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Abstract
Premise: There is a general lack of consensus on the best practices for filtering of
single‐nucleotide polymorphisms (SNPs) and whether it is better to use SNPs or
include flanking regions (full “locus”) in phylogenomic analyses and subsequent
comparative methods.
Methods: Using genotyping‐by‐sequencing data from 22 Glycine species, we assessed
the effects of SNP vs. locus usage and SNP retention stringency. We compared branch
length, node support, and divergence time estimation across 16 datasets with varying
amounts of missing data and total size.
Results: Our results revealed five aspects of phylogenomic data usage that may be
generally applicable: (1) tree topology is largely congruent across analyses; (2) filtering
strictly for SNP retention (e.g., 90–100%) reduces support and can alter some inferred
relationships; (3) absolute branch lengths vary by two orders of magnitude between
SNP and locus datasets; (4) data type and branch length variation have little effect on
divergence time estimation; and (5) phylograms alter the estimation of ancestral states
and rates of morphological evolution.
Discussion: Using SNP or locus datasets does not alter phylogenetic inference
significantly, unless researchers want or need to use absolute branch lengths. We
recommend against using excessive filtering thresholds for SNP retention to reduce
the risk of producing inconsistent topologies and generating low support.
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With the increased efficiency of high‐throughput sequencing,
generating genome‐wide data for phylogenomic analysis is
becoming cheaper and more feasible (Young and
Gillung, 2020). There are many different approaches currently
used to generate genome‐wide sequence data, each with
required inputs and resulting limitations (Chambers
et al., 2023). Both wet lab (e.g., access to living tissue,
difficulty in DNA extractions, and laboratory costs) and
computational requirements (e.g., reference genome, probe
design, ultimate bioinformatic investment) need to be

considered before starting any comprehensive phylogenomics
project (McKain et al., 2018; Dodsworth et al., 2019).

While many phylogenomic methods rely on input data
that include relatively long gene sequences, some types of
sequencing data are not easily obtained for large numbers
of samples, especially in non‐model systems (Dodsworth
et al., 2019). For example, single‐nucleotide polymorphisms
(SNPs) are useful for phylogenomic studies in part due
to the ease of data collection (i.e., produced via genome
skimming, restriction site–associated DNA sequencing
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[RADSeq], or genome resequencing) and the ability to
attain SNP datasets from a variety of species that cover a
broad distribution across the genome (Leaché and
Oaks, 2017). However, the effects of SNP vs. locus datasets
on tree topology, branch lengths, and nodal support are
poorly understood, and the applicability of using inferred
trees from SNPs for downstream phylogenetic comparative
methods (PCMs) has been questioned (Leaché et al., 2015).

While there is no shortage of recommendations for Hyb‐
Seq phylogenomic studies (Weitemier et al., 2014; Kadlec
et al., 2017; McKain et al., 2018; Villaverde et al., 2018) or
using SNP‐based methods—often generated with RADSeq
or other genotyping‐by‐sequencing (GBS) methods (Lee
et al., 2014; Hyun et al., 2020, 2021)—there is little overlap in
studies comparing results from the different approaches. One
such comparison by Zhou and Xiang (2022) found topologi-
cal congruence and consistency in divergence time estimation
in their SNP vs. RAD‐locus (SNPs plus the flanking regions
of the sequencing reads) datasets. However, congruence is
affected when SNP sites and the surrounding flanking regions
are treated as genes/loci in coalescent approaches such as
Astral (Mirarab et al., 2014b). This leads to considerable
incongruence across loci and sites primarily due to the lack of
signal in the gene tree, as usually inferred by either RAxML
(Stamatakis, 2014) or IQ‐TREE (Minh et al., 2020). In
coalescent approaches such as SVDquartets (Chifman and
Kubatko, 2014), each nucleotide is considered individually so
any invariant flanking region is not relevant given the lack of
phylogenetically informative characters. For these reasons,
further evaluation of how different kinds of datasets impact
phylogenomic inference and the results of downstream
PCMs is necessary.

Another long‐standing issue in phylogenomic inference
is the effect of missing data. Given the complexity and scale
of genome‐wide sequencing projects, it is almost certain
that datasets will be affected by some degree of missing
information, either as a result of the way that samples are
collected and stored (e.g., herbarium vs. silica‐dried tissue) or
due to variation in the accuracy of sequencing technology.
This raises the important question of how missing data affect
the accuracy and reliability of phylogenetic inference on a
genomic scale. Historically, conflicting viewpoints exist
regarding the influence of missing data on phylogenetic
inference.

One side suggests that missing data has not been
demonstrated to have a direct impact on phylogenetic
inference, especially when datasets are large and the amount
of missing data is relatively low (Wiens, 2003, 2006; Philippe
et al., 2004). For instance, Wiens (2003) and Roure et al.
(2013) showed that even with moderate amounts of missing
loci, the resulting phylogenetic trees were still highly
congruent with those obtained from complete datasets.
Many of these phylogenetic studies have used genes that
were neutral, mostly neutral, or under stabilizing selection
(Edwards, 2009), instead of more rapidly evolving SNPs
(Morin et al., 2004), which may or may not be under strong
selection (Pavlidis and Alachiotis, 2017). A notable example

of missing data in a SNP dataset is the successful resolution
of a recent radiation event in Acanthaceae using RADSeq
with as much as 90% missing data with more than 300,000
retained SNPs (Tripp et al., 2017).

However, other studies demonstrate that missing data
can have a negative effect on phylogenetic inference by
exacerbating uncertainty in inferred topologies, potentially
leading to the estimation of misleading branch lengths
(Huelsenbeck, 1991; Lemmon et al., 2009). One study even
found that 70% data completeness was necessary to avoid
spurious relationships (Smith et al., 2020). These studies
contend that missing data can introduce biases, affecting
the accuracy and reliability of the inferred phylogenetic
relationships. Consequently, these uncertainties may propa-
gate further in downstream analyses, potentially compro-
mising the interpretation of evolutionary processes in both
concatenation approaches and species tree inferences that
rely on previously inferred gene trees (Mirarab et al., 2014a;
Springer and Gatesy, 2016; Nute et al., 2018). In light of
previous contradicting studies, the effect of missing data on
phylogenetic inference remains a topic of debate, and we
currently lack guidelines for best practices.

