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Continuous monitoring of areas nearby the electric grid is critical for preventing and early detection of dev-

astating wildfires. Existing wildfire monitoring systems are intermittent and oblivious to local ambient risk

factors, resulting in poor wildfire awareness. Ambient sensor suites deployed near the gridlines can increase

the monitoring granularity and detection accuracy. However, these sensors must address two challenging

and competing objectives at the same time. First, they must remain powered for years without manual main-

tenance due to their remote locations. Second, they must provide and transmit reliable information if and

when a wildfire starts. The first objective requires aggressive energy savings and ambient energy harvesting,

while the second requires continuous operation of a range of sensors. To the best of our knowledge, this paper

presents the first self-sustained cyber-physical system that dynamically co-optimizes the wildfire detection

accuracy and active time of sensors. The proposed approach employs reinforcement learning to train a policy

that controls the sensor operations as a function of the environment (i.e., current sensor readings), harvested

energy, and battery level. The proposed cyber-physical system is evaluated extensively using real-life tem-

perature, wind, and solar energy harvesting datasets and an open-source wildfire simulator. In long-term

(5 years) evaluations, the proposed framework achieves 89% uptime, which is 46% higher than a carefully

tuned heuristic approach. At the same time, it averages a 2-minute initial response time, which is at least

2.5× faster than the same heuristic approach. Furthermore, the policy network consumes 0.6 mJ per day on

the TI CC2652R microcontroller using TensorFlow Lite for Micro, which is negligible compared to the daily

sensor suite energy consumption.

CCS Concepts: • Computing methodologies→ Reinforcement learning; • Computer systems organi-

zation→ Embedded and cyber-physical systems;
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1 INTRODUCTION

Wildfires occur naturally in many ecosystems worldwide, with increasing frequency and severity
in recent years, as depicted in Figure 1. According to data from the European Forest Fire Informa-
tion System, wildfires in 2022 have burnt 3× more area than the historical average, as shown in
Figure 1(a) [43]. Similarly, The United States National Interagency Fire Center reports that the total
burned area has doubled in the last 20 years, as shown in Figure 1(b) [32]. The devastating wildfires
have far-reaching ecological, social, and economic impacts, such as the loss of human lives, homes,
property, and infrastructure, as well as adverse effects on animal health and air quality.
The increasing trend in wildfire occurrences is due to various human-caused factors, including

logging, agriculture, and urbanization, which alter the landscape, and external ignition sources,
such as cigarettes, campfires, and electric power infrastructure. Among these, electric power in-
frastructure poses a particular risk because it can cause highly deadly wildfires and be disabled by
them. For example, the 2018 Camp Fire in California caused 85 fatalities, over $16 billion in damage,
and led the power utility to bankruptcy [45]. Thus, monitoring areas near power grids is essential
to developing effective strategies for preventing or promptly detecting grid-caused wildfires.
Current preventive techniques are based on various risk indexes that represent a rough like-

lihood of fire occurrences, such as the Wildland Fire Potential Index (WFPI), the National Fire
Danger Rating System (NFDRS), and others [16, 17, 23]. These indexes use meteorologic data from
weather stations hundreds of miles away from the actual location of interest (i.e., the electric grid
in this case). Hence, the temporal and spatial resolutions of these index maps are poor. Similarly,
the existing satellite and airborne wildfire detection systems collect intermittent data. Moreover,
they are unaware of local ambient factors such as high wind speeds or low humidity, which results
in poor awareness and long detection times [31]. Motivated by these shortcomings, recent research
has focused on a new class of data-informed, energy-harvesting cyber-physical systems (CPS), i.e.,
sensor suites, to improve wildfire prevention and detection [35]. The deployed sensor suites must
comprise multiple sensors for accuracy and be self-sustainable due to low maintenance require-
ments. However, accommodating many sensors with varying levels of power consumption as well
as the dynamic nature of the environment make achieving self-sustainability difficult. The current
practice to alleviate this problem is over-designing the system (i.e., using larger than necessary bat-
teries and energy harvesters) and employing heuristics to control the total energy consumption by
duty-cycling the sensors. However, these solutions increase the cost of the system and are far from
optimal. Therefore, there is a strong need for theoretically grounded and practical cyber-physical
systems that maximize monitoring accuracy while ensuring self-sustainability.
This paper presents a CPS framework that achieves self-sustained operation throughout the sys-

tem lifetime (years). We consider sensor suites that integrate multiple sensors, such as temperature
and particle, with different accuracy and power consumption. The sensor suites replenish the bat-
tery by harvesting solar energy to avoid manual maintenance. On the one hand, the sensors must
stay on with a high sampling rate to maximize the detection accuracy and response time when a
wildfire approaches. On the other hand, the sensor suite must preserve energy for arbitrarily long
durations (five years in our evaluations) since wildfires can happen anytime, and the battery can-
not be replaced easily due to remote locations. One can formulate this challenge as a constrained
optimization problem and solve it with modern solvers like CPLEX [10] and Gurobi [21]. How-
ever, these approaches are impractical for online deployment since they require long execution
times [9] and significant computational power beyond what simple sensor suites can provide. As
a powerful and practical alternative, we propose a novel RL framework to co-optimize the sensor
energy consumption and wildfire monitoring accuracy. The primary advantages of the proposed
CPS framework are:
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Fig. 1. (a) Cumulative burnt area in Europe in 2022 compared to the 2006-2021 average. (b) Average monthly

burnt area in the US between 2002-2020 compared to between 1984-2001.

(1) Efficient online deployment – After the training stage is completed, the execution time of the
policy network is negligible, facilitating online deployment.

(2) Model-free – RL implicitly learns the energy harvesting and consumption patterns, which
makes it a prediction-free approach, i.e., it does not rely on forecasts of the future.

The proposed framework trains an RL agent that controls the sensor sampling rates such that
the accuracy of sensor readings is maximized without depleting the battery and forcing the sensor
suite to enter a sleep state. As a result, it achieves reliable wildfire monitoring with a self-sustained

operation for as long as five years, as demonstrated in Section 5. To train the agent, we develop
a detailed environment for wildfire monitoring CPS that models the energy consumption due to
sampling, data processing, communication, and standby power, as well as the sensing accuracy.
Evaluations under different wildfire scenarios demonstrate that the trained RL agent successfully
controls the sensors under dynamic, uncertain conditions. Specifically, it achieves 89% system up-
time in 5-year long simulations, 46% higher than a carefully tuned heuristic approach. Similarly,
the RL agent averages a 2-minute initial response time, which is at least 2.5× faster than the heuris-
tic approach. In addition, when deployed on the TI CC2652R microcontroller, the agent consumes
only 0.6 mJ in a day, which is negligible compared to the energy consumption of the sensors. In
summary, our major contributions are:

—A novel RL based CPS design for self-sustained, reliable and continuous monitoring of
wildfires,

— An open-sourced, detailed RL environment that can simulate wildfires and model the
energy consumption of a sensor suite, and the behavior of the sensor readings, which can
be used beyond training RL agents,

— Detailed experimental evaluation of the proposed CPS in terms of long-term performance
and energy consumption on the TI CC2652R microcontroller.

The rest of this paper is organized as follows: Section 2 reviews the prior work. Section 3
overviews the problem and introduces the background concepts and mathematical formulations.
Section 4 presents the proposed environment and the RL framework. Then, Section 5 presents the
experimental evaluations of the trained RL agent. Finally, Section 6 concludes the paper.

