1100 4383

Avg. Exec. Time (us) Avg. Exec. Time (us) Avg. Exec. Time (us)

Fig. 7. Average frame execution time (us) vs. Energy efficiency (mJ / frame) for (a) low (b) medium (c) high
target throughputs. Comparison between ETF [28], ETF-EDP, ETF-Energy, ETF-Power, ILP solution, ILS [30],
Scalarized-MOPPO ([39]-Adapted), and DTRL are presented. DTRL achieves multiple near-optimal policies
using various preferences.

obtained using the policy that is separately trained for the same preference vector. DTRL achieves
an execution time speedup of 1.03X, 1.05%, 1.25X%, 1.9%, and 9x than ILS, Scalarized-MOPPO,
ETF-EDP, ETF-Energy, and ETF-Power, respectively. We note that ETF-Power assigns all tasks to
LITTLE cores (since it has the lowest power consumption), causing the system to become heavily
congested and drastically increasing average frame execution time. Although DTRL is trained with
multiple objectives, it still achieves an average execution time within 4% and 7% of ETF and ILP,
respectively. Additionally, the runtime overhead of ETF is 2x and 10x higher than that of DTRL,
as evaluated in Section 6.2.4. It is important to highlight that ETF, ILP, and ILS are designed to
optimize a single specific objective, whereas Scalarized-MOPPO and DTRL are specifically trained
to handle multiple objectives. On the one hand, Scalarized-MOPPO is trained individually for each
preference vector. Training several policies imposes a severe stress on the platform in terms of
training time and compute resources. Furthermore, the Scalarized-MOPPO approach requires the
platform to store all of them and appropriately choose one such policy based on the preference
vector at runtime. On the other hand, DTRL learns a Pareto front set of solutions for execution time
and power consumption objectives using a single policy.

DTRL’s energy consumption is evaluated by using a preference vector of {0,1} to the global
DDT policy, as shown in Figure 6(b). DTRL achieves 3.06X%, 3.08%, 3.06%, 1.97%, 1.75%, and 1.05X
lower energy consumption compared to ETF, ILP, ILS, ETF-EDP, ETF-Energy, and ETF-Power, re-
spectively. It achieves very similar energy consumption values compared to Scalarized-MOPPO. It
is worth noting that DTRL does not require retraining for the energy objective since the global DDT
policy dynamically generates near-optimal decisions based on the application- or user-defined
preference provided at runtime.

6.2.2 Multi-objective Functionality of DTRL. This section evaluated the multi-objective aspect
of the proposed DTRL framework. To this end, we show the average frame execution time versus
energy efficiency curves obtained by DTRL at varying throughputs, using multiple preference vec-
tors. Figures 7(a)—(c) illustrates the curves for low, medium, and high throughput workloads. The
evaluation employs preference vectors (w) separated by a step size of 0.1, w € {{1,0},{0.9,0.1},. . .,
{0.1,0.9}, {0, 1}}. Figures 7(a)—(c) also shows the energy efficiency (in milli-Joules per frame) of the
baseline and state-of-the-art schedulers. We note that ETF, ILP, and ILS will have only one point
on the plot since they support only one objective. However, for ETF, its variants correspond to
different comparison points in the objective space. For instance, ETF-Power corresponds to the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:16 T. Basaklar et al.

S8 —A-DTRL - 2%
= —A—DTRL - 11.5%
S —A-DTRL - 31%
g6 ~A-DTRL - 67% -
£ DTRL - 100%
=]
2al |
[}
(8]
a 27 \ |
% X“‘ \.A_\
o | MAaa

0 L L

200 400 600 800 1000 1200
Average Execution Time (us)

Fig. 8. Pareto front solutions achieved by the proposed DTRL framework that trades off between the average
execution time of applications with the power consumption at various target throughputs (in %).

comparison point where the preferences for execution time and power consumption are 0 and
1, respectively. By using a single global DDT policy, DTRL covers the entire preference space
and produces solutions comparable to ETF and ILP, as described in Section 6.2.1. Furthermore, it
outperforms the other schedulers, providing flexibility to generate near-optimal scheduling deci-
sions for any preference vector specified at runtime. We also observe that DTRL scales to several
throughputs, achieving comparable or improved metrics compared to the other approaches.
Although Scalarized-MOPPO can achieve a similar Pareto front set of solutions to DTRL by train-
ing a separate policy for each preference vector, it faces challenges when deployed on a hardware
platform due to the need to store all possible scheduling policies. As a result, the scalability of
Scalarized-MOPPO is constrained when dealing with numerous objectives and their correspond-
ing ratios. Moreover, Scalarized-MOPPO struggles when the objectives exhibit substantial differ-
ences in magnitudes, as it learns from a scalarized reward function that requires domain expertise
for its design.