To address these issues and explore the effects of SNP vs.
locus use on phylogenomic analyses—including the effects of
SNP filtering stringency when a given SNP is kept or
removed and the relation of this filtering to the generation or
elimination of missing data—we conducted tree inference
and downstream PCMs on the flowering plant genus Glycine
Willd. (Fabaceae). The genus Glycine includes the cultivated
soybean (G. max (L.) Merr.) and its wild East Asian annual
progenitor (G. soja Siebold & Zucc.) as well as a group of
approximately 26 perennial species mostly native to Australia
(Sherman‐Broyles et al., 2014b; Landis and Doyle, 2023).
Diploid Glycine species are largely inbreeding, with low levels
of heterozygosity. Perennial Glycine species are classified in
“genome groups” (Singh and Hymowitz, 1985; Hymowitz
et al., 1998); originally based on artificial crossing studies,
these have been refined with molecular phylogenetic data
(Sherman‐Broyles et al., 2014a).

In this study, we use GBS data from 22 diploid Glycine
species to investigate the effects of data type (SNP vs. locus)
and SNP retention stringency for common phylogenetic
inference and downstream PCMs. Specifically, we set out to
compare the effects of SNPs vs. entire RAD loci on overall
inferred tree topology, node support, branch length, node age,
and downstream PCMs. Through our analyses, we provide
support for researchers in deciding the best phylogenomic
practices in their study system when using genome‐wide data.

METHODS

Taxonomic sampling and SNP vs. locus
identification

The GBS data used in this study were previously described
in Landis and Doyle (2023) and were generated from

2 of 17 | PHYLOGENOMIC ANALYSES USING SNP DATA

 21680450, 0, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11611 by C

ornell U
niversity Library, W

iley O
nline Library on [30/08/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



22 accessions, each representing a named or informally
recognized perennial Glycine species (Table 1). Briefly, DNA
was extracted from tissue grown from seed stocks obtained
from CSIRO (Commonwealth Scientific and Industrial
Research Organization, Australia) using a cetyltrimethylam-
monium bromide (CTAB) method (Doyle and Doyle, 1987).
Extracted DNA was sent to the University of Wisconsin
Biotechnology Center (Madison, Wisconsin, USA) for GBS
library preparation following Elshire et al. (2011) using the
ApeK1 restriction enzyme. Libraries were sequenced on an
Illumina HiSeq 2000 (Illumina, San Diego, California, USA)
at the Cornell Institute of Biotechnology (Ithaca, New York,
USA) with a single‐end 100‐bp approach. Reads were
demultiplexed using the process_radtags Perl script in Stacks
v2.55 (Rochette et al., 2019). Accession numbers for the
Sequence Read Archive (SRA), number of reads, and which
genome group each accession belongs to can be found in
Table 1. Because a de novo SNP‐calling approach was
undertaken instead of a reference‐guided approach, raw reads

were cleaned using fastp v0.12.4 (Chen et al., 2018) with
default parameters and the specification to automatically detect
adapters, require a minimum quality score of 20, and require a
minimum read length of 60 bp for reads to pass filtering.

The denovo_map.pl script in Stacks v2.62 (Rochette
et al., 2019) was used to de novo call SNPs with default
parameters with the inclusion of –force‐diff‐len in ustacks
to account for a slight variation in read lengths across
samples due to different barcode sizes. Specifically for SNP
identification, the default value for the minimum stack
depth (‐m 3) was used, meaning that at least three reads
were needed to determine an allele. The distance between
stacks (‐M 2) was used to minimize combining repetitive
regions together into one locus. The populations module
was then used with different filtering criteria for SNP
retention, specifically, the proportion of individuals in
which a shared SNP site must be present to be retained,
which takes into account both the presence of polymor-
phisms and missing data at that site (r = 0%, at least one

TABLE 1 Accessions used in this study, including number of reads, estimated depth after SNP calling, number of loci assembled within each accession,
and the known genome group.