2 RELATEDWORK

There are three current mechanisms for wildfire monitoring: Unmanned aerial vehicles (UAVs),
satellites, and sensor networks. UAVs commonly refer to vehicles or systems that are remotely op-
erated and travel by flight. They have become an increasingly popular tool for detecting wildfires
due to their ability to cover large areas quickly and provide real-time data to ground crews [37, 46].
Despite their advantages, UAVs are unsuitable for continuous, uninterrupted monitoring in
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wildfire-prone areas owing to their limited flight times [31]. Geostationary satellites address the
lack of continuous availability of UAVs, as they can monitor a specific area continuously for
fires [31]. With more accessible access to satellites through projects such as the CubeSat [6, 20], re-
cent research has focused on wildfire detection algorithms using the low-resolution images taken
by the satellites. Furthermore, since sending images to the ground stations may take hours, system
designs for processing the images at the edge gained traction [3]. Despite these efforts, the limited
spatial and temporal nature of the data makes timely detection challenging. For example, detecting
young fires smaller than a pixel is extremely difficult [31]. In addition, dense clouds, smoke, and
other atmospheric effects may lead to false alarms or missed detections.
Wireless sensor networks (WSNs) address the limited spatial and temporal coverage of airborne

approaches. They consist of many distributed sensor suites that accommodate various sensors like
humidity, temperature, and gas particles to monitor the covered area for wildfire. As a result of
their promising outlook, recent research efforts focused either on improving the detection proba-
bility through the use of machine learning [11, 13], improving the bandwidth of the link between
suites [47] or network-level optimizations that minimize network-wide communication energy
overhead [1, 24, 38]. However, the benefits of WSNs quickly diminish if the sensor suites run out
of battery, as maintenance and replacement require significant manual labor and logistic effort.
In addition, many wilderness zones are protected from e-waste [31]. Therefore, guaranteeing self-
sustained operation to achieve maximum device lifetime (at the suite level) is extremely critical for
this technology. Yet, most existing literature does not discuss the performance of the suites for
extended periods of time, like 5+ years. Most importantly, the existing literature targets perpetual
monitoring rather than stochastic events likewildfire occurrence. In contrast, our formulation aims
to address the stochasticity of wildfire occurrence and improve performance at the node level. We
provide 1-year and 5-year simulations that depict how the performance of the RL agent is affected
over time.
Energy harvesting and management approaches for self-sustained operation gained attention

thanks to decreasing energy consumption requirements of sensing, processing, and communica-
tion hardware. One of the early studies in this field [25] proposes a linear programming approach
to determine the duty cycle of the IoT device for self-sustained operation. This approach relies on
the predictions of harvested energy to determine the future on-time of the device. A more recent
approach proposes a rollout-based optimization to determine the energy consumption budget for a
wearable IoT device [44]. Similarly, this approach first finds initial solutions based on the predicted
values for future harvested energy. It then corrects the initial solutions in runtime by considering
variations between predicted and actual harvested energy to achieve self-sustainability. The perfor-
mance of such approaches depends critically on prediction accuracies. RL-based approaches eliminate
this dependency and enable prediction-free techniques. Various studies have used RL to manage
sampling rates and energy consumption inWSNs [2, 5, 15, 18, 28]. For example, RLMan [2] utilizes
RL to optimize the packet generation rate in a point-to-point communication system. Similarly,
tinyMAN [5] utilizes RL to allocate energy for a wearable IoT device for self-sustainability. How-
ever, the environment dynamics, the RL algorithm, and the performance metrics they optimize do
not translate to wildfire monitoring. For example, they focus on optimizing either the data pro-
cessing energy or the communication energy only (i.e., they do not consider the sensor sampling
energy). In addition, these approaches lack thorough energy consumption and harvesting models.
They do not model the sensor behavior, which is crucial for wildfire monitoring. Moreover, the
implementations (codebase) of these studies are often not shared, which renders such RL-based
approaches impossible to reproduce. In contrast, the current work explains the underlying models
in detail and provides an open-source codebase.
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To the best of our knowledge, there are no prior sensor accuracy-energy co-optimization
techniques for wildfire monitoring. The self-sustainable design choices have been either over-
designing the energy harvester and the battery [41] or using very low-power, low-cost sensors [35].
Over-designing increases the cost and makes deployment difficult, and it still does not guarantee
self-sustainability. Conversely, using low-cost sensors may compromise the reliability of a long-
term solution in terms of hardware lifetime andmeasurement accuracy. Therefore, a self-sustained
wildfire monitoring CPS design is an essential contribution to the wildfire monitoring literature.
To this end, we propose an RL-based framework to co-optimize the sensor energy consumption
and wildfire monitoring accuracy for the first time in the literature.

3 PROBLEM OVERVIEW AND PRELIMINARIES

3.1 Objective of the Proposed RL-based CPS Design Framework

The proposed CPS design considers an energy-harvesting sensor suite with sensing, processing,
and communication capabilities, an energy-harvesting source, and a rechargeable battery, as de-
picted in Figure 2. The sensor suites are attached to existing electric towers in rural areas to moni-
tor the environment using the various sensors. We assume the battery energy is complemented by
harvested energy since the power utility companies do not allow any direct physical interface to
the wires due to the safety, liability concerns, and cost of power conversion equipment. This work
employs solar energy harvesting because it is a robust and mature technology [44], but our formu-
lation does not exclude any other energy harvesting modality, such as electromagnetic coupling
with the power distribution lines [36]. As there are no trees near the towers, shade from trees is not
a concern. When the sensor suites detect a potential wildfire, they communicate the preprocessed
data to a central node where decision-making (e.g., risk index calculation and intervention) occurs.
This work focuses on producing accurate sensor readings at the edge regardless of the onset time
of a wildfire. Therefore, the suite must obtain accurate sensor readings for robust decision-making
while avoiding running out of battery. This is challenging because the response time and accuracy
of the sensor readings improve by using higher sampling rates. In turn, energy consumption in-
creases with sampling rates due to higher sensing, data processing, and communication energy.
Consequently, the energy in the battery drains faster, and achieving self-sustainability becomes a
challenging objective. Our framework poses this objective as an optimization problem and solves
it using RL:

Objective: Maximize the accuracy of sensor readings by increasing the sampling rates while
keeping the device operational at all times (i.e., the battery is not depleted).
The rest of this section presents the mathematical background that allows us to describe the

dynamics of the sensor node as an RL environment. Then, it formulates the optimization prob-
lem and provides background about the Twin Delayed Deterministic Deep Policy Gradient (TD3)
algorithm used in this work.

3.2 Sensor and Energy Models

3.2.1 Sensor Noise and Accuracy. Each of the sensor suites in Figure 2 has multiple sensors.
The sensors in different sensor suites will read different values due to their relative locations with
respect to the wildfire. For example, in this case, the temperature sensors on suite1 and suite3 will
read higher temperatures than the sensor on suite2. Similarly, the sensor readings on suite1 and
suite3 will be more noisy (higher variance) due to a nearby heat source. There are no existing
studies in the literature that model how sensor readings behave during a wildfire. Therefore, we
used the Fire Dynamics Simulator (FDS) [29], a sophisticated computational fluid dynamics model
of fire-driven fluid flow, to simulate the smoke particles and heat during the progression of a
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Fig. 2. Overview of the proposed CPS design: An energy harvesting sensor suite with sensing, processing

and communication capabilities. Our RL-based framework trains an agent to control the sampling rates of

the sensors on the sensor suite.