The DTRL policy, trained with two optimization objectives, namely average frame execution
time and power consumption, achieves the Pareto front curves as shown in Figure 8. A work-
load with 100% target throughput denotes the maximum frame rate supported by the platform. As
the target throughput increases, the average job execution time and power consumption increase
due to the increase in congestion in the SoC. The power consumption and execution time trade-
off curves at multiple target throughputs strongly demonstrate that DTRL scales to all workload
complexities.

6.2.3 Performance Evaluation of DTRL on a Runtime Emulation Platform. We implement DTRL
in CEDR [35] and analyze its performance on a Xilinx Zynq ZCU102 FPGA [4]. This evaluation uses
a configuration consisting of one FFT core, one MM core, three general-purpose cores, and three
domain applications, namely the WiFi transmitter, range detection, and temporal mitigation. The
trained DDT model for the above configuration uses 12 input features and a maximum depth of 3. It
is deployed in the CEDR framework as a C++ module. Figure 9 presents the comparison of average
frame execution time between DTRL (with a preference vector of {1,0}) and ETF executing work-
loads in CEDR on the FPGA at six different target throughputs. DTRL achieves lower execution
time than ETF at all workload throughputs. As discussed in Section 6.1, ETF incurs high computa-
tional complexity due to the quadratic dependency on the number of ready tasks, and its runtime
overhead varies between several hundred-thousands of nanoseconds. On the contrary, the DDT
DTRL policy achieves a runtime overhead of 120 ns per scheduling decision. Therefore, we demon-
strated the ability of the proposed DTRL framework to outperform state-of-the-art approaches in
both a DSSoC simulation framework and a real hardware platform (Xilinx Zynq ZCU102 FPGA).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:17

Avg. Exec. Time (ms)
N A O ® O

o O O O o o

NE_‘

B

mi

Throughput (Mbps)

Fig. 9. Comparison of average job execution time between ETF and DTRL on a real hardware platform (Xilinx
Zynq ZCU102 FPGA) to schedule a workload comprising three streaming applications. Each bar in the plot
represents the average of 50 trials, with each trial consisting of 1390 tasks. Error bars represent the standard
deviation of the trials.

6.2.4 Scalability and Limitations. DTRL uses a differentiable decision tree (DDT) at its core
to make scheduling decisions. As explained in Section 3.3, at each node in the tree, features
are linearly combined with node weights and compared to a bias term. This enables DDTs to handle
high-dimensional input features and complex interdependencies between the input features, which
can be challenging for traditional decision trees. Additionally, DDTs can provide interpretable mod-
els that allow users to understand the reasoning behind scheduling decisions. However, a potential
limitation of using DDTs is their increased complexity and the size of the feature space, which may
limit scalability in certain scenarios. As the number of tasks and processors increases, the feature
space also grows, making it challenging to find an optimal solution at runtime. If the state space
is constructed with features for individual PEs, the time and space complexity of DTRL can reach
O(2N), where N represents the total number of PEs. To mitigate this challenge, we address it by
grouping PEs into processing clusters (C), thereby reducing the number of features that would
otherwise increase with a larger system-on-chip (SoC) configuration. Consequently, the time and
space complexity of DTRL is reduced to O(2C), with C being significantly smaller than N. Addi-
tionally, it is worth noting that the complexity of selecting a specific PE within a cluster is O(k),
where k is the number of PEs within that cluster. Furthermore, as with traditional decision trees,
overfitting can occur if the model becomes too complex and with the increase in the tree depth. In
our work, we limit the DDT depth to 3 and transitions from randomly generated scenarios at each
episode to avoid overfitting.