Species SRA no. No. of reads
Estimated
depth Assembled loci

Genome
group

Glycine albicans SRR18315602 3,319,398 18.92× 177,436 I genome

Glycine arenaria SRR18315601 1,416,973 16.20× 88,094 H genome

Glycine argyrea SRR18315591 3,133,554 22.07× 143,284 A genome

Glycine canescens SRR18315580 2,409,732 17.95× 135,312 A genome

Glycine clandestina SRR18315575 5,317,539 32.37× 166,063 A genome

Glycine sp. “cracens” SRR18315595 3,204,690 21.30× 152,150 B genome

Glycine falcata SRR18315574 687,974 11.00× 63,079 F genome

Glycine gracei SRR18315573 2,707,429 19.52× 139,795 A genome

Glycine hirticaulis SRR18315572 1,491,560 15.15× 99,371 H genome

Glycine lactovirens SRR18315571 3,229,367 20.42× 160,799 I genome

Glycine latifolia SRR18315600 2,240,664 17.65× 128,166 B genome

Glycine microphylla SRR18315599 1,825,974 16.03× 114,992 B genome

Glycine pindanica SRR18315598 1,972,682 16.74× 118,742 H genome

Glycine pullenii SRR18315597 1,151,892 13.25× 87,740 H genome

Glycine stenophita SRR18315592 2,434,744 20.42× 119,952 B genome

Glycine syndetika SRR18315589 3,883,250 21.99× 178,332 A genome

Glycine tomentella D1 SRR18315587 3,595,114 20.78× 175,600 E genome

Glycine tomentella D2 SRR18315586 2,240,510 13.58× 166,821 E genome

Glycine tomentella D3 SRR18315585 3,315,188 19.67× 170,003 D genome

Glycine tomentella D5A SRR18315581 2,861,702 19.53× 148,274 Ha genome

Glycine tomentella D5B SRR18315579 2,461,459 20.15× 123,171 H genome

Glycine sp. “wilsonii” SRR18315593 3,884,757 24.91× 157,579 B genome

Note: SRA = Sequence Read Archive.
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individual; 15%, at least three individuals; 30%, at least six
individuals; 45%, at least nine individuals; 60%, at least
13 individuals; 75%, at least 16 individuals; 90%, at least
19 individuals; and 100%, all 22 individuals), plus the
additional filtering parameters of minimum minor allele
frequency (MAF) = 0.05, minimum minor allele count
(MAC) = 3, and maximum observed heterozygosity = 0.5.
Using this filtering scheme for SNP retention, when r = 15%
any given SNP needed to be found in a minimum of three
individuals, with all other individuals allowed to either
have the SNP or have no genetic data at that site. Given the
additional filtering parameters of MAC and MAF, the
absolute minimum for the number of individuals exhibiting
polymorphisms was two (minimum of three minor alleles).
When r = 100%, all 22 individuals must possess the SNP,
and if any individual was missing genetic data that SNP was
removed entirely from the dataset. For the eight datasets,
variant (SNP only) and full loci (SNP + flanking regions)
were exported in PHYLIP format using the –phylip‐var‐all
and –phylip‐var commands in the populations module. The
exported PHYLIP files from Stacks were converted to
FASTA format for Bayesian analysis (see below) with
AliView v1.28 (Larsson, 2014). The amount of missing data
per accession in each dataset was calculated in VCFtools
v0.1.16 (Danecek et al., 2011) from the VCF file that was
generated alongside the PHYLIP alignments by the Stacks
populations module. Example alignments for variant sites
only for all eight SNP filtering retention thresholds of the
Glycine data are shown in Figure S1 in Appendix S1.

As a comparison to the empirical data, GBS data for
12 individuals (12 populations with one individual per
population) were simulated with radinitio v1.2.1 (Rivera‐
Colón et al., 2021) using the 20 chromosomes of the Glycine
maxWilliams 82 v4 reference genome (Schmutz et al., 2010).
SNPs were called de novo from the simulated reads for the 12
individuals and filtered using the same parameters as the
Glycine GBS data.

Phylogenetic inference

Maximum likelihood trees were inferred with RAxML‐NG
v1.1.0 (Kozlov et al., 2019) with 100 bootstraps, the GTR+G
model of molecular evolution, and specifying G. falcata
Benth. as the outgroup, as demonstrated by previous
nuclear studies showing G. falcata sister to the rest of the
perennial species (Hwang et al., 2019; Zhuang et al., 2022;
Landis and Doyle, 2023). No partitioning was done in the
full locus dataset to make comparisons between variant and
full locus as equitable as possible. Datasets with different
levels of SNP retention (i.e., the number of individuals that
a SNP must be present in to be kept: 0%, at least one
individual; 15%, at least three individuals; 30%,
at least six individuals; 45%, at least nine individuals; 60%,
at least 13 individuals; 75%, at least 16 individuals; 90%, at
least 19 individuals; and 100%, all 22 individuals), as well
as variant sites only (SNPs) and locus (variant sites plus

sequenced flanking regions in the full RAD locus), were
used to infer maximum likelihood trees. Missing genetic
information at any given site was coded with an N because
Ns, gaps, and missing data are treated the same in RAxML
(Kozlov et al., 2019). The same steps and parameters were
followed for the simulated GBS data.

To explore whether differences in topology and nodal
support could be explained by SNP filtering strategy alone,
or by a combination of filtering strategy and alignment size,
the SNP alignments for each threshold were downsampled
to produce four nonoverlapping alignments of 2491 bp (the
size of the 100% SNP alignment). For each of the four
subsampled alignments, a maximum likelihood tree was
inferred with 100 bootstrap replicates.

The RAxML topologies inferred for each of the eight
different SNP retention levels for both the empirical Glycine
(rooted with G. falcata) and simulated (rooted with msp00)
GBS data (32 topologies total) were used as inputs into
phytools v1.9‐16 (Revell, 2012) to determine the number of
unique topologies recovered using the find.unique function
as described on the phytools blog (http://blog.phytools.org/
2016/05/identifying-unique-tree-topologies-in.html).

Divergence time estimation

Bayesian divergence time estimation was performed with
BEAST v2.7.2 (Bouckaert et al., 2019) using a secondary
calibration based on a previous dating analysis of Glycine
(Zhuang et al., 2022) incorporating the split of the Glycine
and Phaseolus L. lineages ~22–37 mya (Koenen et al., 2021).
The following settings were used in generating the BEAUTi
file: ambiguities allowed, estimate substitution rate, gamma
category count of 4, estimate gamma shape, GTR substitu-
tion model with empirical base frequencies, optimized
relaxed clock, and birth–death tree prior. A calibration
point forcing a monophyletic clade of all Glycine species
with a median value of 6.12 and a sigma of 0.515 with a
normal distribution was set. A total of 100–500 million
Markov chain Monte Carlo (MCMC) generations were
performed, sampling every 5000 generations or until the
effective sample size values were over 200 as checked for
convergence with Tracer v1.7.2 (Rambaut et al., 2018). An
initial comparison between runs using a Yule tree prior or a
birth–death tree prior showed overlapping age estimates for
all nodes observed; therefore, all resulting analyses were
performed using the birth–death tree prior model.

Maximum likelihood rate smoothing analyses are
often preferred with large datasets to convert the inferred
phylogeny to an ultrametric tree (Ho and Duchêne, 2014;
Barba‐Montoya et al., 2021; Costa et al., 2022), primarily
due to their increased speed and ability to be used with
limited computational resources. RelTime, which is based
on the relative rate framework (Tamura et al., 2012, 2018)
and implemented in MEGA11 (Tamura et al., 2021), was
used as a comparison to the Bayesian approach. Not only
can RelTime be executed a thousand times faster than
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Bayesian methods (Tamura et al., 2012), but RelTime
estimates have also been shown to be consistently more
accurate than other maximum likelihood methods such as
TreePL and least‐squares dating (Barba‐Montoya et al.,
2021). To investigate the impacts of SNP vs. loci datasets, as
well as the impact of SNP retention filtering, on down-
stream divergence time estimates, we dated each of the
phylogenies inferred in RAxML, with the exception of the
largest alignment file consisting of 111 million sites due to
computational limitations. We used an equivalent calibra-
tion point to that in the BEAST analyses, setting the age of
the most recent common ancestor of Glycine to a mean
of 6.12 mya, with a standard deviation of 0.435 to span the
confidence interval of 5.27–6.97 mya. A normal distribution
for this calibration point was used, along with the GTR
model of molecular evolution with a gamma rate. Differ-
ences between inferred nodes were compared at the same
data filtering level (missing data) between variant‐only and
locus data. A paired Student's t‐test (Student, 1908) was
used to identify significant differences in inferred ages, with
a Bonferroni correction for multiple tests.