Fig. 3. An overview of the sensor model. (a) The expected sensor readings are modeled with exponentially

decaying readings as a function of the distance to fire. (b) The actual sensor readings are drawn from a

distribution that is centered around the expected sensor reading.

wildfire. Our experiments with representative wildfire scenarios reveal that the sensor readings
are exponentially correlated with the distance from the fire. Using the measurements from detailed
FDS simulations, we use a normalized model for the expected sensor readings:

E[S (d )] = Me−kd + N (1)

whereM is the maximum of the sensor reading range, k is a constant that controls the decay rate
of sensor readings with distance (i.e., the sensor’s far-sightedness), N is the nominal reading value
for the sensor, and d is the distance between the sensor and the firefront. For example, Figure 3(a)
shows three sensors with different k values. Sensor 1 starts to deviate from the nominal at greater
distances to fire than sensors 2 and 3, i.e., sensor 1 is more sensitive to fire than sensors 2 and 3.
Given the expected sensor reading model in Equation (1), the actual sensor readings are drawn

from a normal distribution with μ = E[S (d )] and σ = 1/d .

Si (d ) ∼ N
(
E[Si (d )],

1

d

)
, Si ∈ Rai (2)

Here, the standard deviation of the distribution is inversely proportional to the distance to fire.
This relationship models the increase in noisy readings when the fire is nearer. For example, sen-
sor 1 is expected to read 0.22 at a distance of 5 units from the fire, as shown in Figure 3(a). This
constitutes the mean of the distribution of the sensor readings in Figure 3(b). The larger the dis-
tance to fire, the smaller the deviation and the narrower the distribution gets, and vice versa as
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Fig. 4. The energy consumptionmodel. Each sampling event repeats these steps. *Comms: Communications.

shown in Figure 3(b). Finally, ai samples are drawn from the distribution (Equation (2)), and their

sample mean constitutes the actual sensor reading Ŝ :

Ŝi (ai ,d ) =
1

ai

ai∑
n=0

Si (d ) (3)

where i denotes the sensor index and ai is the sampling rate per hour for sensor i . Thus, higher
sampling rate improves sensing accuracy by sampling more samples from the distribution. Using
higher sampling rates is more critical in the presence of a wildfire to maximize sensing accuracy.

3.2.2 Energy Consumption of the Suite. We model the energy consumption of the sensor suite
as shown in Figure 4. This figure shows six main stages for the operation of the sensor suite: (i) The
suite wakes up from sleep (TW ), (ii) the sensor i measures a sample (T S ), (iii) the microcontroller
(MCU) processes the collected data (T P ), (iv) data is transmitted to neighboring sensor suites (TTx ),
(v) an acknowledgment is expected before going back to sleep (T Rx ), (vi) the suite goes to sleep
mode until the next wake up. Since each sensor on the suite can be assigned different sampling
rates, this cycle is executed on a per-sensor basis.
The total active time for a sensor i is

TAct
i = TW +T S

i +T
P
i +T

Tx
i +T Rx (4)

Since different sensors use different techniques for measurements, the sampling timeT S is a func-
tion of sensor (i). For example, a temperature sensor typically has a shorter T S than an image
sensor. Similarly, different sensors use different number of bits to represent a sample. For example,
a temperature sensor uses 4 bytes per sample, whereas an image sensor may use 640 × 480 × 3
bytes per sample. As a result, T P and TTx are also functions of individual sensors.

The energy consumption for the node due to sensor i has the following four main components:

EActi = TAct
i PMCU

active ESi = T
S
i P

S
i

ETxi = T
Tx
i PTx ERx = T RxPRx

(5)

where PMCU
active is the power consumption of the microcontroller, PSi is the power consumption of

the sensor i , and PTx and PRx are the power consumption owing to the transmit and receive phases
of the communication protocol, as listed in Table 1. Using the above, the hourly energy consumption

of the node due to a sensor i is:

EC (ai ) =
(
EActi + ESi + E

Tx
i + E

Rx
)
ai (6)

Consequently, the the hourly energy consumption of the node due to sleep is:

ECSleep =
��3600 −

∑
i

TAct
i ai�� PMCU

idle (7)
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Table 1. Symbols used in Section 3.2 and their Description

Symbol Description Symbol Description

d Distance from the fire TW Wake-up time for the node

M Maximum sensor reading T S
i Sensing time for sensor i

k Sensor distance constant T P
i MCU data processing time for sensor i

N Nominal sensor reading TTxi Comms transmit time for sensor i

n Number of sensors on the node TRx Comms ack receive time

i Sensor index i ∈ [1, 2, . . .n] TAct
i Total active time for sensor i

ai Samples/hour for sensor i η Efficiency of the energy harvester

a Vector of ai s: [a1,a2, . . . an] t Time step (interval length)

EBt Battery level at the start of interval t T Episode length

EHt Harvested energy in interval t PMCU
active Power consumption of the MCU

EBmin Minimum battery level PMCU
idle

Idle power consumption of the MCU

EBmax Maximum battery level PSi Power consumption of the sensor i

EB
T

Battery level at the end of episode PTx Comms transmit power consumption

ESi Energy consumption per sample of sensor i PRx Comms receive power consumption

ETxi Energy consumption per sample for data transmit due to sensor i

ERx Energy consumption per sample for ack receive

EC (ai ) Hourly energy consumption of the node due to sensor i

EC
Sleep

Hourly energy consumption of the node due to sleeping

EC (a) Total hourly energy consumption of the node

EActi Energy consumption per sample of the microcontroller due to sensor i

E[Si (d )] Expected sensor reading for sensor i at distance d from the fire

Si (d ) Sensor readings sampled from N (E[Si (d )],
1
d
)

Ŝi (ai ,d ) Actual sensor reading for Sensor i set to ai samples/hr at distance d from the fire

where PMCU
idle

is the power consumption of the microcontroller during sleep mode. Finally, the
hourly energy consumption of the node is given by:

EC (a) =
∑
i

EC (ai ) + E
C
Sleep (8)

where a ∈ Nn is the vector of sampling rates ai assigned to sensors i ∈ [1, 2, . . .n].

3.2.3 Energy Harvesting and Battery Dynamics. The energy harvesting source converts the en-
ergy in the surrounding environment into usable electrical energy, which is often used to extend
the battery lifetime. There are many energy harvesting modalities, including light, motion, heat,
and electromagnetic coupling based harvesters. The proposed framework is oblivious to the type
(e.g., light) of energy harvester, and it does not rely on any predictions of the harvested energy.
Our evaluations use solar energy harvesting data, as detailed in Section 4.1.2.
Our framework uses 150-hour long episodes (T = 150 hours) divided into one-hour time steps

(t ). We denote the battery energy level at the start of time step t as EBt , the harvested and the
consumed energy in time step t as EHt , E

C
t respectively. Using the above, the following equation

governs the evolution of the battery energy:

EBt+1 = EBt + ηE
H
t − ECt (a), t ∈ T (9)
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where η accounts for the inefficiencies at the energy harvesting and battery charging interfaces.
Furthermore, there are two physical constraints on the battery energy level, such that the battery
level is bounded between empty (i.e., EBmin = 0%) and full (i.e. EBmax = 100%):

EBmin ≤ EBt ≤ EBmax , t ∈ T (10)

3.2.4 Problem Formulation. Using equations 1, 3, 8–10, we formulate the optimization problem
as follows:

minimize
∑
i

|Ŝi (ai ,d ) − E[Si (d )]|

subject to EBt+1 = EBt + ηE
H
t − ECt (a), t ∈ T

EBt ≥ EBmin EBt ≤ EBmax EBT ≥ EB0

(11)

where i denotes the different sensors. Thus, the optimal solution minimizes the absolute error in
sensor readings (i.e., the objective) while satisfying battery constraints by optimizing the sampling
rates of the sensors.