7 CONCLUSION

The optimal allocation of tasks to processing elements (PEs) with minimal runtime overheads is
essential to maximize the performance and energy efficiency gains in domain-specific systems-on-
chip (DSSoCs). Existing approaches suffer from non-optimal scheduling decisions, high runtime
overheads and focus on a single optimization objective. This work presented DTRL, a decision-tree-
based multi-objective reinforcement learning technique for runtime task scheduling in DSSoCs.
DTRL uses a differentiable decision tree (DDT) policy and a novel reinforcement learning envi-
ronment for DSSoCs. Experimental evaluations utilizing six domain-specific applications and a
comprehensive DSSoC configuration demonstrate that DTRL captures the trade-off between ex-
ecution time and power consumption, resulting in a Pareto set of solutions using a single DDT
policy. Furthermore, DTRL outperforms state-of-the-art heuristic—, optimization—, and machine
learning-based schedulers with up to 9x higher performance and up to 3.08x reduction in en-
ergy consumption. The trained DDT policy also has negligible runtime overhead, achieving up to
16% higher performance than the state-of-the-art heuristic-based scheduler on the same hardware.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:18 T. Basaklar et al.

Overall, DTRL provides a promising solution for optimizing the allocation of tasks in DSSoCs, en-
abling improved performance and energy efficiency in a range of applications. The core algorithm
presented in Section 5 can be readily applied to various domains that can be characterized by
multiple objectives and discrete action spaces. The proposed approach requires only designing an
RL environment specific to the target domain. For example, existing problems like wildfire track-
ing or games can be effectively addressed using DDT models within the reinforcement learning
framework [47], often incorporating additional objectives as constraints. These domains can be
expanded to accommodate multiple objectives and effectively tackled using the DTRL approach.
DTRL serves as a highly adaptable and deployable solution for multi-objective reinforcement learn-
ing, providing considerable flexibility in addressing complex problem domains. Future directions
include adding more optimization objectives, further minimizing the runtime overheads, and ex-
ploring the applicability of DTRL in other domains. Another key future work is to enable the
interpretability of the DDT policy, investigating each node’s behavior in the tree.

A APPENDIX
A.1 Proximal Policy Optimization (PPO)

Proximal policy optimization (PPO) [45] is a policy gradient algorithm that aims to improve the
training stability of the policy by updating it conservatively according to a certain surrogate ob-
jective function. Policy gradient algorithms typically update the policy network by computing the
gradient of the policy, multiplied by the discounted cumulative rewards, and using it as a loss
function with a gradient ascent algorithm. This update is typically performed using samples from
multiple episodes since the discounted cumulative rewards can vary widely due to the different tra-
jectories followed by each episode. To mitigate this variance, an advantage function is introduced
as a bias to quantify the benefits the goodness of taking action a in state s and is represented as:

A(st,ar) =1 + YV¢(St+1) - V¢(3t) (6)

Here, y € [0,1] is the discount factor, and Vy(s) is the value network that estimates the expected
discounted sum of rewards for a given state s.

At each optimization step during training, the PPO algorithm forces the distance between the
new policy (7mp(als)) and the old policy (mg,;4(als)) to be small. It achieves its goal using the
following loss function and the advantage function:

T
Ly= % ; min(p(0)Ar, clip(p(6),1— €, 1+ €)A,))

mo(als:)
= ®)
79 01a(arst)
where, T is the total time steps of collected data. The equation presented involves two policies:
7oo14(als), which is used to collect samples by interacting with the environment, and zy(als),
which is being updated using the loss function. PPO introduces a constraint on the difference
between mp,;4(als) and 7g(als) by applying a clipping operation on the ratio p(f) between two
distributions, with the clipping threshold € being a hyperparameter of the algorithm. Additionally,
an entropy term may be added to the loss function to promote sufficient exploration.
During training, the value network V(s) is also updated by minimizing the mean-squared error
between estimated and target values using gradient descent as the optimization algorithm:
T

Ly =2 2 (Vgls) = e+ yVglorn))) ©

t=0

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:19

-0-ETF [28] *-ETF-EDP - ETF-Energy -5-ETF-Power <-ILP -7-ILS [30] = Scalarized-MOPPO ([39]-Adapted) -4 DTRL

=750 15
al £0.09
3 o y
[} L1 i
g 600 i g
= © 0.06
; >
'é 450 1D
w 2
9300 Jui0.03
Z 9
<
150 A =) . . 5 0)))))
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Normalized Throughput (b) Normalized Throughput

Fig. 10. Comparison of a) average frame execution time and b) average energy consumption between
ETF [28], ETF-EDP, ETF-Energy, ETF-Power, ILP solution, ILS [30], Scalarized-MOPPO ([39]-Adapted) and
DTRL to schedule a workload comprising six streaming applications. The x-axis in Figures 6(a) and 6(b) is
normalized to the throughput achieved by the ILP solution.