Node age by data type and filtering stringency

To explore the relationship between node age and SNP
filtering stringency, we selected the mean node age for a set
of selected nodes across the phylogeny for each filtered
dataset. Using ggplot2 in R (Wickham, 2016), we plotted
mean node age and standard error across each of the
selected nodes. We also conducted linear regressions to
test for significant trends between node age and filtering
stringency, using the lm function in R.

Comparison of filtering and data type on
branch lengths and nodal support

Branch lengths and node support were compared between
data types (SNP vs. locus) and SNP filtering stringency.
These analyses were only conducted on RAxML trees
because BEAST tree branch lengths and node ages were all
standardized to unit time. To compare branch lengths
between locus and SNP trees across different filtering
parameters, all RAxML trees from the Glycine GBS data and
the simulated data were read into R using the read.tree
function in ape v5.7‐1 (Paradis and Schliep, 2019). Branch
lengths, node support, node number, SNP retention
stringency, and data type were extracted from each tree
and aggregated into a dataframe using a custom script in R
v4.2.2 (R Core Team, 2021). Boxplots of branch lengths and
node support were compared within data type across
filtering stringencies using the geom_boxplot function in
ggplot2 v3.4.2 (Wickham, 2016). Pairwise comparisons of
branch lengths and nodal support at different SNP retention
levels within datasets were made using a Wilcoxon signed‐
rank test with a Bonferroni correction with continuity

correction using the pairwise.wilcox.test function in R. To
further investigate branch length differences, phylogenetic
trees were inferred in RAxML‐NG using Felsenstein's
method for ascertainment bias correction (+ASC_FELS
{w}) by specifying the number of invariant sites {w}. All
invariant sites, including ambiguities, were removed from
the SNP‐only alignments of the different filtering thresholds
using IQTREE2 v2.2.7 (Minh et al., 2020) with the +ASC
flag to produce variant sites–only alignments. The number
of invariant sites for each filtering threshold was the total
number of bases in the locus alignments minus the number
of bases in the alignments produced by IQTREE2.

Ancestral character estimation

A downstream approach that is a fundamental tool of
comparative phylogenetic methods is ancestral character
state estimation (Felsenstein, 1985). Different approaches
for this have been reviewed in other studies, but all are
conducted after a tree is inferred (Holland et al., 2020). The
preferred approach in most studies is to use chronograms
where branch lengths are in units of time; however, this is
not consistent across the literature. Litsios and Salamin
(2012) recommend using the tree (chronogram or phylo-
gram) that produces the higher phylogenetic signal, while
Cusimano and Renner (2014) recommend performing
ancestral character state reconstructions on multiple differ-
ent branch length representations and selecting the option
with the fewest inferred steps. Because the alternative
options to using a chronogram vary between studies and
data, we used stochastic character mapping with a simulated
binary trait on the inferred phylograms and chronograms
using the 45% SNP retention threshold (SNPs were present
in at least nine of 22 individuals) datasets as a representative
dataset to see if differences were observable in number of
transitions, time spent in different states, and percentage of
traits across all nodes due to the trees exhibiting largely
different branch lengths (see below). Specifically, a binary
trait was randomly simulated across the tips without taking
into account the phylogenetic position of samples using the
RAND() function in Excel to generate a random number
between 0 and 1, followed by rounding to the nearest whole
number to represent presence or absence of the trait.
Stochastic mapping was performed in phytools v1.5‐1
(Revell, 2012) with make.simmap using the all rates different
(ARD) model and 1000 simulations.

We also explored how tree and data type affect ancestral
character state estimations of continuous variables. To do
this, we first randomly simulated a continuous trait using a
random number generator from 0 to 1. After simulating
these continuous data, we then estimated ancestral character
states across the same four selected trees for the discrete
traits mentioned above using the anc.mL function under a
Brownian motion model in phytools v1.5‐1, using the same
trees as was done for stochastic mapping. Observed and
reconstructed values of the simulated continuous trait were
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projected onto the edges of the respective phylogenies using
the function contMap in phytools v1.5‐1.

RESULTS

SNPs vs. locus information

Based on the required threshold of the percentage of
accessions in which a SNP must be found to be retained in a
dataset (i.e., SNP retention), from 0% (allowing for a SNP at
any site in any given accession) to 100% (a given SNP site
must be shared across all accessions), the number of
included RAD loci varied from 1960 (100%) to 1,339,951
(0%) (Table 2). Across all RAD loci, the number of variant
sites ranged from 2491 to 118,925; when the full locus was
taken into account, the total alignment size ranged from
182,544 bp to 111,994,953 bp. The mean fraction of missing
data for just the variant sites across all individuals in a
filtering threshold ranged from zero to 0.522, while the
mean level of missing data in the full locus ranged from
0.099 to 0.906. Missing data in any given accession across
datasets is shown in Appendix S2, showing that most
accessions were similar in terms of the amount of missing
data, except for G. falcata, which showed substantially more
missing sites than other accessions.