3.3 Twin Delayed Deep Deterministic Policy Gradient (TD3) Algorithm

The objective of RL is to train an agent to make optimal decisions within an environment by ac-
quiring a policy that maximizes the overall reward over a period of time. Since deterministic policy
gradient approaches show superior performance compared to SOTA RL approaches and are less
susceptible to hyperparameter tuning, we employ Twin Delayed Deep Deterministic Policy Gra-
dient [19] (TD3) algorithm in our work, which is an extension of the deep deterministic policy
gradient (DDPG) [27] approach. DDPG comprises an actor, a policy network that leverages the
policy gradient method to obtain the optimal policy, and a critic, a deep Q network (DQN) respon-
sible for evaluating the action produced by the actor. The actor is trained to learn the correlation
between state and action, while the critic is trained to learn the connection between state-action
pairs and anticipated cumulative returns (Q-values). However, one drawback of DDPG is that the
critic tends to overestimate the target Q-value, which can result in issues with policy stability and
convergence to local optima due to approximation errors in the Q-value utilized to enhance the
policy [19]. To mitigate the overestimation error, TD3 [19] is proposed with three significant im-
provements on DDPG: (i) clipped double Q-learning, (ii) target policy smoothing, and (iii) delayed
policy updates.

Clipped double Q-learning: TD3 uses two separate critic networks instead of one. It uses the
smaller of the two Q-values to form the targets in Bellman’s optimality equation and updates both
critics using the following loss:

Lcr it ic (θi ) = E(St ,at ,rt ,St+1 )∼D[(y −Q (St , at ;θi ))2] (12)

y = r + γ argQ min
i=1,2

Q (St+1, ã;θ ′i ) (13)

whereD is the experience replay buffer that stores transitions (St , at , rt ,St+1) for every time step
in the environment and y is the target value.

Target policy smoothing: The action ãwhile computing target values is generated by the target
actor-network. However, the DDPG method is prone to generating target values with high vari-
ance, even for similar actions. This is due to the deterministic policies tend to overfit to the sharp
peaks in the value estimate. To mitigate this issue, instead of using the action given directly by the
target actor-network, we add some noise ϵ to the action as follows:

ã = π (St+1,ϕ ′) + ϵ : ϵ ∼ clip (N (0,σ ),−c, c ) (14)
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The target actor-network policy for stateSt+1 is represented by π (St+1,ϕ ′), and the range from −c
to +c indicates that any noise added is clipped to ensure that target action remains in proximity
to the actual action. This regularization technique helps to decrease the variance in the target
values.

Delayed policy updates: In deterministic policy gradient approaches, the parameters of the actor-
network are updated by maximizing the Q-values obtained using the actions generated by the
actor-network as follows:

Lactor (ϕ) = E(St ,at ,rt ,St+1 )∼D[Q (St , at ;θ1) |at=π (St ;ϕ )] (15)

Adopting this update rule can lead to divergence during the training of the agent, particularly
when a suboptimal policy is overestimated. Consequently, the agent may update on states with
high error, leading to instability and a shift towards inferior policies. TD3 updates the actor-
network less frequently than the value network to address this challenge. This approach of in-
frequent policy updates produces value estimates with lower variance and therefore promotes the
generation of better policies.

4 PROPOSED RL-BASED CPS DESIGN FRAMEWORK

RL methods have led to remarkable advancements in diverse fields, such as autonomous driving,
robotics, and gaming. The remarkable strides in RL’s application in these domains are largely
attributed to the widespread adoption of open-source ML frameworks. For example, Google Deep-
Mind’s StreetLearn [30] and Microsoft Research’s AirSim [39] environments have facilitated sev-
eral innovative approaches to autonomous driving. Thus, designing a representative environment
for wildfire monitoring is of utmost importance as it enables the application of RL techniques for
wildfire detection. As such, a significant contribution of this work is an RL environment for wild-
fire propagation and sensor suite dynamics. This environment enables us to apply the proposed
RL-based framework for reliable wildfire monitoring. We also plan to release it to the public to
catalyze research in this area and enable the broader RL community to use our environment as a
benchmark. This section first presents the design of this RL environment. Then, it describes the
proposed TD3 framework that leverages this environment.

4.1 RL Environment Design for Wildfire Monitoring CPS

4.1.1 Wildfire Simulation. Detailed fire simulators, such as FDS, are extremely slow due to the
underlying differential equations. For example, executing the small-scale test fires in Section 3.2.1
takes several hours. Therefore, we employ FDS only for characterizing the sensor readings and re-
vert to Cell2fire [34], another open-source wildfire simulator, for large-scale wildfire simulations.
Cell2fire employs cellular-automata networks to model wildfires at a higher level than FDS. It uses
real-world temperatures, windmeasurements, and terrains, as shown in Figure 5. The Cell2fire sim-
ulator has been validated using several real-world fires. Among these, we use the Dogrib Creek
instance for the underlying elevation and vegetation map. This instance consists of a rectangular
grid of 357 × 223 cells, where each cell is a 100 m × 100 m square (the total area is 35.7 km ×
22.3 km). Each cell has an elevation and vegetation value that determines the fire’s rate of spread
within that cell. The simulator combines this information with ambient temperature and wind
data to simulate the direction and the rate of spread of the fire across the grid given an ignition
point. Therefore, to generate a burn trace, we choose a random 150-hour segment from an hourly
temperature and wind dataset from the BANFF CS Canadian weather station. In addition, we ran-
domly pick an ignition point from the set of 6 points shown in Figure 5(a). By doing this, we model
wildfires approaching from different directions with upwind and downwind conditions. In total,
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Fig. 5. The Dogrib Creek, CA map illustrated using the Cell2fire simulator. (a) Our sensor suite placement

and six different ignition points. (b) An example wildfire trace that shows the spread of the fire in three time

instants. The wildfire gets within 10 cells of the sensor suite after around 100 hours.

we generate 6000 different 150-hour-long wildfire burn traces. An example burn trace that shows
the wildfire at three time instants during its evolution is shown in Figure 5(b). Finally, we stress
that our framework is not limited to the Dogrib Creek map or Cell2fire.
Despite the relatively faster speed of Cell2fire, embedding a wildfire simulator inside an RL envi-

ronment is not feasible for training since RL algorithms require thousands of episodes to converge,
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and running a new simulation at each episode slows down the training process significantly. To
address this challenge, we decouple the fire simulations from the RL environment. Thus, we use
Cell2fire to generate various wildfire scenarios in a batch and store them as trace files for use
during training, as outlined above.

Table 2. Parameter values

M k N TW T S T P TTx TRx PS

S1 1 2 0 0 5 s 0 6.5 ms 0 4 mW

S2 1 0.7 0 0 4 s 0 6.5 ms 0 250 mW

S3 1 0.3 0 0 2s 0 13.0 ms 0 11 mW

PTx PRx PMCU
active PMCU

idle

MCU/LoRa 92.4 mW 0 12.4 mW 1 μW

T α η T Steps *|D| *|B| lr

Others 150 hrs 1 1 106 106 128 10−4

* |. | denotes the size. lr denotes the learning rate.