The multi-objective variant of PPO algorithm for runtime task scheduling is described in
Section 5.2.

A.2 Additional Experimental Results

In this section, we assess the generalizability of DTRL by evaluating it using a different DSSoC con-
figuration. Specifically, we divide the number of accelerator cores by two to demonstrate DTRL’s
performance across different configurations. This configuration comprises thirteen PEs classified
into five clusters based on their functionalities. These clusters comprise four LITTLE Arm A57
cores, four big Arm Cortex-A53 cores, and fixed-function accelerators, which include one matrix
multiplication (MM) core and two fast Fourier transform (FFT) cores, and one Viterbi decoding
core. Besides the difference in the DSSoC configuration, the experimental setup remains the same
for this evaluation.

Figure 10(a) compares the average frame execution time of DTRL with baseline and state-of-
the-art schedulers. The DTRL policy in Figure 10(a) uses a preference vector of {1, 0}, whereas
the results for Scalarized-MOPPO are obtained using the policy that is separately trained for the
same preference vector. DTRL achieves an execution time speedup of 1.25X, 1.05%, 1.2%, 1.8%, and
8.5% than ILS, Scalarized-MOPPO, ETF-EDP, ETF-Energy, and ETF-Power, respectively. Although
DTRL is trained with multiple objectives, it still achieves an average execution time within 5% and
9% of ETF and ILP, respectively. We emphasize that the runtime overhead of ETF is 2Xx and 10X
higher than that of DTRL, as evaluated in Section 6.2.4. It is important to highlight that ETF, ILP,
and ILS are designed to optimize a single specific objective, whereas Scalarized-MOPPO and DTRL
are specifically trained to handle multiple objectives. It is important to highlight that DTRL learns a
Pareto front set of solutions for execution time and power consumption objectives using a single policy
for various DSSoC configurations.

DTRL’s energy consumption is evaluated by using a preference vector of {0, 1} to the global DDT
policy, as shown in Figure 10(b). DTRL achieves 3.1x, 3.1X, 3.6X, 2X, 1.7X, and 1.06X lower energy
consumption compared to ETF, ILP, ILS, ETF-EDP, ETF-Energy, and ETF-Power, respectively. It
achieves very similar energy consumption values compared to Scalarized-MOPPO.

Figures 11(a)—(c) illustrates the average frame execution time versus energy efficiency curves
for low, medium, and high throughput workloads using multiple preference vectors. The evalu-
ation employs preference vectors (w) separated by a step size of 0.1, ® € {{1,0},{0.9,0.1},...,
{0.1,0.9}, {0, 1}}. Figures 11(a)—(c) also shows the energy efficiency (in milli-Joules per frame) of

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

113:20

OETF [28] * ETF-EDP 7+ ETF-Energy O ETF-Power) ILP ILS [30]

T. Basaklar et al.

Scalarized-MOPPO ([39]-Adapted) 4 DTRL

Avg. Exec. Time (us)

Avg. Exec. Time (us)

m

£ 0.8

©

&

},

E 0.6

>

2

So4 O

Q

; of | %) :

> 0.2 S

2

2 a b c

g o (a) i (b) i (c) i
100 200 300 805 100 350 600 4286 100 600 1100 4383

Avg. Exec. Time (us)

Fig. 11. Average frame execution time (us) vs. Energy efficiency (m) / frame) for (a) low (b) medium (c) high
target throughputs. Comparison between ETF [28], ETF-EDP, ETF-Energy, ETF-Power, ILP solution, ILS [30],
Scalarized-MOPPO ([39]-Adapted), and DTRL are presented. DTRL achieves multiple near-optimal policies
using various preferences.

the baseline and state-of-the-art schedulers. It should be noted that ETF, ILP, and ILS represent
a single point on the plot since they are designed for a single objective. However, ETF’s variants
correspond to different comparison points in the objective space. In contrast, DTRL covers the en-
tire preference space and generates solutions that can be compared to ETF and ILP by utilizing a
single global DDT policy. DTRL outperforms other schedulers and offers the flexibility to generate
near-optimal scheduling decisions for any preference vector specified at runtime.