Topology

The inferred topologies across all 16 datasets were nearly
identical, regardless of whether the alignment was inferred
with SNPs or the full locus (see Figure S2 in Appendix S1,
Appendix S3). The five genome groups represented by
multiple individuals were all recovered as monophyletic.
Even though G. falcata (F‐genome group) had the most
missing data of any sample, when rooting with G. falcata
the other genome groups displayed the same relationships
regardless of filtering threshold. The D‐genome and

E‐genome groups were sister to each other, and were in
turn sister to a clade formed by the H‐ and Ha‐genome
groups. This resulting clade was successively sister to the
I‐genome, A‐genome, and B‐genome groups. The phytools
clustering showed three unique tree topologies across the
16 trees, with the RAxML and BEAST trees showing the
exact same patterns. The two most prevalent topologies
(topology 1 found in eight trees and topology 2 found in six
trees) only differ within the H‐genome group (Figure 1,
Figure S2 in Appendix S1), specifically with the placement
of G. arenaria Tindale, G. hirticaulis Tindale & Craven,
G. pindanica Tindale & Craven, and G. tomentella Hayata
D5B. In both topologies, G. pullenii B. E. Pfeil, Tindale &
Craven is sister to the remaining species. In topology 1,
G. hirticaulis is sister to the clade of G. arenaria,
G. pindanica, and G. tomentella D5B, whereas in topology
2, G. hirticaulis is sister to G. arenaria. The support for the
placement of G. arenaria is generally below the threshold of
support (<70%). The third topology (topology 3), found
only in the trees inferred in the 100% SNP retention
threshold (SNPs shared across all 22 individuals) for both
SNP and locus, again differs in the H‐genome group with
additional uncertainty involving G. pullenii, with the species
no longer being well supported as sister to the rest of the
clade but instead sister to G. pindanica and G. tomentella
D5B with low support (49% bootstrap support in the SNP
tree and 29% in the locus tree). The observed topology in
the 100% SNP retention threshold was observed in one of
the 28 downsampled trees, specifically one of the four 90%
SNP retention threshold trees (Appendix S4), providing
further support that this topology is inconsistent with the
most frequently recovered topologies and is only found with
more extreme filtering.

The topological comparisons for the simulated data
were more varied, with seven total topologies; the increased
number was mostly due to the lack of support in inferred
relationships. One result congruent with the empirical data
is that the inferred topologies for the 100% SNP retention
threshold were unique and not found in any other dataset.

TABLE 2 Summary of the different datasets, including the fraction of shared sites a SNP must have to be retained, number of loci for each filtering
scheme, the number of base pairs for variant and locus datasets, and the median and mean values of missing data for each dataset.

Shared
percentage
required Loci

Variant
sites
(bp) All sites (bp)

Median
missing
variant

Mean
missing
variant

Median
missing
locus

Mean
missing
locus

100 1960 2491 182,544 0.000 0.000 0.115 0.099

90 6522 9125 606,786 0.033 0.050 0.133 0.140

75 13,305 19,956 1,236,145 0.092 0.121 0.178 0.200

60 22,713 33,340 2,102,501 0.162 0.201 0.248 0.273

45 43,490 58,081 3,983,546 0.273 0.322 0.359 0.392

30 76,196 85,371 6,906,941 0.378 0.423 0.483 0.507

15 170,505 117,310 15,060,214 0.483 0.518 0.649 0.663

0 1,339,951 118,925 111,994,953 0.489 0.522 0.904 0.906
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The most consistent topology was found in the 45–75%
(SNPs found in at least 9–16 of the 22 individuals) filtering
thresholds, with five of the 16 trees showing this topology.

Comparison of filtering and data type on
branch lengths and node support

Branch lengths and node support were only compared
within data type (i.e., between filtering stages in SNP and
locus). While data on branch lengths and node support were
not statistically compared between data types, one notice-
able difference is that raw branch lengths of locus data were
in general two orders of magnitude shorter than those
of SNP data (Figure 2A). Branch lengths for the locus and
SNP datasets were not normally distributed (Figure 2A;
Shapiro–Wilk's test of normality, P value < 0.01). However,
across the locus dataset, the lowest branch lengths occurred
at 0% and 100% shared thresholds, and the largest occurred

between 30–75% (SNPs found in at least 6–16 individuals).
Alternatively, within the SNP data, branch lengths were
longest in the dataset with the 0% SNP filtering threshold
(allowing for a unique polymorphism in only one accession)
and shortest in the dataset with 100% SNP filtering
threshold (where a SNP was required to be shared across
all individuals; Figure 2A). Based on a Wilcoxon signed‐
rank test with a Bonferroni correction, node support was
not significantly different across filtering stringencies either
within the SNP or locus data (Appendix S5); however, there
were differences in branch lengths across filtering stringen-
cies (Figure 2A). Within the SNP data, significant differ-
ences in branch lengths based on a Wilcoxon signed‐rank
test occurred between filtering stringencies 0% and 75%, 0%
and 100%, 15% and 30%, and 15% and 100%. Within locus
data, significant differences in branch lengths based on
a Wilcoxon signed‐rank test occurred between filtering
stringencies 0% and 15%, 0% and 30%, 0% and 45%, 0% and
60%, 0% and 75%, 0% and 100%, 15% and 60%, 15% and

F IGURE 1 Chronogram of the SNP phylogeny, which is largely congruent across different data types and filtering parameters. The only observable
differences are when SNP filtering is too extreme and only sites shared across all taxa are kept. The bars next to the tips represent the assigned genome group
for each species, and the numbers next to the nodes represent nodes plotted in Figure 3 and not support values.
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75%, and 60% and 100% (Appendix S5; P < 0.05 with
Bonferroni correction). Using the Felsenstein ascertainment
bias correction model in RAxML‐NG, branch length
differences between the SNP and locus datasets at the same
filtering threshold were resolved.

Node support in the empirical datasets was generally
quite high, regardless of the SNP filtering threshold used.
Downsampling the alignments of less stringent filtering
thresholds to the size of the 100% threshold (2491 bp)
resulted in a decrease in node support for some nodes
(Figure S3 in Appendix S1) compared to the full datasets
(Figure 2B). However, most nodes still maintained 100%
bootstrap support, with most variation in support occurring
at lower filtering thresholds.

Comparing branch length and nodal support in the
simulated data between data types and across SNP retention
thresholds showed similar patterns to the empirical data. As
the SNP retention threshold became more conservative (from
0% to 100%), the branch lengths became shorter for both the
SNP and locus datasets. Based on a Wilcoxon signed‐rank
test with a Bonferroni correction, the branch lengths of 100%
in the locus data were significantly different from all other
thresholds (except for 60% with a P value = 0.054), while
there were no significant differences in the SNP trees. Nodal
support fluctuated in the simulated data across SNP retention
thresholds, with the highest median values observed in the

60–90% thresholds. Node support was significantly lower at
the 100% threshold, for both SNP and locus, than any other
threshold (Figure S4 in Appendix S1) based on a Wilcoxon
signed‐rank test.