S1: Temperature sensor, S2: Particle sensor, S3: Wind

sensor. All power values are in mW. PS and T S are the

power consumption and response time of the sensors

that are provided in their datasheets. We ignore the

effects of TW since we assume MCU wakes up instantly

from idle state (i.e., we do not use the stand-by mode).

We assume transmission is one way and no

acknowledgment is expected (i.e., T Rx = 0). We assume

4 bytes per sample for S1 and S2, and 8 bytes per sample

for S3. Using these, T
Tx is calculated (1.63 ms/byte [7]).

Finally, we assume processing time T P for these sensors

is negligible owing to their small data sizes.

4.1.2 Energy Harvesting Dataset. Our frame-
work can use any available energy harvesting
data. In this work, we assume the sensor suite
has a solar energy harvester. To generate a
dataset for solar energy harvesting, we use pvlib,
a well established tool for simulating the perfor-
mance of photovoltaic (PV) energy systems de-
veloped at Sandia labs [22]. Using this tool, we
combine real hourly solar irradiance data from
2015 with a realistic electrical model [26] of a
0.1m2 PV-Cell (Uni-Solar US-5). As a result, we
obtain a year-long hourly energy harvesting data
with seasonal changes (8760 hours in total).

4.1.3 Choice of Sensors, Microcontroller and

Battery. Numerous sensors can be incorporated
into a sensor suite, such as temperature, hu-
midity, pressure, wind, particle sensors, thermal
camera, and others. In this work, we use three
widely adopted meteorological sensors: Temper-
ature sensor [4], particle sensor [12], and wind
speed/direction sensor [33]. We choose these
three as they represent different levels of energy
consumption and different levels of sensitivity to
fire (e.g., particle sensor’s range is higher than
temperature sensor). However, we emphasize that the proposed framework works with any arbi-
trary type and number of sensors. We use LoRa as the communication protocol [7]. For the micro-
controller, we use the STM32WLE5 series, a system-on-chip that accommodates an ARM Cortex
M4 CPU and a LoRa radio on the same package [40]. Finally, we use a 10 Ah @ 3.3 V LiPo battery
with a 5% annual capacity degradation [44]. The values of the parameters are listed in Table 2.

4.1.4 State Space, Action Space, and Reward Function. The RL environment for wildfire moni-
toring CPS is designed with generality in mind to enable any reinforcement learning technique.

State Space: The state space is a 14-tuple S ⊆ R14 that consists of:

— Current battery energy (
EB
t

EBmax

∈ [0, 1]): The energy level of the battery at the beginning of

the current step t divided by the battery capacity.

—Harvested energy in the previous time step (
EH
t−1

EBmax

∈ [0, 1]): Harvested energy during the pre-

vious step t−1 divided by the battery capacity.
— Cumulative EH (

∑t−1
τ=0 E

H
τ ∈ R): Cumulative harvested energy in the previous time steps.

— Initial battery energy level (
EB0

EBmax

∈ [0, 1]: The energy level of the battery at the beginning of
the episode (t = 0) divided by the battery capacity.
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— Target battery energy level (
EB
T

EBmax

∈ [0, 1]): The desired energy level of the battery at the end

of the episode (t = T ) divided by the battery capacity.
—Actions in the previous step (at−1 ∈ [−1, 1]3): The sampling rates assigned to the three sensors
in the previous step t−1.

— Sensor readings in the previous step (Ŝt−1 ∈ [0, 1]3): The sensor readings of the three sensors
in the previous step t−1.

—Moving average of sensor readings ( 15
∑t−1
τ=t−5 Ŝτ ∈ [0, 1]3): The moving average of sensor

readings in the previous 5 time steps (t−5 to t−1).
Action Space: The actions are the assigned hourly sensor sampling rates at every time step
(at ∈ [−1, 1]3). We limit the actions in the [−1, 1] interval, and map this interval to [0, 60] when
calculating the energy consumption of the suite (i.e., -1 maps to 0 samples/hr and 1 maps to 60 sam-
ples/hr.) The training performance takes a significant hit if we use the full [1, 60] range instead of
[−1, 1].
Reward function: Our objective is to minimize the difference between the expected sensor read-
ings (i.e., golden values) and the actual sensor readings under battery energy constraints. In an
RL setting, the objective and the constraints are imposed by the reward function. In this case, two
constraints can be imposed on the reward function: (i) minimum battery level constraint and (ii)

target battery level constraint. We do not include the maximum battery level constraint because
under-utilizing the energy implicitly decreases the objective. Considering the objective and the
constraints on the battery, the reward function becomes:

rt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−100 EBt ≤ EBmin

α

(
EB
t
−EB

T

EBmax

)
− |Ŝ (a,d ) − E[S (d )]| otherwise

(16)

Here, we impose the minimum battery energy level by punishing the training heavily (−100 re-
ward) if this constraint is violated. Otherwise, we impose the target battery level constraint using

the first term (
EB
t
−EB

T

EBmax

). The objective is considered through the second term |Ŝ (a,d ) − E[S (d )]|. α
is a coefficient to scale the weight of the target battery level constraint, i.e., higher α will push the
agent to be more conservative and linger around the target battery level.

4.1.5 Implementation. We develop our environment in Python and register it as an OpenAI
Gym [8] environment using the components explained in this section.When starting training after
a reset, the environment randomly chooses a 150-hour slice from the energy harvesting dataset,
onewildfire trace, and an initial battery energy level, as summarized inAlgorithm 1. During testing,
the environment takes the energy harvesting data, wildfire trace, and the initial battery level as
inputs for repeatable results. Then, the state vector S is initialized and the done signal, which
shows whether the episode ended, is initialized as False.
At each step, the environment gets the data rates a and the state vector St−1 from the previous

time step as input. Then, it reads the harvested energy for the current time step EHt from the
energy harvesting data. In addition, it also reads the status of the wildfire from the wildfire trace.
The environment uses this trace to calculate the distance d between the sensor suite and the fire,
as shown in Figure 5(b). When calculating d , sensors have a maximum range beyond which they
cannot sense environmental changes. For example, Figure 5(b) shows a case where the sensors are
affected only by a wildfire that is within 10 cells of the sensor suite. If the wildfire is outside of this
range, we assign the distance to a very high value (e.g.,∞), so that the sensors read nominal values.
If the wildfire is inside the range, we calculate the distance from the closest point of the wildfire
to the sensor suite. In the example presented in Figure 5(b), at t = 30h and t = 90h, the wildfire
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ALGORITHM 1: Pseudocode for the wildfire RL environment

1 Reset()

2 Training: Randomly choose energy harvesting and wildfire traces, and an initial battery level EB0
3 Test: Take the energy harvesting and wildfire traces, and the initial battery energy as inputs

4 Reset the state S and done← False

5 Output: S, done
6 Step()

7 Input: Data rate a (i.e., actions), St−1
8 Get EHt from the energy harvesting trace

9 Get distance to fire d from the wildfire trace

10 Use d to get expected sensor readings (Equation (1))

11 Use a and d to get actual sensor readings (Equation (3))

12 Use a to calculate ECt (Equation (8))

13 Calculate EBt (Equation (9))

14 Calculate rt (Equation (16))

15 Calculate St
16 if EBt < EBmin or d = 0 or t = 150 then

17 done← True # End of episode

18 else

19 done← False

20 Output: rt , St , done

has not reached within 10 cells of the sensor suite and thus the distance is set to∞. In contrast, at
t = 150h, the closest point of the wildfire to the sensor suite is within 10 cells, so the distance is
now calculated as d = 2. Next, the environment uses d , a, and St−1 to calculate the expected and
actual sensor readings, the energy consumption of the sensor suite, the battery level at the end of
the step, and the reward for this step. Finally, it updates the state vector and outputs the reward,
the state vector and the done signal. An episode terminates (i.e., done ← True) if the battery is
depleted or if the wildfire reaches the sensor suite (i.e., d = 0) or if time step reaches 150.