REFERENCES

[1] [n.d.]. CEDR - Compiler-integrated Extensible DSSoC Runtime. https://github.com/ua-rcl/CEDR. [Online; last
accessed 15-May-2022.].

[2] [n.d.]. DS3 Simulator. https://github.com/segemena/DS3.git. [Online; last accessed 19-March-2023.].

[3] [n.d.]. RF Convergence: From the Signals to the Computer by Dr. Tom Rondeau (Microsystems Technology Of-
fice, DARPA). https://futurenetworks.ieee.org/images/files/pdf/FirstResponder/Tom-Rondeau-DARPA pdf. [Online;
last accessed 19-March-2023.].

[4] [n.d.]. ZCU102 Evaluation Board. https://www.xilinx.com/support/ documentation/boards_and_kits/zcu102/ug1182-
zcul02-eval-bd.pdf, Accessed 19 March 2023.

[5] 2009.V12.8: User’s manual for CPLEX. International Business Machines Corporation 46, 53 (2009), 157.

[6] Farzaneh Abazari, Morteza Analoui, Hassan Takabi, and Song Fu. 2019. MOWS: Multi-objective workflow scheduling
in cloud computing based on heuristic algorithm. Simulation Modelling Practice and Theory 93 (2019), 119-132.

[7] Abbas Abdolmaleki et al. 2020. A distributional view on multi-objective policy optimization. In International Confer-
ence on Machine Learning. PMLR, 11-22.

[8] Aporva Amarnath et al. 2021. Heterogeneity-aware scheduling on SoCs for autonomous vehicles. IEEE Computer
Architecture Letters 20, 2 (2021), 82-85.

[9] Marcin Andrychowicz et al. 2021. What matters for on-policy deep actor-critic methods? A large-scale study. In
International Conference on Learning Representations. 1-10.

[10] Samet Egemen Arda et al. 2020. DS3: A system-level domain-specific system-on-chip simulation framework. IEEE
Trans. on Computers 69, 8 (2020), 1248-1262.

[11] Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras. 2022. PD-MORL: Preference-driven multi-objective reinforce-
ment learning algorithm. arXiv preprint arXiv:2208.07914 (2022).

[12] Javad Behnamian and SMT Fatemi Ghomi. 2014. Multi-objective fuzzy multiprocessor flowshop scheduling. Applied
Soft Computing 21 (2014), 139-148.

[13] Luca Benini, Davide Bertozzi, and Michela Milano. 2008. Resource management policy handling multiple use-cases
in MpSoC platforms using constraint programming. In Logic Programming: 24th International Conference, ICLP 2008
Udine, Italy, December 9-13 2008 Proceedings 24. Springer, 470-484.

[14] Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo R. M. Madeira. 2010. DAG scheduling using a lookahead variant
of the heterogeneous earliest finish time algorithm. In IEEE Euromicro Conference on Parallel, Distributed and Network-
based Processing. 27-34.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

https://github.com/ua-rcl/CEDR
https://github.com/segemena/DS3.git
https://futurenetworks.ieee.org/images/files/pdf/FirstResponder/Tom-Rondeau-DARPA.pdf
https://www.xilinx.com/support/

DTRL: Decision Tree-based Multi-Objective Reinforcement Learning 113:21

(15]

(16]
(17]

(18]
(19]
(20]
[21]
[22]
(23]

[24]

Pradip Bose et al. 2021. Secure and resilient SoCs for autonomous vehicles. In Proceedings of the International Workshop
on Domain Specific System Architecture (DOSSA’21). 1-6.

Greg Brockman et al. 2016. OpenAl Gym. arXiv preprint arXiv:1606.01540 (2016).