Divergence time estimation

The BEAST analyses within data type produced congruent
results in terms of estimated node age across different SNP
retention thresholds, with the 95% confidence interval for
selected nodes almost entirely overlapping (Figure 3). The
one exception to this was node 34, which is in the
H‐genome group and is the most recent common ancestor
of G. pindanica and G. tomentella D5Bb. As noted above,
the relationships within the H‐genome group change based
on different retention thresholds, with some relationships
within the clade no longer being well supported. Specifi-
cally, node 34 is the only node that was observed to change
relationships, albeit with low support, between topology 1
and topology 2 (Figure S2 in Appendix S1). For some nodes,
a significant correlation exists, such that as SNP retention
stringency increases, the inferred divergence time increases;
in other nodes, the opposite is true (Figure 3). Even though
several of these changes are statistically significant, the
differences are still within the 95% confidence interval of all

A

B

F IGURE 2 Summary statistics for inferred RAxML trees associated with branch length and node support across different filtering thresholds.
(A) Comparison of branch lengths between SNP and locus datasets by filtering stringency. (B) Comparison of nodal support between SNP and locus datasets
by filtering stringency.
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A

B

F IGURE 3 Selected nodes from the node ages determined from the BEAST analyses for (A) locus‐inferred phylogenies and (B) SNP‐based phylogenies.
Mean node ages are represented by a point, with 95% confidence intervals of absolute age represented by vertical lines. Linear regressions depict the
relationship between mean node age and filtering stringency. Numbers above each inset represent a node number corresponding to Figure 1.
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inferred ages for that particular node across the different
levels of filtering.

The inferred divergence times using RelTime were
highly similar regardless of whether SNP or locus data were
used. The inferred node ages of RelTime were largely within
the 95% confidence interval generated in the BEAST
analyses (Appendix S6), with larger variance as the SNP
retention threshold approached 0%. Generally speaking,
as the stringency for SNP retention increased, the mean
difference between variant and locus marginally decreased.
The mean difference in ages of the same node was 0.023 mya
when all SNPs were required to be shared across all
individuals (100%), increasing to 0.025 mya (90%), 0.036
mya (75%), 0.041 mya (60%), 0.038 mya (45%), 0.052 mya
(30%), and 0.61 mya (15%). The observed differences
between datasets were much smaller than the standard
deviation of 0.435 mya used in the calibration point for
dating (6.12 ± 0.435 mya). A paired Student's t‐test showed
no significant difference in node ages between SNP and locus
after Bonferonni correction (critical value 0.05/7), whereas
two comparisons showed a significant difference in estimated
node age at the 45% (P = 0.021) and 30% (P = 0.014)
thresholds given a standard cutoff of 0.05 (Appendix S7).

Ancestral character state estimation

Ancestral character state estimation differed qualitatively
and quantitatively between the RAxML and BEAST trees.
The RAxML SNP tree had a total of 47 transitions, spending
64% of time in state B and 36% of time in State A (Figure 4).
Transition rates were 25.556 changes per unit branch length
from A–B and 41.287 changes per unit branch length from
B–A. The RAxML locus tree had a total of seven transitions,
spending 83% of time in state B and 17% of time in State A.
Transition rates were equal between State A and B (0.472
changes per unit branch length). The BEAST SNP tree had a
total of 134 transitions, spending 65% of time in state B and
35% of time in State A. Transition rates were 2.352 changes
per unit branch length from A–B and 4.301 changes per
unit branch length from B–A. The BEAST locus tree had a
total of 128 transitions, spending 65% of time in state B and
35% of time in State A. Transition rates were 2.241 changes
per unit branch length from A–B and 4.063 changes per
unit branch length from B–A.

Qualitatively, the ancestral states and proportion of time
spent in each state appear to be relatively similar between
the RAxML tree using SNP data and both stochastic
character maps of the BEAST trees (Figure 4). Quantita-
tively, however, the transition rates for the RAxML SNP tree
were 10.9 times higher and the total number of transitions
was almost three times lower compared to the BEAST trees.
The reconstruction with the RAxML locus tree produced
the most different results compared to all other trees. The
ancestral state estimation for almost every node was
incongruent, the total number of transitions was 6.7 times
less than the respective SNP tree and almost 20 times less

than the BEAST trees, and the transition rates were equal
between A–B and very low. Overall, using trees with branch
lengths in proportion to the nucleotide substitution rate
appears to provide drastically different quantitative and
qualitative results compared to trees with branch lengths in
proportion to absolute time.

Similar disparities in ancestral state estimations were also
observed in continuous variables (Figure 5). Broadly, there
was virtually no difference in ancestral state estimations and
model parameters between SNP and locus BEAST chrono-
grams. However, there were large differences between both
SNP and locus phylograms and between RAxML phylograms
and BEAST chronograms. SNP‐based and locus‐based
phylograms both estimated a root ancestral state near the
upper limits of the modeled continuous variable. Moreover,
the rate of variance (σ2) was two orders of magnitude greater
in the locus phylogram compared to the SNP phylogram
(3144.58 vs. 30.87). The root state of chronograms was
estimated to be near the middle of the modeled continuous
variable, and the rate of variance was much lower compared
to the RAxML trees and was equal between the SNP and
locus BEAST trees.

DISCUSSION

Topological congruence, branch lengths,
and nodal support

The topology generated here (Figure 1) using a de novo
SNP‐calling approach is congruent with the phylogeny
presented in Landis and Doyle (2023), which used a reference
genome approach for identifying SNPs. In comparison, both
the de novo approach presented here and the reference‐guided
approach generated a fully resolved phylogeny with strong
support for the majority of relationships. This suggests that
robust relationships can be inferred with or without a
reference genome. Moreover, the topologies we generated de
novo using either SNP or full locus datasets were almost
entirely identical, with the only exceptions being the relation-
ships within the H‐genome group, especially when retained
SNPs were required to be present in all individuals (100%;
Figure S2 in Appendix S1). However, these incongruent
relationships generally showed low (<70%) bootstrap support.