4.2 Proposed TD3 Framework

The proposed framework trains an RL agent by interactingwith thewildfire CPS environment. The
trained agent is a policy that observes the state vector and yields actions (i.e., data rates a) that
maximize the Q value. Algorithm 2 summarizes the proposed TD3 framework. First, we initialize
an empty replay buffer D and critic and actor networks with random weights. We use a multi-
layer perceptron with three hidden layers and 64 neurons in each layer within these networks. We
also initialize the target critic and actor networks with the same parameters. Then, the framework
starts training. At each episode, we reset the environment to choose new energy harvesting and
wildfire traces, and an initial battery energy level. The agent then interacts with the environment
using its actor-network (πϕ ). The transitions collected (St , at , rt ,St+1,done) are then stored in the
experience replay buffer D. Then, the algorithm samples a minibatch (B) of transitions from D.
Using this minibatch of samples, the smoothed target action values are computed according to the
noise ϵ and the clipping factor c . The target value y is computed using the target critic-networks
and target action values. The actor and critic networks are then updated using the loss functions
explained in Section 3.3. The training terminates when number of time steps reaches T Steps . The
hyperparameters for our approach are presented in Table 2.
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5 EXPERIMENTAL EVALUATIONS ALGORITHM 2: TD3 framework for RL training

1 Initialize: Replay buffer D, Critic networks Qθ1 ,Qθ2

2 and actor network πϕ with parameters θ1, θ2, ϕ

3 Target networks Qθ ′1
← Qθ1 , Qθ ′2

← Qθ2 , πϕ′ ← πϕ
4 done ← True

5 for t = 0: T Steps do

6 if done = True then
7 # End of an episode, start a new one

8 St , done← Reset()

9 Observe state St and take actions: at ← πϕ (St )
10 rt , St+1, done← Step()

11 Store the transition (St ,at ,rt ,St+1,done) in D.

12 Sample random B transitions from D;

13 ãt ← π (St+1,ϕ ′) + ϵ : ϵ ∼ clip (N (0,σ ),−c, c )
14 y ← r + γ argQ mini=1,2Qθ ′

i
(St+1, ãt )

15 Losscr it ic (θi ) = E
[(
y −Qθi (St , at )

)2]
16 Lossactor (ϕ) = E

[
Qθ1 (St , at ) |at=π (St ;ϕ )

]
17 Update critic, actor, and target network

parameters.

This section presents the experimental
evaluation of the proposed framework. It
first describes the evaluation scenarios.
Then, it introduces a class of heuristic al-
gorithms as a baseline since there are no
alternative techniques in the literature. Fi-
nally, it presents the evaluation results
and execution time, energy overhead and
memory footprint measurements of the
proposed framework when deployed on
the TI CC2652R MCU [42].

5.1 Experimental Setup

5.1.1 Evaluation Scenarios. We evalu-
ate the proposed CPS with five wildfire
traces that were generated as part of the
6000 traces as explained in Section 4.1.1.
These five traces are excluded from the

training process explained in Section 4.2.
During testingwith each of the five traces,
we use six different ignition times for long
term simulations: (6 months, 1 year, 2 years, 3 years, 4 years and 5 years), leading to a total of 30
combinations. For example, one of the combinations is to use the first trace with the first ignition
time, which runs the simulation with no-fire conditions for 24 weeks, and the ignition happens
in the 25th week (after 6 months). We use a fixed 150-hour long energy harvesting data for each
week, such that each approach is evaluated fairly.

Evaluation metrics: Since a wildfire can occur at any time, the proposed system should pre-
serve energy under uncertainty and leverage this energy to minimize sensor reading error when a
wildfire danger arises. Using this observation, we extract three quantities from these simulations:
(i) The cumulative number of inactive hours where the battery was depleted, (ii) the cumulative
sampling error, and (iii) the initial response time to a wildfire, which is defined as the time delay
between the emergence of the wildfire and the first measurement after that. If the initial response
time is too long, the fire is detected late, leading to catastrophic consequences.

Ideal Case: The ideal case should have no inactive hours (i.e., battery is never depleted), the
cumulative sampling error is minimized and the initial response time is minimized. However, we
emphasize that achieving this is challenging since the CPS does not knowwhen the fire takes place
and the stored and harvested energies are limited and varying.

5.1.2 Baseline Heuristic Approach. Since no similar technique exists in the literature, we de-
veloped a hierarchical heuristic as the baseline, as summarized in Algorithm 3. This heuristic
first sorts the sensors according to their energy consumption in ascending order (line 5). Then,
it uses an harvested energy predictor for predicting the battery energy in the next interval
(lines 6-7). The energy predictor is obtained by averaging the energy harvested at each hour
in a day over the 365 days in the dataset. As a result, we obtain an estimator for each hour
in a day. Using this predictor, the heuristic calculates the battery level for the next interval.
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ALGORITHM 3: Pseudocode for the heuristic.

1 Input: List of sensors: sensors = [S1,S2, . . . , Sn],

2 threshold values γ ∈ Rn , sensor readings Ŝ ,
3 constant sampling rates c, time of day t and

4 battery level EBt
5 sensors ← Sort(sensors)

6 ÊHt ← predictEnergy(t )

7 ÊBt+1 ← EBt + Ê
H
t

8 # Assign according to predicted battery level

9 if ÊBt+1 > 75% then

10 sensors[1].setSamplingRate(30)

11 sensors[2 . . .n].setSamplingRate(10)

12 else if ÊBt+1 < 25% then

13 sensors[1].setSamplingRate(15)

14 sensors[2 . . .n].setSamplingRate(0)

15 else

16 sensors[1 . . .n].setSamplingRate(c1)

17 # Then check for wildfire occurrence

18 if Ŝ1 > γ1 then
19 sensors[1].setSamplingRate(c2)

20 sensors[2].setSamplingRate(c2)

21 if Ŝ2 > γ2 then
22 sensors[1].setSamplingRate(c3)

23 sensors[2].setSamplingRate(c3)

24 sensors[3].setSamplingRate(c3)

25 if Ŝ3 > γ3 then
26 # Goes on like this ...

Table 3. Three Heuristics with Different Energy

Consumption aggressiveness

Conservative Balanced Aggressive

γ1 0.001 0.001 0.001
γ2 0.3 0.3 0.3
γ3 2 2 2
c1 1 S/hr 15 S/hr 33 S/hr
c2 1 S/hr 21 S/hr 39 S/hr
c3 1 S/hr 27 S/hr 45 S/hr

Conservative uses Very Little Energy all the Time.

Balanced uses less energy most of the time. Aggressive

uses high energy most of the time.