Xi Chen, Ali Ghadirzadeh, Marten Bjérkman, and Patric Jensfelt. 2019. Meta-learning for multi-objective reinforce-
ment learning. In 2019 IEEE/RSY International Conference on Intelligent Robots and Systems (IROS’19). IEEE, 977-983.
Kallia Chronaki et al. 2015. Criticality-aware dynamic task scheduling for heterogeneous architectures. In Proceedings
of the 29th ACM on International Conference on Supercomputing. 329-338.

Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li, and Ruitong Huang. 2020. Cdt: Cascading
decision trees for explainable reinforcement learning. arXiv preprint arXiv:2011.07553 (2020).

Nicholas Frosst and Geoffrey Hinton. 2017. Distilling a neural network into a soft decision tree. arXiv preprint
arXiv:1711.09784 (2017).

A. Alper Goksoy et al. 2021. DAS: Dynamic adaptive scheduling for energy-efficient heterogeneous SoCs. IEEE Em-
bedded Systems Letters 14, 1 (2021), 51-54.

D. Green et al. 2018. Heterogeneous integration at DARPA: Pathfinding and progress in assembly approaches. ECTC,
May (2018).

Babak Hamidzadeh, Yacine Atif, and David J Lilja. 1995. Dynamic scheduling techniques for heterogeneous computing
systems. Concurrency: Practice and Experience 7,7 (1995), 633-652.

Conor F. Hayes et al. 2022. A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems 36, 1 (2022), 1-59.

[25] John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2

[26]

(27]

(2019), 48-60.

Zhiming Hu, James Tu, and Baochun Li. 2019. SPEAR: Optimized dependency-aware task scheduling with deep rein-
forcement learning. In IEEE 39th International Conference on Distributed Computing Systems (ICDCS’19). 2037-2046.
Shengyi Huang and Santiago Ontafién. 2020. A closer look at invalid action masking in policy gradient algorithms.
arXiv preprint arXiv:2006.14171 (2020).

[28] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. 1989. Scheduling precedence graphs in

[29]

(30]
(31]
(32]
(33]

(34]

systems with interprocessor communication times. SIAM 7. Comput. 18, 2 (1989), 244-257.

Enda Jiang, Ling Wang, and Jingjing Wang. 2021. Decomposition-based multi-objective optimization for energy-aware
distributed hybrid flow shop scheduling with multiprocessor tasks. Tsinghua Science and Technology 26, 5 (2021),
646-663.

Anish Krishnakumar et al. 2020. Runtime task scheduling using imitation learning for heterogeneous many-core
systems. IEEE Transactions on CAD of Integrated Circuits and Systems 39, 11 (2020), 4064-4077.

Yu-Kwong Kwok and Ishfag Ahmad. 1996. Dynamic critical-path scheduling: An effective technique for allocating
task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7, 5 (1996), 506-521.

Yu-Kwong Kwok and Ishfaqg Ahmad. 1999. Static scheduling algorithms for allocating directed task graphs to multi-
processors. ACM Computing Surveys (CSUR) 31, 4 (1999), 406—471.

Zachary C. Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is
both important and slippery. Queue 16, 3 (2018), 31-57.

Chunming Liu, Xin Xu, and Dewen Hu. 2014. Multiobjective reinforcement learning: A comprehensive overview. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 45, 3 (2014), 385-398.

[35] Joshua Mack, Sahil Hassan, Nirmal Kumbhare, Miguel Castro Gonzalez, and Ali Akoglu. 2023. CEDR: A compiler-

(36]

(37]

(38]

integrated, extensible DSSoC runtime. ACM Transactions on Embedded Computing Systems 22, 2 (2023), 1-34.

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource management with deep
reinforcement learning. In ACM Workshop on Hot Topics in Networks. 50-56.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. 2019.
Learning scheduling algorithms for data processing clusters. In ACM Special Interest Group on Data Communication.
270-288.

Kasra Moazzemi, Biswadip Maity, Saehanseul Yi, Amir M. Rahmani, and Nikil Dutt. 2019. HESSLE-FREE: Heteroge-
neous systems leveraging fuzzy control for runtime resource management. ACM Transactions on Embedded Computing
Systems (TECS) 18, 5s (2019), 1-19.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. 2016. Multi-objective deep rein-
forcement learning. arXiv preprint arXiv:1610.02707 (2016).