A notable finding was the divergence between absolute
branch lengths in the full locus and SNP datasets. Branch
lengths in the full locus datasets were nearly two orders of
magnitude shorter than the branch lengths in the SNP
datasets (Figure 2A). We attribute these differences to the
total number of sites per sequence included in the analysis,
thus affecting the inferred rates of evolution and overall
branch lengths. However, while the absolute branch lengths
differed drastically, the relative branch lengths between
datasets did not vary. Notably, patterns of filtering
stringency on branch lengths differed between the SNP
and locus datasets. In the SNP datasets, branch lengths
tended to decrease with increasing SNP retention stringency
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(Figure 2A). However, in the locus datasets, branch lengths
were shortest at 0% (allowing for unique SNPs in some
accessions) and longest around 45–60% SNP retention
(9–13 individuals; Figure 2A, Appendix S5). In the SNP‐
only datasets, decreasing the SNP retention stringency led to

longer branch lengths, while the SNP retention threshold in
the entire locus datasets did not show a linear pattern
(Figure 2A). Even with the large differences in absolute
branch lengths between the SNP and full locus datasets, the
inferred node ages were largely overlapping across filtering

F IGURE 4 Summarized results of 1000 stochastic character maps of simulated data on two representative phylograms and chronograms from the 45%
filtering stringency. Blue and red arrows represent transition rates. The percentages in parentheses are the total time spent in each state. Branches are colored
by their posterior probability (PP) of being in state A (blue) or B (red). Pie charts represent the probability of nodes in state A (0) or B (1). The total number
of transitions are denoted at the top of each legend.
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and data types (Figure 2) regardless of whether a Bayesian
or maximum likelihood dating approach was used.
We attribute this to a similarity in relative branch lengths
between the SNP‐ and locus‐inferred phylogenies.

Some of the branch length discrepancies we observed
might be alleviated with the incorporation of an ascertain-
ment bias flag (Lewis, 2001; Leaché et al., 2015) as
implemented in RAxML or IQ‐TREE. The correction for

ascertainment bias impacts the calculated branch lengths
because the variant sites are sampled in a non‐uniform
manner and only including SNPs deviates from theoretical
expectations in how bases change (Lachance and Tishkoff,
2013). In some cases, implementing this bias correction is
not straightforward because nonvariant sites cannot be
included in the alignment. We found that the easiest
approach to removing constant sites, including those due to

F IGURE 5 Summarized results of ancestral character estimation of continuous character states for two representative phylograms and chronograms
from the 45% filtering stringency. Branches are colored by their estimated continuous state based on the associated legend. The σ2 represents the estimated
Brownian motion parameter. The data were modeled with a σ2 equal to 1.
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ambiguities, was in IQTREE2 with the +ASC flag, which
produces alignments of only variant sites. However, the
number of invariant sites does need to be counted, and this
may be difficult for non‐model systems and genome‐wide
data. This is especially evident with de novo SNP‐calling
approaches unless explicit investigation of flanking regions
at different filtering thresholds is carried out. In our
empirical data, we see that by including the Felsenstein
method for ascertainment bias, our inferred branch lengths
are congruent between the SNP + ascertainment bias
correction and locus datasets.

Within Glycine, heterozygosity is low due to high rates
of selfing (Doyle et al., 2004). In highly outcrossing systems,
high levels of heterozygosity may also cause issues in
phylogenetic inference due to the way ambiguities are
handled (e.g., treating ambiguities as one base or the other,
or by ignoring ambiguities altogether). In these cases, using
models of genotype evolution (eight possible genotype
combinations and the rates of change between combina-
tions) instead of models of molecular evolution (four
possible bases and the rates of change between bases), as
implemented in RAxML‐NG (Kozlov et al., 2019), may
provide a more accurate inference, especially in terms of
branch length estimation. One additional caveat to consider
is the age of divergence between the focal species. SNPs have
been shown to be useful for inferring relationships in
species with divergence times up to 40–60 mya (such as in
Drosophila) but may not provide robust results when
divergence times approach 100 mya (Rubin et al., 2012) due
to a decrease in recoverable loci between taxa with
increasing divergence times. We have shown that SNP data
are useful for Glycine, where the perennial species diverged
from the annual G. max approximately 8 mya (Zhuang
et al., 2022). Determining the crown age of focal taxa, either
from primary fossil evidence or secondary phylogenetic
observations, should be considered before undertaking a
SNP‐based phylogenomic analysis.

Divergence time estimation by percent shared
data and locus type

Previous phylogenetic studies reconstructing one or more
gene trees have shown that allowing for missing data can help
resolve difficult relationships and increase node support
because there may be biological explanations for these
patterns of missing information (Wiens, 1998, 2006; Wiens
and Moen, 2008). However, there is a risk that allowing more
missing data may increase long‐branch attraction
(Wiens, 2006). This risk is compounded when the missing
data are not randomly distributed among loci (Xi et al., 2016).
Yet, there are no consistent trends in branch length and
missing data (Jiang et al., 2014). These patterns are amplified
when using SNP data that are more rapidly evolving than
neutral genes (Morin et al., 2004) or those under stabilizing
selection (Edwards, 2009). In our datasets, we observed a
significant inverse linear relationship between the SNP

retention stringency and mean age across most nodes
(Figure 3). In other words, most nodes showed increased
mean ages with increased stringency (i.e., less missing data)
of SNP retention (Figure 3). However, it is important to note
that variation in mean age tended to be captured within the
full confidence interval of the node estimation, demonstrat-
ing the importance of bounding age‐dependent hypotheses
by confidence intervals (Figure 3). As such, while there is a
correlation between filtering and mean age, this may not be
phylogenetically meaningful on small time scales.