If the predicted battery level exceeds 75%,
the heuristic allocates 30 samples/hr to the
sensor with the lowest energy consumption
and 10 samples/hr to the remaining sensors
(lines 9-11). Conversely, if the predicted bat-
tery level falls below 25%, the sensorwith the
lowest energy consumption is assigned 15
samples/hrwhile the other sensors remain in
a sleep state (lines 12-14). If the predicted bat-
tery level lies between 25% and 75%, the sen-
sors are assigned a constant sampling rate,
denoted as c1 (lines 15-16). Finally, the heuris-
tic checks the sensor readings for a potential
wildfire occurrence (lines 18-26). If the read-
ing of the first sensor exceeds the threshold
γ1, the heuristic wakes up the next sensor in
line and sets the sampling rates of both active
sensors to c2. Then, if the reading of the sec-
ond sensor exceedsγ2, the next sensor wakes
up, all three are set to c3, and so on. This way,
the heuristic overrides the low rates set by
the low-battery level condition.
We perform an extensive sweep of 285 dif-

ferent combinations of c1,c2,c3 values for this
heuristic, with the complete list provided in
Table A1 of the Appendix. From these sets,
we selected two representative variants to
present here, showing distinct levels of "ag-
gressiveness" as depicted in Table 3. The first
variant, the balanced heuristic, employs a
sampling rate of 15 samples/hr for c1, ensur-
ing that it maintains a moderate energy con-
sumption level most of the time. It slightly in-
creases the sampling rates for potential fire
situations to 21 samples/hr for c2 and 27 sam-
ples/hr for c3. The second variant, referred
to as the aggressive heuristic, adopts sam-
pling rates of 33 samples/hr or higher for
all scenarios. This approach prioritizes max-
imum data collection, disregarding potential
energy constraints. Furthermore, we imple-
mented a conservative heuristic that consis-
tently employs the minimum sampling rate
of 1 sample/hr for all sensors (i.e., c1, c2, c3).

5.2 Performance Evaluation

5.2.1 Short-term Analysis: Weekly Behavior. This section evaluates the proposed CPS design
based on one-week simulations, focusing on its behavior during a wildfire that approaches the
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Fig. 6. Weekly behavior of conservative and balanced heuristics and the RL agent. The RL agent achieves

83% and 29% less error than the conservative and balanced heuristics, respectively.

sensor suite on the final day of the week, as depicted in the upper left plot of Figure 6. All al-
gorithms utilize the same wildfire traces and harvested energy, but the RL agent starts with a
considerably lower battery energy to showcase its superiority even under more challenging condi-
tions. The sensor data rate plots in the second row of Figure 6 show that the conservative heuristic
consistently employs low sampling rates throughout the week. This choice helps preserve the bat-
tery energy, as shown in the top right plot. However, it fails to accurately track the environmental
conditions after the wildfire arrives, as demonstrated by the plots in the bottom row. The carefully
tuned balanced heuristic utilizes the sensors more effectively by activating sensors 2 and 3 only
when the battery level exceeds 25%. Additionally, it increases the sampling rate for all sensors after
the wildfire arrives (as evident in the second row of plots). Nevertheless, it operates the sensors
more than needed, wasting energy. As a result, it depletes the battery towards the end of the week
and eventually shuts down. This behavior highlights the inability of static heuristics to guarantee
robust operation in dynamic and uncertain conditions. Similarly, the aggressive heuristic quickly
drains the battery even before the wildfire reaches the sensor suite. In strong contrast, our RL agent
dynamically controls the sensor data rates, co-optimizing monitoring accuracy and battery energy.
It actively uses all sensors to guard against environmental changes (the second row), while simul-
taneously replenishing the battery (top right plot). Despite starting with a significant disadvantage

in terms of initial battery level, the RL agent outperforms the heuristics in terms of average sampling

rate and total accumulated errors, as illustrated in the second and third rows. Specifically, the average

sampling rate is 1.9× higher, and the total error is 29% smaller than the balanced heuristic.
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Fig. 7. Comparison of 1-year long simulation results for the conservative, balanced, aggressive heuristics

and the trained RL agent.

5.2.2 Long-term Analysis: 1-year and 5-year Long Behavior. In this section, we conduct evalu-
ations of the proposed CPS design over durations of 1 year and 5 years. Similar to the previous
section, each algorithm employs identical wildfire traces and harvested energy. However, in this
case, all approaches (including the three heuristics and the RL agent) start with an initial battery
level of 90%, as we argue that this represents a typical scenario for initial deployment. Figure 7
compares the conservative, balanced, and aggressive heuristics against the RL agent over a 1-year
simulation. The first row illustrates the evolution of the battery level for each approach throughout
the simulation, based on one wildfire trace. The conservative heuristic maintains the battery level
near-maximum capacity, as it consistently employs low sampling rates. Conversely, the balanced
and aggressive heuristics often experience battery depletion, as indicated by the fluctuations in
their battery levels. This behavior is illustrated in the second row, where each approach’s cumu-
lative number of inactive hours (i.e., depleted battery) is plotted. Specifically, the balanced and
aggressive heuristics deplete the battery 41% and 55% of the time, respectively. In strong contrast,
the RL agent never depletes the battery due to its capability to recover from low-battery conditions,
as demonstrated in the previous section. Finally, the third row illustrates the distribution of the
initial response times for each approach across the five traces. The conservative heuristic has a
fixed response time of 60 mins. The balanced heuristic has a median response time of 4.93 mins,
whereas the aggressive heuristic has 3.8 mins. However, the aggressive heuristic often dies out in
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Fig. 8. Comparison of 5-years long simulation results for the conservative, balanced, aggressive heuristics

and the trained RL agent.

the final week (after the fire onset), yielding ∞ response time when this happens, as the device
shuts down and the sampling rate is set to 0 c2. In contrast, the RL agent has a shorter response
time compared to heuristic approaches, with a median response time of 2.06 minutes, which is
2.5× faster than the balanced heuristic. Notably, the RL agent achieves this faster response time
while never depleting the battery.

Figure 8 compares the conservative, balanced, and aggressive heuristics against the RL agent
over a 5-year period. As expected, the conservative heuristic exhibits similar behavior to the 1-
year results. The performance of the balanced heuristic deteriorates, evidenced by the increased
inactive time of 57% (from 41%). Furthermore, it consistently shuts down in the final week, resulting
in ∞ response time. The aggressive heuristic is inactive for 66% of the time and always ceases to
operate before the final week. Consequently, both heuristics fail to collect any data during the
wildfire period. In contrast, the RL agent significantly outperforms the heuristics, with only 11%
of the time being inactive. The increase in inactive hours compared to the 1-year case can be
attributed to the 5% annual battery degradation, which becomes more pronounced over the 5-year
duration. As the battery capacity diminishes, the RL agent can no longer maintain its flawless
record from the previous case. Notably, the inactive hours begin to increase after approximately
21,000 hours (around 30 months). Despite this, the RL agent achieves a median response time of
2.19 minutes and avoids battery depletion in the final week.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 135. Publication date: September 2023.



135:20 Y. Tuncel et al.

5.3 Ablation Study on the State Space

We conduct an ablation study on the state space to assess the impact of removing three key com-
ponents: (i) the target battery level, (ii) the cumulative harvested energy (EH) through the current
step, and (iii) the moving average of sensor readings. This study aims to unravel the effects of these
components on the agent’s performance and decision-making process.

(i) Excluding the target battery level from the state space resulted in the agent’s inability to
incorporate the crucial information regarding the desired battery level from the reward func-
tion. As a result, the energy in the battery is significantly underutilized, and the battery level
lingers around the maximum capacity.

(ii) Removing the cumulative EH information from the state space causes the agent to allocate
energy based solely on the instantaneous harvested energy. Consequently, the assigned sam-

pling rates exhibit high variance, oscillating between 0 and 60 samples/hr. In contrast, including
the cumulative EH information in the state space reduces the fluctuation in sampling rates.