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. 2020. Learning the pareto front with hypernetworks.
arXiv preprint arXiv:2010.04104 (2020).

OpenALl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. 2017. Virtual to real reinforcement learning for autonomous
driving. arXiv preprint arXiv:1704.03952 (2017).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

http://arxiv.org/abs/2303.08774

113:22 T. Basaklar et al.

[43]

[44]

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. 2013. A survey of multi-objective se-
quential decision-making. Journal of Artificial Intelligence Research 48 (2013), 67-113.

Rizos Sakellariou and Henan Zhao. 2004. A hybrid heuristic for DAG scheduling on heterogeneous systems. In Int.
Parallel and Distributed Processing Symposium. IEEE, 111.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization

[46]

[47]

(48]
[49]
[50]
[51]
[52]

(53]

[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]

algorithms. arXiv preprint arXiv:1707.06347 (2017).

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. 2020. Optimization methods for
interpretable differentiable decision trees applied to reinforcement learning. In International Conference on Artificial
Intelligence and Statistics. PMLR, 1855-1865.

Andrew Silva, Taylor Killian, Ivan Dario Jimenez Rodriguez, Sung-Hyun Son, and Matthew Gombolay. 2019. Optimiza-
tion methods for interpretable differentiable decision trees in reinforcement learning. arXiv preprint arXiv:1903.09338
(2019).

Alberto Suarez and James F. Lutsko. 1999. Globally optimal fuzzy decision trees for classification and regression. [EEE
Transactions on Pattern Analysis and Machine Intelligence 21, 12 (1999), 1297-1311.

Tegg Taekyong Sung and Bo Ryu. 2022. Deep reinforcement learning for system-on-chip: Myths and realities. [EEE
Access 10 (2022), 98048-98064.

Zhao Tong, Xiaomei Deng, Hongjian Chen, Jing Mei, and Hong Liu. 2020. QL-HEFT: A novel machine learning sched-
uling scheme base on cloud computing environment. Neural Computing and Applications 32 (2020), 5553-5570.
Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 1999. Task scheduling algorithms for heterogeneous processors. In
Proceedings of the Heterogeneous Computing Workshop (HCW’99). 3-14.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 2002. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems 13, 3 (2002), 260-274.

Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu, and Diego Perez-Liebana. 2018. Deep rein-
forcement learning for general video game AL In IEEE Conference on Computational Intelligence and Games (CIG’18).
1-8.

J. D. Ullman. 1975. NP-complete scheduling problems. J. Comput. System Sci. 10, 3 (1975), 384-393. https://doi.org/10.
1016/S0022-0000(75)80008-0

Augusto Vega et al. 2021. STOMP: Agile evaluation of scheduling policies in heterogeneous multi-processors. In
DOSSA-3 Workshop@ HPCA.

Bart Veltman, B. J. Lageweg, and Jan Karel Lenstra. 1990. Multiprocessor scheduling with communication delays.
Parallel Computing 16, 2-3 (1990), 173-182.

Xiaojie Wang, Zhaolong Ning, Song Guo, and Lei Wang. 2020. Imitation learning enabled task scheduling for online
vehicular edge computing. IEEE Transactions on Mobile Computing 21, 2 (2020), 598—611.

Jie Xu et al. 2020. Prediction-guided multi-objective reinforcement learning for continuous robot control. In Interna-
tional Conference on Machine Learning. PMLR, 10607-10616.

Hoeseok Yang and Soonhoi Ha. 2008. ILP based data parallel multi-task mapping/scheduling technique for MPSoC.
In 2008 International SoC Design Conference, Vol. 1. IEEE, 1-134.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A generalized algorithm for multi-objective reinforce-
ment learning and policy adaptation. Advances in Neural Information Processing Systems 32 (2019), 14636—-14647.
Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. 2021. Reinforcement learning in healthcare: A survey. ACM
Computing Surveys (CSUR) 55, 1 (2021), 1-36.

Junyan Zhou. 2020. Real-time task scheduling and network device security for complex embedded systems based on
deep learning networks. Microprocessors and Microsystems 79 (2020), 103282.

Received 23 March 2023; revised 2 June 2023; accepted 30 June 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 113. Publication date: September 2023.

https://doi.org/10.1016/S0022-0000(75)80008-0