Several SNP‐based studies have shown that retaining
sites with missing data (i.e., decreasing the SNP retention
threshold) increased the support for phylogenetic relation-
ships (Wagner et al., 2013; Hodel et al., 2017; Tripp
et al., 2017). This is likely due to larger datasets containing
more phylogenetically informative sites, as well as because
excluding sites with missing data can mask regions of the
genome with the highest mutation rates. For instance, a
SNP‐based study of African frogs (Afrixalus spp.) showed that
allowing approximately 60% missing data in a given site
provided congruent tree inferences across datasets, whereas
topological differences were observed when 80–90% missing
data were permitted (Crotti et al., 2019). Our results support
the notion that including sites with a lower required sampling
proportion and, in some cases, more missing data (at least to a
certain extent) is beneficial in phylogenomic reconstruction,
and also allows a faster computational time, compared to all
sites being retained. While the inferred topologies generally
did not change between datasets (except in the most stringent
SNP filtering criteria, which produced a minimally different
unique topology; Figure S2 in Appendix S1), some variation
in node support across filtering stringencies was observed.
Specifically, the largest variation in support was found when a
SNP was required to be retained in all individuals (100%)
compared to all other thresholds (Figure 2B), especially in
simulated data, which had overall lower support values
(Figure S4 in Appendix S1). We also observed the smallest
variation in node support when a SNP was required to be
present in at least 30–45% of individuals, which is similar to
the best‐case scenarios of Crotti et al. (2019).

Phylogenetic comparative methods and
downstream analyses

We demonstrated that using phylograms leads to drastically
different ancestral character estimations between SNP and
full locus datasets in both discrete and continuous
characters compared to chronograms (Figures 4 and 5;
also see Wilson et al., 2022). These patterns are especially
obvious when examining transition rates, where rates of
morphological evolution were higher in phylograms com-
pared to chronograms (Figures 4 and 5). The only exception
to this was the stochastic character maps for the locus‐
inferred phylogram, which estimated significantly lower
total rates and only seven total transitions across the tree.
The true ancestral character history is almost always
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unknown, and so here we were more interested in precision
rather than accuracy. As such, we found that the estimated
evolutionary parameters were more consistent between
SNP and locus chronograms compared to SNP and locus
phylograms (Figures 4 and 5). This likely reflects the drastic
differences in absolute branch lengths between SNP and
locus phylograms (Figure 2A), which is eliminated in
chronograms (i.e., branch lengths become proportional to
time). Incorporating an ascertainment bias correction
model partially fixes this issue; however, the inferred branch
lengths are dependent on the total number of nonvariant
sites, and different branch lengths would be recovered if the
total number of bases from flanking regions surrounding
SNPs were used or if genome size minus SNP variants were
used. Converting to chronograms is not dependent on the
number of variant or nonvariant sites in the analysis.

These downstream results are, however, hardly surprising
given that rates of morphological change in phylograms are
denoted as the number of morphological changes per
nucleotide substitution per site. This rate does not make
much biological sense, unless the tree was inferred with genes
that underlie the morphological traits of interest and
mutations in those genes are known to directly correlate
with particular shifts in phenotype (Litsios and Salamin,
2012). Going against what is often considered “standard
practice,” phylograms are still used in PCMs across a range of
studies (Landis et al., 2016; Ickert‐Bond et al., 2020; Maletti
et al., 2021; Mennecart et al., 2022; Jauregui‐Lazo et al., 2023;
Chomicki et al., 2024). While this comparison does not
definitively answer the question about whether chronograms
or phylograms should be used (for alternative approaches, see
Litsios and Salamin, 2012; Cusimano and Renner, 2014), we
do highlight the caution that is needed in comparing
ancestral state reconstructions across studies that use
different types of phylogenetic trees given the vastly different
number of transitions and transition rates observed in
phylograms compared to chronograms. Given the differences
and the sensitivity of modeled parameters to branch lengths,
we recommend researchers use chronograms when conduct-
ing PCMs, especially considering the congruent results
observed in the BEAST trees regardless of whether SNP or
locus datasets were used (Figures 4 and 5).

Guidelines

Many points should be considered when determining which
sequencing method is most appropriate, including the
number of taxa, taxon sampling, crown age, heterozygosity,
and the biological question of interest; these factors should all
be considered before any data are generated. If researchers
determine that a SNP‐based approach is best, the results from
our analyses suggest the following recommendations. (1)
Researchers can use either SNPs or full loci (short‐read
contigs) in their analyses to produce reliable inferences. This
is supported by the equivalent results in our phylogenomic
inference, including overall topology, divergence time

estimation, and PCMs on chronograms. Incorporation of
ascertainment bias correction models can resolve differences
in absolute branch lengths observed between SNP and full
loci; however, inferred branch lengths are fully dependent on
the specified number of nonvariant sites. (2) Use moderate
filtering in SNP retention (SNPs found in ~45–75% of
individuals), as over‐filtering can lead to inconsistent branch
lengths and, in some cases, topological differences. On the
other hand, under‐filtering of SNPs increases computation
time with minimal benefit to phylogenetic inference. (3) Use
chronograms in downstream PCMs, as phylograms are highly
sensitive to differences in absolute branch lengths, leading to
variation in evolutionary metrics. While we anticipate new
information to provide further insights and guidelines for
researchers conducting phylogenomic analyses, we hope our
framework can be a helpful resource for phylogenetic analyses
in the genomics age and can influence some of the
methodological decisions taken by future researchers.
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SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. Supplemental figures for “Data‐driven
guidelines for phylogenomic analyses using SNP data.”

Appendix S2. Amount of missing data for each accession in
each dataset as calculated by VCFtools in the resulting
VCF file.
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Appendix S3. Inferred topologies from all empirical
datasets including different filtering thresholds and analysis
methods. The right side of the cophylo plot is the 45%
RAxML tree as a reference. Bootstrap support or posterior
probability at nodes are 100%/1.0 unless otherwise specified.

Appendix S4. Tree topologies as scored by the phytools
“find.unique” function across filtering thresholds for the
empirical maximum likelihood and Bayesian trees, simulated
GBS data maximum likelihood trees, and downsampled
maximum likelihood trees.

Appendix S5. Wilcoxon signed‐rank pairwise comparisons
of branch length and node support for the different data
types and filtering strategies.

Appendix S6. Inferred topologies and divergence time
estimation with the 95% confidence interval of node ages
from all empirical datasets including different filtering

thresholds and analysis methods. Divergence time estima-
tion in RelTree was rooted with Glycine falcata as in the
BEAST analyses, but due to plotting limitations of Mega, the
outgroup was not included in the plot.

Appendix S7. Comparisons of inferred divergence times
from RelTime between the SNP and locus datasets.
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