(iii) When the moving average of sensor readings is removed from the state space, the agent fails
to learn the relationship between sampling rate and variance in sampling readings. Conse-
quently, it does not increase the sampling rates when the readings deviate from the nominal
values. In contrast, the agent with the original state space increases the sampling rates when
the fire is near.

These findings underscore the importance of including the target battery level, cumulative EH in-
formation, and moving average of sensor readings in the state space. These components enable the
agent to make informed decisions and effectively allocate energy and sampling rates to optimize
the system’s performance.

5.4 Energy Consumption Evaluation on Real Hardware

We deployed the trained RL agent using TensorFlow Lite for Micro (TFLM) flow [14] on the TI
CC2652R MCU. The MCU has an ARM Cortex M4F running at 48 MHz and has 352 KB of flash
memory and 80 KB of SRAM. The execution time and energy consumption overhead of a single
policy network call are measured as 2 ms and 25 μJ, respectively. There are 24 network inference
calls daily (i.e., once every hour). Therefore, the daily energy consumption is 0.6 mJ, which is
negligible compared to the daily energy consumption of the sensor suite. In addition, the policy
network has 13635 parameters. Considering these parameters, the TFLMoperators, inputs, outputs,
and intermediate values, the total memory footprint of the proposed design is less than 200 KB,
which easily fits into the onboard memory. Therefore, deploying and executing the RL agent on
the target MCU does not compromise achieving self-sustainable operation.

6 CONCLUSION AND FUTURE WORK

Wildfires continue to be a significant threat, with devastating consequences lasting for years. Early
detection and prevention of wildfires are crucial to mitigate their impacts. Sensor suites deployed
near the gridlines can enable continuousmonitoring and improve detection accuracy. These sensor
suitesmust achieve self-sustained operation. To this end, this paper presents a novel self-sustained
CPS that co-optimizes the accuracy of wildfire detection and device lifetime by dynamically con-
trolling sensor sampling rates. The proposed approach employs reinforcement learning and is eval-
uated extensively using real-life datasets and an open-source wildfire simulator. The simulation
results show that the proposed framework achieves 89% uptime and a 2-minute response time, and
is at least 2.5× faster than a carefully tuned heuristic approach. Moreover, the trained policy net-
work consumes 0.6 mJ daily energy, which is negligible compared to the daily energy consumption
of the sensor suite. As a result, the proposed approach enables reliable, continuous, and granular
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wildfire monitoring. It has significant potential for deployment in remote areas and could enhance
the efficiency of wildfire detection and prevention. In addition, the proposed framework allows
adaptation to unseen conditions; the model can be fine-tuned using collected data after deploy-
ment, providing consistent performance under varying conditions. As the next step, we plan to
use our framework to design a multi-agent, neighbor-aware self-sustained sensor-suite network.

A APPENDIX

A.1 Parameter Sweep for the Heuristic

Table A1. All 285 Configurations for c1, c2, c3

c3 c2 c1 c3 c2 c1 c3 c2 c1 c3 c2 c1 c3 c2 c1 c3 c2 c1 c3 c2 c1 c3 c2 c1 c3 c2 c1

15 15 15 30 15 15 33 27 27 36 33 15 39 30 30 42 27 15 42 42 15 45 33 27 45 45 30
18 15 15 30 18 15 33 30 15 36 33 18 39 33 15 42 27 18 42 42 18 45 33 30 45 45 33
18 18 15 30 18 18 33 30 18 36 33 21 39 33 18 42 27 21 42 42 21 45 33 33 45 45 36
18 18 18 30 21 15 33 30 21 36 33 24 39 33 21 42 27 24 42 42 24 45 36 15 45 45 39
21 15 15 30 21 18 33 30 24 36 33 27 39 33 24 42 27 27 42 42 27 45 36 18 45 45 42
21 18 15 30 21 21 33 30 27 36 33 30 39 33 27 42 30 15 42 42 30 45 36 21 45 45 45
21 18 18 30 24 15 33 30 30 36 33 33 39 33 30 42 30 18 42 42 33 45 36 24
21 21 15 30 24 18 33 33 15 36 36 15 39 33 33 42 30 21 42 42 36 45 36 27
21 21 18 30 24 21 33 33 18 36 36 18 39 36 15 42 30 24 42 42 39 45 36 30
21 21 21 30 24 24 33 33 21 36 36 21 39 36 18 42 30 27 42 42 42 45 36 33
24 15 15 30 27 15 33 33 24 36 36 24 39 36 21 42 30 30 45 15 15 45 36 36
24 18 15 30 27 18 33 33 27 36 36 27 39 36 24 42 33 15 45 18 15 45 39 15
24 18 18 30 27 21 33 33 30 36 36 30 39 36 27 42 33 18 45 18 18 45 39 18
24 21 15 30 27 24 33 33 33 36 36 33 39 36 30 42 33 21 45 21 15 45 39 21
24 21 18 30 27 27 36 15 15 36 36 36 39 36 33 42 33 24 45 21 18 45 39 24
24 21 21 30 30 15 36 18 15 39 15 15 39 36 36 42 33 27 45 21 21 45 39 27
24 24 15 30 30 18 36 18 18 39 18 15 39 39 15 42 33 30 45 24 15 45 39 30
24 24 18 30 30 21 36 21 15 39 18 18 39 39 18 42 33 33 45 24 18 45 39 33
24 24 21 30 30 24 36 21 18 39 21 15 39 39 21 42 36 15 45 24 21 45 39 36
24 24 24 30 30 27 36 21 21 39 21 18 39 39 24 42 36 18 45 24 24 45 39 39
27 15 15 30 30 30 36 24 15 39 21 21 39 39 27 42 36 21 45 27 15 45 42 15
27 18 15 33 15 15 36 24 18 39 24 15 39 39 30 42 36 24 45 27 18 45 42 18
27 18 18 33 18 15 36 24 21 39 24 18 39 39 33 42 36 27 45 27 21 45 42 21
27 21 15 33 18 18 36 24 24 39 24 21 39 39 36 42 36 30 45 27 24 45 42 24
27 21 18 33 21 15 36 27 15 39 24 24 39 39 39 42 36 33 45 27 27 45 42 27
27 21 21 33 21 18 36 27 18 39 27 15 42 15 15 42 36 36 45 30 15 45 42 30
27 24 15 33 21 21 36 27 21 39 27 18 42 18 15 42 39 15 45 30 18 45 42 33
27 24 18 33 24 15 36 27 24 39 27 21 42 18 18 42 39 18 45 30 21 45 42 36
27 24 21 33 24 18 36 27 27 39 27 24 42 21 15 42 39 21 45 30 24 45 42 39
27 24 24 33 24 21 36 30 15 39 27 27 42 21 18 42 39 24 45 30 27 45 42 42
27 27 15 33 24 24 36 30 18 39 30 15 42 21 21 42 39 27 45 30 30 45 45 15
27 27 18 33 27 15 36 30 21 39 30 18 42 24 15 42 39 30 45 33 15 45 45 18
27 27 21 33 27 18 36 30 24 39 30 21 42 24 18 42 39 33 45 33 18 45 45 21
27 27 24 33 27 21 36 30 27 39 30 24 42 24 21 42 39 36 45 33 21 45 45 24
27 27 27 33 27 24 36 30 30 39 30 27 42 24 24 42 39 39 45 33 24 45 45 27
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